1 | /* |
2 | ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $ |
3 | ** Lua tables (hash) |
4 | ** See Copyright Notice in lua.h |
5 | */ |
6 | |
7 | #define ltable_c |
8 | #define LUA_CORE |
9 | |
10 | #include "lprefix.h" |
11 | |
12 | |
13 | /* |
14 | ** Implementation of tables (aka arrays, objects, or hash tables). |
15 | ** Tables keep its elements in two parts: an array part and a hash part. |
16 | ** Non-negative integer keys are all candidates to be kept in the array |
17 | ** part. The actual size of the array is the largest 'n' such that |
18 | ** more than half the slots between 1 and n are in use. |
19 | ** Hash uses a mix of chained scatter table with Brent's variation. |
20 | ** A main invariant of these tables is that, if an element is not |
21 | ** in its main position (i.e. the 'original' position that its hash gives |
22 | ** to it), then the colliding element is in its own main position. |
23 | ** Hence even when the load factor reaches 100%, performance remains good. |
24 | */ |
25 | |
26 | #include <math.h> |
27 | #include <limits.h> |
28 | |
29 | #include "lua.h" |
30 | |
31 | #include "ldebug.h" |
32 | #include "ldo.h" |
33 | #include "lgc.h" |
34 | #include "lmem.h" |
35 | #include "lobject.h" |
36 | #include "lstate.h" |
37 | #include "lstring.h" |
38 | #include "ltable.h" |
39 | #include "lvm.h" |
40 | |
41 | |
42 | /* |
43 | ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is |
44 | ** the largest integer such that MAXASIZE fits in an unsigned int. |
45 | */ |
46 | #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) |
47 | #define MAXASIZE (1u << MAXABITS) |
48 | |
49 | /* |
50 | ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest |
51 | ** integer such that 2^MAXHBITS fits in a signed int. (Note that the |
52 | ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still |
53 | ** fits comfortably in an unsigned int.) |
54 | */ |
55 | #define MAXHBITS (MAXABITS - 1) |
56 | |
57 | |
58 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
59 | |
60 | #define hashstr(t,str) hashpow2(t, (str)->hash) |
61 | #define hashboolean(t,p) hashpow2(t, p) |
62 | #define hashint(t,i) hashpow2(t, i) |
63 | |
64 | |
65 | /* |
66 | ** for some types, it is better to avoid modulus by power of 2, as |
67 | ** they tend to have many 2 factors. |
68 | */ |
69 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
70 | |
71 | |
72 | #define hashpointer(t,p) hashmod(t, point2uint(p)) |
73 | |
74 | |
75 | #define dummynode (&dummynode_) |
76 | |
77 | static const Node dummynode_ = { |
78 | {NILCONSTANT}, /* value */ |
79 | {{NILCONSTANT, 0}} /* key */ |
80 | }; |
81 | |
82 | |
83 | /* |
84 | ** Hash for floating-point numbers. |
85 | ** The main computation should be just |
86 | ** n = frexp(n, &i); return (n * INT_MAX) + i |
87 | ** but there are some numerical subtleties. |
88 | ** In a two-complement representation, INT_MAX does not has an exact |
89 | ** representation as a float, but INT_MIN does; because the absolute |
90 | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
91 | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
92 | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
93 | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
94 | ** INT_MIN. |
95 | */ |
96 | #if !defined(l_hashfloat) |
97 | static int l_hashfloat (lua_Number n) { |
98 | int i; |
99 | lua_Integer ni; |
100 | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
101 | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
102 | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
103 | return 0; |
104 | } |
105 | else { /* normal case */ |
106 | unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni); |
107 | return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u); |
108 | } |
109 | } |
110 | #endif |
111 | |
112 | |
113 | /* |
114 | ** returns the 'main' position of an element in a table (that is, the index |
