| 1 | // Copyright 2009 Google Inc. All Rights Reserved. |
| 2 | // julienbasch@google.com (Julien Basch) |
| 3 | |
| 4 | // Implementation of class S2EdgeIndex, a fast lookup structure for edges in S2. |
| 5 | // |
| 6 | // An object of this class contains a set S of edges called the test edges. |
| 7 | // For a query edge q, you want to compute a superset of all test edges that |
| 8 | // intersect q. |
| 9 | // |
| 10 | // The idea is roughly that of |
| 11 | // Each edge is covered by one or several S2 cells, stored in a multimap |
| 12 | // cell -> edge*. |
| 13 | // To perform a query, you cover the query edge with a set of cells. For |
| 14 | // each such cell c, you find all test edges that are in c,in an ancestor of c |
| 15 | // or in a child of c. |
| 16 | // |
| 17 | // This is simple, but there are two complications: |
| 18 | // |
| 19 | // 1. For containment queries, the query edge is very long (from S2::Origin() |
| 20 | // to the query point). A standard cell covering of q is either useless or |
| 21 | // too large. The covering needs to be adapted to S: if a cell contains too |
| 22 | // many edges from S, you subdivide it and keep only the subcells that |
| 23 | // intersect q. See comments for FindCandidateCrossings(). |
| 24 | // |
| 25 | // 2. To decide if edge q could possibly cross edge e, we end up comparing |
| 26 | // both with edges that bound s2 cells. Numerical inaccuracies |
| 27 | // can lead to inconcistencies, e.g.: there may be an edge b at the |
| 28 | // boundary of two cells such that q and e are on opposite sides of b, |
| 29 | // yet they cross each other. This special case happens a lot if your |
| 30 | // test and query edges are cell boundaries themselves, and this in turn |
| 31 | // is a common case when regions are approximated by cell unions. |
| 32 | // |
| 33 | // We expand here on the solution to the second problem. Two components: |
| 34 | // |
| 35 | // 1. Each test edge is thickened to a rectangle before it is S2-covered. |
| 36 | // See the comment for GetThickenedEdgeCovering(). |
| 37 | // |
| 38 | // 2. When recursing through the children of a cell c for a query edge q, |
| 39 | // we test q against the boundaries of c's children in a 'lenient' |
| 40 | // way. That is, instead of testing e.g. area(abc)*area(abd) < 0, |
| 41 | // we check if it is 'approximately negative'. |
| 42 | // |
| 43 | // To see how the second point is necessary, imagine that your query |
| 44 | // edge q is the North boundary of cell x. We recurse into the four |
| 45 | // children a,b,c,d of x. To do so, we check if q crosses or touches any |
| 46 | // of a,b,c or d boundaries. As all the situations are degenerate, it is |
| 47 | // possible that all crossing tests return false, thus making q suddenly |
| 48 | // 'disappear'. Using the lenient crossing test, we are guaranteed that q |
| 49 | // will intersect one of the four edges of the cross that bounds a,b,c,d. |
| 50 | // The same holds true if q passes through the cell center of x. |
| 51 | |
| 52 | |
| 53 | |
| 54 | #include "s2edgeindex.h" |
| 55 | |
| 56 | #include <algorithm> |
| 57 | using std::min; |
| 58 | using std::max; |
| 59 | using std::swap; |
| 60 | using std::reverse; |
| 61 | |
| 62 | #include <set> |
| 63 | using std::set; |
| 64 | using std::multiset; |
| 65 | |
| 66 | #include <utility> |
| 67 | using std::pair; |
| 68 | using std::make_pair; |
| 69 | |
| 70 | |
| 71 | // #include "base/commandlineflags.h" |
| 72 | #include "base/logging.h" |
| 73 | #include "s2cell.h" |
| 74 | #include "s2edgeutil.h" |
| 75 | #include "s2polyline.h" |
| 76 | #include "s2regioncoverer.h" |
| 77 | |
| 78 | |
| 79 | // DEFINE_bool(always_recurse_on_children, false, |
| 80 | // "When we test a query edge against a cell, we don't " |
| 81 | // "recurse if there are only a few test edges in it. " |
