| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #ifndef UTIL_GEOMETRY_S2LATLNGRECT_H_ |
| 4 | #define UTIL_GEOMETRY_S2LATLNGRECT_H_ |
| 5 | |
| 6 | #include <iostream> |
| 7 | using std::ostream; |
| 8 | using std::cout; |
| 9 | using std::endl; |
| 10 | |
| 11 | |
| 12 | #include "base/basictypes.h" |
| 13 | #include "base/logging.h" |
| 14 | #include "s1angle.h" |
| 15 | #include "r1interval.h" |
| 16 | #include "s1interval.h" |
| 17 | #include "s2region.h" |
| 18 | #include "s2latlng.h" |
| 19 | |
| 20 | // An S2LatLngRect represents a closed latitude-longitude rectangle. It is |
| 21 | // capable of representing the empty and full rectangles as well as |
| 22 | // single points. |
| 23 | // |
| 24 | // This class is intended to be copied by value as desired. It uses |
| 25 | // the default copy constructor and assignment operator, however it is |
| 26 | // not a "plain old datatype" (POD) because it has virtual functions. |
| 27 | class S2LatLngRect : public S2Region { |
| 28 | public: |
| 29 | // Construct a rectangle from minimum and maximum latitudes and longitudes. |
| 30 | // If lo.lng() > hi.lng(), the rectangle spans the 180 degree longitude |
| 31 | // line. Both points must be normalized, with lo.lat() <= hi.lat(). |
| 32 | // The rectangle contains all the points p such that 'lo' <= p <= 'hi', |
| 33 | // where '<=' is defined in the obvious way. |
| 34 | inline S2LatLngRect(S2LatLng const& lo, S2LatLng const& hi); |
| 35 | |
| 36 | // Construct a rectangle from latitude and longitude intervals. The two |
| 37 | // intervals must either be both empty or both non-empty, and the latitude |
| 38 | // interval must not extend outside [-90, +90] degrees. |
| 39 | // Note that both intervals (and hence the rectangle) are closed. |
| 40 | inline S2LatLngRect(R1Interval const& lat, S1Interval const& lng); |
| 41 | |
| 42 | // The default constructor creates an empty S2LatLngRect. |
| 43 | inline S2LatLngRect(); |
| 44 | |
| 45 | // Construct a rectangle of the given size centered around the given point. |
| 46 | // "center" needs to be normalized, but "size" does not. The latitude |
| 47 | // interval of the result is clamped to [-90,90] degrees, and the longitude |
| 48 | // interval of the result is Full() if and only if the longitude size is |
| 49 | // 360 degrees or more. Examples of clamping (in degrees): |
| 50 | // |
| 51 | // center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160] |
| 52 | // center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180] |
| 53 | // center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155] |
| 54 | static S2LatLngRect FromCenterSize(S2LatLng const& center, |
| 55 | S2LatLng const& size); |
| 56 | |
| 57 | // Construct a rectangle containing a single (normalized) point. |
| 58 | static S2LatLngRect FromPoint(S2LatLng const& p); |
| 59 | |
| 60 | // Construct the minimal bounding rectangle containing the two given |
| 61 | // normalized points. This is equivalent to starting with an empty |
| 62 | // rectangle and calling AddPoint() twice. Note that it is different than |
| 63 | // the S2LatLngRect(lo, hi) constructor, where the first point is always |
| 64 | // used as the lower-left corner of the resulting rectangle. |
| 65 | static S2LatLngRect FromPointPair(S2LatLng const& p1, S2LatLng const& p2); |
| 66 | |
| 67 | // Accessor methods. |
| 68 | S1Angle lat_lo() const { return S1Angle::Radians(lat_.lo()); } |
| 69 | S1Angle lat_hi() const { return S1Angle::Radians(lat_.hi()); } |
| 70 | S1Angle lng_lo() const { return S1Angle::Radians(lng_.lo()); } |
| 71 | S1Angle lng_hi() const { return S1Angle::Radians(lng_.hi()); } |
| 72 | R1Interval const& lat() const { return lat_; } |
| 73 | S1Interval const& lng() const { return lng_; } |
| 74 | R1Interval *mutable_lat() { return &lat_; } |
| 75 | S1Interval *mutable_lng() { return &lng_; } |
| 76 | S2LatLng lo() const { return S2LatLng(lat_lo(), lng_lo()); } |
