1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #ifndef UTIL_GEOMETRY_S2POLYLINE_H__ |
4 | #define UTIL_GEOMETRY_S2POLYLINE_H__ |
5 | |
6 | #include <vector> |
7 | using std::vector; |
8 | |
9 | #include "base/logging.h" |
10 | #include "base/macros.h" |
11 | #include "s2.h" |
12 | #include "s2region.h" |
13 | #include "s2latlngrect.h" |
14 | |
15 | class S1Angle; |
16 | |
17 | // An S2Polyline represents a sequence of zero or more vertices connected by |
18 | // straight edges (geodesics). Edges of length 0 and 180 degrees are not |
19 | // allowed, i.e. adjacent vertices should not be identical or antipodal. |
20 | class S2Polyline : public S2Region { |
21 | public: |
22 | // Creates an empty S2Polyline that should be initialized by calling Init() |
23 | // or Decode(). |
24 | S2Polyline(); |
25 | |
26 | // Convenience constructors that call Init() with the given vertices. |
27 | S2Polyline(vector<S2Point> const& vertices); |
28 | S2Polyline(vector<S2LatLng> const& vertices); |
29 | |
30 | // Initialize a polyline that connects the given vertices. Empty polylines are |
31 | // allowed. Adjacent vertices should not be identical or antipodal. All |
32 | // vertices should be unit length. |
33 | void Init(vector<S2Point> const& vertices); |
34 | |
35 | // Convenience initialization function that accepts latitude-longitude |
36 | // coordinates rather than S2Points. |
37 | void Init(vector<S2LatLng> const& vertices); |
38 | |
39 | ~S2Polyline(); |
40 | |
41 | // Return true if the given vertices form a valid polyline. |
42 | static bool IsValid(vector<S2Point> const& vertices); |
43 | |
44 | int num_vertices() const { return num_vertices_; } |
45 | S2Point const& vertex(int k) const { |
46 | DCHECK_GE(k, 0); |
47 | DCHECK_LT(k, num_vertices_); |
48 | return vertices_[k]; |
49 | } |
50 | |
51 | // Return the length of the polyline. |
52 | S1Angle GetLength() const; |
53 | |
54 | // Return the true centroid of the polyline multiplied by the length of the |
55 | // polyline (see s2.h for details on centroids). The result is not unit |
56 | // length, so you may want to normalize it. |
57 | // |
58 | // Prescaling by the polyline length makes it easy to compute the centroid |
59 | // of several polylines (by simply adding up their centroids). |
60 | S2Point GetCentroid() const; |
61 | |
62 | // Return the point whose distance from vertex 0 along the polyline is the |
63 | // given fraction of the polyline's total length. Fractions less than zero |
64 | // or greater than one are clamped. The return value is unit length. This |
65 | // cost of this function is currently linear in the number of vertices. |
66 | // The polyline must not be empty. |
67 | S2Point Interpolate(double fraction) const; |
68 | |
69 | // Like Interpolate(), but also return the index of the next polyline |
70 | // vertex after the interpolated point P. This allows the caller to easily |
71 | // construct a given suffix of the polyline by concatenating P with the |
72 | // polyline vertices starting at "next_vertex". Note that P is guaranteed |
73 | // to be different than vertex(*next_vertex), so this will never result in |
74 | // a duplicate vertex. |
75 | // |
76 | // The polyline must not be empty. Note that if "fraction" >= 1.0, then |
77 | // "next_vertex" will be set to num_vertices() (indicating that no vertices |
78 | // from the polyline need to be appended). The value of "next_vertex" is |
79 | // always between 1 and num_vertices(). |
80 | // |
81 | // This method can also be used to construct a prefix of the polyline, by |
82 | // taking the polyline vertices up to "next_vertex - 1" and appending the |
83 | // returned point P if it is different from the last vertex (since in this |
84 | // case there is no guarantee of distinctness). |
85 | S2Point GetSuffix(double fraction, int* next_vertex) const; |
86 | |
87 | // The inverse operation of GetSuffix/Interpolate. Given a point on the |
88 | // polyline, returns the ratio of the distance to the point from the |
89 | // beginning of the polyline over the length of the polyline. The return |
90 | // value is always betwen 0 and 1 inclusive. See GetSuffix() for the |
91 | // meaning of "next_vertex". |
92 | // |
93 | // The polyline should not be empty. If it has fewer than 2 vertices, the |
94 | // return value is zero. |
95 | double UnInterpolate(S2Point const& point, int next_vertex) const; |
96 | |
97 | // Given a point, returns a point on the polyline that is closest to the given |
98 | // point. See GetSuffix() for the meaning of "next_vertex", which is chosen |
99 | // here w.r.t. the projected point as opposed to the interpolated point in |
100 | // GetSuffix(). |
101 | // |
102 | // The polyline must be non-empty. |
