| 1 | /* crypto/bn/bn_mul.c */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] |
| 57 | */ |
| 58 | |
| 59 | #ifndef BN_DEBUG |
| 60 | # undef NDEBUG /* avoid conflicting definitions */ |
| 61 | # define NDEBUG |
| 62 | #endif |
| 63 | |
| 64 | #include <stdio.h> |
| 65 | #include <assert.h> |
| 66 | #include "../bn/bn_lcl.h" |
| 67 | |
| 68 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) |
| 69 | /* |
| 70 | * Here follows specialised variants of bn_add_words() and bn_sub_words(). |
| 71 | * They have the property performing operations on arrays of different sizes. |
| 72 | * The sizes of those arrays is expressed through cl, which is the common |
| 73 | * length ( basicall, min(len(a),len(b)) ), and dl, which is the delta |
| 74 | * between the two lengths, calculated as len(a)-len(b). All lengths are the |
| 75 | * number of BN_ULONGs... For the operations that require a result array as |
| 76 | * parameter, it must have the length cl+abs(dl). These functions should |
| 77 | * probably end up in bn_asm.c as soon as there are assembler counterparts |
| 78 | * for the systems that use assembler files. |
| 79 | */ |
| 80 | |
| 81 | BN_ULONG bn_sub_part_words(BN_ULONG *r, |
| 82 | const BN_ULONG *a, const BN_ULONG *b, |
| 83 | int cl, int dl) |
| 84 | { |
| 85 | BN_ULONG c, t; |
| 86 | |
| 87 | assert(cl >= 0); |
| 88 | c = bn_sub_words(r, a, b, cl); |
| 89 | |
| 90 | if (dl == 0) |
| 91 | return c; |
| 92 | |
| 93 | r += cl; |
| 94 | a += cl; |
| 95 | b += cl; |
| 96 | |
| 97 | if (dl < 0) { |
| 98 | # ifdef BN_COUNT |
| 99 | fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n" , cl, |
| 100 | dl, c); |
| 101 | # endif |
| 102 | for (;;) { |
| 103 | t = b[0]; |
| 104 | r[0] = (0 - t - c) & BN_MASK2; |
| 105 | if (t != 0) |
| 106 | c = 1; |
| 107 | if (++dl >= 0) |
| 108 | break; |
| 109 | |
| 110 | t = b[1]; |
| 111 | r[1] = (0 - t - c) & BN_MASK2; |
| 112 | if (t != 0) |
| 113 | c = 1; |
| 114 | if (++dl >= 0) |
| 115 | break; |
| 116 | |
| 117 | t = b[2]; |
| 118 | r[2] = (0 - t - c) & BN_MASK2; |
| 119 | if (t != 0) |
| 120 | c = 1; |
| 121 | if (++dl >= 0) |
| 122 | break; |
| 123 | |
| 124 | t = b[3]; |
| 125 | r[3] = (0 - t - c) & BN_MASK2; |
| 126 | if (t != 0) |
| 127 | c = 1; |
| 128 | if (++dl >= 0) |
| 129 | break; |
| 130 | |
| 131 | b += 4; |
| 132 | r += 4; |
| 133 | } |
| 134 | } else { |
| 135 | int save_dl = dl; |
| 136 | # ifdef BN_COUNT |
| 137 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n" , cl, |
| 138 | dl, c); |
| 139 | # endif |
| 140 | while (c) { |
| 141 | t = a[0]; |
| 142 | r[0] = (t - c) & BN_MASK2; |
| 143 | if (t != 0) |
| 144 | c = 0; |
| 145 | if (--dl <= 0) |
| 146 | break; |
| 147 | |
| 148 | t = a[1]; |
| 149 | r[1] = (t - c) & BN_MASK2; |
| 150 | if (t != 0) |
| 151 | c = 0; |
| 152 | if (--dl <= 0) |
| 153 | break; |
| 154 | |
| 155 | t = a[2]; |
| 156 | r[2] = (t - c) & BN_MASK2; |
| 157 | if (t != 0) |
| 158 | c = 0; |
| 159 | if (--dl <= 0) |
| 160 | break; |
| 161 | |
| 162 | t = a[3]; |
| 163 | r[3] = (t - c) & BN_MASK2; |
| 164 | if (t != 0) |
| 165 | c = 0; |
| 166 | if (--dl <= 0) |
| 167 | break; |
| 168 | |
| 169 | save_dl = dl; |
| 170 | a += 4; |
| 171 | r += 4; |
| 172 | } |
| 173 | if (dl > 0) { |
| 174 | # ifdef BN_COUNT |
| 175 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n" , |
| 176 | cl, dl); |
| 177 | # endif |
| 178 | if (save_dl > dl) { |
| 179 | switch (save_dl - dl) { |
| 180 | case 1: |
| 181 | r[1] = a[1]; |
| 182 | if (--dl <= 0) |
| 183 | break; |
| 184 | case 2: |
| 185 | r[2] = a[2]; |
| 186 | if (--dl <= 0) |
| 187 | break; |
| 188 | case 3: |
| 189 | r[3] = a[3]; |
| 190 | if (--dl <= 0) |
| 191 | break; |
| 192 | } |
| 193 | a += 4; |
| 194 | r += 4; |
| 195 | } |
| 196 | } |
| 197 | if (dl > 0) { |
| 198 | # ifdef BN_COUNT |
| 199 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n" , |
| 200 | cl, dl); |
| 201 | # endif |
| 202 | for (;;) { |
| 203 | r[0] = a[0]; |
| 204 | if (--dl <= 0) |
| 205 | break; |
