| 1 | // Copyright 2005 Google Inc. All Rights Reserved. | 
|---|
| 2 |  | 
|---|
| 3 | #ifndef UTIL_GEOMETRY_S2LATLNGRECT_H_ | 
|---|
| 4 | #define UTIL_GEOMETRY_S2LATLNGRECT_H_ | 
|---|
| 5 |  | 
|---|
| 6 | #include <iostream> | 
|---|
| 7 | using std::ostream; | 
|---|
| 8 | using std::cout; | 
|---|
| 9 | using std::endl; | 
|---|
| 10 |  | 
|---|
| 11 |  | 
|---|
| 12 | #include "base/basictypes.h" | 
|---|
| 13 | #include "base/logging.h" | 
|---|
| 14 | #include "s1angle.h" | 
|---|
| 15 | #include "r1interval.h" | 
|---|
| 16 | #include "s1interval.h" | 
|---|
| 17 | #include "s2region.h" | 
|---|
| 18 | #include "s2latlng.h" | 
|---|
| 19 |  | 
|---|
| 20 | // An S2LatLngRect represents a closed latitude-longitude rectangle.  It is | 
|---|
| 21 | // capable of representing the empty and full rectangles as well as | 
|---|
| 22 | // single points. | 
|---|
| 23 | // | 
|---|
| 24 | // This class is intended to be copied by value as desired.  It uses | 
|---|
| 25 | // the default copy constructor and assignment operator, however it is | 
|---|
| 26 | // not a "plain old datatype" (POD) because it has virtual functions. | 
|---|
| 27 | class S2LatLngRect : public S2Region { | 
|---|
| 28 | public: | 
|---|
| 29 | // Construct a rectangle from minimum and maximum latitudes and longitudes. | 
|---|
| 30 | // If lo.lng() > hi.lng(), the rectangle spans the 180 degree longitude | 
|---|
| 31 | // line. Both points must be normalized, with lo.lat() <= hi.lat(). | 
|---|
| 32 | // The rectangle contains all the points p such that 'lo' <= p <= 'hi', | 
|---|
| 33 | // where '<=' is defined in the obvious way. | 
|---|
| 34 | inline S2LatLngRect(S2LatLng const& lo, S2LatLng const& hi); | 
|---|
| 35 |  | 
|---|
| 36 | // Construct a rectangle from latitude and longitude intervals.  The two | 
|---|
| 37 | // intervals must either be both empty or both non-empty, and the latitude | 
|---|
| 38 | // interval must not extend outside [-90, +90] degrees. | 
|---|
| 39 | // Note that both intervals (and hence the rectangle) are closed. | 
|---|
| 40 | inline S2LatLngRect(R1Interval const& lat, S1Interval const& lng); | 
|---|
| 41 |  | 
|---|
| 42 | // The default constructor creates an empty S2LatLngRect. | 
|---|
| 43 | inline S2LatLngRect(); | 
|---|
| 44 |  | 
|---|
| 45 | // Construct a rectangle of the given size centered around the given point. | 
|---|
| 46 | // "center" needs to be normalized, but "size" does not.  The latitude | 
|---|
| 47 | // interval of the result is clamped to [-90,90] degrees, and the longitude | 
|---|
| 48 | // interval of the result is Full() if and only if the longitude size is | 
|---|
| 49 | // 360 degrees or more.  Examples of clamping (in degrees): | 
|---|
| 50 | // | 
|---|
| 51 | //   center=(80,170),  size=(40,60)   -> lat=[60,90],   lng=[140,-160] | 
|---|
| 52 | //   center=(10,40),   size=(210,400) -> lat=[-90,90],  lng=[-180,180] | 
|---|
| 53 | //   center=(-90,180), size=(20,50)   -> lat=[-90,-80], lng=[155,-155] | 
|---|
| 54 | static S2LatLngRect FromCenterSize(S2LatLng const& center, | 
|---|
| 55 | S2LatLng const& size); | 
|---|
| 56 |  | 
|---|
| 57 | // Construct a rectangle containing a single (normalized) point. | 
|---|
| 58 | static S2LatLngRect FromPoint(S2LatLng const& p); | 
|---|
| 59 |  | 
|---|
| 60 | // Construct the minimal bounding rectangle containing the two given | 
|---|
| 61 | // normalized points.  This is equivalent to starting with an empty | 
|---|
| 62 | // rectangle and calling AddPoint() twice.  Note that it is different than | 
|---|
| 63 | // the S2LatLngRect(lo, hi) constructor, where the first point is always | 
