| 1 | /* |
| 2 | ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $ |
| 3 | ** Lua tables (hash) |
| 4 | ** See Copyright Notice in lua.h |
| 5 | */ |
| 6 | |
| 7 | #define ltable_c |
| 8 | #define LUA_CORE |
| 9 | |
| 10 | #include "lprefix.h" |
| 11 | |
| 12 | |
| 13 | /* |
| 14 | ** Implementation of tables (aka arrays, objects, or hash tables). |
| 15 | ** Tables keep its elements in two parts: an array part and a hash part. |
| 16 | ** Non-negative integer keys are all candidates to be kept in the array |
| 17 | ** part. The actual size of the array is the largest 'n' such that |
| 18 | ** more than half the slots between 1 and n are in use. |
| 19 | ** Hash uses a mix of chained scatter table with Brent's variation. |
| 20 | ** A main invariant of these tables is that, if an element is not |
| 21 | ** in its main position (i.e. the 'original' position that its hash gives |
| 22 | ** to it), then the colliding element is in its own main position. |
| 23 | ** Hence even when the load factor reaches 100%, performance remains good. |
| 24 | */ |
| 25 | |
| 26 | #include <math.h> |
| 27 | #include <limits.h> |
| 28 | |
| 29 | #include "lua.h" |
| 30 | |
| 31 | #include "ldebug.h" |
| 32 | #include "ldo.h" |
| 33 | #include "lgc.h" |
| 34 | #include "lmem.h" |
| 35 | #include "lobject.h" |
| 36 | #include "lstate.h" |
| 37 | #include "lstring.h" |
| 38 | #include "ltable.h" |
| 39 | #include "lvm.h" |
| 40 | |
| 41 | |
| 42 | /* |
| 43 | ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is |
| 44 | ** the largest integer such that MAXASIZE fits in an unsigned int. |
| 45 | */ |
| 46 | #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) |
| 47 | #define MAXASIZE (1u << MAXABITS) |
| 48 | |
| 49 | /* |
| 50 | ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest |
| 51 | ** integer such that 2^MAXHBITS fits in a signed int. (Note that the |
| 52 | ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still |
| 53 | ** fits comfortably in an unsigned int.) |
| 54 | */ |
| 55 | #define MAXHBITS (MAXABITS - 1) |
| 56 | |
| 57 | |
| 58 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
| 59 | |
| 60 | #define hashstr(t,str) hashpow2(t, (str)->hash) |
| 61 | #define hashboolean(t,p) hashpow2(t, p) |
| 62 | #define hashint(t,i) hashpow2(t, i) |
| 63 | |
| 64 | |
| 65 | /* |
| 66 | ** for some types, it is better to avoid modulus by power of 2, as |
| 67 | ** they tend to have many 2 factors. |
| 68 | */ |
| 69 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
| 70 | |
| 71 | |
| 72 | #define hashpointer(t,p) hashmod(t, point2uint(p)) |
| 73 | |
| 74 | |
| 75 | #define dummynode (&dummynode_) |
| 76 | |
| 77 | static const Node dummynode_ = { |
| 78 | {NILCONSTANT}, /* value */ |
| 79 | {{NILCONSTANT, 0}} /* key */ |
| 80 | }; |
| 81 | |
| 82 | |
| 83 | /* |
| 84 | ** Hash for floating-point numbers. |
| 85 | ** The main computation should be just |
| 86 | ** n = frexp(n, &i); return (n * INT_MAX) + i |
| 87 | ** but there are some numerical subtleties. |
| 88 | ** In a two-complement representation, INT_MAX does not has an exact |
| 89 | ** representation as a float, but INT_MIN does; because the absolute |
| 90 | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
| 91 | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
| 92 | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
| 93 | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
| 94 | ** INT_MIN. |
| 95 | */ |
| 96 | #if !defined(l_hashfloat) |
| 97 | static int l_hashfloat (lua_Number n) { |