| 206 | r[1] = a[1]; |
| 207 | if (--dl <= 0) |
| 208 | break; |
| 209 | r[2] = a[2]; |
| 210 | if (--dl <= 0) |
| 211 | break; |
| 212 | r[3] = a[3]; |
| 213 | if (--dl <= 0) |
| 214 | break; |
| 215 | |
| 216 | a += 4; |
| 217 | r += 4; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | return c; |
| 222 | } |
| 223 | #endif |
| 224 | |
| 225 | BN_ULONG bn_add_part_words(BN_ULONG *r, |
| 226 | const BN_ULONG *a, const BN_ULONG *b, |
| 227 | int cl, int dl) |
| 228 | { |
| 229 | BN_ULONG c, l, t; |
| 230 | |
| 231 | assert(cl >= 0); |
| 232 | c = bn_add_words(r, a, b, cl); |
| 233 | |
| 234 | if (dl == 0) |
| 235 | return c; |
| 236 | |
| 237 | r += cl; |
| 238 | a += cl; |
| 239 | b += cl; |
| 240 | |
| 241 | if (dl < 0) { |
| 242 | int save_dl = dl; |
| 243 | #ifdef BN_COUNT |
| 244 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n" , cl, |
| 245 | dl, c); |
| 246 | #endif |
| 247 | while (c) { |
| 248 | l = (c + b[0]) & BN_MASK2; |
| 249 | c = (l < c); |
| 250 | r[0] = l; |
| 251 | if (++dl >= 0) |
| 252 | break; |
| 253 | |
| 254 | l = (c + b[1]) & BN_MASK2; |
| 255 | c = (l < c); |
| 256 | r[1] = l; |
| 257 | if (++dl >= 0) |
| 258 | break; |
| 259 | |
| 260 | l = (c + b[2]) & BN_MASK2; |
| 261 | c = (l < c); |
| 262 | r[2] = l; |
| 263 | if (++dl >= 0) |
| 264 | break; |
| 265 | |
| 266 | l = (c + b[3]) & BN_MASK2; |
| 267 | c = (l < c); |
| 268 | r[3] = l; |
| 269 | if (++dl >= 0) |
| 270 | break; |
| 271 | |
| 272 | save_dl = dl; |
| 273 | b += 4; |
| 274 | r += 4; |
| 275 | } |
| 276 | if (dl < 0) { |
| 277 | #ifdef BN_COUNT |
| 278 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n" , |
| 279 | cl, dl); |
| 280 | #endif |
| 281 | if (save_dl < dl) { |
| 282 | switch (dl - save_dl) { |
| 283 | case 1: |
| 284 | r[1] = b[1]; |
| 285 | if (++dl >= 0) |
| 286 | break; |
| 287 | case 2: |
| 288 | r[2] = b[2]; |
| 289 | if (++dl >= 0) |
| 290 | break; |
| 291 | case 3: |
| 292 | r[3] = b[3]; |
| 293 | if (++dl >= 0) |
| 294 | break; |
| 295 | } |
| 296 | b += 4; |
| 297 | r += 4; |
| 298 | } |
| 299 | } |
| 300 | if (dl < 0) { |
| 301 | #ifdef BN_COUNT |
| 302 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n" , |
| 303 | cl, dl); |
| 304 | #endif |
| 305 | for (;;) { |
| 306 | r[0] = b[0]; |
| 307 | if (++dl >= 0) |
| 308 | break; |
| 309 | r[1] = b[1]; |
| 310 | if (++dl >= 0) |
| 311 | break; |
| 312 | r[2] = b[2]; |
| 313 | if (++dl >= 0) |
| 314 | break; |
| 315 | r[3] = b[3]; |
| 316 | if (++dl >= 0) |
| 317 | break; |
| 318 | |
| 319 | b += 4; |
| 320 | r += 4; |
| 321 | } |
| 322 | } |
| 323 | } else { |
| 324 | int save_dl = dl; |
| 325 | #ifdef BN_COUNT |
| 326 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n" , cl, dl); |
| 327 | #endif |
| 328 | while (c) { |
| 329 | t = (a[0] + c) & BN_MASK2; |
| 330 | c = (t < c); |
| 331 | r[0] = t; |
| 332 | if (--dl <= 0) |
| 333 | break; |
| 334 | |
| 335 | t = (a[1] + c) & BN_MASK2; |
| 336 | c = (t < c); |
| 337 | r[1] = t; |
| 338 | if (--dl <= 0) |
| 339 | break; |
| 340 | |
| 341 | t = (a[2] + c) & BN_MASK2; |
| 342 | c = (t < c); |
| 343 | r[2] = t; |
| 344 | if (--dl <= 0) |
| 345 | break; |
| 346 | |
| 347 | t = (a[3] + c) & BN_MASK2; |
| 348 | c = (t < c); |
| 349 | r[3] = t; |
| 350 | if (--dl <= 0) |
| 351 | break; |
| 352 | |
| 353 | save_dl = dl; |
| 354 | a += 4; |
| 355 | r += 4; |
| 356 | } |
| 357 | #ifdef BN_COUNT |
| 358 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n" , cl, |
| 359 | dl); |
| 360 | #endif |
| 361 | if (dl > 0) { |
| 362 | if (save_dl > dl) { |
| 363 | switch (save_dl - dl) { |
| 364 | case 1: |
| 365 | r[1] = a[1]; |
| 366 | if (--dl <= 0) |
| 367 | break; |
| 368 | case 2: |
| 369 | r[2] = a[2]; |
| 370 | if (--dl <= 0) |
| 371 | break; |
| 372 | case 3: |
| 373 | r[3] = a[3]; |
| 374 | if (--dl <= 0) |
| 375 | break; |
| 376 | } |
| 377 | a += 4; |
| 378 | r += 4; |
| 379 | } |
| 380 | } |
| 381 | if (dl > 0) { |
| 382 | #ifdef BN_COUNT |
| 383 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n" , |
