1 | /* crypto/bn/bn_sqr.c */ |
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | * All rights reserved. |
4 | * |
5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * |
9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. |
22 | * |
23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions |
25 | * are met: |
26 | * 1. Redistributions of source code must retain the copyright |
27 | * notice, this list of conditions and the following disclaimer. |
28 | * 2. Redistributions in binary form must reproduce the above copyright |
29 | * notice, this list of conditions and the following disclaimer in the |
30 | * documentation and/or other materials provided with the distribution. |
31 | * 3. All advertising materials mentioning features or use of this software |
32 | * must display the following acknowledgement: |
33 | * "This product includes cryptographic software written by |
34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. |
52 | * |
53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence |
56 | * [including the GNU Public Licence.] |
57 | */ |
58 | |
59 | #include <stdio.h> |
60 | #include "../bn/bn_lcl.h" |
61 | |
62 | /* r must not be a */ |
63 | /* |
64 | * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 |
65 | */ |
66 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
67 | { |
68 | int max, al; |
69 | int ret = 0; |
70 | BIGNUM *tmp, *rr; |
71 | |
72 | #ifdef BN_COUNT |
73 | fprintf(stderr, "BN_sqr %d * %d\n" , a->top, a->top); |
74 | #endif |
75 | bn_check_top(a); |
76 | |
77 | al = a->top; |
78 | if (al <= 0) { |
79 | r->top = 0; |
80 | r->neg = 0; |
81 | return 1; |
82 | } |
83 | |
84 | BN_CTX_start(ctx); |
85 | rr = (a != r) ? r : BN_CTX_get(ctx); |
86 | tmp = BN_CTX_get(ctx); |
87 | if (!rr || !tmp) |
88 | goto err; |
89 | |
90 | max = 2 * al; /* Non-zero (from above) */ |
91 | if (bn_wexpand(rr, max) == NULL) |
92 | goto err; |
93 | |
94 | if (al == 4) { |
95 | #ifndef BN_SQR_COMBA |
96 | BN_ULONG t[8]; |
97 | bn_sqr_normal(rr->d, a->d, 4, t); |
98 | #else |
99 | bn_sqr_comba4(rr->d, a->d); |
100 | #endif |
101 | } else if (al == 8) { |
102 | #ifndef BN_SQR_COMBA |
103 | BN_ULONG t[16]; |
104 | bn_sqr_normal(rr->d, a->d, 8, t); |
105 | #else |
106 | bn_sqr_comba8(rr->d, a->d); |
107 | #endif |
108 | } else { |
109 | #if defined(BN_RECURSION) |
110 | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
111 | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
112 | bn_sqr_normal(rr->d, a->d, al, t); |
113 | } else { |
114 | int j, k; |
115 | |
116 | j = BN_num_bits_word((BN_ULONG)al); |
117 | j = 1 << (j - 1); |
118 | k = j + j; |
119 | if (al == j) { |
120 | if (bn_wexpand(tmp, k * 2) == NULL) |
121 | goto err; |
122 | bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
123 | } else { |
124 | if (bn_wexpand(tmp, max) == NULL) |
125 | goto err; |
126 | bn_sqr_normal(rr->d, a->d, al, tmp->d); |
127 | } |
128 | } |
129 | #else |
130 | if (bn_wexpand(tmp, max) == NULL) |
131 | goto err; |
132 | bn_sqr_normal(rr->d, a->d, al, tmp->d); |
133 | #endif |
134 | } |
135 | |
136 | rr->neg = 0; |
137 | /* |
138 | * If the most-significant half of the top word of 'a' is zero, then the |
139 | * square of 'a' will max-1 words. |
140 | */ |
141 | if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) |
142 | rr->top = max - 1; |
143 | else |
144 | rr->top = max; |
145 | if (r != rr && BN_copy(r, rr) == NULL) |
146 | goto err; |
147 | |
148 | ret = 1; |
149 | err: |
150 | bn_check_top(rr); |
151 | bn_check_top(tmp); |
152 | BN_CTX_end(ctx); |
153 | return (ret); |
154 | } |