|---|
| 64 | // used as the lower-left corner of the resulting rectangle. | 
|---|
| 65 | static S2LatLngRect FromPointPair(S2LatLng const& p1, S2LatLng const& p2); | 
|---|
| 66 |  | 
|---|
| 67 | // Accessor methods. | 
|---|
| 68 | S1Angle lat_lo() const { return S1Angle::Radians(lat_.lo()); } | 
|---|
| 69 | S1Angle lat_hi() const { return S1Angle::Radians(lat_.hi()); } | 
|---|
| 70 | S1Angle lng_lo() const { return S1Angle::Radians(lng_.lo()); } | 
|---|
| 71 | S1Angle lng_hi() const { return S1Angle::Radians(lng_.hi()); } | 
|---|
| 72 | R1Interval const& lat() const { return lat_; } | 
|---|
| 73 | S1Interval const& lng() const { return lng_; } | 
|---|
| 74 | R1Interval *mutable_lat() { return &lat_; } | 
|---|
| 75 | S1Interval *mutable_lng() { return &lng_; } | 
|---|
| 76 | S2LatLng lo() const { return S2LatLng(lat_lo(), lng_lo()); } | 
|---|
| 77 | S2LatLng hi() const { return S2LatLng(lat_hi(), lng_hi()); } | 
|---|
| 78 |  | 
|---|
| 79 | // The canonical empty and full rectangles. | 
|---|
| 80 | static inline S2LatLngRect Empty(); | 
|---|
| 81 | static inline S2LatLngRect Full(); | 
|---|
| 82 |  | 
|---|
| 83 | // The full allowable range of latitudes and longitudes. | 
|---|
| 84 | static R1Interval FullLat() { return R1Interval(-M_PI_2, M_PI_2); } | 
|---|
| 85 | static S1Interval FullLng() { return S1Interval::Full(); } | 
|---|
| 86 |  | 
|---|
| 87 | // Return true if the rectangle is valid, which essentially just means | 
|---|
| 88 | // that the latitude bounds do not exceed Pi/2 in absolute value and | 
|---|
| 89 | // the longitude bounds do not exceed Pi in absolute value.  Also, if | 
|---|
| 90 | // either the latitude or longitude bound is empty then both must be. | 
|---|
| 91 | inline bool is_valid() const; | 
|---|
| 92 |  | 
|---|
| 93 | // Return true if the rectangle is empty, i.e. it contains no points at all. | 
|---|
| 94 | inline bool is_empty() const; | 
|---|
| 95 |  | 
|---|
| 96 | // Return true if the rectangle is full, i.e. it contains all points. | 
|---|
| 97 | inline bool is_full() const; | 
|---|
| 98 |  | 
|---|
| 99 | // Return true if the rectangle is a point, i.e. lo() == hi() | 
|---|
| 100 | inline bool is_point() const; | 
|---|
| 101 |  | 
|---|
| 102 | // Return true if lng_.lo() > lng_.hi(), i.e. the rectangle crosses | 
|---|
| 103 | // the 180 degree longitude line. | 
|---|
| 104 | bool is_inverted() const { return lng_.is_inverted(); } | 
|---|
| 105 |  | 
|---|
| 106 | // Return the k-th vertex of the rectangle (k = 0,1,2,3) in CCW order. | 
|---|
| 107 | S2LatLng GetVertex(int k) const; | 
|---|
| 108 |  | 
|---|
| 109 | // Return the center of the rectangle in latitude-longitude space | 
|---|
| 110 | // (in general this is not the center of the region on the sphere). | 
|---|
| 111 | S2LatLng GetCenter() const; | 
|---|
| 112 |  | 
|---|
| 113 | // Return the width and height of this rectangle in latitude-longitude | 
|---|
| 114 | // space.  Empty rectangles have a negative width and height. | 
|---|
| 115 | S2LatLng GetSize() const; | 
|---|
| 116 |  | 
|---|
| 117 | // Returns the surface area of this rectangle on the unit sphere. | 
|---|
| 118 | double Area() const; | 
|---|
| 119 |  | 
|---|
| 120 | // More efficient version of Contains() that accepts a S2LatLng rather than | 
|---|
| 121 | // an S2Point.  The argument must be normalized. | 
|---|
| 122 | bool Contains(S2LatLng const& ll) const; | 
|---|
| 123 |  | 
|---|
| 124 | // Return true if and only if the given point is contained in the interior | 
|---|
| 125 | // of the region (i.e. the region excluding its boundary).  The point 'p' | 
|---|