| 384 | cl, dl); |
| 385 | #endif |
| 386 | for (;;) { |
| 387 | r[0] = a[0]; |
| 388 | if (--dl <= 0) |
| 389 | break; |
| 390 | r[1] = a[1]; |
| 391 | if (--dl <= 0) |
| 392 | break; |
| 393 | r[2] = a[2]; |
| 394 | if (--dl <= 0) |
| 395 | break; |
| 396 | r[3] = a[3]; |
| 397 | if (--dl <= 0) |
| 398 | break; |
| 399 | |
| 400 | a += 4; |
| 401 | r += 4; |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | return c; |
| 406 | } |
| 407 | |
| 408 | #ifdef BN_RECURSION |
| 409 | /* |
| 410 | * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of |
| 411 | * Computer Programming, Vol. 2) |
| 412 | */ |
| 413 | |
| 414 | /*- |
| 415 | * r is 2*n2 words in size, |
| 416 | * a and b are both n2 words in size. |
| 417 | * n2 must be a power of 2. |
| 418 | * We multiply and return the result. |
| 419 | * t must be 2*n2 words in size |
| 420 | * We calculate |
| 421 | * a[0]*b[0] |
| 422 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
| 423 | * a[1]*b[1] |
| 424 | */ |
| 425 | /* dnX may not be positive, but n2/2+dnX has to be */ |
| 426 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| 427 | int dna, int dnb, BN_ULONG *t) |
| 428 | { |
| 429 | int n = n2 / 2, c1, c2; |
| 430 | int tna = n + dna, tnb = n + dnb; |
| 431 | unsigned int neg, zero; |
| 432 | BN_ULONG ln, lo, *p; |
| 433 | |
| 434 | # ifdef BN_COUNT |
| 435 | fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n" , n2, dna, n2, dnb); |
| 436 | # endif |
| 437 | # ifdef BN_MUL_COMBA |
| 438 | # if 0 |
| 439 | if (n2 == 4) { |
| 440 | bn_mul_comba4(r, a, b); |
| 441 | return; |
| 442 | } |
| 443 | # endif |
| 444 | /* |
| 445 | * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete |
| 446 | * [steve] |
| 447 | */ |
| 448 | if (n2 == 8 && dna == 0 && dnb == 0) { |
| 449 | bn_mul_comba8(r, a, b); |
| 450 | return; |
| 451 | } |
| 452 | # endif /* BN_MUL_COMBA */ |
| 453 | /* Else do normal multiply */ |
| 454 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
| 455 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
| 456 | if ((dna + dnb) < 0) |
| 457 | memset(&r[2 * n2 + dna + dnb], 0, |
| 458 | sizeof(BN_ULONG) * -(dna + dnb)); |
| 459 | return; |
| 460 | } |
| 461 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ |
| 462 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
| 463 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); |
| 464 | zero = neg = 0; |
| 465 | switch (c1 * 3 + c2) { |
| 466 | case -4: |
| 467 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
| 468 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
| 469 | break; |
| 470 | case -3: |
| 471 | zero = 1; |
| 472 | break; |
| 473 | case -2: |
| 474 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
| 475 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
| 476 | neg = 1; |
| 477 | break; |
| 478 | case -1: |
| 479 | case 0: |
| 480 | case 1: |
| 481 | zero = 1; |
| 482 | break; |
| 483 | case 2: |
| 484 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
| 485 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
| 486 | neg = 1; |
| 487 | break; |
| 488 | case 3: |
| 489 | zero = 1; |
| 490 | break; |
| 491 | case 4: |
| 492 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
| 493 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
| 494 | break; |
| 495 | } |
| 496 | |
| 497 | # ifdef BN_MUL_COMBA |
| 498 | if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take |
| 499 | * extra args to do this well */ |
| 500 | if (!zero) |
| 501 | bn_mul_comba4(&(t[n2]), t, &(t[n])); |
| 502 | else |
| 503 | memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); |
| 504 | |
| 505 | bn_mul_comba4(r, a, b); |
| 506 | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); |
| 507 | } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could |
| 508 | * take extra args to do |
| 509 | * this well */ |
| 510 | if (!zero) |
| 511 | bn_mul_comba8(&(t[n2]), t, &(t[n])); |
| 512 | else |