| 77 | S2LatLng hi() const { return S2LatLng(lat_hi(), lng_hi()); } |
| 78 | |
| 79 | // The canonical empty and full rectangles. |
| 80 | static inline S2LatLngRect Empty(); |
| 81 | static inline S2LatLngRect Full(); |
| 82 | |
| 83 | // The full allowable range of latitudes and longitudes. |
| 84 | static R1Interval FullLat() { return R1Interval(-M_PI_2, M_PI_2); } |
| 85 | static S1Interval FullLng() { return S1Interval::Full(); } |
| 86 | |
| 87 | // Return true if the rectangle is valid, which essentially just means |
| 88 | // that the latitude bounds do not exceed Pi/2 in absolute value and |
| 89 | // the longitude bounds do not exceed Pi in absolute value. Also, if |
| 90 | // either the latitude or longitude bound is empty then both must be. |
| 91 | inline bool is_valid() const; |
| 92 | |
| 93 | // Return true if the rectangle is empty, i.e. it contains no points at all. |
| 94 | inline bool is_empty() const; |
| 95 | |
| 96 | // Return true if the rectangle is full, i.e. it contains all points. |
| 97 | inline bool is_full() const; |
| 98 | |
| 99 | // Return true if the rectangle is a point, i.e. lo() == hi() |
| 100 | inline bool is_point() const; |
| 101 | |
| 102 | // Return true if lng_.lo() > lng_.hi(), i.e. the rectangle crosses |
| 103 | // the 180 degree longitude line. |
| 104 | bool is_inverted() const { return lng_.is_inverted(); } |
| 105 | |
| 106 | // Return the k-th vertex of the rectangle (k = 0,1,2,3) in CCW order. |
| 107 | S2LatLng GetVertex(int k) const; |
| 108 | |
| 109 | // Return the center of the rectangle in latitude-longitude space |
| 110 | // (in general this is not the center of the region on the sphere). |
| 111 | S2LatLng GetCenter() const; |
| 112 | |
| 113 | // Return the width and height of this rectangle in latitude-longitude |
| 114 | // space. Empty rectangles have a negative width and height. |
| 115 | S2LatLng GetSize() const; |
| 116 | |
| 117 | // Returns the surface area of this rectangle on the unit sphere. |
| 118 | double Area() const; |
| 119 | |
| 120 | // More efficient version of Contains() that accepts a S2LatLng rather than |
| 121 | // an S2Point. The argument must be normalized. |
| 122 | bool Contains(S2LatLng const& ll) const; |
| 123 | |
| 124 | // Return true if and only if the given point is contained in the interior |
| 125 | // of the region (i.e. the region excluding its boundary). The point 'p' |
| 126 | // does not need to be normalized. |
| 127 | bool InteriorContains(S2Point const& p) const; |
| 128 | |
| 129 | // More efficient version of InteriorContains() that accepts a S2LatLng |
| 130 | // rather than an S2Point. The argument must be normalized. |
| 131 | bool InteriorContains(S2LatLng const& ll) const; |
| 132 | |
| 133 | // Return true if and only if the rectangle contains the given other |
| 134 | // rectangle. |
| 135 | bool Contains(S2LatLngRect const& other) const; |
| 136 | |
| 137 | // Return true if and only if the interior of this rectangle contains all |
| 138 | // points of the given other rectangle (including its boundary). |
| 139 | bool InteriorContains(S2LatLngRect const& other) const; |
| 140 | |
| 141 | // Return true if this rectangle and the given other rectangle have any |
| 142 | // points in common. |
| 143 | bool Intersects(S2LatLngRect const& other) const; |
| 144 | |
| 145 | // Returns true if this rectangle intersects the given cell. (This is an |
| 146 | // exact test and may be fairly expensive, see also MayIntersect below.) |
| 147 | bool Intersects(S2Cell const& cell) const; |
| 148 | |
| 149 | // Return true if and only if the interior of this rectangle intersects |
| 150 | // any point (including the boundary) of the given other rectangle. |
| 151 | bool InteriorIntersects(S2LatLngRect const& other) const; |
| 152 | |
| 153 | // Increase the size of the bounding rectangle to include the given point. |
| 154 | // The rectangle is expanded by the minimum amount possible. The S2LatLng |