| 126 | // does not need to be normalized. | 
|---|
| 127 | bool InteriorContains(S2Point const& p) const; | 
|---|
| 128 |  | 
|---|
| 129 | // More efficient version of InteriorContains() that accepts a S2LatLng | 
|---|
| 130 | // rather than an S2Point.  The argument must be normalized. | 
|---|
| 131 | bool InteriorContains(S2LatLng const& ll) const; | 
|---|
| 132 |  | 
|---|
| 133 | // Return true if and only if the rectangle contains the given other | 
|---|
| 134 | // rectangle. | 
|---|
| 135 | bool Contains(S2LatLngRect const& other) const; | 
|---|
| 136 |  | 
|---|
| 137 | // Return true if and only if the interior of this rectangle contains all | 
|---|
| 138 | // points of the given other rectangle (including its boundary). | 
|---|
| 139 | bool InteriorContains(S2LatLngRect const& other) const; | 
|---|
| 140 |  | 
|---|
| 141 | // Return true if this rectangle and the given other rectangle have any | 
|---|
| 142 | // points in common. | 
|---|
| 143 | bool Intersects(S2LatLngRect const& other) const; | 
|---|
| 144 |  | 
|---|
| 145 | // Returns true if this rectangle intersects the given cell.  (This is an | 
|---|
| 146 | // exact test and may be fairly expensive, see also MayIntersect below.) | 
|---|
| 147 | bool Intersects(S2Cell const& cell) const; | 
|---|
| 148 |  | 
|---|
| 149 | // Return true if and only if the interior of this rectangle intersects | 
|---|
| 150 | // any point (including the boundary) of the given other rectangle. | 
|---|
| 151 | bool InteriorIntersects(S2LatLngRect const& other) const; | 
|---|
| 152 |  | 
|---|
| 153 | // Increase the size of the bounding rectangle to include the given point. | 
|---|
| 154 | // The rectangle is expanded by the minimum amount possible.  The S2LatLng | 
|---|
| 155 | // argument must be normalized. | 
|---|
| 156 | void AddPoint(S2Point const& p); | 
|---|
| 157 | void AddPoint(S2LatLng const& ll); | 
|---|
| 158 |  | 
|---|
| 159 | // Return a rectangle that contains all points whose latitude distance from | 
|---|
| 160 | // this rectangle is at most margin.lat(), and whose longitude distance | 
|---|
| 161 | // from this rectangle is at most margin.lng().  In particular, latitudes | 
|---|
| 162 | // are clamped while longitudes are wrapped.  Note that any expansion of an | 
|---|
| 163 | // empty interval remains empty, and both components of the given margin | 
|---|
| 164 | // must be non-negative.  "margin" does not need to be normalized. | 
|---|
| 165 | // | 
|---|
| 166 | // NOTE: If you are trying to grow a rectangle by a certain *distance* on | 
|---|
| 167 | // the sphere (e.g. 5km), use the ConvolveWithCap() method instead. | 
|---|
| 168 | S2LatLngRect Expanded(S2LatLng const& margin) const; | 
|---|
| 169 |  | 
|---|
| 170 | // Return the smallest rectangle containing the union of this rectangle and | 
|---|
| 171 | // the given rectangle. | 
|---|
| 172 | S2LatLngRect Union(S2LatLngRect const& other) const; | 
|---|
| 173 |  | 
|---|
| 174 | // Return the smallest rectangle containing the intersection of this | 
|---|
| 175 | // rectangle and the given rectangle.  Note that the region of intersection | 
|---|
| 176 | // may consist of two disjoint rectangles, in which case a single rectangle | 
|---|
| 177 | // spanning both of them is returned. | 
|---|
| 178 | S2LatLngRect Intersection(S2LatLngRect const& other) const; | 
|---|
| 179 |  | 
|---|
| 180 | // Return a rectangle that contains the convolution of this rectangle with a | 
|---|
| 181 | // cap of the given angle.  This expands the rectangle by a fixed distance | 
|---|
| 182 | // (as opposed to growing the rectangle in latitude-longitude space).  The | 