| 513 | memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); |
| 514 | |
| 515 | bn_mul_comba8(r, a, b); |
| 516 | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); |
| 517 | } else |
| 518 | # endif /* BN_MUL_COMBA */ |
| 519 | { |
| 520 | p = &(t[n2 * 2]); |
| 521 | if (!zero) |
| 522 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
| 523 | else |
| 524 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); |
| 525 | bn_mul_recursive(r, a, b, n, 0, 0, p); |
| 526 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); |
| 527 | } |
| 528 | |
| 529 | /*- |
| 530 | * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
| 531 | * r[10] holds (a[0]*b[0]) |
| 532 | * r[32] holds (b[1]*b[1]) |
| 533 | */ |
| 534 | |
| 535 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
| 536 | |
| 537 | if (neg) { /* if t[32] is negative */ |
| 538 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
| 539 | } else { |
| 540 | /* Might have a carry */ |
| 541 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
| 542 | } |
| 543 | |
| 544 | /*- |
| 545 | * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
| 546 | * r[10] holds (a[0]*b[0]) |
| 547 | * r[32] holds (b[1]*b[1]) |
| 548 | * c1 holds the carry bits |
| 549 | */ |
| 550 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
| 551 | if (c1) { |
| 552 | p = &(r[n + n2]); |
| 553 | lo = *p; |
| 554 | ln = (lo + c1) & BN_MASK2; |
| 555 | *p = ln; |
| 556 | |
| 557 | /* |
| 558 | * The overflow will stop before we over write words we should not |
| 559 | * overwrite |
| 560 | */ |
| 561 | if (ln < (BN_ULONG)c1) { |
| 562 | do { |
| 563 | p++; |
| 564 | lo = *p; |
| 565 | ln = (lo + 1) & BN_MASK2; |
| 566 | *p = ln; |
| 567 | } while (ln == 0); |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * n+tn is the word length t needs to be n*4 is size, as does r |
| 574 | */ |
| 575 | /* tnX may not be negative but less than n */ |
| 576 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, |
| 577 | int tna, int tnb, BN_ULONG *t) |
| 578 | { |
| 579 | int i, j, n2 = n * 2; |
| 580 | int c1, c2, neg; |
| 581 | BN_ULONG ln, lo, *p; |
| 582 | |
| 583 | # ifdef BN_COUNT |
| 584 | fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n" , |
| 585 | n, tna, n, tnb); |
| 586 | # endif |
| 587 | if (n < 8) { |
| 588 | bn_mul_normal(r, a, n + tna, b, n + tnb); |
| 589 | return; |
| 590 | } |
| 591 | |
| 592 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ |
| 593 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
| 594 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); |
| 595 | neg = 0; |
| 596 | switch (c1 * 3 + c2) { |
| 597 | case -4: |
| 598 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
| 599 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
| 600 | break; |
| 601 | case -3: |
| 602 | /* break; */ |
| 603 | case -2: |
| 604 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
| 605 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
| 606 | neg = 1; |
| 607 | break; |
| 608 | case -1: |
| 609 | case 0: |
| 610 | case 1: |
| 611 | /* break; */ |
| 612 | case 2: |
| 613 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
| 614 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
| 615 | neg = 1; |
| 616 | break; |
| 617 | case 3: |
| 618 | /* break; */ |
| 619 | case 4: |
| 620 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
| 621 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
| 622 | break; |
| 623 | } |
| 624 | /* |
| 625 | * The zero case isn't yet implemented here. The speedup would probably |
| 626 | * be negligible. |
| 627 | */ |
| 628 | # if 0 |
| 629 | if (n == 4) { |
| 630 | bn_mul_comba4(&(t[n2]), t, &(t[n])); |
| 631 | bn_mul_comba4(r, a, b); |
| 632 | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); |
| 633 | memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); |
| 634 | } else |
| 635 | # endif |
| 636 | if (n == 8) { |
| 637 | bn_mul_comba8(&(t[n2]), t, &(t[n])); |
| 638 | bn_mul_comba8(r, a, b); |
