| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Serialization/BsBinarySerializer.h" |
| 4 | |
| 5 | #include "Error/BsException.h" |
| 6 | #include "Debug/BsDebug.h" |
| 7 | #include "Reflection/BsIReflectable.h" |
| 8 | #include "Reflection/BsRTTIType.h" |
| 9 | #include "Reflection/BsRTTIField.h" |
| 10 | #include "Reflection/BsRTTIPlainField.h" |
| 11 | #include "Reflection/BsRTTIReflectableField.h" |
| 12 | #include "Reflection/BsRTTIReflectablePtrField.h" |
| 13 | #include "Reflection/BsRTTIManagedDataBlockField.h" |
| 14 | #include "Serialization/BsMemorySerializer.h" |
| 15 | #include "FileSystem/BsDataStream.h" |
| 16 | |
| 17 | namespace bs |
| 18 | { |
| 19 | |
| 20 | /** |
| 21 | * A macro that represents a block of code that gets used a lot inside encodeInternal. It checks if the buffer has enough |
| 22 | * space, and if it does it copies the data from the specified location and increments the needed pointers and counters. If |
| 23 | * there is not enough space the buffer is flushed (hopefully to make some space). If there is still not enough space the |
| 24 | * entire encoding process ends. |
| 25 | * |
| 26 | * @param dataPtr Pointer to data which to copy. |
| 27 | * @param size Size of the data to copy |
| 28 | */ |
| 29 | #define COPY_TO_BUFFER(dataIter, size) \ |
| 30 | if((*bytesWritten + size) > bufferLength) \ |
| 31 | { \ |
| 32 | mTotalBytesWritten += *bytesWritten; \ |
| 33 | buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength); \ |
| 34 | if(buffer == nullptr || bufferLength < size) return nullptr; \ |
| 35 | *bytesWritten = 0; \ |
| 36 | } \ |
| 37 | \ |
| 38 | memcpy(buffer, dataIter, size); \ |
| 39 | buffer += size; \ |
| 40 | *bytesWritten += size; |
| 41 | |
| 42 | /** Reports that @p size bytes were read from the data buffer */ |
| 43 | #define REPORT_READ(size) \ |
| 44 | { \ |
| 45 | mTotalBytesRead += size; \ |
| 46 | if(mReportProgress && (mTotalBytesRead >= mNextProgressReport)) \ |
| 47 | { \ |
| 48 | UINT32 lastReport = (mTotalBytesRead / REPORT_AFTER_BYTES) * REPORT_AFTER_BYTES; \ |
| 49 | mNextProgressReport = lastReport + REPORT_AFTER_BYTES; \ |
| 50 | \ |
| 51 | mReportProgress(mTotalBytesRead / (float)mTotalBytesToRead); \ |
| 52 | } \ |
| 53 | } |
| 54 | /** Reads from the data buffer into the provided output and advances the read position. */ |
| 55 | #define READ_FROM_BUFFER(output, size) \ |
| 56 | { \ |
| 57 | if(data->read(output, size) != size) \ |
| 58 | { \ |
| 59 | BS_EXCEPT(InternalErrorException, "Error decoding data."); \ |
| 60 | } \ |
| 61 | \ |
| 62 | REPORT_READ(size) \ |
| 63 | } |
| 64 | |
| 65 | /** Skips the next @p size bytes data buffer and advances the read position. */ |
| 66 | #define SKIP_READ(size) \ |
| 67 | { \ |
| 68 | data->skip(size); \ |
| 69 | REPORT_READ(size) \ |
| 70 | } |
| 71 | |
| 72 | /** Moves the current read buffer read position back @p size bytes. */ |
| 73 | #define SEEK_BACK(size) \ |
| 74 | data->seek(data->tell() - size); \ |
| 75 | mTotalBytesRead -= size; \ |
| 76 | |
| 77 | constexpr UINT32 BinarySerializer::REPORT_AFTER_BYTES; |
| 78 | |
| 79 | BinarySerializer::BinarySerializer() |
| 80 | :mAlloc(&gFrameAlloc()) |
| 81 | { } |
| 82 | |
| 83 | void BinarySerializer::encode(IReflectable* object, UINT8* buffer, UINT32 bufferLength, UINT32* bytesWritten, |
| 84 | std::function<UINT8*(UINT8*, UINT32, UINT32&)> flushBufferCallback, bool shallow, SerializationContext* context) |