| 82 | // "For testing, it is useful to always recurse to the end. " |
| 83 | // "You don't want to use this flag anywhere but in tests."); |
| 84 | static bool FLAGS_always_recurse_on_children = false; |
| 85 | |
| 86 | void S2EdgeIndex::Reset() { |
| 87 | minimum_s2_level_used_ = S2CellId::kMaxLevel; |
| 88 | index_computed_ = false; |
| 89 | query_count_ = 0; |
| 90 | mapping_.clear(); |
| 91 | } |
| 92 | |
| 93 | void S2EdgeIndex::ComputeIndex() { |
| 94 | DCHECK(!index_computed_); |
| 95 | |
| 96 | for (int i = 0; i < num_edges(); ++i) { |
| 97 | S2Point from, to; |
| 98 | vector<S2CellId> cover; |
| 99 | int level = GetCovering(*edge_from(i), *edge_to(i), |
| 100 | true, &cover); |
| 101 | minimum_s2_level_used_ = min(minimum_s2_level_used_, level); |
| 102 | |
| 103 | for (vector<S2CellId>::const_iterator it = cover.begin(); it != cover.end(); |
| 104 | ++it) { |
| 105 | mapping_.insert(make_pair(*it, i)); |
| 106 | } |
| 107 | } |
| 108 | index_computed_ = true; |
| 109 | } |
| 110 | |
| 111 | bool S2EdgeIndex::IsIndexComputed() const { |
| 112 | return index_computed_; |
| 113 | } |
| 114 | |
| 115 | void S2EdgeIndex::IncrementQueryCount() { |
| 116 | query_count_++; |
| 117 | } |
| 118 | |
| 119 | |
| 120 | // If we have m data edges and n query edges, then the brute force cost is |
| 121 | // m * n * test_cost |
| 122 | // where test_cost is taken to be the cost of EdgeCrosser::RobustCrossing, |
| 123 | // measured to be about 30ns at the time of this writing. |
| 124 | // |
| 125 | // If we compute the index, the cost becomes: |
| 126 | // m * cost_insert + n * cost_find(m) |
| 127 | // |
| 128 | // - cost_insert can be expected to be reasonably stable, and was measured |
| 129 | // at 1200ns with the BM_QuadEdgeInsertionCost benchmark. |
| 130 | // |
| 131 | // - cost_find depends on the length of the edge . For m=1000 edges, |
| 132 | // we got timings ranging from 1ms (edge the length of the polygon) to |
| 133 | // 40ms. The latter is for very long query edges, and needs to be |
| 134 | // optimized. We will assume for the rest of the discussion that |
| 135 | // cost_find is roughly 3ms. |
| 136 | // |
| 137 | // When doing one additional query, the differential cost is |
| 138 | // m * test_cost - cost_find(m) |
| 139 | // With the numbers above, it is better to use the quad tree (if we have it) |
| 140 | // if m >= 100. |
| 141 | // |
| 142 | // If m = 100, 30 queries will give m*n*test_cost = m*cost_insert = 100ms, |
| 143 | // while the marginal cost to find is 3ms. Thus, this is a reasonable |
| 144 | // thing to do. |
| 145 | void S2EdgeIndex::PredictAdditionalCalls(int n) { |
| 146 | if (index_computed_) return; |
| 147 | if (num_edges() > 100 && (query_count_ + n) > 30) { |
| 148 | ComputeIndex(); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | void S2EdgeIndex::GetEdgesInParentCells( |
| 153 | const vector<S2CellId>& cover, |
| 154 | const CellEdgeMultimap& mapping, |
| 155 | int minimum_s2_level_used, |
| 156 | vector<int>* candidate_crossings) { |
| 157 | // Find all parent cells of covering cells. |
| 158 | set<S2CellId> parent_cells; |
| 159 | for (vector<S2CellId>::const_iterator it = cover.begin(); it != cover.end(); |
| 160 | ++it) { |
| 161 | for (int parent_level = it->level() - 1; |
| 162 | parent_level >= minimum_s2_level_used; |
| 163 | --parent_level) { |
| 164 | if (!parent_cells.insert(it->parent(parent_level)).second) { |
| 165 | break; // cell is already in => parents are too. |
| 166 | } |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | // Put parent cell edge references into result. |
| 171 | for (set<S2CellId>::const_iterator it = parent_cells.begin(); it |
| 172 | != parent_cells.end(); ++it) { |
| 173 | pair<CellEdgeMultimap::const_iterator, |
| 174 | CellEdgeMultimap::const_iterator> range = |
| 175 | mapping.equal_range(*it); |
| 176 | for (CellEdgeMultimap::const_iterator it2 = range.first; |