| 639 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); |
| 640 | memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); |
| 641 | } else { |
| 642 | p = &(t[n2 * 2]); |
| 643 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
| 644 | bn_mul_recursive(r, a, b, n, 0, 0, p); |
| 645 | i = n / 2; |
| 646 | /* |
| 647 | * If there is only a bottom half to the number, just do it |
| 648 | */ |
| 649 | if (tna > tnb) |
| 650 | j = tna - i; |
| 651 | else |
| 652 | j = tnb - i; |
| 653 | if (j == 0) { |
| 654 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), |
| 655 | i, tna - i, tnb - i, p); |
| 656 | memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); |
| 657 | } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ |
| 658 | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), |
| 659 | i, tna - i, tnb - i, p); |
| 660 | memset(&(r[n2 + tna + tnb]), 0, |
| 661 | sizeof(BN_ULONG) * (n2 - tna - tnb)); |
| 662 | } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ |
| 663 | |
| 664 | memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); |
| 665 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL |
| 666 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
| 667 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); |
| 668 | } else { |
| 669 | for (;;) { |
| 670 | i /= 2; |
| 671 | /* |
| 672 | * these simplified conditions work exclusively because |
| 673 | * difference between tna and tnb is 1 or 0 |
| 674 | */ |
| 675 | if (i < tna || i < tnb) { |
| 676 | bn_mul_part_recursive(&(r[n2]), |
| 677 | &(a[n]), &(b[n]), |
| 678 | i, tna - i, tnb - i, p); |
| 679 | break; |
| 680 | } else if (i == tna || i == tnb) { |
| 681 | bn_mul_recursive(&(r[n2]), |
| 682 | &(a[n]), &(b[n]), |
| 683 | i, tna - i, tnb - i, p); |
| 684 | break; |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | /*- |
| 692 | * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
| 693 | * r[10] holds (a[0]*b[0]) |
| 694 | * r[32] holds (b[1]*b[1]) |
| 695 | */ |
| 696 | |
| 697 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
| 698 | |
| 699 | if (neg) { /* if t[32] is negative */ |
| 700 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
| 701 | } else { |
| 702 | /* Might have a carry */ |
| 703 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
| 704 | } |
| 705 | |
| 706 | /*- |
| 707 | * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
| 708 | * r[10] holds (a[0]*b[0]) |
| 709 | * r[32] holds (b[1]*b[1]) |
| 710 | * c1 holds the carry bits |
| 711 | */ |
| 712 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
| 713 | if (c1) { |
| 714 | p = &(r[n + n2]); |
| 715 | lo = *p; |
| 716 | ln = (lo + c1) & BN_MASK2; |
| 717 | *p = ln; |
| 718 | |
| 719 | /* |
| 720 | * The overflow will stop before we over write words we should not |
| 721 | * overwrite |
| 722 | */ |
| 723 | if (ln < (BN_ULONG)c1) { |
| 724 | do { |
| 725 | p++; |
| 726 | lo = *p; |
| 727 | ln = (lo + 1) & BN_MASK2; |
| 728 | *p = ln; |
| 729 | } while (ln == 0); |
| 730 | } |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | /*- |
| 735 | * a and b must be the same size, which is n2. |
| 736 | * r needs to be n2 words and t needs to be n2*2 |
| 737 | */ |
| 738 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| 739 | BN_ULONG *t) |
| 740 | { |
| 741 | int n = n2 / 2; |
| 742 | |
| 743 | # ifdef BN_COUNT |
| 744 | fprintf(stderr, " bn_mul_low_recursive %d * %d\n" , n2, n2); |
| 745 | # endif |
| 746 | |
| 747 | bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); |
| 748 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { |
| 749 | bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); |
| 750 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
| 751 | bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); |
| 752 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
| 753 | } else { |
| 754 | bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); |
| 755 | bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); |
| 756 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
| 757 | bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | /*- |
| 762 | * a and b must be the same size, which is n2. |
| 763 | * r needs to be n2 words and t needs to be n2*2 |
| 764 | * l is the low words of the output. |
| 765 | * t needs to be n2*3 |
| 766 | */ |
| 767 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
| 768 | BN_ULONG *t) |
| 769 | { |
| 770 | int i, n; |
| 771 | int c1, c2; |
| 772 | int neg, oneg, zero; |
| 773 | BN_ULONG ll, lc, *lp, *mp; |
| 774 | |
| 775 | # ifdef BN_COUNT |
| 776 | fprintf(stderr, " bn_mul_high %d * %d\n" , n2, n2); |
| 777 | # endif |
| 778 | n = n2 / 2; |
| 779 | |
| 780 | /* Calculate (al-ah)*(bh-bl) */ |
| 781 | neg = zero = 0; |
| 782 | c1 = bn_cmp_words(&(a[0]), &(a[n]), n); |
| 783 | c2 = bn_cmp_words(&(b[n]), &(b[0]), n); |
| 784 | switch (c1 * 3 + c2) { |
| 785 | case -4: |
| 786 | bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
| 787 | bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
| 788 | break; |
| 789 | case -3: |
| 790 | zero = 1; |
| 791 | break; |
| 792 | case -2: |
| 793 | bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
| 794 | bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
| 795 | neg = 1; |
| 796 | break; |
| 797 | case -1: |
| 798 | case 0: |
| 799 | case 1: |
| 800 | zero = 1; |
| 801 | break; |
| 802 | case 2: |
| 803 | bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
| 804 | bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
| 805 | neg = 1; |
| 806 | break; |
| 807 | case 3: |
| 808 | zero = 1; |
| 809 | break; |
| 810 | case 4: |
| 811 | bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
| 812 | bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
| 813 | break; |
| 814 | } |
| 815 | |
| 816 | oneg = neg; |
| 817 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ |
| 818 | /* r[10] = (a[1]*b[1]) */ |
| 819 | # ifdef BN_MUL_COMBA |
| 820 | if (n == 8) { |
| 821 | bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); |
| 822 | bn_mul_comba8(r, &(a[n]), &(b[n])); |
| 823 | } else |
| 824 | # endif |
| 825 | { |
| 826 | bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); |
| 827 | bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); |
| 828 | } |
| 829 | |
| 830 | /*- |
| 831 | * s0 == low(al*bl) |
| 832 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) |
| 833 | * We know s0 and s1 so the only unknown is high(al*bl) |
| 834 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) |
| 835 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) |
| 836 | */ |
| 837 | if (l != NULL) { |
| 838 | lp = &(t[n2 + n]); |
| 839 | c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); |
| 840 | } else { |
| 841 | c1 = 0; |
| 842 | lp = &(r[0]); |
| 843 | } |
| 844 | |
| 845 | if (neg) |
| 846 | neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); |
| 847 | else { |
| 848 | bn_add_words(&(t[n2]), lp, &(t[0]), n); |
| 849 | neg = 0; |
| 850 | } |
| 851 | |
| 852 | if (l != NULL) { |
| 853 | bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); |
| 854 | } else { |
| 855 | lp = &(t[n2 + n]); |
| 856 | mp = &(t[n2]); |
| 857 | for (i = 0; i < n; i++) |
| 858 | lp[i] = ((~mp[i]) + 1) & BN_MASK2; |
| 859 | } |
| 860 | |
| 861 | /*- |
| 862 | * s[0] = low(al*bl) |
| 863 | * t[3] = high(al*bl) |
| 864 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign |
| 865 | * r[10] = (a[1]*b[1]) |
| 866 | */ |
| 867 | /*- |
| 868 | * R[10] = al*bl |
| 869 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) |
| 870 | * R[32] = ah*bh |
| 871 | */ |
| 872 | /*- |
| 873 | * R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) |
| 874 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) |
| 875 | * R[3]=r[1]+(carry/borrow) |
| 876 | */ |
| 877 | if (l != NULL) { |
| 878 | lp = &(t[n2]); |
| 879 | c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); |
| 880 | } else { |
| 881 | lp = &(t[n2 + n]); |
| 882 | c1 = 0; |
| 883 | } |
| 884 | c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); |
| 885 | if (oneg) |
| 886 | c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
| 887 | else |
| 888 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
| 889 | |
| 890 | c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); |
| 891 | c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); |
| 892 | if (oneg) |
| 893 | c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); |
| 894 | else |
| 895 | c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); |
| 896 | |
| 897 | if (c1 != 0) { /* Add starting at r[0], could be +ve or -ve */ |
| 898 | i = 0; |
| 899 | if (c1 > 0) { |
| 900 | lc = c1; |
| 901 | do { |
| 902 | ll = (r[i] + lc) & BN_MASK2; |
| 903 | r[i++] = ll; |
| 904 | lc = (lc > ll); |
| 905 | } while (lc); |
| 906 | } else { |
| 907 | lc = -c1; |
| 908 | do { |
| 909 | ll = r[i]; |
| 910 | r[i++] = (ll - lc) & BN_MASK2; |
| 911 | lc = (lc > ll); |
| 912 | } while (lc); |
| 913 | } |
| 914 | } |
| 915 | if (c2 != 0) { /* Add starting at r[1] */ |
| 916 | i = n; |
| 917 | if (c2 > 0) { |
| 918 | lc = c2; |
| 919 | do { |
| 920 | ll = (r[i] + lc) & BN_MASK2; |
| 921 | r[i++] = ll; |
| 922 | lc = (lc > ll); |
| 923 | } while (lc); |
| 924 | } else { |
| 925 | lc = -c2; |
| 926 | do { |
| 927 | ll = r[i]; |
| 928 | r[i++] = (ll - lc) & BN_MASK2; |
| 929 | lc = (lc > ll); |
| 930 | } while (lc); |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | #endif /* BN_RECURSION */ |
| 935 | |
| 936 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| 937 | { |
| 938 | int ret = 0; |
| 939 | int top, al, bl; |
| 940 | BIGNUM *rr; |
| 941 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| 942 | int i; |
| 943 | #endif |
| 944 | #ifdef BN_RECURSION |
| 945 | BIGNUM *t = NULL; |
| 946 | int j = 0, k; |
| 947 | #endif |
| 948 | |
| 949 | #ifdef BN_COUNT |
| 950 | fprintf(stderr, "BN_mul %d * %d\n" , a->top, b->top); |
| 951 | #endif |
| 952 | |
| 953 | bn_check_top(a); |
| 954 | bn_check_top(b); |
| 955 | bn_check_top(r); |
| 956 | |
| 957 | al = a->top; |
| 958 | bl = b->top; |
| 959 | |
| 960 | if ((al == 0) || (bl == 0)) { |
| 961 | BN_zero(r); |
| 962 | return (1); |
| 963 | } |
| 964 | top = al + bl; |
| 965 | |
| 966 | BN_CTX_start(ctx); |
| 967 | if ((r == a) || (r == b)) { |
| 968 | if ((rr = BN_CTX_get(ctx)) == NULL) |
| 969 | goto err; |
| 970 | } else |
| 971 | rr = r; |
| 972 | rr->neg = a->neg ^ b->neg; |
| 973 | |
| 974 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| 975 | i = al - bl; |
| 976 | #endif |
| 977 | #ifdef BN_MUL_COMBA |
| 978 | if (i == 0) { |
| 979 | # if 0 |
| 980 | if (al == 4) { |
| 981 | if (bn_wexpand(rr, 8) == NULL) |
| 982 | goto err; |
| 983 | rr->top = 8; |
| 984 | bn_mul_comba4(rr->d, a->d, b->d); |
| 985 | goto end; |
| 986 | } |
| 987 | # endif |
| 988 | if (al == 8) { |
| 989 | if (bn_wexpand(rr, 16) == NULL) |
| 990 | goto err; |
| 991 | rr->top = 16; |
| 992 | bn_mul_comba8(rr->d, a->d, b->d); |
| 993 | goto end; |
| 994 | } |
| 995 | } |
| 996 | #endif /* BN_MUL_COMBA */ |
| 997 | #ifdef BN_RECURSION |
| 998 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { |
| 999 | if (i >= -1 && i <= 1) { |
| 1000 | /* |
| 1001 | * Find out the power of two lower or equal to the longest of the |
| 1002 | * two numbers |
| 1003 | */ |
| 1004 | if (i >= 0) { |
| 1005 | j = BN_num_bits_word((BN_ULONG)al); |
| 1006 | } |
| 1007 | if (i == -1) { |
| 1008 | j = BN_num_bits_word((BN_ULONG)bl); |
| 1009 | } |
| 1010 | j = 1 << (j - 1); |
| 1011 | assert(j <= al || j <= bl); |
| 1012 | k = j + j; |
| 1013 | t = BN_CTX_get(ctx); |
| 1014 | if (t == NULL) |
| 1015 | goto err; |
| 1016 | if (al > j || bl > j) { |
| 1017 | if (bn_wexpand(t, k * 4) == NULL) |
| 1018 | goto err; |
| 1019 | if (bn_wexpand(rr, k * 4) == NULL) |
| 1020 | goto err; |
| 1021 | bn_mul_part_recursive(rr->d, a->d, b->d, |
| 1022 | j, al - j, bl - j, t->d); |
| 1023 | } else { /* al <= j || bl <= j */ |
| 1024 | |