| 85 | { |
| 86 | mObjectsToEncode.clear(); |
| 87 | mObjectAddrToId.clear(); |
| 88 | mLastUsedObjectId = 1; |
| 89 | *bytesWritten = 0; |
| 90 | mTotalBytesWritten = 0; |
| 91 | mContext = context; |
| 92 | |
| 93 | mAlloc->markFrame(); |
| 94 | |
| 95 | Vector<SPtr<IReflectable>> encodedObjects; |
| 96 | UINT32 objectId = findOrCreatePersistentId(object); |
| 97 | |
| 98 | // Encode primary object and its value types |
| 99 | buffer = encodeEntry(object, objectId, buffer, bufferLength, bytesWritten, flushBufferCallback, shallow); |
| 100 | if(buffer == nullptr) |
| 101 | { |
| 102 | BS_EXCEPT(InternalErrorException, |
| 103 | "Destination buffer is null or not large enough." ); |
| 104 | } |
| 105 | |
| 106 | // Encode pointed to objects and their value types |
| 107 | UnorderedSet<UINT32> serializedObjects; |
| 108 | while(true) |
| 109 | { |
| 110 | auto iter = mObjectsToEncode.begin(); |
| 111 | bool foundObjectToProcess = false; |
| 112 | for(; iter != mObjectsToEncode.end(); ++iter) |
| 113 | { |
| 114 | auto foundExisting = serializedObjects.find(iter->objectId); |
| 115 | if(foundExisting != serializedObjects.end()) |
| 116 | continue; // Already processed |
| 117 | |
| 118 | SPtr<IReflectable> curObject = iter->object; |
| 119 | UINT32 curObjectid = iter->objectId; |
| 120 | serializedObjects.insert(curObjectid); |
| 121 | mObjectsToEncode.erase(iter); |
| 122 | |
| 123 | buffer = encodeEntry(curObject.get(), curObjectid, buffer, |
| 124 | bufferLength, bytesWritten, flushBufferCallback, shallow); |
| 125 | if(buffer == nullptr) |
| 126 | { |
| 127 | BS_EXCEPT(InternalErrorException, |
| 128 | "Destination buffer is null or not large enough." ); |
| 129 | } |
| 130 | |
| 131 | foundObjectToProcess = true; |
| 132 | |
| 133 | // Ensure we keep a reference to the object so it isn't released. |
| 134 | // The system assigns unique IDs to IReflectable objects based on pointer |
| 135 | // addresses but if objects get released then same address could be assigned twice. |
| 136 | // Note: To get around this I could assign unique IDs to IReflectable objects |
| 137 | encodedObjects.push_back(curObject); |
| 138 | |
| 139 | break; // Need to start over as mObjectsToSerialize was possibly modified |
| 140 | } |
| 141 | |
| 142 | if(!foundObjectToProcess) // We're done |
| 143 | break; |
| 144 | } |
| 145 | |
| 146 | // Final flush |
| 147 | if(*bytesWritten > 0) |
| 148 | { |
| 149 | mTotalBytesWritten += *bytesWritten; |
| 150 | buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength); |
| 151 | } |
| 152 | |
| 153 | *bytesWritten = mTotalBytesWritten; |
| 154 | |
| 155 | encodedObjects.clear(); |
| 156 | mObjectsToEncode.clear(); |
| 157 | mObjectAddrToId.clear(); |
| 158 | |
| 159 | mAlloc->clear(); |
| 160 | } |
| 161 | |
| 162 | SPtr<IReflectable> BinarySerializer::decode(const SPtr<DataStream>& data, UINT32 dataLength, |
| 163 | SerializationContext* context, std::function<void(float)> progress) |
| 164 | { |
| 165 | mContext = context; |
| 166 | mReportProgress = nullptr; |
| 167 | mTotalBytesToRead = dataLength; |
| 168 | mTotalBytesRead = 0; |
| 169 | |
| 170 | if (dataLength == 0) |
| 171 | { |
| 172 | if(mReportProgress) |
| 173 | mReportProgress(1.0f); |
| 174 | |
| 175 | return nullptr; |
| 176 | } |
| 177 | |
| 178 | const size_t start = data->tell(); |
| 179 | const size_t end = start + dataLength; |