| 177 | it2 != range.second; ++it2) { |
| 178 | candidate_crossings->push_back(it2->second); |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | // Returns true if ab possibly crosses cd, by clipping tiny angles to |
| 184 | // zero. |
| 185 | static bool LenientCrossing(S2Point const& a, S2Point const& b, |
| 186 | S2Point const& c, S2Point const& d) { |
| 187 | DCHECK(S2::IsUnitLength(a)); |
| 188 | DCHECK(S2::IsUnitLength(b)); |
| 189 | DCHECK(S2::IsUnitLength(c)); |
| 190 | // See comment for RobustCCW() in s2.h |
| 191 | const double kMaxDetError = 1.e-14; |
| 192 | double acb = a.CrossProd(c).DotProd(b); |
| 193 | double bda = b.CrossProd(d).DotProd(a); |
| 194 | if (fabs(acb) < kMaxDetError || fabs(bda) < kMaxDetError) { |
| 195 | return true; |
| 196 | } |
| 197 | if (acb * bda < 0) return false; |
| 198 | double cbd = c.CrossProd(b).DotProd(d); |
| 199 | double dac = d.CrossProd(a).DotProd(c); |
| 200 | if (fabs(cbd) < kMaxDetError || fabs(dac) < kMaxDetError) { |
| 201 | return true; |
| 202 | } |
| 203 | return (acb * cbd >= 0) && (acb * dac >= 0); |
| 204 | } |
| 205 | |
| 206 | bool S2EdgeIndex::EdgeIntersectsCellBoundary( |
| 207 | S2Point const& a, S2Point const& b, const S2Cell& cell) { |
| 208 | S2Point start_vertex = cell.GetVertex(0); |
| 209 | |
| 210 | S2Point vertices[4]; |
| 211 | for (int i = 0; i < 4; ++i) { |
| 212 | vertices[i] = cell.GetVertex(i); |
| 213 | } |
| 214 | for (int i = 0; i < 4; ++i) { |
| 215 | S2Point from_point = vertices[i]; |
| 216 | S2Point to_point = vertices[(i+1) % 4]; |
| 217 | if (LenientCrossing(a, b, from_point, to_point)) { |
| 218 | return true; |
| 219 | } |
| 220 | } |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | void S2EdgeIndex::GetEdgesInChildrenCells( |
| 225 | S2Point const& a, S2Point const& b, |
| 226 | vector<S2CellId>* cover, |
| 227 | const CellEdgeMultimap& mapping, |
| 228 | vector<int>* candidate_crossings) { |
| 229 | CellEdgeMultimap::const_iterator it, start, end; |
| 230 | |
| 231 | int num_cells = 0; |
| 232 | |
| 233 | // Put all edge references of (covering cells + descendant cells) into result. |
| 234 | // This relies on the natural ordering of S2CellIds. |
| 235 | while (!cover->empty()) { |
| 236 | S2CellId cell = cover->back(); |
| 237 | cover->pop_back(); |
| 238 | num_cells++; |
| 239 | start = mapping.lower_bound(cell.range_min()); |
| 240 | end = mapping.upper_bound(cell.range_max()); |
| 241 | int num_edges = 0; |
| 242 | bool rewind = FLAGS_always_recurse_on_children; |
| 243 | // TODO(user): Maybe distinguish between edges in current cell, that |
| 244 | // are going to be added anyhow, and edges in subcells, and rewind only |
| 245 | // those. |
| 246 | if (!rewind) { |
| 247 | for (it = start; it != end; ++it) { |
| 248 | candidate_crossings->push_back(it->second); |
| 249 | ++num_edges; |
| 250 | if (num_edges == 16 && !cell.is_leaf()) { |
| 251 | rewind = true; |
| 252 | break; |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | // If there are too many to insert, uninsert and recurse. |
| 257 | if (rewind) { |
| 258 | for (int i = 0; i < num_edges; ++i) { |
| 259 | candidate_crossings->pop_back(); |
| 260 | } |
| 261 | // Add cells at this level |
| 262 | pair<CellEdgeMultimap::const_iterator, |
| 263 | CellEdgeMultimap::const_iterator> eq = |
| 264 | mapping.equal_range(cell); |
| 265 | for (it = eq.first; it != eq.second; ++it) { |
| 266 | candidate_crossings->push_back(it->second); |
| 267 | } |
| 268 | // Recurse on the children -- hopefully some will be empty. |
| 269 | if (eq.first != start || eq.second != end) { |
| 270 | S2Cell children[4]; |
| 271 | S2Cell c(cell); |
| 272 | c.Subdivide(children); |
| 273 | for (int i = 0; i < 4; ++i) { |
| 274 | // TODO(user): Do the check for the four cells at once, |
| 275 | // as it is enough to check the four edges between the cells. At |