115 | ** of its hash value) |
116 | */ |
117 | static Node *mainposition (const Table *t, const TValue *key) { |
118 | switch (ttype(key)) { |
119 | case LUA_TNUMINT: |
120 | return hashint(t, ivalue(key)); |
121 | case LUA_TNUMFLT: |
122 | return hashmod(t, l_hashfloat(fltvalue(key))); |
123 | case LUA_TSHRSTR: |
124 | return hashstr(t, tsvalue(key)); |
125 | case LUA_TLNGSTR: |
126 | return hashpow2(t, luaS_hashlongstr(tsvalue(key))); |
127 | case LUA_TBOOLEAN: |
128 | return hashboolean(t, bvalue(key)); |
129 | case LUA_TLIGHTUSERDATA: |
130 | return hashpointer(t, pvalue(key)); |
131 | case LUA_TLCF: |
132 | return hashpointer(t, fvalue(key)); |
133 | default: |
134 | lua_assert(!ttisdeadkey(key)); |
135 | return hashpointer(t, gcvalue(key)); |
136 | } |
137 | } |
138 | |
139 | |
140 | /* |
141 | ** returns the index for 'key' if 'key' is an appropriate key to live in |
142 | ** the array part of the table, 0 otherwise. |
143 | */ |
144 | static unsigned int arrayindex (const TValue *key) { |
145 | if (ttisinteger(key)) { |
146 | lua_Integer k = ivalue(key); |
147 | if (0 < k && (lua_Unsigned)k <= MAXASIZE) |
148 | return cast(unsigned int, k); /* 'key' is an appropriate array index */ |
149 | } |
150 | return 0; /* 'key' did not match some condition */ |
151 | } |
152 | |
153 | |
154 | /* |
155 | ** returns the index of a 'key' for table traversals. First goes all |
156 | ** elements in the array part, then elements in the hash part. The |
157 | ** beginning of a traversal is signaled by 0. |
158 | */ |
159 | static unsigned int findindex (lua_State *L, Table *t, StkId key) { |
160 | unsigned int i; |
161 | if (ttisnil(key)) return 0; /* first iteration */ |
162 | i = arrayindex(key); |
163 | if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */ |
164 | return i; /* yes; that's the index */ |
165 | else { |
166 | int nx; |
167 | Node *n = mainposition(t, key); |
168 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
169 | /* key may be dead already, but it is ok to use it in 'next' */ |
170 | if (luaV_rawequalobj(gkey(n), key) || |
171 | (ttisdeadkey(gkey(n)) && iscollectable(key) && |
172 | deadvalue(gkey(n)) == gcvalue(key))) { |
173 | i = cast_int(n - gnode(t, 0)); /* key index in hash table */ |
174 | /* hash elements are numbered after array ones */ |
175 | return (i + 1) + t->sizearray; |
176 | } |
177 | nx = gnext(n); |
178 | if (nx == 0) |
179 | luaG_runerror(L, "invalid key to 'next'" ); /* key not found */ |
180 | else n += nx; |
181 | } |
182 | } |
183 | } |
184 | |
185 | |
186 | int luaH_next (lua_State *L, Table *t, StkId key) { |
187 | unsigned int i = findindex(L, t, key); /* find original element */ |
188 | for (; i < t->sizearray; i++) { /* try first array part */ |
189 | if (!ttisnil(&t->array[i])) { /* a non-nil value? */ |
190 | setivalue(key, i + 1); |
191 | setobj2s(L, key+1, &t->array[i]); |
192 | return 1; |
193 | } |
194 | } |
195 | for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */ |
196 | if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ |
197 | setobj2s(L, key, gkey(gnode(t, i))); |
198 | setobj2s(L, key+1, gval(gnode(t, i))); |
199 | return 1; |
200 | } |
201 | } |
202 | return 0; /* no more elements */ |
203 | } |
204 | |
205 | |
206 | /* |
207 | ** {============================================================= |
208 | ** Rehash |
209 | ** ============================================================== |
210 | */ |
211 | |
212 | /* |
213 | ** Compute the optimal size for the array part of table 't'. 'nums' is a |
214 | ** "count array" where 'nums[i]' is the number of integers in the table |
215 | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of |
216 | ** integer keys in the table and leaves with the number of keys that |
217 | ** will go to the array part; return the optimal size. |
218 | */ |
219 | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { |
220 | int i; |
221 | unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
222 | unsigned int a = 0; /* number of elements smaller than 2^i */ |
223 | unsigned int na = 0; /* number of elements to go to array part */ |
224 | unsigned int optimal = 0; /* optimal size for array part */ |
225 | /* loop while keys can fill more than half of total size */ |
226 | for (i = 0, twotoi = 1; |
227 | twotoi > 0 && *pna > twotoi / 2; |
228 | i++, twotoi *= 2) { |
229 | if (nums[i] > 0) { |
230 | a += nums[i]; |
231 | if (a > twotoi/2) { /* more than half elements present? */ |
232 | optimal = twotoi; /* optimal size (till now) */ |
233 | na = a; /* all elements up to 'optimal' will go to array part */ |
234 | } |
235 | } |
236 | } |
237 | lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); |
238 | *pna = na; |
239 | return optimal; |
240 | } |
241 | |
242 | |
243 | static int countint (const TValue *key, unsigned int *nums) { |
244 | unsigned int k = arrayindex(key); |
245 | if (k != 0) { /* is 'key' an appropriate array index? */ |
246 | nums[luaO_ceillog2(k)]++; /* count as such */ |
247 | return 1; |
248 | } |
249 | else |
250 | return 0; |
251 | } |
252 | |
253 | |
254 | /* |
255 | ** Count keys in array part of table 't': Fill 'nums[i]' with |
256 | ** number of keys that will go into corresponding slice and return |
257 | ** total number of non-nil keys. |
258 | */ |
259 | static unsigned int numusearray (const Table *t, unsigned int *nums) { |
260 | int lg; |
261 | unsigned int ttlg; /* 2^lg */ |
262 | unsigned int ause = 0; /* summation of 'nums' */ |
263 | unsigned int i = 1; /* count to traverse all array keys */ |
264 | /* traverse each slice */ |
265 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
266 | unsigned int lc = 0; /* counter */ |
267 | unsigned int lim = ttlg; |
268 | if (lim > t->sizearray) { |
269 | lim = t->sizearray; /* adjust upper limit */ |
270 | if (i > lim) |
271 | break; /* no more elements to count */ |
272 | } |
273 | /* count elements in range (2^(lg - 1), 2^lg] */ |
274 | for (; i <= lim; i++) { |
275 | if (!ttisnil(&t->array[i-1])) |
276 | lc++; |
277 | } |
278 | nums[lg] += lc; |
279 | ause += lc; |
280 | } |
281 | return ause; |
282 | } |
283 | |
284 | |
285 | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { |
286 | int totaluse = 0; /* total number of elements */ |
287 | int ause = 0; /* elements added to 'nums' (can go to array part) */ |
288 | int i = sizenode(t); |
289 | while (i--) { |
290 | Node *n = &t->node[i]; |
291 | if (!ttisnil(gval(n))) { |
292 | ause += countint(gkey(n), nums); |
293 | totaluse++; |
294 | } |
295 | } |
296 | *pna += ause; |
297 | return totaluse; |
298 | } |
299 | |
300 | |
301 | static void setarrayvector (lua_State *L, Table *t, unsigned int size) { |
302 | unsigned int i; |
303 | luaM_reallocvector(L, t->array, t->sizearray, size, TValue); |
304 | for (i=t->sizearray; i<size; i++) |
305 | setnilvalue(&t->array[i]); |
306 | t->sizearray = size; |
307 | } |
308 | |
309 | |
310 | static void setnodevector (lua_State *L, Table *t, unsigned int size) { |
311 | if (size == 0) { /* no elements to hash part? */ |
312 | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
313 | t->lsizenode = 0; |
314 | t->lastfree = NULL; /* signal that it is using dummy node */ |
315 | } |
316 | else { |
317 | int i; |
318 | int lsize = luaO_ceillog2(size); |
319 | if (lsize > MAXHBITS) |
320 | luaG_runerror(L, "table overflow" ); |
321 | size = twoto(lsize); |
322 | t->node = luaM_newvector(L, size, Node); |
323 | for (i = 0; i < (int)size; i++) { |
324 | Node *n = gnode(t, i); |
325 | gnext(n) = 0; |
326 | setnilvalue(wgkey(n)); |
327 | setnilvalue(gval(n)); |
328 | } |
329 | t->lsizenode = cast_byte(lsize); |
330 | t->lastfree = gnode(t, size); /* all positions are free */ |
331 | } |
332 | } |
333 | |
334 | |
335 | typedef struct { |
336 | Table *t; |
337 | unsigned int nhsize; |
338 | } AuxsetnodeT; |
339 | |
340 | |
341 | static void auxsetnode (lua_State *L, void *ud) { |
342 | AuxsetnodeT *asn = cast(AuxsetnodeT *, ud); |
343 | setnodevector(L, asn->t, asn->nhsize); |
344 | } |
345 | |
346 | |
347 | void luaH_resize (lua_State *L, Table *t, unsigned int nasize, |
348 | unsigned int nhsize) { |
349 | unsigned int i; |
350 | int j; |
351 | AuxsetnodeT asn; |
352 | unsigned int oldasize = t->sizearray; |
353 | int oldhsize = allocsizenode(t); |
354 | Node *nold = t->node; /* save old hash ... */ |
355 | if (nasize > oldasize) /* array part must grow? */ |
356 | setarrayvector(L, t, nasize); |
357 | /* create new hash part with appropriate size */ |
358 | asn.t = t; asn.nhsize = nhsize; |
359 | if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */ |
360 | setarrayvector(L, t, oldasize); /* array back to its original size */ |
361 | luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */ |
362 | } |
363 | if (nasize < oldasize) { /* array part must shrink? */ |
364 | t->sizearray = nasize; |
365 | /* re-insert elements from vanishing slice */ |
366 | for (i=nasize; i<oldasize; i++) { |
367 | if (!ttisnil(&t->array[i])) |
368 | luaH_setint(L, t, i + 1, &t->array[i]); |
369 | } |
370 | /* shrink array */ |
371 | luaM_reallocvector(L, t->array, oldasize, nasize, TValue); |
372 | } |
373 | /* re-insert elements from hash part */ |
374 | for (j = oldhsize - 1; j >= 0; j--) { |
375 | Node *old = nold + j; |
376 | if (!ttisnil(gval(old))) { |
377 | /* doesn't need barrier/invalidate cache, as entry was |
378 | already present in the table */ |
379 | setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); |
380 | } |
381 | } |
382 | if (oldhsize > 0) /* not the dummy node? */ |
383 | luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */ |
384 | } |
385 | |
386 | |
387 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
388 | int nsize = allocsizenode(t); |
389 | luaH_resize(L, t, nasize, nsize); |
390 | } |
391 | |
392 | /* |
393 | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i |
394 | */ |
395 | static void rehash (lua_State *L, Table *t, const TValue *ek) { |
396 | unsigned int asize; /* optimal size for array part */ |
397 | unsigned int na; /* number of keys in the array part */ |
398 | unsigned int nums[MAXABITS + 1]; |
399 | int i; |
400 | int totaluse; |
401 | for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ |
402 | na = numusearray(t, nums); /* count keys in array part */ |
403 | totaluse = na; /* all those keys are integer keys */ |
404 | totaluse += numusehash(t, nums, &na); /* count keys in hash part */ |
405 | /* count extra key */ |
406 | na += countint(ek, nums); |
407 | totaluse++; |
408 | /* compute new size for array part */ |
409 | asize = computesizes(nums, &na); |
410 | /* resize the table to new computed sizes */ |
411 | luaH_resize(L, t, asize, totaluse - na); |
412 | } |
413 | |
414 | |
415 | |
416 | /* |
417 | ** }============================================================= |
418 | */ |
419 | |
420 | |
421 | Table *luaH_new (lua_State *L) { |
422 | GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table)); |
423 | Table *t = gco2t(o); |
424 | t->metatable = NULL; |
425 | t->flags = cast_byte(~0); |
426 | t->array = NULL; |
427 | t->sizearray = 0; |
428 | setnodevector(L, t, 0); |
429 | return t; |
430 | } |
431 | |
432 | |
433 | void luaH_free (lua_State *L, Table *t) { |
434 | if (!isdummy(t)) |
435 | luaM_freearray(L, t->node, cast(size_t, sizenode(t))); |
436 | luaM_freearray(L, t->array, t->sizearray); |
437 | luaM_free(L, t); |
438 | } |
439 | |
440 | |
441 | static Node *getfreepos (Table *t) { |
442 | if (!isdummy(t)) { |
443 | while (t->lastfree > t->node) { |
444 | t->lastfree--; |
445 | if (ttisnil(gkey(t->lastfree))) |
446 | return t->lastfree; |
447 | } |
448 | } |
449 | return NULL; /* could not find a free place */ |
450 | } |
451 | |
452 | |