| 180 | mDecodeObjectMap.clear(); |
| 181 | |
| 182 | // Note: Ideally we can avoid iterating twice over the stream data |
| 183 | // Create empty instances of all ptr objects |
| 184 | SPtr<IReflectable> rootObject = nullptr; |
| 185 | do |
| 186 | { |
| 187 | ObjectMetaData objectMetaData; |
| 188 | objectMetaData.objectMeta = 0; |
| 189 | objectMetaData.typeId = 0; |
| 190 | |
| 191 | if(data->read(&objectMetaData, sizeof(ObjectMetaData)) != sizeof(ObjectMetaData)) |
| 192 | { |
| 193 | BS_EXCEPT(InternalErrorException, "Error decoding data." ); |
| 194 | } |
| 195 | |
| 196 | data->seek(data->tell() - sizeof(ObjectMetaData)); |
| 197 | |
| 198 | UINT32 objectId = 0; |
| 199 | UINT32 objectTypeId = 0; |
| 200 | bool objectIsBaseClass = false; |
| 201 | decodeObjectMetaData(objectMetaData, objectId, objectTypeId, objectIsBaseClass); |
| 202 | |
| 203 | if (objectIsBaseClass) |
| 204 | { |
| 205 | BS_EXCEPT(InternalErrorException, "Encountered a base-class object while looking for a new object. " \ |
| 206 | "Base class objects are only supposed to be parts of a larger object." ); |
| 207 | } |
| 208 | |
| 209 | SPtr<IReflectable> object = IReflectable::createInstanceFromTypeId(objectTypeId); |
| 210 | mDecodeObjectMap.insert(std::make_pair(objectId, ObjectToDecode(object, data->tell()))); |
| 211 | |
| 212 | if(rootObject == nullptr) |
| 213 | rootObject = object; |
| 214 | |
| 215 | } while (decodeEntry(data, end, nullptr)); |
| 216 | |
| 217 | assert(mTotalBytesRead == mTotalBytesToRead); |
| 218 | |
| 219 | // Don't set report callback until we actually do the reads |
| 220 | mReportProgress = std::move(progress); |
| 221 | mTotalBytesRead = 0; |
| 222 | |
| 223 | // Now go through all of the objects and actually decode them |
| 224 | for(auto iter = mDecodeObjectMap.begin(); iter != mDecodeObjectMap.end(); ++iter) |
| 225 | { |
| 226 | ObjectToDecode& objToDecode = iter->second; |
| 227 | |
| 228 | if(objToDecode.isDecoded) |
| 229 | continue; |
| 230 | |
| 231 | data->seek(objToDecode.offset); |
| 232 | |
| 233 | objToDecode.decodeInProgress = true; |
| 234 | decodeEntry(data, end, objToDecode.object); |
| 235 | objToDecode.decodeInProgress = false; |
| 236 | objToDecode.isDecoded = true; |
| 237 | } |
| 238 | |
| 239 | mDecodeObjectMap.clear(); |
| 240 | data->seek(end); |
| 241 | |
| 242 | assert(mTotalBytesRead == mTotalBytesToRead); |
| 243 | |
| 244 | if(mReportProgress) |
| 245 | mReportProgress(1.0f); |
| 246 | |
| 247 | return rootObject; |
| 248 | } |
| 249 | |
| 250 | UINT8* BinarySerializer::encodeEntry(IReflectable* object, UINT32 objectId, UINT8* buffer, UINT32& bufferLength, |
| 251 | UINT32* bytesWritten, std::function<UINT8*(UINT8*, UINT32, UINT32&)> flushBufferCallback, bool shallow) |
| 252 | { |
| 253 | RTTITypeBase* rtti = object->getRTTI(); |
| 254 | bool isBaseClass = false; |
| 255 | |
| 256 | FrameStack<RTTITypeBase*> rttiInstances; |
| 257 | |
| 258 | const auto cleanup = [&]() |
| 259 | { |
| 260 | while (!rttiInstances.empty()) |
| 261 | { |
| 262 | RTTITypeBase* rttiInstance = rttiInstances.top(); |
| 263 | rttiInstance->onSerializationEnded(object, mContext); |
| 264 | mAlloc->destruct(rttiInstance); |
| 265 | |
| 266 | rttiInstances.pop(); |
| 267 | } |
| 268 | }; |
| 269 | |
| 270 | // If an object has base classes, we need to iterate through all of them |
| 271 | do |
| 272 | { |