155 | |
156 | /* tmp must have 2*n words */ |
157 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) |
158 | { |
159 | int i, j, max; |
160 | const BN_ULONG *ap; |
161 | BN_ULONG *rp; |
162 | |
163 | max = n * 2; |
164 | ap = a; |
165 | rp = r; |
166 | rp[0] = rp[max - 1] = 0; |
167 | rp++; |
168 | j = n; |
169 | |
170 | if (--j > 0) { |
171 | ap++; |
172 | rp[j] = bn_mul_words(rp, ap, j, ap[-1]); |
173 | rp += 2; |
174 | } |
175 | |
176 | for (i = n - 2; i > 0; i--) { |
177 | j--; |
178 | ap++; |
179 | rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); |
180 | rp += 2; |
181 | } |
182 | |
183 | bn_add_words(r, r, r, max); |
184 | |
185 | /* There will not be a carry */ |
186 | |
187 | bn_sqr_words(tmp, a, n); |
188 | |
189 | bn_add_words(r, r, tmp, max); |
190 | } |
191 | |
192 | #ifdef BN_RECURSION |
193 | /*- |
194 | * r is 2*n words in size, |
195 | * a and b are both n words in size. (There's not actually a 'b' here ...) |
196 | * n must be a power of 2. |
197 | * We multiply and return the result. |
198 | * t must be 2*n words in size |
199 | * We calculate |
200 | * a[0]*b[0] |
201 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
202 | * a[1]*b[1] |
203 | */ |
204 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) |
205 | { |
206 | int n = n2 / 2; |
207 | int zero, c1; |
208 | BN_ULONG ln, lo, *p; |
209 | |
210 | # ifdef BN_COUNT |
211 | fprintf(stderr, " bn_sqr_recursive %d * %d\n" , n2, n2); |
212 | # endif |
213 | if (n2 == 4) { |
214 | # ifndef BN_SQR_COMBA |
215 | bn_sqr_normal(r, a, 4, t); |
216 | # else |
217 | bn_sqr_comba4(r, a); |
218 | # endif |
219 | return; |
220 | } else if (n2 == 8) { |
221 | # ifndef BN_SQR_COMBA |
222 | bn_sqr_normal(r, a, 8, t); |
223 | # else |
224 | bn_sqr_comba8(r, a); |
225 | # endif |
226 | return; |
227 | } |
228 | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
229 | bn_sqr_normal(r, a, n2, t); |
230 | return; |
231 | } |
232 | /* r=(a[0]-a[1])*(a[1]-a[0]) */ |
233 | c1 = bn_cmp_words(a, &(a[n]), n); |
234 | zero = 0; |
235 | if (c1 > 0) |
236 | bn_sub_words(t, a, &(a[n]), n); |
237 | else if (c1 < 0) |
238 | bn_sub_words(t, &(a[n]), a, n); |
239 | else |
240 | zero = 1; |
241 | |
242 | /* The result will always be negative unless it is zero */ |
243 | p = &(t[n2 * 2]); |
244 | |
245 | if (!zero) |
246 | bn_sqr_recursive(&(t[n2]), t, n, p); |
247 | else |
248 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); |
249 | bn_sqr_recursive(r, a, n, p); |
250 | bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); |
251 | |
252 | /*- |
253 | * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero |
254 | * r[10] holds (a[0]*b[0]) |
255 | * r[32] holds (b[1]*b[1]) |
256 | */ |
257 | |
258 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
259 | |
260 | /* t[32] is negative */ |
261 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
262 | |
263 | /*- |
264 | * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) |
265 | * r[10] holds (a[0]*a[0]) |
266 | * r[32] holds (a[1]*a[1]) |
267 | * c1 holds the carry bits |
268 | */ |
269 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
270 | if (c1) { |
271 | p = &(r[n + n2]); |
272 | lo = *p; |
273 | ln = (lo + c1) & BN_MASK2; |
274 | *p = ln; |
275 | |
276 | /* |
277 | * The overflow will stop before we over write words we should not |
278 | * overwrite |
279 | */ |
280 | if (ln < (BN_ULONG)c1) { |
281 | do { |
282 | p++; |
283 | lo = *p; |
284 | ln = (lo + 1) & BN_MASK2; |
285 | *p = ln; |
286 | } while (ln == 0); |
287 | } |
288 | } |
289 | } |
290 | #endif |
291 | |