|---|
| 183 | // returned rectangle includes all points whose minimum distance to the | 
|---|
| 184 | // original rectangle is at most the given angle. | 
|---|
| 185 | S2LatLngRect ConvolveWithCap(S1Angle const& angle) const; | 
|---|
| 186 |  | 
|---|
| 187 | // Returns the minimum distance (measured along the surface of the sphere) to | 
|---|
| 188 | // the given S2LatLngRect. Both S2LatLngRects must be non-empty. | 
|---|
| 189 | S1Angle GetDistance(S2LatLngRect const& other) const; | 
|---|
| 190 |  | 
|---|
| 191 | // Returns the minimum distance (measured along the surface of the sphere) | 
|---|
| 192 | // from a given point to the rectangle (both its boundary and its interior). | 
|---|
| 193 | // The latlng must be valid. | 
|---|
| 194 | S1Angle GetDistance(S2LatLng const& p) const; | 
|---|
| 195 |  | 
|---|
| 196 | // Returns the (directed or undirected) Hausdorff distance (measured along the | 
|---|
| 197 | // surface of the sphere) to the given S2LatLngRect. The directed Hausdorff | 
|---|
| 198 | // distance from rectangle A to rectangle B is given by | 
|---|
| 199 | //     h(A, B) = max_{p in A} min_{q in B} d(p, q). | 
|---|
| 200 | // The Hausdorff distance between rectangle A and rectangle B is given by | 
|---|
| 201 | //     H(A, B) = max{h(A, B), h(B, A)}. | 
|---|
| 202 | S1Angle GetDirectedHausdorffDistance(S2LatLngRect const& other) const; | 
|---|
| 203 | S1Angle GetHausdorffDistance(S2LatLngRect const& other) const; | 
|---|
| 204 |  | 
|---|
| 205 | // Return true if two rectangles contains the same set of points. | 
|---|
| 206 | inline bool operator==(S2LatLngRect const& other) const; | 
|---|
| 207 |  | 
|---|
| 208 | // Return the opposite of what operator == returns. | 
|---|
| 209 | inline bool operator!=(S2LatLngRect const& other) const; | 
|---|
| 210 |  | 
|---|
| 211 | // Return true if the latitude and longitude intervals of the two rectangles | 
|---|
| 212 | // are the same up to the given tolerance (see r1interval.h and s1interval.h | 
|---|
| 213 | // for details). | 
|---|
| 214 | bool ApproxEquals(S2LatLngRect const& other, double max_error = 1e-15) const; | 
|---|
| 215 |  | 
|---|
| 216 | //////////////////////////////////////////////////////////////////////// | 
|---|
| 217 | // S2Region interface (see s2region.h for details): | 
|---|
| 218 |  | 
|---|
| 219 | virtual S2LatLngRect* Clone() const; | 
|---|
| 220 | virtual S2Cap GetCapBound() const; | 
|---|
| 221 | virtual S2LatLngRect GetRectBound() const; | 
|---|
| 222 | virtual bool Contains(S2Cell const& cell) const; | 
|---|
| 223 | virtual bool VirtualContainsPoint(S2Point const& p) const { | 
|---|
| 224 | return Contains(p);  // The same as Contains() below, just virtual. | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | // This test is cheap but is NOT exact.  Use Intersects() if you want a more | 
|---|
| 228 | // accurate and more expensive test.  Note that when this method is used by | 
|---|
| 229 | // an S2RegionCoverer, the accuracy isn't all that important since if a cell | 
|---|
| 230 | // may intersect the region then it is subdivided, and the accuracy of this | 
|---|
| 231 | // method goes up as the cells get smaller. | 
|---|
| 232 | virtual bool MayIntersect(S2Cell const& cell) const; | 
|---|
| 233 |  | 
|---|
| 234 | // The point 'p' does not need to be normalized. | 
|---|
| 235 | bool Contains(S2Point const& p) const; | 
|---|
| 236 |  | 
|---|
| 237 | virtual void Encode(Encoder* const encoder) const; | 
|---|
| 238 | virtual bool Decode(Decoder* const decoder); | 
|---|
| 239 |  | 
|---|
| 240 | private: | 
|---|