103 | S2Point Project(S2Point const& point, int* next_vertex) const; |
104 | |
105 | // Returns true if the point given is on the right hand side of the polyline, |
106 | // using a naive definition of "right-hand-sideness" where the point is on |
107 | // the RHS of the polyline iff the point is on the RHS of the line segment in |
108 | // the polyline which it is closest to. |
109 | // |
110 | // The polyline must have at least 2 vertices. |
111 | bool IsOnRight(S2Point const& point) const; |
112 | |
113 | // Return true if this polyline intersects the given polyline. If the |
114 | // polylines share a vertex they are considered to be intersecting. When a |
115 | // polyline endpoint is the only intersection with the other polyline, the |
116 | // function may return true or false arbitrarily. |
117 | // |
118 | // The running time is quadratic in the number of vertices. |
119 | bool Intersects(S2Polyline const* line) const; |
120 | |
121 | // Reverse the order of the polyline vertices. |
122 | void Reverse(); |
123 | |
124 | // Return a subsequence of vertex indices such that the polyline connecting |
125 | // these vertices is never further than "tolerance" from the original |
126 | // polyline. The first and last vertices are always preserved. |
127 | // |
128 | // Some useful properties of the algorithm: |
129 | // |
130 | // - It runs in linear time. |
131 | // |
132 | // - The output is always a valid polyline. In particular, adjacent |
133 | // output vertices are never identical or antipodal. |
134 | // |
135 | // - The method is not optimal, but it tends to produce 2-3% fewer |
136 | // vertices than the Douglas-Peucker algorithm with the same tolerance. |
137 | // |
138 | // - The output is *parametrically* equivalent to the original polyline to |
139 | // within the given tolerance. For example, if a polyline backtracks on |
140 | // itself and then proceeds onwards, the backtracking will be preserved |
141 | // (to within the given tolerance). This is different than the |
142 | // Douglas-Peucker algorithm used in maps/util/geoutil-inl.h, which only |
143 | // guarantees geometric equivalence. |
144 | void SubsampleVertices(S1Angle const& tolerance, vector<int>* indices) const; |
145 | |
146 | // Return true if two polylines have the same number of vertices, and |
147 | // corresponding vertex pairs are separated by no more than "max_error". |
148 | // (For testing purposes.) |
149 | bool ApproxEquals(S2Polyline const* b, double max_error = 1e-15) const; |
150 | |
151 | // Return true if "covered" is within "max_error" of a contiguous subpath of |
152 | // this polyline over its entire length. Specifically, this method returns |
153 | // true if this polyline has parameterization a:[0,1] -> S^2, "covered" has |
154 | // parameterization b:[0,1] -> S^2, and there is a non-decreasing function |
155 | // f:[0,1] -> [0,1] such that distance(a(f(t)), b(t)) <= max_error for all t. |
156 | // |
157 | // You can think of this as testing whether it is possible to drive a car |
158 | // along "covered" and a car along some subpath of this polyline such that no |
159 | // car ever goes backward, and the cars are always within "max_error" of each |
160 | // other. |
161 | bool NearlyCoversPolyline(S2Polyline const& covered, |
162 | S1Angle const& max_error) const; |
163 | |
164 | //////////////////////////////////////////////////////////////////////// |
165 | // S2Region interface (see s2region.h for details): |
166 | |
167 | virtual S2Polyline* Clone() const; |
168 | virtual S2Cap GetCapBound() const; |
169 | virtual S2LatLngRect GetRectBound() const; |
170 | virtual bool Contains(S2Cell const& cell) const { return false; } |
171 | virtual bool MayIntersect(S2Cell const& cell) const; |
172 | |
173 | // Polylines do not have a Contains(S2Point) method, because "containment" |
174 | // is not numerically well-defined except at the polyline vertices. |
175 | virtual bool VirtualContainsPoint(S2Point const& p) const { return false; } |
176 | |
177 | virtual void Encode(Encoder* const encoder) const; |
178 | virtual bool Decode(Decoder* const decoder); |
179 | |
180 | private: |
181 | // Internal constructor used only by Clone() that makes a deep copy of |
182 | // its argument. |
183 | S2Polyline(S2Polyline const* src); |
184 | |
185 | // We store the vertices in an array rather than a vector because we don't |
186 | // need any STL methods, and computing the number of vertices using size() |
187 | // would be relatively expensive (due to division by sizeof(S2Point) == 24). |
188 | int num_vertices_; |
189 | S2Point* vertices_; |
190 | |
191 | DISALLOW_EVIL_CONSTRUCTORS(S2Polyline); |
192 | }; |
193 | |
194 | #endif // UTIL_GEOMETRY_S2POLYLINE_H__ |
195 | |