| 1025 | if (bn_wexpand(t, k * 2) == NULL) |
| 1026 | goto err; |
| 1027 | if (bn_wexpand(rr, k * 2) == NULL) |
| 1028 | goto err; |
| 1029 | bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
| 1030 | } |
| 1031 | rr->top = top; |
| 1032 | goto end; |
| 1033 | } |
| 1034 | # if 0 |
| 1035 | if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { |
| 1036 | BIGNUM *tmp_bn = (BIGNUM *)b; |
| 1037 | if (bn_wexpand(tmp_bn, al) == NULL) |
| 1038 | goto err; |
| 1039 | tmp_bn->d[bl] = 0; |
| 1040 | bl++; |
| 1041 | i--; |
| 1042 | } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { |
| 1043 | BIGNUM *tmp_bn = (BIGNUM *)a; |
| 1044 | if (bn_wexpand(tmp_bn, bl) == NULL) |
| 1045 | goto err; |
| 1046 | tmp_bn->d[al] = 0; |
| 1047 | al++; |
| 1048 | i++; |
| 1049 | } |
| 1050 | if (i == 0) { |
| 1051 | /* symmetric and > 4 */ |
| 1052 | /* 16 or larger */ |
| 1053 | j = BN_num_bits_word((BN_ULONG)al); |
| 1054 | j = 1 << (j - 1); |
| 1055 | k = j + j; |
| 1056 | t = BN_CTX_get(ctx); |
| 1057 | if (al == j) { /* exact multiple */ |
| 1058 | if (bn_wexpand(t, k * 2) == NULL) |
| 1059 | goto err; |
| 1060 | if (bn_wexpand(rr, k * 2) == NULL) |
| 1061 | goto err; |
| 1062 | bn_mul_recursive(rr->d, a->d, b->d, al, t->d); |
| 1063 | } else { |
| 1064 | if (bn_wexpand(t, k * 4) == NULL) |
| 1065 | goto err; |
| 1066 | if (bn_wexpand(rr, k * 4) == NULL) |
| 1067 | goto err; |
| 1068 | bn_mul_part_recursive(rr->d, a->d, b->d, al - j, j, t->d); |
| 1069 | } |
| 1070 | rr->top = top; |
| 1071 | goto end; |
| 1072 | } |
| 1073 | # endif |
| 1074 | } |
| 1075 | #endif /* BN_RECURSION */ |
| 1076 | if (bn_wexpand(rr, top) == NULL) |
| 1077 | goto err; |
| 1078 | rr->top = top; |
| 1079 | bn_mul_normal(rr->d, a->d, al, b->d, bl); |
| 1080 | |
| 1081 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| 1082 | end: |
| 1083 | #endif |
| 1084 | bn_correct_top(rr); |
| 1085 | if (r != rr && BN_copy(r, rr) == NULL) |
| 1086 | goto err; |
| 1087 | |
| 1088 | ret = 1; |
| 1089 | err: |
| 1090 | bn_check_top(r); |
| 1091 | BN_CTX_end(ctx); |
| 1092 | return (ret); |
| 1093 | } |
| 1094 | |
| 1095 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) |
| 1096 | { |
| 1097 | BN_ULONG *rr; |
| 1098 | |
| 1099 | #ifdef BN_COUNT |
| 1100 | fprintf(stderr, " bn_mul_normal %d * %d\n" , na, nb); |
| 1101 | #endif |
| 1102 | |
| 1103 | if (na < nb) { |
| 1104 | int itmp; |
| 1105 | BN_ULONG *ltmp; |
| 1106 | |
| 1107 | itmp = na; |
| 1108 | na = nb; |
| 1109 | nb = itmp; |
| 1110 | ltmp = a; |
| 1111 | a = b; |
| 1112 | b = ltmp; |
| 1113 | |
| 1114 | } |
| 1115 | rr = &(r[na]); |
| 1116 | if (nb <= 0) { |
| 1117 | (void)bn_mul_words(r, a, na, 0); |
| 1118 | return; |
| 1119 | } else |
| 1120 | rr[0] = bn_mul_words(r, a, na, b[0]); |
| 1121 | |
| 1122 | for (;;) { |
| 1123 | if (--nb <= 0) |
| 1124 | return; |
| 1125 | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
| 1126 | if (--nb <= 0) |
| 1127 | return; |
| 1128 | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
| 1129 | if (--nb <= 0) |
| 1130 | return; |
| 1131 | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
| 1132 | if (--nb <= 0) |
| 1133 | return; |
| 1134 | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
| 1135 | rr += 4; |
| 1136 | r += 4; |
| 1137 | b += 4; |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) |
| 1142 | { |
| 1143 | #ifdef BN_COUNT |
| 1144 | fprintf(stderr, " bn_mul_low_normal %d * %d\n" , n, n); |
| 1145 | #endif |
| 1146 | bn_mul_words(r, a, n, b[0]); |
| 1147 | |
| 1148 | for (;;) { |
| 1149 | if (--n <= 0) |
| 1150 | return; |
| 1151 | bn_mul_add_words(&(r[1]), a, n, b[1]); |
| 1152 | if (--n <= 0) |
| 1153 | return; |
| 1154 | bn_mul_add_words(&(r[2]), a, n, b[2]); |
| 1155 | if (--n <= 0) |
| 1156 | return; |
| 1157 | bn_mul_add_words(&(r[3]), a, n, b[3]); |
| 1158 | if (--n <= 0) |
| 1159 | return; |
| 1160 | bn_mul_add_words(&(r[4]), a, n, b[4]); |
| 1161 | r += 4; |
| 1162 | b += 4; |
| 1163 | } |
| 1164 | } |
| 1165 | |