| 241 | // Return true if the edge AB intersects the given edge of constant | 
|---|
| 242 | // longitude. | 
|---|
| 243 | static bool IntersectsLngEdge(S2Point const& a, S2Point const& b, | 
|---|
| 244 | R1Interval const& lat, double lng); | 
|---|
| 245 |  | 
|---|
| 246 | // Return true if the edge AB intersects the given edge of constant | 
|---|
| 247 | // latitude. | 
|---|
| 248 | static bool IntersectsLatEdge(S2Point const& a, S2Point const& b, | 
|---|
| 249 | double lat, S1Interval const& lng); | 
|---|
| 250 |  | 
|---|
| 251 | // Helper function. See .cc for description. | 
|---|
| 252 | static S1Angle GetDirectedHausdorffDistance(double lng_diff, | 
|---|
| 253 | R1Interval const& a_lat, | 
|---|
| 254 | R1Interval const& b_lat); | 
|---|
| 255 |  | 
|---|
| 256 | // Helper function. See .cc for description. | 
|---|
| 257 | static S1Angle GetInteriorMaxDistance(R1Interval const& a_lat, | 
|---|
| 258 | S2Point const& b); | 
|---|
| 259 |  | 
|---|
| 260 | // Helper function. See .cc for description. | 
|---|
| 261 | static S2Point GetBisectorIntersection(R1Interval const& lat, double lng); | 
|---|
| 262 |  | 
|---|
| 263 | R1Interval lat_; | 
|---|
| 264 | S1Interval lng_; | 
|---|
| 265 | }; | 
|---|
| 266 |  | 
|---|
| 267 | inline S2LatLngRect::S2LatLngRect(S2LatLng const& lo, S2LatLng const& hi) | 
|---|
| 268 | : lat_(lo.lat().radians(), hi.lat().radians()), | 
|---|
| 269 | lng_(lo.lng().radians(), hi.lng().radians()) { | 
|---|
| 270 | DCHECK(is_valid()) << lo << ", "<< hi; | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | inline S2LatLngRect::S2LatLngRect(R1Interval const& lat, S1Interval const& lng) | 
|---|
| 274 | : lat_(lat), lng_(lng) { | 
|---|
| 275 | DCHECK(is_valid()) << lat << ", "<< lng; | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|
| 278 | inline S2LatLngRect::S2LatLngRect() | 
|---|
| 279 | : lat_(R1Interval::Empty()), lng_(S1Interval::Empty()) { | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | inline S2LatLngRect S2LatLngRect::Empty() { | 
|---|
| 283 | return S2LatLngRect(); | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | inline S2LatLngRect S2LatLngRect::Full() { | 
|---|
| 287 | return S2LatLngRect(FullLat(), FullLng()); | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | inline bool S2LatLngRect::is_valid() const { | 
|---|
| 291 | // The lat/lng ranges must either be both empty or both non-empty. | 
|---|
| 292 | return (fabs(lat_.lo()) <= M_PI_2 && | 
|---|
| 293 | fabs(lat_.hi()) <= M_PI_2 && | 
|---|
| 294 | lng_.is_valid() && | 
|---|
| 295 | lat_.is_empty() == lng_.is_empty()); | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | inline bool S2LatLngRect::is_empty() const { | 
|---|
| 299 | return lat_.is_empty(); | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | inline bool S2LatLngRect::is_full() const { | 
|---|
| 303 | return lat_ == FullLat() && lng_.is_full(); | 
|---|
| 304 | } | 
|---|
| 305 |  | 
|---|
| 306 | inline bool S2LatLngRect::is_point() const { | 
|---|
| 307 | return lat_.lo() == lat_.hi() && lng_.lo() == lng_.hi(); | 
|---|
| 308 | } | 
|---|
| 309 |  | 
|---|
| 310 | inline bool S2LatLngRect::operator==(S2LatLngRect const& other) const { | 
|---|
| 311 | return lat() == other.lat() && lng() == other.lng(); | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | inline bool S2LatLngRect::operator!=(S2LatLngRect const& other) const { | 
|---|
| 315 | return !operator==(other); | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | ostream& operator<<(ostream& os, S2LatLngRect const& r); | 
|---|
| 319 |  | 
|---|
| 320 | #endif  // UTIL_GEOMETRY_S2LATLNGRECT_H_ | 
|---|
| 321 |  | 
|---|