| 155 | // argument must be normalized. |
| 156 | void AddPoint(S2Point const& p); |
| 157 | void AddPoint(S2LatLng const& ll); |
| 158 | |
| 159 | // Return a rectangle that contains all points whose latitude distance from |
| 160 | // this rectangle is at most margin.lat(), and whose longitude distance |
| 161 | // from this rectangle is at most margin.lng(). In particular, latitudes |
| 162 | // are clamped while longitudes are wrapped. Note that any expansion of an |
| 163 | // empty interval remains empty, and both components of the given margin |
| 164 | // must be non-negative. "margin" does not need to be normalized. |
| 165 | // |
| 166 | // NOTE: If you are trying to grow a rectangle by a certain *distance* on |
| 167 | // the sphere (e.g. 5km), use the ConvolveWithCap() method instead. |
| 168 | S2LatLngRect Expanded(S2LatLng const& margin) const; |
| 169 | |
| 170 | // Return the smallest rectangle containing the union of this rectangle and |
| 171 | // the given rectangle. |
| 172 | S2LatLngRect Union(S2LatLngRect const& other) const; |
| 173 | |
| 174 | // Return the smallest rectangle containing the intersection of this |
| 175 | // rectangle and the given rectangle. Note that the region of intersection |
| 176 | // may consist of two disjoint rectangles, in which case a single rectangle |
| 177 | // spanning both of them is returned. |
| 178 | S2LatLngRect Intersection(S2LatLngRect const& other) const; |
| 179 | |
| 180 | // Return a rectangle that contains the convolution of this rectangle with a |
| 181 | // cap of the given angle. This expands the rectangle by a fixed distance |
| 182 | // (as opposed to growing the rectangle in latitude-longitude space). The |
| 183 | // returned rectangle includes all points whose minimum distance to the |
| 184 | // original rectangle is at most the given angle. |
| 185 | S2LatLngRect ConvolveWithCap(S1Angle const& angle) const; |
| 186 | |
| 187 | // Returns the minimum distance (measured along the surface of the sphere) to |
| 188 | // the given S2LatLngRect. Both S2LatLngRects must be non-empty. |
| 189 | S1Angle GetDistance(S2LatLngRect const& other) const; |
| 190 | |
| 191 | // Returns the minimum distance (measured along the surface of the sphere) |
| 192 | // from a given point to the rectangle (both its boundary and its interior). |
| 193 | // The latlng must be valid. |
| 194 | S1Angle GetDistance(S2LatLng const& p) const; |
| 195 | |
| 196 | // Returns the (directed or undirected) Hausdorff distance (measured along the |
| 197 | // surface of the sphere) to the given S2LatLngRect. The directed Hausdorff |
| 198 | // distance from rectangle A to rectangle B is given by |
| 199 | // h(A, B) = max_{p in A} min_{q in B} d(p, q). |
| 200 | // The Hausdorff distance between rectangle A and rectangle B is given by |
| 201 | // H(A, B) = max{h(A, B), h(B, A)}. |
| 202 | S1Angle GetDirectedHausdorffDistance(S2LatLngRect const& other) const; |
| 203 | S1Angle GetHausdorffDistance(S2LatLngRect const& other) const; |
| 204 | |
| 205 | // Return true if two rectangles contains the same set of points. |
| 206 | inline bool operator==(S2LatLngRect const& other) const; |
| 207 | |
| 208 | // Return the opposite of what operator == returns. |
| 209 | inline bool operator!=(S2LatLngRect const& other) const; |
| 210 | |
| 211 | // Return true if the latitude and longitude intervals of the two rectangles |
| 212 | // are the same up to the given tolerance (see r1interval.h and s1interval.h |
| 213 | // for details). |
| 214 | bool ApproxEquals(S2LatLngRect const& other, double max_error = 1e-15) const; |
| 215 | |
| 216 | //////////////////////////////////////////////////////////////////////// |
| 217 | // S2Region interface (see s2region.h for details): |
| 218 | |
| 219 | virtual S2LatLngRect* Clone() const; |
| 220 | virtual S2Cap GetCapBound() const; |
| 221 | virtual S2LatLngRect GetRectBound() const; |
| 222 | virtual bool Contains(S2Cell const& cell) const; |