453 | |
454 | /* |
455 | ** inserts a new key into a hash table; first, check whether key's main |
456 | ** position is free. If not, check whether colliding node is in its main |
457 | ** position or not: if it is not, move colliding node to an empty place and |
458 | ** put new key in its main position; otherwise (colliding node is in its main |
459 | ** position), new key goes to an empty position. |
460 | */ |
461 | TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { |
462 | Node *mp; |
463 | TValue aux; |
464 | if (ttisnil(key)) luaG_runerror(L, "table index is nil" ); |
465 | else if (ttisfloat(key)) { |
466 | lua_Integer k; |
467 | if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */ |
468 | setivalue(&aux, k); |
469 | key = &aux; /* insert it as an integer */ |
470 | } |
471 | else if (luai_numisnan(fltvalue(key))) |
472 | luaG_runerror(L, "table index is NaN" ); |
473 | } |
474 | mp = mainposition(t, key); |
475 | if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
476 | Node *othern; |
477 | Node *f = getfreepos(t); /* get a free place */ |
478 | if (f == NULL) { /* cannot find a free place? */ |
479 | rehash(L, t, key); /* grow table */ |
480 | /* whatever called 'newkey' takes care of TM cache */ |
481 | return luaH_set(L, t, key); /* insert key into grown table */ |
482 | } |
483 | lua_assert(!isdummy(t)); |
484 | othern = mainposition(t, gkey(mp)); |
485 | if (othern != mp) { /* is colliding node out of its main position? */ |
486 | /* yes; move colliding node into free position */ |
487 | while (othern + gnext(othern) != mp) /* find previous */ |
488 | othern += gnext(othern); |
489 | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
490 | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
491 | if (gnext(mp) != 0) { |
492 | gnext(f) += cast_int(mp - f); /* correct 'next' */ |
493 | gnext(mp) = 0; /* now 'mp' is free */ |
494 | } |
495 | setnilvalue(gval(mp)); |
496 | } |
497 | else { /* colliding node is in its own main position */ |
498 | /* new node will go into free position */ |
499 | if (gnext(mp) != 0) |
500 | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
501 | else lua_assert(gnext(f) == 0); |
502 | gnext(mp) = cast_int(f - mp); |
503 | mp = f; |
504 | } |
505 | } |
506 | setnodekey(L, &mp->i_key, key); |
507 | luaC_barrierback(L, t, key); |
508 | lua_assert(ttisnil(gval(mp))); |
509 | return gval(mp); |
510 | } |
511 | |
512 | |
513 | /* |
514 | ** search function for integers |
515 | */ |
516 | const TValue *luaH_getint (Table *t, lua_Integer key) { |
517 | /* (1 <= key && key <= t->sizearray) */ |
518 | if (l_castS2U(key) - 1 < t->sizearray) |
519 | return &t->array[key - 1]; |
520 | else { |
521 | Node *n = hashint(t, key); |
522 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
523 | if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key) |
524 | return gval(n); /* that's it */ |
525 | else { |
526 | int nx = gnext(n); |
527 | if (nx == 0) break; |
528 | n += nx; |
529 | } |
530 | } |
531 | return luaO_nilobject; |
532 | } |
533 | } |
534 | |
535 | |
536 | /* |
537 | ** search function for short strings |
538 | */ |
539 | const TValue *luaH_getshortstr (Table *t, TString *key) { |
540 | Node *n = hashstr(t, key); |
541 | lua_assert(key->tt == LUA_TSHRSTR); |
542 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
543 | const TValue *k = gkey(n); |
544 | if (ttisshrstring(k) && eqshrstr(tsvalue(k), key)) |
545 | return gval(n); /* that's it */ |
546 | else { |
547 | int nx = gnext(n); |
548 | if (nx == 0) |
549 | return luaO_nilobject; /* not found */ |
550 | n += nx; |
551 | } |
552 | } |
553 | } |
554 | |
555 | |
556 | /* |
557 | ** "Generic" get version. (Not that generic: not valid for integers, |
558 | ** which may be in array part, nor for floats with integral values.) |
559 | */ |
560 | static const TValue *getgeneric (Table *t, const TValue *key) { |
561 | Node *n = mainposition(t, key); |
562 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
563 | if (luaV_rawequalobj(gkey(n), key)) |
564 | return gval(n); /* that's it */ |
565 | else { |
566 | int nx = gnext(n); |
567 | if (nx == 0) |
568 | return luaO_nilobject; /* not found */ |
569 | n += nx; |
570 | } |
571 | } |
572 | } |
573 | |
574 | |
575 | const TValue *luaH_getstr (Table *t, TString *key) { |
576 | if (key->tt == LUA_TSHRSTR) |
577 | return luaH_getshortstr(t, key); |
578 | else { /* for long strings, use generic case */ |
579 | TValue ko; |
580 | setsvalue(cast(lua_State *, NULL), &ko, key); |
581 | return getgeneric(t, &ko); |
582 | } |
583 | } |
584 | |
585 | |
586 | /* |
587 | ** main search function |
588 | */ |
589 | const TValue *luaH_get (Table *t, const TValue *key) { |
590 | switch (ttype(key)) { |
591 | case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key)); |
592 | case LUA_TNUMINT: return luaH_getint(t, ivalue(key)); |
593 | case LUA_TNIL: return luaO_nilobject; |
594 | case LUA_TNUMFLT: { |
595 | lua_Integer k; |
596 | if (luaV_tointeger(key, &k, 0)) /* index is int? */ |
597 | return luaH_getint(t, k); /* use specialized version */ |
598 | /* else... */ |
599 | } /* FALLTHROUGH */ |
600 | default: |
601 | return getgeneric(t, key); |
602 | } |
603 | } |
604 | |
605 | |
606 | /* |
607 | ** beware: when using this function you probably need to check a GC |
608 | ** barrier and invalidate the TM cache. |
609 | */ |
610 | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
611 | const TValue *p = luaH_get(t, key); |
612 | if (p != luaO_nilobject) |
613 | return cast(TValue *, p); |
614 | else return luaH_newkey(L, t, key); |
615 | } |
616 | |
617 | |
618 | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
619 | const TValue *p = luaH_getint(t, key); |
620 | TValue *cell; |
621 | if (p != luaO_nilobject) |
622 | cell = cast(TValue *, p); |
623 | else { |
624 | TValue k; |
625 | setivalue(&k, key); |
626 | cell = luaH_newkey(L, t, &k); |
627 | } |
628 | setobj2t(L, cell, value); |
629 | } |
630 | |
631 | |
632 | static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) { |
633 | lua_Unsigned i = j; /* i is zero or a present index */ |
634 | j++; |
635 | /* find 'i' and 'j' such that i is present and j is not */ |
636 | while (!ttisnil(luaH_getint(t, j))) { |
637 | i = j; |
638 | if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */ |
639 | /* table was built with bad purposes: resort to linear search */ |
640 | i = 1; |
641 | while (!ttisnil(luaH_getint(t, i))) i++; |
642 | return i - 1; |
643 | } |
644 | j *= 2; |
645 | } |
646 | /* now do a binary search between them */ |
647 | while (j - i > 1) { |
648 | lua_Unsigned m = (i+j)/2; |
649 | if (ttisnil(luaH_getint(t, m))) j = m; |
650 | else i = m; |
651 | } |
652 | return i; |
653 | } |
654 | |
655 | |
656 | /* |
657 | ** Try to find a boundary in table 't'. A 'boundary' is an integer index |
658 | ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). |
659 | */ |
660 | lua_Unsigned luaH_getn (Table *t) { |
661 | unsigned int j = t->sizearray; |
662 | if (j > 0 && ttisnil(&t->array[j - 1])) { |
663 | /* there is a boundary in the array part: (binary) search for it */ |
664 | unsigned int i = 0; |
665 | while (j - i > 1) { |
666 | unsigned int m = (i+j)/2; |
667 | if (ttisnil(&t->array[m - 1])) j = m; |
668 | else i = m; |
669 | } |
670 | return i; |
671 | } |
672 | /* else must find a boundary in hash part */ |
673 | else if (isdummy(t)) /* hash part is empty? */ |
674 | return j; /* that is easy... */ |
675 | else return unbound_search(t, j); |
676 | } |
677 | |
678 | |
679 | |
680 | #if defined(LUA_DEBUG) |
681 | |
682 | Node *luaH_mainposition (const Table *t, const TValue *key) { |
683 | return mainposition(t, key); |
684 | } |
685 | |
686 | int luaH_isdummy (const Table *t) { return isdummy(t); } |
687 | |
688 | #endif |
689 | |