| 276 | // this time, we are checking 16 edges, 4 times too many. |
| 277 | // |
| 278 | // Note that given the guarantee of AppendCovering, it is enough |
| 279 | // to check that the edge intersect with the cell boundary as it |
| 280 | // cannot be fully contained in a cell. |
| 281 | if (EdgeIntersectsCellBoundary(a, b, children[i])) { |
| 282 | cover->push_back(children[i].id()); |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | VLOG(1) << "Num cells traversed: " << num_cells; |
| 289 | } |
| 290 | |
| 291 | // Appends to "candidate_crossings" all edge references which may cross the |
| 292 | // given edge. This is done by covering the edge and then finding all |
| 293 | // references of edges whose coverings overlap this covering. Parent cells |
| 294 | // are checked level by level. Child cells are checked all at once by taking |
| 295 | // advantage of the natural ordering of S2CellIds. |
| 296 | void S2EdgeIndex::FindCandidateCrossings( |
| 297 | S2Point const& a, S2Point const& b, |
| 298 | vector<int>* candidate_crossings) const { |
| 299 | DCHECK(index_computed_); |
| 300 | vector<S2CellId> cover; |
| 301 | GetCovering(a, b, false, &cover); |
| 302 | GetEdgesInParentCells(cover, mapping_, minimum_s2_level_used_, |
| 303 | candidate_crossings); |
| 304 | |
| 305 | // TODO(user): An important optimization for long query |
| 306 | // edges (Contains queries): keep a bounding cap and clip the query |
| 307 | // edge to the cap before starting the descent. |
| 308 | GetEdgesInChildrenCells(a, b, &cover, mapping_, candidate_crossings); |
| 309 | |
| 310 | // Remove duplicates: This is necessary because edge references are |
| 311 | // inserted into the map once for each covering cell. (Testing shows |
| 312 | // this to be at least as fast as using a set.) |
| 313 | sort(candidate_crossings->begin(), candidate_crossings->end()); |
| 314 | candidate_crossings->erase( |
| 315 | unique(candidate_crossings->begin(), candidate_crossings->end()), |
| 316 | candidate_crossings->end()); |
| 317 | } |
| 318 | |
| 319 | |
| 320 | // Returns the smallest cell containing all four points, or Sentinel |
| 321 | // if they are not all on the same face. |
| 322 | // The points don't need to be normalized. |
| 323 | static S2CellId ContainingCell(S2Point const& pa, S2Point const& pb, |
| 324 | S2Point const& pc, S2Point const& pd) { |
| 325 | S2CellId a = S2CellId::FromPoint(pa); |
| 326 | S2CellId b = S2CellId::FromPoint(pb); |
| 327 | S2CellId c = S2CellId::FromPoint(pc); |
| 328 | S2CellId d = S2CellId::FromPoint(pd); |
| 329 | |
| 330 | if (a.face() != b.face() || a.face() != c.face() || a.face() != d.face()) { |
| 331 | return S2CellId::Sentinel(); |
| 332 | } |
| 333 | |
| 334 | while (a != b || a != c || a != d) { |
| 335 | a = a.parent(); |
| 336 | b = b.parent(); |
| 337 | c = c.parent(); |
| 338 | d = d.parent(); |
| 339 | } |
| 340 | return a; |
| 341 | } |
| 342 | |
| 343 | // Returns the smallest cell containing both points, or Sentinel |
| 344 | // if they are not all on the same face. |
| 345 | // The points don't need to be normalized. |
| 346 | static S2CellId ContainingCell(S2Point const& pa, S2Point const& pb) { |
| 347 | S2CellId a = S2CellId::FromPoint(pa); |
| 348 | S2CellId b = S2CellId::FromPoint(pb); |
| 349 | |
| 350 | if (a.face() != b.face()) return S2CellId::Sentinel(); |
| 351 | |
| 352 | while (a != b) { |
| 353 | a = a.parent(); |
| 354 | b = b.parent(); |
| 355 | } |
| 356 | return a; |
| 357 | } |
| 358 | |
| 359 | int S2EdgeIndex::GetCovering( |
| 360 | S2Point const& a, S2Point const& b, |
| 361 | bool thicken_edge, |
| 362 | vector<S2CellId>* edge_covering) const { |
| 363 | edge_covering->clear(); |
| 364 | |
| 365 | // Thicken the edge in all directions by roughly 1% of the edge length when |
| 366 | // thicken_edge is true. |
| 367 | static const double kThickening = 0.01; |
| 368 | |