| 98 | int i; |
| 99 | lua_Integer ni; |
| 100 | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
| 101 | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
| 102 | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
| 103 | return 0; |
| 104 | } |
| 105 | else { /* normal case */ |
| 106 | unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni); |
| 107 | return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u); |
| 108 | } |
| 109 | } |
| 110 | #endif |
| 111 | |
| 112 | |
| 113 | /* |
| 114 | ** returns the 'main' position of an element in a table (that is, the index |
| 115 | ** of its hash value) |
| 116 | */ |
| 117 | static Node *mainposition (const Table *t, const TValue *key) { |
| 118 | switch (ttype(key)) { |
| 119 | case LUA_TNUMINT: |
| 120 | return hashint(t, ivalue(key)); |
| 121 | case LUA_TNUMFLT: |
| 122 | return hashmod(t, l_hashfloat(fltvalue(key))); |
| 123 | case LUA_TSHRSTR: |
| 124 | return hashstr(t, tsvalue(key)); |
| 125 | case LUA_TLNGSTR: |
| 126 | return hashpow2(t, luaS_hashlongstr(tsvalue(key))); |
| 127 | case LUA_TBOOLEAN: |
| 128 | return hashboolean(t, bvalue(key)); |
| 129 | case LUA_TLIGHTUSERDATA: |
| 130 | return hashpointer(t, pvalue(key)); |
| 131 | case LUA_TLCF: |
| 132 | return hashpointer(t, fvalue(key)); |
| 133 | default: |
| 134 | lua_assert(!ttisdeadkey(key)); |
| 135 | return hashpointer(t, gcvalue(key)); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | |
| 140 | /* |
| 141 | ** returns the index for 'key' if 'key' is an appropriate key to live in |
| 142 | ** the array part of the table, 0 otherwise. |
| 143 | */ |
| 144 | static unsigned int arrayindex (const TValue *key) { |
| 145 | if (ttisinteger(key)) { |
| 146 | lua_Integer k = ivalue(key); |
| 147 | if (0 < k && (lua_Unsigned)k <= MAXASIZE) |
| 148 | return cast(unsigned int, k); /* 'key' is an appropriate array index */ |
| 149 | } |
| 150 | return 0; /* 'key' did not match some condition */ |
| 151 | } |
| 152 | |
| 153 | |
| 154 | /* |
| 155 | ** returns the index of a 'key' for table traversals. First goes all |
| 156 | ** elements in the array part, then elements in the hash part. The |
| 157 | ** beginning of a traversal is signaled by 0. |
| 158 | */ |
| 159 | static unsigned int findindex (lua_State *L, Table *t, StkId key) { |
| 160 | unsigned int i; |
| 161 | if (ttisnil(key)) return 0; /* first iteration */ |
| 162 | i = arrayindex(key); |
| 163 | if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */ |
| 164 | return i; /* yes; that's the index */ |
| 165 | else { |
| 166 | int nx; |
| 167 | Node *n = mainposition(t, key); |
| 168 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 169 | /* key may be dead already, but it is ok to use it in 'next' */ |
| 170 | if (luaV_rawequalobj(gkey(n), key) || |
| 171 | (ttisdeadkey(gkey(n)) && iscollectable(key) && |
| 172 | deadvalue(gkey(n)) == gcvalue(key))) { |
| 173 | i = cast_int(n - gnode(t, 0)); /* key index in hash table */ |
| 174 | /* hash elements are numbered after array ones */ |
| 175 | return (i + 1) + t->sizearray; |
| 176 | } |
| 177 | nx = gnext(n); |
| 178 | if (nx == 0) |
| 179 | luaG_runerror(L, "invalid key to 'next'" ); /* key not found */ |
| 180 | else n += nx; |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | |
| 186 | int luaH_next (lua_State *L, Table *t, StkId key) { |
| 187 | unsigned int i = findindex(L, t, key); /* find original element */ |
| 188 | for (; i < t->sizearray; i++) { /* try first array part */ |
| 189 | if (!ttisnil(&t->array[i])) { /* a non-nil value? */ |
| 190 | setivalue(key, i + 1); |
| 191 | setobj2s(L, key+1, &t->array[i]); |
| 192 | return 1; |
| 193 | } |
| 194 | } |
| 195 | for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */ |
| 196 | if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ |
| 197 | setobj2s(L, key, gkey(gnode(t, i))); |
| 198 | setobj2s(L, key+1, gval(gnode(t, i))); |
| 199 | return 1; |
| 200 | } |
| 201 | } |
| 202 | return 0; /* no more elements */ |
| 203 | } |
| 204 | |
| 205 | |
| 206 | /* |
| 207 | ** {============================================================= |
| 208 | ** Rehash |
| 209 | ** ============================================================== |
| 210 | */ |
| 211 | |
| 212 | /* |
| 213 | ** Compute the optimal size for the array part of table 't'. 'nums' is a |
| 214 | ** "count array" where 'nums[i]' is the number of integers in the table |
| 215 | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of |
| 216 | ** integer keys in the table and leaves with the number of keys that |
| 217 | ** will go to the array part; return the optimal size. |
| 218 | */ |
| 219 | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { |
| 220 | int i; |
| 221 | unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
| 222 | unsigned int a = 0; /* number of elements smaller than 2^i */ |
| 223 | unsigned int na = 0; /* number of elements to go to array part */ |
| 224 | unsigned int optimal = 0; /* optimal size for array part */ |
| 225 | /* loop while keys can fill more than half of total size */ |
| 226 | for (i = 0, twotoi = 1; |
| 227 | twotoi > 0 && *pna > twotoi / 2; |
| 228 | i++, twotoi *= 2) { |
| 229 | if (nums[i] > 0) { |
| 230 | a += nums[i]; |
| 231 | if (a > twotoi/2) { /* more than half elements present? */ |
| 232 | optimal = twotoi; /* optimal size (till now) */ |
| 233 | na = a; /* all elements up to 'optimal' will go to array part */ |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); |
| 238 | *pna = na; |
| 239 | return optimal; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | static int countint (const TValue *key, unsigned int *nums) { |
| 244 | unsigned int k = arrayindex(key); |
| 245 | if (k != 0) { /* is 'key' an appropriate array index? */ |
| 246 | nums[luaO_ceillog2(k)]++; /* count as such */ |
| 247 | return 1; |
| 248 | } |
| 249 | else |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | |
| 254 | /* |
| 255 | ** Count keys in array part of table 't': Fill 'nums[i]' with |
| 256 | ** number of keys that will go into corresponding slice and return |
| 257 | ** total number of non-nil keys. |
| 258 | */ |
| 259 | static unsigned int numusearray (const Table *t, unsigned int *nums) { |
| 260 | int lg; |
| 261 | unsigned int ttlg; /* 2^lg */ |
| 262 | unsigned int ause = 0; /* summation of 'nums' */ |
| 263 | unsigned int i = 1; /* count to traverse all array keys */ |
| 264 | /* traverse each slice */ |
| 265 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
| 266 | unsigned int lc = 0; /* counter */ |
| 267 | unsigned int lim = ttlg; |
| 268 | if (lim > t->sizearray) { |
| 269 | lim = t->sizearray; /* adjust upper limit */ |
| 270 | if (i > lim) |
| 271 | break; /* no more elements to count */ |
| 272 | } |
| 273 | /* count elements in range (2^(lg - 1), 2^lg] */ |
| 274 | for (; i <= lim; i++) { |
| 275 | if (!ttisnil(&t->array[i-1])) |
| 276 | lc++; |
| 277 | } |
| 278 | nums[lg] += lc; |
| 279 | ause += lc; |
| 280 | } |
| 281 | return ause; |
| 282 | } |
| 283 | |
| 284 | |
| 285 | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { |
| 286 | int totaluse = 0; /* total number of elements */ |
| 287 | int ause = 0; /* elements added to 'nums' (can go to array part) */ |
| 288 | int i = sizenode(t); |
| 289 | while (i--) { |
| 290 | Node *n = &t->node[i]; |
| 291 | if (!ttisnil(gval(n))) { |
| 292 | ause += countint(gkey(n), nums); |
| 293 | totaluse++; |
| 294 | } |
| 295 | } |
| 296 | *pna += ause; |
| 297 | return totaluse; |
| 298 | } |
| 299 | |
| 300 | |
| 301 | static void setarrayvector (lua_State *L, Table *t, unsigned int size) { |
| 302 | unsigned int i; |
| 303 | luaM_reallocvector(L, t->array, t->sizearray, size, TValue); |
| 304 | for (i=t->sizearray; i<size; i++) |
| 305 | setnilvalue(&t->array[i]); |
| 306 | t->sizearray = size; |
| 307 | } |
| 308 | |
| 309 | |
| 310 | static void setnodevector (lua_State *L, Table *t, unsigned int size) { |
| 311 | if (size == 0) { /* no elements to hash part? */ |
| 312 | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
| 313 | t->lsizenode = 0; |
| 314 | t->lastfree = NULL; /* signal that it is using dummy node */ |
| 315 | } |
| 316 | else { |
| 317 | int i; |
| 318 | int lsize = luaO_ceillog2(size); |
| 319 | if (lsize > MAXHBITS) |
| 320 | luaG_runerror(L, "table overflow" ); |
| 321 | size = twoto(lsize); |
| 322 | t->node = luaM_newvector(L, size, Node); |
| 323 | for (i = 0; i < (int)size; i++) { |
| 324 | Node *n = gnode(t, i); |
| 325 | gnext(n) = 0; |
| 326 | setnilvalue(wgkey(n)); |
| 327 | setnilvalue(gval(n)); |
| 328 | } |
| 329 | t->lsizenode = cast_byte(lsize); |
| 330 | t->lastfree = gnode(t, size); /* all positions are free */ |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | |
| 335 | typedef struct { |
| 336 | Table *t; |
| 337 | unsigned int nhsize; |
| 338 | } AuxsetnodeT; |
| 339 | |
| 340 | |
| 341 | static void auxsetnode (lua_State *L, void *ud) { |
| 342 | AuxsetnodeT *asn = cast(AuxsetnodeT *, ud); |
| 343 | setnodevector(L, asn->t, asn->nhsize); |
| 344 | } |
| 345 | |
| 346 | |
| 347 | void luaH_resize (lua_State *L, Table *t, unsigned int nasize, |
| 348 | unsigned int nhsize) { |
| 349 | unsigned int i; |
| 350 | int j; |
| 351 | AuxsetnodeT asn; |
| 352 | unsigned int oldasize = t->sizearray; |
| 353 | int oldhsize = allocsizenode(t); |
| 354 | Node *nold = t->node; /* save old hash ... */ |
| 355 | if (nasize > oldasize) /* array part must grow? */ |
| 356 | setarrayvector(L, t, nasize); |
| 357 | /* create new hash part with appropriate size */ |
| 358 | asn.t = t; asn.nhsize = nhsize; |
| 359 | if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */ |
| 360 | setarrayvector(L, t, oldasize); /* array back to its original size */ |
| 361 | luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */ |
| 362 | } |
| 363 | if (nasize < oldasize) { /* array part must shrink? */ |
| 364 | t->sizearray = nasize; |
| 365 | /* re-insert elements from vanishing slice */ |
| 366 | for (i=nasize; i<oldasize; i++) { |
| 367 | if (!ttisnil(&t->array[i])) |
| 368 | luaH_setint(L, t, i + 1, &t->array[i]); |
| 369 | } |
| 370 | /* shrink array */ |
| 371 | luaM_reallocvector(L, t->array, oldasize, nasize, TValue); |
| 372 | } |
| 373 | /* re-insert elements from hash part */ |
| 374 | for (j = oldhsize - 1; j >= 0; j--) { |
| 375 | Node *old = nold + j; |
| 376 | if (!ttisnil(gval(old))) { |
| 377 | /* doesn't need barrier/invalidate cache, as entry was |
| 378 | already present in the table */ |
| 379 | setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); |
| 380 | } |
| 381 | } |
| 382 | if (oldhsize > 0) /* not the dummy node? */ |
| 383 | luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */ |
| 384 | } |
| 385 | |
| 386 | |
| 387 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
| 388 | int nsize = allocsizenode(t); |
| 389 | luaH_resize(L, t, nasize, nsize); |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i |
| 394 | */ |
| 395 | static void rehash (lua_State *L, Table *t, const TValue *ek) { |
| 396 | unsigned int asize; /* optimal size for array part */ |
| 397 | unsigned int na; /* number of keys in the array part */ |
| 398 | unsigned int nums[MAXABITS + 1]; |
| 399 | int i; |
| 400 | int totaluse; |
| 401 | for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ |
| 402 | na = numusearray(t, nums); /* count keys in array part */ |
| 403 | totaluse = na; /* all those keys are integer keys */ |
| 404 | totaluse += numusehash(t, nums, &na); /* count keys in hash part */ |
| 405 | /* count extra key */ |
| 406 | na += countint(ek, nums); |
| 407 | totaluse++; |
| 408 | /* compute new size for array part */ |
| 409 | asize = computesizes(nums, &na); |
| 410 | /* resize the table to new computed sizes */ |
| 411 | luaH_resize(L, t, asize, totaluse - na); |
| 412 | } |
| 413 | |
| 414 | |
| 415 | |
| 416 | /* |
| 417 | ** }============================================================= |
| 418 | */ |
| 419 | |
| 420 | |
| 421 | Table *luaH_new (lua_State *L) { |
| 422 | GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table)); |
| 423 | Table *t = gco2t(o); |
| 424 | t->metatable = NULL; |
| 425 | t->flags = cast_byte(~0); |
| 426 | t->array = NULL; |
| 427 | t->sizearray = 0; |
| 428 | setnodevector(L, t, 0); |
| 429 | return t; |
| 430 | } |
| 431 | |
| 432 | |
| 433 | void luaH_free (lua_State *L, Table *t) { |
| 434 | if (!isdummy(t)) |
| 435 | luaM_freearray(L, t->node, cast(size_t, sizenode(t))); |
| 436 | luaM_freearray(L, t->array, t->sizearray); |
| 437 | luaM_free(L, t); |
| 438 | } |
| 439 | |
| 440 | |
| 441 | static Node *getfreepos (Table *t) { |
| 442 | if (!isdummy(t)) { |
| 443 | while (t->lastfree > t->node) { |
| 444 | t->lastfree--; |
| 445 | if (ttisnil(gkey(t->lastfree))) |
| 446 | return t->lastfree; |
| 447 | } |
| 448 | } |
| 449 | return NULL; /* could not find a free place */ |
| 450 | } |
| 451 | |
| 452 | |
| 453 | |
| 454 | /* |
| 455 | ** inserts a new key into a hash table; first, check whether key's main |
| 456 | ** position is free. If not, check whether colliding node is in its main |
| 457 | ** position or not: if it is not, move colliding node to an empty place and |
| 458 | ** put new key in its main position; otherwise (colliding node is in its main |
| 459 | ** position), new key goes to an empty position. |
| 460 | */ |
| 461 | TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { |
| 462 | Node *mp; |
| 463 | TValue aux; |
| 464 | if (ttisnil(key)) luaG_runerror(L, "table index is nil" ); |
| 465 | else if (ttisfloat(key)) { |
| 466 | lua_Integer k; |
| 467 | if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */ |
| 468 | setivalue(&aux, k); |
| 469 | key = &aux; /* insert it as an integer */ |
| 470 | } |
| 471 | else if (luai_numisnan(fltvalue(key))) |
| 472 | luaG_runerror(L, "table index is NaN" ); |
| 473 | } |
| 474 | mp = mainposition(t, key); |
| 475 | if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
| 476 | Node *othern; |
| 477 | Node *f = getfreepos(t); /* get a free place */ |
| 478 | if (f == NULL) { /* cannot find a free place? */ |
| 479 | rehash(L, t, key); /* grow table */ |
| 480 | /* whatever called 'newkey' takes care of TM cache */ |
| 481 | return luaH_set(L, t, key); /* insert key into grown table */ |
| 482 | } |
| 483 | lua_assert(!isdummy(t)); |
| 484 | othern = mainposition(t, gkey(mp)); |
| 485 | if (othern != mp) { /* is colliding node out of its main position? */ |
| 486 | /* yes; move colliding node into free position */ |
| 487 | while (othern + gnext(othern) != mp) /* find previous */ |
| 488 | othern += gnext(othern); |
| 489 | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
| 490 | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
| 491 | if (gnext(mp) != 0) { |
| 492 | gnext(f) += cast_int(mp - f); /* correct 'next' */ |
| 493 | gnext(mp) = 0; /* now 'mp' is free */ |
| 494 | } |
| 495 | setnilvalue(gval(mp)); |
| 496 | } |
| 497 | else { /* colliding node is in its own main position */ |
| 498 | /* new node will go into free position */ |
| 499 | if (gnext(mp) != 0) |
| 500 | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
| 501 | else lua_assert(gnext(f) == 0); |
| 502 | gnext(mp) = cast_int(f - mp); |
| 503 | mp = f; |
| 504 | } |
| 505 | } |
| 506 | setnodekey(L, &mp->i_key, key); |
| 507 | luaC_barrierback(L, t, key); |
| 508 | lua_assert(ttisnil(gval(mp))); |
| 509 | return gval(mp); |
| 510 | } |
| 511 | |
| 512 | |
| 513 | /* |
| 514 | ** search function for integers |
| 515 | */ |
| 516 | const TValue *luaH_getint (Table *t, lua_Integer key) { |
| 517 | /* (1 <= key && key <= t->sizearray) */ |
| 518 | if (l_castS2U(key) - 1 < t->sizearray) |
| 519 | return &t->array[key - 1]; |
| 520 | else { |
| 521 | Node *n = hashint(t, key); |
| 522 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 523 | if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key) |
| 524 | return gval(n); /* that's it */ |
| 525 | else { |
| 526 | int nx = gnext(n); |
| 527 | if (nx == 0) break; |
| 528 | n += nx; |
| 529 | } |
| 530 | } |
| 531 | return luaO_nilobject; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | |
| 536 | /* |
| 537 | ** search function for short strings |
| 538 | */ |
| 539 | const TValue *luaH_getshortstr (Table *t, TString *key) { |
| 540 | Node *n = hashstr(t, key); |
| 541 | lua_assert(key->tt == LUA_TSHRSTR); |
| 542 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 543 | const TValue *k = gkey(n); |
| 544 | if (ttisshrstring(k) && eqshrstr(tsvalue(k), key)) |
| 545 | return gval(n); /* that's it */ |
| 546 | else { |
| 547 | int nx = gnext(n); |
| 548 | if (nx == 0) |
| 549 | return luaO_nilobject; /* not found */ |
| 550 | n += nx; |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | |
| 556 | /* |
| 557 | ** "Generic" get version. (Not that generic: not valid for integers, |
| 558 | ** which may be in array part, nor for floats with integral values.) |
| 559 | */ |
| 560 | static const TValue *getgeneric (Table *t, const TValue *key) { |
| 561 | Node *n = mainposition(t, key); |
| 562 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 563 | if (luaV_rawequalobj(gkey(n), key)) |
| 564 | return gval(n); /* that's it */ |
| 565 | else { |
| 566 | int nx = gnext(n); |
| 567 | if (nx == 0) |
| 568 | return luaO_nilobject; /* not found */ |
| 569 | n += nx; |
| 570 | } |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | |
| 575 | const TValue *luaH_getstr (Table *t, TString *key) { |
| 576 | if (key->tt == LUA_TSHRSTR) |
| 577 | return luaH_getshortstr(t, key); |
| 578 | else { /* for long strings, use generic case */ |
| 579 | TValue ko; |
| 580 | setsvalue(cast(lua_State *, NULL), &ko, key); |
| 581 | return getgeneric(t, &ko); |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | |
| 586 | /* |
| 587 | ** main search function |
| 588 | */ |
| 589 | const TValue *luaH_get (Table *t, const TValue *key) { |
| 590 | switch (ttype(key)) { |
| 591 | case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key)); |
| 592 | case LUA_TNUMINT: return luaH_getint(t, ivalue(key)); |
| 593 | case LUA_TNIL: return luaO_nilobject; |
| 594 | case LUA_TNUMFLT: { |
| 595 | lua_Integer k; |
| 596 | if (luaV_tointeger(key, &k, 0)) /* index is int? */ |
| 597 | return luaH_getint(t, k); /* use specialized version */ |
| 598 | /* else... */ |
| 599 | } /* FALLTHROUGH */ |
| 600 | default: |
| 601 | return getgeneric(t, key); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | |
| 606 | /* |
| 607 | ** beware: when using this function you probably need to check a GC |
| 608 | ** barrier and invalidate the TM cache. |
| 609 | */ |
| 610 | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
| 611 | const TValue *p = luaH_get(t, key); |
| 612 | if (p != luaO_nilobject) |
| 613 | return cast(TValue *, p); |
| 614 | else return luaH_newkey(L, t, key); |
| 615 | } |
| 616 | |
| 617 | |
| 618 | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
| 619 | const TValue *p = luaH_getint(t, key); |
| 620 | TValue *cell; |
| 621 | if (p != luaO_nilobject) |
| 622 | cell = cast(TValue *, p); |
| 623 | else { |
| 624 | TValue k; |
| 625 | setivalue(&k, key); |
| 626 | cell = luaH_newkey(L, t, &k); |
| 627 | } |
| 628 | setobj2t(L, cell, value); |
| 629 | } |
| 630 | |
| 631 | |
| 632 | static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) { |
| 633 | lua_Unsigned i = j; /* i is zero or a present index */ |
| 634 | j++; |
| 635 | /* find 'i' and 'j' such that i is present and j is not */ |
| 636 | while (!ttisnil(luaH_getint(t, j))) { |
| 637 | i = j; |
| 638 | if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */ |
| 639 | /* table was built with bad purposes: resort to linear search */ |
| 640 | i = 1; |
| 641 | while (!ttisnil(luaH_getint(t, i))) i++; |
| 642 | return i - 1; |
| 643 | } |
| 644 | j *= 2; |
| 645 | } |
| 646 | /* now do a binary search between them */ |
| 647 | while (j - i > 1) { |
| 648 | lua_Unsigned m = (i+j)/2; |
| 649 | if (ttisnil(luaH_getint(t, m))) j = m; |
| 650 | else i = m; |
| 651 | } |
| 652 | return i; |
| 653 | } |
| 654 | |
| 655 | |
| 656 | /* |
| 657 | ** Try to find a boundary in table 't'. A 'boundary' is an integer index |
| 658 | ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). |
| 659 | */ |
| 660 | lua_Unsigned luaH_getn (Table *t) { |
| 661 | unsigned int j = t->sizearray; |
| 662 | if (j > 0 && ttisnil(&t->array[j - 1])) { |
| 663 | /* there is a boundary in the array part: (binary) search for it */ |
| 664 | unsigned int i = 0; |
| 665 | while (j - i > 1) { |
| 666 | unsigned int m = (i+j)/2; |
| 667 | if (ttisnil(&t->array[m - 1])) j = m; |
| 668 | else i = m; |
| 669 | } |
| 670 | return i; |
| 671 | } |
| 672 | /* else must find a boundary in hash part */ |
| 673 | else if (isdummy(t)) /* hash part is empty? */ |
| 674 | return j; /* that is easy... */ |
| 675 | else return unbound_search(t, j); |
| 676 | } |
| 677 | |
| 678 | |
| 679 | |
| 680 | #if defined(LUA_DEBUG) |
| 681 | |
| 682 | Node *luaH_mainposition (const Table *t, const TValue *key) { |
| 683 | return mainposition(t, key); |
| 684 | } |
| 685 | |
| 686 | int luaH_isdummy (const Table *t) { return isdummy(t); } |
| 687 | |
| 688 | #endif |
| 689 | |