| 223 | virtual bool VirtualContainsPoint(S2Point const& p) const { |
| 224 | return Contains(p); // The same as Contains() below, just virtual. |
| 225 | } |
| 226 | |
| 227 | // This test is cheap but is NOT exact. Use Intersects() if you want a more |
| 228 | // accurate and more expensive test. Note that when this method is used by |
| 229 | // an S2RegionCoverer, the accuracy isn't all that important since if a cell |
| 230 | // may intersect the region then it is subdivided, and the accuracy of this |
| 231 | // method goes up as the cells get smaller. |
| 232 | virtual bool MayIntersect(S2Cell const& cell) const; |
| 233 | |
| 234 | // The point 'p' does not need to be normalized. |
| 235 | bool Contains(S2Point const& p) const; |
| 236 | |
| 237 | virtual void Encode(Encoder* const encoder) const; |
| 238 | virtual bool Decode(Decoder* const decoder); |
| 239 | |
| 240 | private: |
| 241 | // Return true if the edge AB intersects the given edge of constant |
| 242 | // longitude. |
| 243 | static bool IntersectsLngEdge(S2Point const& a, S2Point const& b, |
| 244 | R1Interval const& lat, double lng); |
| 245 | |
| 246 | // Return true if the edge AB intersects the given edge of constant |
| 247 | // latitude. |
| 248 | static bool IntersectsLatEdge(S2Point const& a, S2Point const& b, |
| 249 | double lat, S1Interval const& lng); |
| 250 | |
| 251 | // Helper function. See .cc for description. |
| 252 | static S1Angle GetDirectedHausdorffDistance(double lng_diff, |
| 253 | R1Interval const& a_lat, |
| 254 | R1Interval const& b_lat); |
| 255 | |
| 256 | // Helper function. See .cc for description. |
| 257 | static S1Angle GetInteriorMaxDistance(R1Interval const& a_lat, |
| 258 | S2Point const& b); |
| 259 | |
| 260 | // Helper function. See .cc for description. |
| 261 | static S2Point GetBisectorIntersection(R1Interval const& lat, double lng); |
| 262 | |
| 263 | R1Interval lat_; |
| 264 | S1Interval lng_; |
| 265 | }; |
| 266 | |
| 267 | inline S2LatLngRect::S2LatLngRect(S2LatLng const& lo, S2LatLng const& hi) |
| 268 | : lat_(lo.lat().radians(), hi.lat().radians()), |
| 269 | lng_(lo.lng().radians(), hi.lng().radians()) { |
| 270 | DCHECK(is_valid()) << lo << ", " << hi; |
| 271 | } |
| 272 | |
| 273 | inline S2LatLngRect::S2LatLngRect(R1Interval const& lat, S1Interval const& lng) |
| 274 | : lat_(lat), lng_(lng) { |
| 275 | DCHECK(is_valid()) << lat << ", " << lng; |
| 276 | } |
| 277 | |
| 278 | inline S2LatLngRect::S2LatLngRect() |
| 279 | : lat_(R1Interval::Empty()), lng_(S1Interval::Empty()) { |
| 280 | } |
| 281 | |
| 282 | inline S2LatLngRect S2LatLngRect::Empty() { |
| 283 | return S2LatLngRect(); |
| 284 | } |
| 285 | |
| 286 | inline S2LatLngRect S2LatLngRect::Full() { |
| 287 | return S2LatLngRect(FullLat(), FullLng()); |
| 288 | } |
| 289 | |
| 290 | inline bool S2LatLngRect::is_valid() const { |
| 291 | // The lat/lng ranges must either be both empty or both non-empty. |
| 292 | return (fabs(lat_.lo()) <= M_PI_2 && |
| 293 | fabs(lat_.hi()) <= M_PI_2 && |
| 294 | lng_.is_valid() && |
| 295 | lat_.is_empty() == lng_.is_empty()); |
| 296 | } |
| 297 | |
| 298 | inline bool S2LatLngRect::is_empty() const { |
| 299 | return lat_.is_empty(); |
| 300 | } |
| 301 | |
| 302 | inline bool S2LatLngRect::is_full() const { |
| 303 | return lat_ == FullLat() && lng_.is_full(); |
| 304 | } |
| 305 | |
| 306 | inline bool S2LatLngRect::is_point() const { |
| 307 | return lat_.lo() == lat_.hi() && lng_.lo() == lng_.hi(); |
| 308 | } |
| 309 | |
| 310 | inline bool S2LatLngRect::operator==(S2LatLngRect const& other) const { |
| 311 | return lat() == other.lat() && lng() == other.lng(); |
| 312 | } |
| 313 | |
| 314 | inline bool S2LatLngRect::operator!=(S2LatLngRect const& other) const { |
| 315 | return !operator==(other); |
| 316 | } |
| 317 | |
| 318 | ostream& operator<<(ostream& os, S2LatLngRect const& r); |
| 319 | |
| 320 | #endif // UTIL_GEOMETRY_S2LATLNGRECT_H_ |
| 321 | |