| 369 | // Selects the ideal s2 level at which to cover the edge, this will be the |
| 370 | // level whose S2 cells have a width roughly commensurate to the length of |
| 371 | // the edge. We multiply the edge length by 2*kThickening to guarantee the |
| 372 | // thickening is honored (it's not a big deal if we honor it when we don't |
| 373 | // request it) when doing the covering-by-cap trick. |
| 374 | const double edge_length = a.Angle(b); |
| 375 | const int ideal_level = S2::kMinWidth.GetMaxLevel( |
| 376 | edge_length * (1 + 2 * kThickening)); |
| 377 | |
| 378 | S2CellId containing_cell; |
| 379 | if (!thicken_edge) { |
| 380 | containing_cell = ContainingCell(a, b); |
| 381 | } else { |
| 382 | if (ideal_level == S2CellId::kMaxLevel) { |
| 383 | // If the edge is tiny, instabilities are more likely, so we |
| 384 | // want to limit the number of operations. |
| 385 | // We pretend we are in a cell much larger so as to trigger the |
| 386 | // 'needs covering' case, so we won't try to thicken the edge. |
| 387 | containing_cell = S2CellId(0xFFF0).parent(3); |
| 388 | } else { |
| 389 | S2Point pq = (b - a) * kThickening; |
| 390 | S2Point ortho = pq.CrossProd(a).Normalize() * |
| 391 | edge_length * kThickening; |
| 392 | S2Point p = a - pq; |
| 393 | S2Point q = b + pq; |
| 394 | // If p and q were antipodal, the edge wouldn't be lengthened, |
| 395 | // and it could even flip! This is not a problem because |
| 396 | // ideal_level != 0 here. The farther p and q can be is roughly |
| 397 | // a quarter Earth away from each other, so we remain |
| 398 | // Theta(kThickening). |
| 399 | containing_cell = ContainingCell(p - ortho, p + ortho, |
| 400 | q - ortho, q + ortho); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | // Best case: edge is fully contained in a cell that's not too big. |
| 405 | if (containing_cell != S2CellId::Sentinel() && |
| 406 | containing_cell.level() >= ideal_level - 2) { |
| 407 | edge_covering->push_back(containing_cell); |
| 408 | return containing_cell.level(); |
| 409 | } |
| 410 | |
| 411 | if (ideal_level == 0) { |
| 412 | // Edge is very long, maybe even longer than a face width, so the |
| 413 | // trick below doesn't work. For now, we will add the whole S2 sphere. |
| 414 | // TODO(user): Do something a tad smarter (and beware of the |
| 415 | // antipodal case). |
| 416 | for (S2CellId cellid = S2CellId::Begin(0); cellid != S2CellId::End(0); |
| 417 | cellid = cellid.next()) { |
| 418 | edge_covering->push_back(cellid); |
| 419 | } |
| 420 | return 0; |
| 421 | } |
| 422 | // TODO(user): Check trick below works even when vertex is at interface |
| 423 | // between three faces. |
| 424 | |
| 425 | // Use trick as in S2PolygonBuilder::PointIndex::FindNearbyPoint: |
| 426 | // Cover the edge by a cap centered at the edge midpoint, then cover |
| 427 | // the cap by four big-enough cells around the cell vertex closest to the |
| 428 | // cap center. |
| 429 | S2Point middle = ((a + b) / 2).Normalize(); |
| 430 | int actual_level = min(ideal_level, S2CellId::kMaxLevel-1); |
| 431 | S2CellId::FromPoint(middle).AppendVertexNeighbors( |
| 432 | actual_level, edge_covering); |
| 433 | return actual_level; |
| 434 | } |
| 435 | |
| 436 | void S2EdgeIndex::Iterator::GetCandidates(S2Point const& a, S2Point const& b) { |
| 437 | edge_index_->PredictAdditionalCalls(1); |
| 438 | is_brute_force_ = !edge_index_->IsIndexComputed(); |
| 439 | if (is_brute_force_) { |
| 440 | edge_index_->IncrementQueryCount(); |
| 441 | current_index_ = 0; |
| 442 | num_edges_ = edge_index_->num_edges(); |
| 443 | } else { |
| 444 | candidates_.clear(); |
| 445 | edge_index_->FindCandidateCrossings(a, b, &candidates_); |
| 446 | current_index_in_candidates_ = 0; |
| 447 | if (!candidates_.empty()) { |
| 448 | current_index_ = candidates_[0]; |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | |