1 | /* |
2 | ** $Id: lopcodes.h,v 1.149.1.1 2017/04/19 17:20:42 roberto Exp $ |
3 | ** Opcodes for Lua virtual machine |
4 | ** See Copyright Notice in lua.h |
5 | */ |
6 | |
7 | #ifndef lopcodes_h |
8 | #define lopcodes_h |
9 | |
10 | #include "llimits.h" |
11 | |
12 | |
13 | /*=========================================================================== |
14 | We assume that instructions are unsigned numbers. |
15 | All instructions have an opcode in the first 6 bits. |
16 | Instructions can have the following fields: |
17 | 'A' : 8 bits |
18 | 'B' : 9 bits |
19 | 'C' : 9 bits |
20 | 'Ax' : 26 bits ('A', 'B', and 'C' together) |
21 | 'Bx' : 18 bits ('B' and 'C' together) |
22 | 'sBx' : signed Bx |
23 | |
24 | A signed argument is represented in excess K; that is, the number |
25 | value is the unsigned value minus K. K is exactly the maximum value |
26 | for that argument (so that -max is represented by 0, and +max is |
27 | represented by 2*max), which is half the maximum for the corresponding |
28 | unsigned argument. |
29 | ===========================================================================*/ |
30 | |
31 | |
32 | enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ |
33 | |
34 | |
35 | /* |
36 | ** size and position of opcode arguments. |
37 | */ |
38 | #define SIZE_C 9 |
39 | #define SIZE_B 9 |
40 | #define SIZE_Bx (SIZE_C + SIZE_B) |
41 | #define SIZE_A 8 |
42 | #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) |
43 | |
44 | #define SIZE_OP 6 |
45 | |
46 | #define POS_OP 0 |
47 | #define POS_A (POS_OP + SIZE_OP) |
48 | #define POS_C (POS_A + SIZE_A) |
49 | #define POS_B (POS_C + SIZE_C) |
50 | #define POS_Bx POS_C |
51 | #define POS_Ax POS_A |
52 | |
53 | |
54 | /* |
55 | ** limits for opcode arguments. |
56 | ** we use (signed) int to manipulate most arguments, |
57 | ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) |
58 | */ |
59 | #if SIZE_Bx < LUAI_BITSINT-1 |
60 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) |
61 | #define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ |
62 | #else |
63 | #define MAXARG_Bx MAX_INT |
64 | #define MAXARG_sBx MAX_INT |
65 | #endif |
66 | |
67 | #if SIZE_Ax < LUAI_BITSINT-1 |
68 | #define MAXARG_Ax ((1<<SIZE_Ax)-1) |
69 | #else |
70 | #define MAXARG_Ax MAX_INT |
71 | #endif |
72 | |
73 | |
74 | #define MAXARG_A ((1<<SIZE_A)-1) |
75 | #define MAXARG_B ((1<<SIZE_B)-1) |
76 | #define MAXARG_C ((1<<SIZE_C)-1) |
77 | |
78 | |
79 | /* creates a mask with 'n' 1 bits at position 'p' */ |
80 | #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) |
81 | |
82 | /* creates a mask with 'n' 0 bits at position 'p' */ |
83 | #define MASK0(n,p) (~MASK1(n,p)) |
84 | |
85 | /* |
86 | ** the following macros help to manipulate instructions |
87 | */ |
88 | |
89 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) |
90 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ |
91 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) |
92 | |
93 | #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) |
94 | #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ |
95 | ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) |
96 | |
97 | #define GETARG_A(i) getarg(i, POS_A, SIZE_A) |
98 | #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) |
99 | |
100 | #define GETARG_B(i) getarg(i, POS_B, SIZE_B) |
101 | #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) |
102 | |
103 | #define GETARG_C(i) getarg(i, POS_C, SIZE_C) |
104 | #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) |
105 | |
106 | #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) |
107 | #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) |
108 | |
109 | #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) |
110 | #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) |
111 | |
112 | #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) |
113 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) |
114 | |
115 | |
116 | #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ |
117 | | (cast(Instruction, a)<<POS_A) \ |
118 | | (cast(Instruction, b)<<POS_B) \ |
119 | | (cast(Instruction, c)<<POS_C)) |
120 | |
121 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ |
122 | | (cast(Instruction, a)<<POS_A) \ |
123 | | (cast(Instruction, bc)<<POS_Bx)) |
124 | |
125 | #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ |
126 | | (cast(Instruction, a)<<POS_Ax)) |
127 | |
128 | |
129 | /* |
130 | ** Macros to operate RK indices |
131 | */ |
132 | |
133 | /* this bit 1 means constant (0 means register) */ |
134 | #define BITRK (1 << (SIZE_B - 1)) |
135 | |
136 | /* test whether value is a constant */ |
137 | #define ISK(x) ((x) & BITRK) |
138 | |
139 | /* gets the index of the constant */ |
140 | #define INDEXK(r) ((int)(r) & ~BITRK) |
141 | |
142 | #if !defined(MAXINDEXRK) /* (for debugging only) */ |
143 | #define MAXINDEXRK (BITRK - 1) |
144 | #endif |
145 | |
146 | /* code a constant index as a RK value */ |
147 | #define RKASK(x) ((x) | BITRK) |
148 | |
149 | |
150 | /* |
151 | ** invalid register that fits in 8 bits |
152 | */ |
153 | #define NO_REG MAXARG_A |
154 | |
155 | |
156 | /* |
157 | ** R(x) - register |
158 | ** Kst(x) - constant (in constant table) |
159 | ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) |
160 | */ |
161 | |
162 | |
163 | /* |
164 | ** grep "ORDER OP" if you change these enums |
165 | */ |
166 | |
167 | typedef enum { |
168 | /*---------------------------------------------------------------------- |
169 | name args description |
170 | ------------------------------------------------------------------------*/ |
171 | OP_MOVE,/* A B R(A) := R(B) */ |
172 | OP_LOADK,/* A Bx R(A) := Kst(Bx) */ |
173 | OP_LOADKX,/* A R(A) := Kst(extra arg) */ |
174 | OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ |
175 | OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ |
176 | OP_GETUPVAL,/* A B R(A) := UpValue[B] */ |
177 | |
178 | OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ |
179 | OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ |
180 | |
181 | OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ |
182 | OP_SETUPVAL,/* A B UpValue[B] := R(A) */ |
183 | OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ |
184 | |
185 | OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ |
186 | |
187 | OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ |
188 | |
189 | OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ |
190 | OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ |
191 | OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ |
192 | OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ |
193 | OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ |
194 | OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ |
195 | OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */ |
196 | OP_BAND,/* A B C R(A) := RK(B) & RK(C) */ |
197 | OP_BOR,/* A B C R(A) := RK(B) | RK(C) */ |
198 | OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */ |
199 | OP_SHL,/* A B C R(A) := RK(B) << RK(C) */ |
200 | OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */ |
201 | OP_UNM,/* A B R(A) := -R(B) */ |
202 | OP_BNOT,/* A B R(A) := ~R(B) */ |
203 | OP_NOT,/* A B R(A) := not R(B) */ |
204 | OP_LEN,/* A B R(A) := length of R(B) */ |
205 | |
206 | OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ |
207 | |
208 | OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */ |
209 | OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ |
210 | OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ |
211 | OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ |
212 | |
213 | OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ |
214 | OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ |
215 | |
216 | OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ |
217 | OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ |
218 | OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ |
219 | |
220 | OP_FORLOOP,/* A sBx R(A)+=R(A+2); |
221 | if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ |
222 | OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ |
223 | |
224 | OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ |
225 | OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ |
226 | |
227 | OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ |
228 | |
229 | OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ |
230 | |
231 | OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ |
232 | |
233 | /* Ax extra (larger) argument for previous opcode */ |
234 | } OpCode; |
235 | |
236 | |
237 | #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) |
238 | |
239 | |
240 | |
241 | /*=========================================================================== |
242 | Notes: |
243 | (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is |
244 | set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, |
245 | OP_SETLIST) may use 'top'. |
246 | |
247 | (*) In OP_VARARG, if (B == 0) then use actual number of varargs and |
248 | set top (like in OP_CALL with C == 0). |
249 | |
250 | (*) In OP_RETURN, if (B == 0) then return up to 'top'. |
251 | |
252 | (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next |
253 | 'instruction' is EXTRAARG(real C). |
254 | |
255 | (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. |
256 | |
257 | (*) For comparisons, A specifies what condition the test should accept |
258 | (true or false). |
259 | |
260 | (*) All 'skips' (pc++) assume that next instruction is a jump. |
261 | |
262 | ===========================================================================*/ |
263 | |
264 | |
265 | /* |
266 | ** masks for instruction properties. The format is: |
267 | ** bits 0-1: op mode |
268 | ** bits 2-3: C arg mode |
269 | ** bits 4-5: B arg mode |
270 | ** bit 6: instruction set register A |
271 | ** bit 7: operator is a test (next instruction must be a jump) |
272 | */ |
273 | |
274 | enum OpArgMask { |
275 | OpArgN, /* argument is not used */ |
276 | OpArgU, /* argument is used */ |
277 | OpArgR, /* argument is a register or a jump offset */ |
278 | OpArgK /* argument is a constant or register/constant */ |
279 | }; |
280 | |
281 | LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; |
282 | |
283 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) |
284 | #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) |
285 | #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) |
286 | #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) |
287 | #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) |
288 | |
289 | |
290 | LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ |
291 | |
292 | |
293 | /* number of list items to accumulate before a SETLIST instruction */ |
294 | #define LFIELDS_PER_FLUSH 50 |
295 | |
296 | |
297 | #endif |
298 | |