| 273 | RTTITypeBase* rttiInstance = rtti->_clone(*mAlloc); |
| 274 | rttiInstances.push(rttiInstance); |
| 275 | |
| 276 | rttiInstance->onSerializationStarted(object, mContext); |
| 277 | |
| 278 | // Encode object ID & type |
| 279 | ObjectMetaData objectMetaData = encodeObjectMetaData(objectId, rtti->getRTTIId(), isBaseClass); |
| 280 | COPY_TO_BUFFER(&objectMetaData, sizeof(ObjectMetaData)) |
| 281 | |
| 282 | const UINT32 numFields = rtti->getNumFields(); |
| 283 | for(UINT32 i = 0; i < numFields; i++) |
| 284 | { |
| 285 | RTTIField* curGenericField = rtti->getField(i); |
| 286 | |
| 287 | // Copy field ID & other meta-data like field size and type |
| 288 | int metaData = encodeFieldMetaData(curGenericField->mUniqueId, curGenericField->getTypeSize(), |
| 289 | curGenericField->mIsVectorType, curGenericField->mType, curGenericField->hasDynamicSize(), false); |
| 290 | COPY_TO_BUFFER(&metaData, META_SIZE) |
| 291 | |
| 292 | if(curGenericField->mIsVectorType) |
| 293 | { |
| 294 | UINT32 arrayNumElems = curGenericField->getArraySize(rttiInstance, object); |
| 295 | |
| 296 | // Copy num vector elements |
| 297 | COPY_TO_BUFFER(&arrayNumElems, NUM_ELEM_FIELD_SIZE) |
| 298 | |
| 299 | switch(curGenericField->mType) |
| 300 | { |
| 301 | case SerializableFT_ReflectablePtr: |
| 302 | { |
| 303 | RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField); |
| 304 | |
| 305 | for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++) |
| 306 | { |
| 307 | SPtr<IReflectable> childObject; |
| 308 | |
| 309 | if (!shallow) |
| 310 | childObject = curField->getArrayValue(rttiInstance, object, arrIdx); |
| 311 | |
| 312 | UINT32 objId = registerObjectPtr(childObject); |
| 313 | COPY_TO_BUFFER(&objId, sizeof(UINT32)) |
| 314 | } |
| 315 | |
| 316 | break; |
| 317 | } |
| 318 | case SerializableFT_Reflectable: |
| 319 | { |
| 320 | RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField); |
| 321 | |
| 322 | for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++) |
| 323 | { |
| 324 | IReflectable& childObject = curField->getArrayValue(rttiInstance, object, arrIdx); |
| 325 | |
| 326 | buffer = complexTypeToBuffer(&childObject, buffer, bufferLength, |
| 327 | bytesWritten, flushBufferCallback, shallow); |
| 328 | if(buffer == nullptr) |
| 329 | { |
| 330 | cleanup(); |
| 331 | return nullptr; |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | break; |
| 336 | } |
| 337 | case SerializableFT_Plain: |
| 338 | { |
| 339 | RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField); |
| 340 | |
| 341 | for(UINT32 arrIdx = 0; arrIdx < arrayNumElems; arrIdx++) |
| 342 | { |
| 343 | UINT32 typeSize = 0; |
| 344 | if(curField->hasDynamicSize()) |
| 345 | typeSize = curField->getArrayElemDynamicSize(rttiInstance, object, arrIdx); |
| 346 | else |
| 347 | typeSize = curField->getTypeSize(); |
| 348 | |
| 349 | if ((*bytesWritten + typeSize) > bufferLength) |
| 350 | { |
| 351 | UINT8* tempBuffer = (UINT8*)bs_stack_alloc(typeSize); |
| 352 | curField->arrayElemToBuffer(rttiInstance, object, arrIdx, tempBuffer); |
| 353 | |
| 354 | buffer = dataBlockToBuffer(tempBuffer, typeSize, buffer, bufferLength, bytesWritten, flushBufferCallback); |
| 355 | bs_stack_free(tempBuffer); |
| 356 | |
| 357 | if (buffer == nullptr || bufferLength == 0) |
| 358 | { |
| 359 | cleanup(); |
| 360 | return nullptr; |
| 361 | } |
| 362 | } |
| 363 | else |
| 364 | { |
| 365 | curField->arrayElemToBuffer(rttiInstance, object, arrIdx, buffer); |
| 366 | buffer += typeSize; |
| 367 | *bytesWritten += typeSize; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | break; |
| 372 | } |
| 373 | default: |
| 374 | BS_EXCEPT(InternalErrorException, |
| 375 | "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) + |
| 376 | ", Is array: " + toString(curGenericField->mIsVectorType)); |
| 377 | } |
| 378 | } |
| 379 | else |
| 380 | { |
| 381 | switch(curGenericField->mType) |
| 382 | { |
| 383 | case SerializableFT_ReflectablePtr: |
| 384 | { |
| 385 | RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField); |
| 386 | SPtr<IReflectable> childObject; |
| 387 | |
| 388 | if (!shallow) |
| 389 | childObject = curField->getValue(rttiInstance, object); |
| 390 | |
| 391 | UINT32 objId = registerObjectPtr(childObject); |
| 392 | COPY_TO_BUFFER(&objId, sizeof(UINT32)) |
| 393 | |
| 394 | break; |
| 395 | } |
| 396 | case SerializableFT_Reflectable: |
| 397 | { |
| 398 | RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField); |
| 399 | IReflectable& childObject = curField->getValue(rttiInstance, object); |
| 400 | |
| 401 | buffer = complexTypeToBuffer(&childObject, buffer, bufferLength, |
| 402 | bytesWritten, flushBufferCallback, shallow); |
| 403 | if(buffer == nullptr) |
| 404 | { |
| 405 | cleanup(); |
| 406 | return nullptr; |
| 407 | } |
| 408 | |
| 409 | break; |
| 410 | } |
| 411 | case SerializableFT_Plain: |
| 412 | { |
| 413 | RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField); |
| 414 | |
| 415 | UINT32 typeSize = 0; |
| 416 | if(curField->hasDynamicSize()) |
| 417 | typeSize = curField->getDynamicSize(rttiInstance, object); |
| 418 | else |
| 419 | typeSize = curField->getTypeSize(); |
| 420 | |
| 421 | if ((*bytesWritten + typeSize) > bufferLength) |
| 422 | { |
| 423 | UINT8* tempBuffer = (UINT8*)bs_stack_alloc(typeSize); |
| 424 | curField->toBuffer(rttiInstance, object, tempBuffer); |
| 425 | |
| 426 | buffer = dataBlockToBuffer(tempBuffer, typeSize, buffer, bufferLength, bytesWritten, flushBufferCallback); |
| 427 | bs_stack_free(tempBuffer); |
| 428 | |
| 429 | if (buffer == nullptr || bufferLength == 0) |
| 430 | { |
| 431 | cleanup(); |
| 432 | return nullptr; |
| 433 | } |
| 434 | } |
| 435 | else |
| 436 | { |
| 437 | curField->toBuffer(rttiInstance, object, buffer); |
| 438 | buffer += typeSize; |
| 439 | *bytesWritten += typeSize; |
| 440 | } |
| 441 | |
| 442 | break; |
| 443 | } |
| 444 | case SerializableFT_DataBlock: |
| 445 | { |
| 446 | RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField); |
| 447 | |
| 448 | UINT32 dataBlockSize = 0; |
| 449 | SPtr<DataStream> blockStream = curField->getValue(rttiInstance, object, dataBlockSize); |
| 450 | |
| 451 | // Data block size |
| 452 | COPY_TO_BUFFER(&dataBlockSize, sizeof(UINT32)) |
| 453 | |
| 454 | // Data block data |
| 455 | UINT8* dataToStore = (UINT8*)bs_stack_alloc(dataBlockSize); |
| 456 | blockStream->read(dataToStore, dataBlockSize); |
| 457 | |
| 458 | buffer = dataBlockToBuffer(dataToStore, dataBlockSize, buffer, bufferLength, bytesWritten, flushBufferCallback); |
| 459 | bs_stack_free(dataToStore); |
| 460 | |
| 461 | if (buffer == nullptr || bufferLength == 0) |
| 462 | { |
| 463 | cleanup(); |
| 464 | return nullptr; |
| 465 | } |
| 466 | |
| 467 | break; |
| 468 | } |
| 469 | default: |
| 470 | BS_EXCEPT(InternalErrorException, |
| 471 | "Error encoding data. Encountered a type I don't know how to encode. Type: " + toString(UINT32(curGenericField->mType)) + |
| 472 | ", Is array: " + toString(curGenericField->mIsVectorType)); |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | rtti = rtti->getBaseClass(); |
| 478 | isBaseClass = true; |
| 479 | |
| 480 | } while(rtti != nullptr); // Repeat until we reach the top of the inheritance hierarchy |
| 481 | |
| 482 | cleanup(); |
| 483 | |
| 484 | return buffer; |
| 485 | } |
| 486 | |
| 487 | bool BinarySerializer::decodeEntry(const SPtr<DataStream>& data, size_t dataEnd, const SPtr<IReflectable>& output) |
| 488 | { |
| 489 | ObjectMetaData objectMetaData; |
| 490 | objectMetaData.objectMeta = 0; |
| 491 | objectMetaData.typeId = 0; |
| 492 | |
| 493 | READ_FROM_BUFFER(&objectMetaData, sizeof(ObjectMetaData)) |
| 494 | |
| 495 | UINT32 objectId = 0; |
| 496 | UINT32 objectTypeId = 0; |
| 497 | bool objectIsBaseClass = false; |
| 498 | decodeObjectMetaData(objectMetaData, objectId, objectTypeId, objectIsBaseClass); |
| 499 | |
| 500 | if (objectIsBaseClass) |
| 501 | { |
| 502 | BS_EXCEPT(InternalErrorException, "Encountered a base-class object while looking for a new object. " \ |
| 503 | "Base class objects are only supposed to be parts of a larger object." ); |
| 504 | } |
| 505 | |
| 506 | RTTITypeBase* rtti = nullptr; |
| 507 | if(output) |
| 508 | rtti = output->getRTTI(); |
| 509 | |
| 510 | FrameVector<RTTITypeBase*> rttiInstances; |
| 511 | |
| 512 | auto finalizeObject = [&rttiInstances, this](IReflectable* object) |
| 513 | { |
| 514 | // Note: It would make sense to finish deserializing derived classes before base classes, but some code |
| 515 | // depends on the old functionality, so we'll keep it this way |
| 516 | for (auto iter = rttiInstances.rbegin(); iter != rttiInstances.rend(); ++iter) |
| 517 | { |
| 518 | RTTITypeBase* curRTTI = *iter; |
| 519 | |
| 520 | curRTTI->onDeserializationEnded(object, mContext); |
| 521 | mAlloc->destruct(curRTTI); |
| 522 | } |
| 523 | |
| 524 | rttiInstances.clear(); |
| 525 | }; |
| 526 | |
| 527 | RTTITypeBase* curRTTI = rtti; |
| 528 | while (curRTTI) |
| 529 | { |
| 530 | RTTITypeBase* rttiInstance = curRTTI->_clone(*mAlloc); |
| 531 | rttiInstances.push_back(rttiInstance); |
| 532 | |
| 533 | curRTTI = curRTTI->getBaseClass(); |
| 534 | } |
| 535 | |
| 536 | // Iterate in reverse to notify base classes before derived classes |
| 537 | for(auto iter = rttiInstances.rbegin(); iter != rttiInstances.rend(); ++iter) |
| 538 | (*iter)->onDeserializationStarted(output.get(), mContext); |
| 539 | |
| 540 | RTTITypeBase* rttiInstance = nullptr; |
| 541 | UINT32 rttiInstanceIdx = 0; |
| 542 | if(!rttiInstances.empty()) |
| 543 | rttiInstance = rttiInstances[0]; |
| 544 | |
| 545 | while (data->tell() < dataEnd) |
| 546 | { |
| 547 | int metaData = -1; |
| 548 | READ_FROM_BUFFER(&metaData, META_SIZE) |
| 549 | |
| 550 | if (isObjectMetaData(metaData)) // We've reached a new object or a base class of the current one |
| 551 | { |
| 552 | ObjectMetaData objMetaData; |
| 553 | objMetaData.objectMeta = 0; |
| 554 | objMetaData.typeId = 0; |
| 555 | |
| 556 | SEEK_BACK(META_SIZE) |
| 557 | READ_FROM_BUFFER(&objMetaData, sizeof(ObjectMetaData)) |
| 558 | |
| 559 | UINT32 objId = 0; |
| 560 | UINT32 objTypeId = 0; |
| 561 | bool objIsBaseClass = false; |
| 562 | decodeObjectMetaData(objMetaData, objId, objTypeId, objIsBaseClass); |
| 563 | |
| 564 | // If it's a base class, get base class RTTI and handle that |
| 565 | if (objIsBaseClass) |
| 566 | { |
| 567 | if (rtti != nullptr) |
| 568 | rtti = rtti->getBaseClass(); |
| 569 | |
| 570 | // Saved and current base classes don't match, so just skip over all that data |
| 571 | if (rtti == nullptr || rtti->getRTTIId() != objTypeId) |
| 572 | rtti = nullptr; |
| 573 | |
| 574 | rttiInstance = nullptr; |
| 575 | |
| 576 | if (rtti) |
| 577 | { |
| 578 | rttiInstance = rttiInstances[rttiInstanceIdx + 1]; |
| 579 | rttiInstanceIdx++; |
| 580 | } |
| 581 | |
| 582 | continue; |
| 583 | } |
| 584 | else |
| 585 | { |
| 586 | // Found new object, we're done |
| 587 | SEEK_BACK(sizeof(ObjectMetaData)) |
| 588 | |
| 589 | finalizeObject(output.get()); |
| 590 | return true; |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | bool isArray; |
| 595 | SerializableFieldType fieldType; |
| 596 | UINT16 fieldId; |
| 597 | UINT8 fieldSize; |
| 598 | bool hasDynamicSize; |
| 599 | bool terminator; |
| 600 | decodeFieldMetaData(metaData, fieldId, fieldSize, isArray, fieldType, hasDynamicSize, terminator); |
| 601 | |
| 602 | if (terminator) |
| 603 | { |
| 604 | // We've processed the last field in this object, so return. Although we return false we don't actually know |
| 605 | // if there is an object following this one. However it doesn't matter since terminator fields are only used |
| 606 | // for embedded objects that are all processed within this method so we can compensate. |
| 607 | finalizeObject(output.get()); |
| 608 | return false; |
| 609 | } |
| 610 | |
| 611 | RTTIField* curGenericField = nullptr; |
| 612 | |
| 613 | if (rtti != nullptr) |
| 614 | curGenericField = rtti->findField(fieldId); |
| 615 | |
| 616 | if (curGenericField != nullptr) |
| 617 | { |
| 618 | if (!hasDynamicSize && curGenericField->getTypeSize() != fieldSize) |
| 619 | { |
| 620 | BS_EXCEPT(InternalErrorException, |
| 621 | "Data type mismatch. Type size stored in file and actual type size don't match. (" |
| 622 | + toString(curGenericField->getTypeSize()) + " vs. " + toString(fieldSize) + ")" ); |
| 623 | } |
| 624 | |
| 625 | if (curGenericField->mIsVectorType != isArray) |
| 626 | { |
| 627 | BS_EXCEPT(InternalErrorException, |
| 628 | "Data type mismatch. One is array, other is a single type." ); |
| 629 | } |
| 630 | |
| 631 | if (curGenericField->mType != fieldType) |
| 632 | { |
| 633 | BS_EXCEPT(InternalErrorException, |
| 634 | "Data type mismatch. Field types don't match. " + toString(UINT32(curGenericField->mType)) + " vs. " + toString(UINT32(fieldType))); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | int arrayNumElems = 1; |
| 639 | if (isArray) |
| 640 | { |
| 641 | READ_FROM_BUFFER(&arrayNumElems, NUM_ELEM_FIELD_SIZE) |
| 642 | |
| 643 | if(curGenericField != nullptr) |
| 644 | curGenericField->setArraySize(rttiInstance, output.get(), arrayNumElems); |
| 645 | |
| 646 | switch (fieldType) |
| 647 | { |
| 648 | case SerializableFT_ReflectablePtr: |
| 649 | { |
| 650 | RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField); |
| 651 | |
| 652 | for (int i = 0; i < arrayNumElems; i++) |
| 653 | { |
| 654 | int childObjectId = 0; |
| 655 | READ_FROM_BUFFER(&childObjectId, COMPLEX_TYPE_FIELD_SIZE) |
| 656 | |
| 657 | if (curField != nullptr) |
| 658 | { |
| 659 | auto findObj = mDecodeObjectMap.find(childObjectId); |
| 660 | |
| 661 | if(findObj == mDecodeObjectMap.end()) |
| 662 | { |
| 663 | if(childObjectId != 0) |
| 664 | { |
| 665 | LOGWRN("When deserializing, object ID: " + toString(childObjectId) + |
| 666 | " was found but no such object was contained in the file." ); |
| 667 | } |
| 668 | |
| 669 | curField->setArrayValue(rttiInstance, output.get(), i, nullptr); |
| 670 | } |
| 671 | else |
| 672 | { |
| 673 | ObjectToDecode& objToDecode = findObj->second; |
| 674 | |
| 675 | const bool needsDecoding = !curField->getInfo().flags.isSet(RTTIFieldFlag::WeakRef) && !objToDecode.isDecoded; |
| 676 | if (needsDecoding) |
| 677 | { |
| 678 | if (objToDecode.decodeInProgress) |
| 679 | { |
| 680 | LOGWRN("Detected a circular reference when decoding. Referenced object's fields " \ |
| 681 | "will be resolved in an undefined order (i.e. one of the objects will not " \ |
| 682 | "be fully deserialized when assigned to its field). Use RTTI_Flag_WeakRef to " \ |
| 683 | "get rid of this warning and tell the system which of the objects is allowed " \ |
| 684 | "to be deserialized after it is assigned to its field." ); |
| 685 | } |
| 686 | else |
| 687 | { |
| 688 | objToDecode.decodeInProgress = true; |
| 689 | |
| 690 | const size_t curOffset = data->tell(); |
| 691 | data->seek(objToDecode.offset); |
| 692 | decodeEntry(data, dataEnd, objToDecode.object); |
| 693 | data->seek(curOffset); |
| 694 | |
| 695 | objToDecode.decodeInProgress = false; |
| 696 | objToDecode.isDecoded = true; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | curField->setArrayValue(rttiInstance, output.get(), i, objToDecode.object); |
| 701 | } |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | break; |
| 706 | } |
| 707 | case SerializableFT_Reflectable: |
| 708 | { |
| 709 | RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField); |
| 710 | |
| 711 | for (int i = 0; i < arrayNumElems; i++) |
| 712 | { |
| 713 | SPtr<IReflectable> childObj; |
| 714 | if(curField) |
| 715 | childObj = curField->newObject(); |
| 716 | |
| 717 | decodeEntry(data, dataEnd, childObj); |
| 718 | |
| 719 | if (curField != nullptr) |
| 720 | { |
| 721 | // Note: Would be nice to avoid this copy by value and decode directly into the field |
| 722 | curField->setArrayValue(rttiInstance, output.get(), i, *childObj); |
| 723 | } |
| 724 | } |
| 725 | break; |
| 726 | } |
| 727 | case SerializableFT_Plain: |
| 728 | { |
| 729 | RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField); |
| 730 | |
| 731 | for (int i = 0; i < arrayNumElems; i++) |
| 732 | { |
| 733 | UINT32 typeSize = fieldSize; |
| 734 | if (hasDynamicSize) |
| 735 | { |
| 736 | data->read(&typeSize, sizeof(UINT32)); |
| 737 | data->seek(data->tell() - sizeof(UINT32)); |
| 738 | } |
| 739 | |
| 740 | if (curField != nullptr) |
| 741 | { |
| 742 | // Note: Two data copies that can potentially be avoided: |
| 743 | // - Copy from stream into a temporary buffer (use stream directly for decoding) |
| 744 | // - Internally the field will do a value copy of the decoded object (ideally we decode directly into the destination) |
| 745 | void* fieldValue = bs_stack_alloc(typeSize); |
| 746 | READ_FROM_BUFFER(fieldValue, typeSize) |
| 747 | |
| 748 | curField->arrayElemFromBuffer(rttiInstance, output.get(), i, fieldValue); |
| 749 | bs_stack_free(fieldValue); |
| 750 | } |
| 751 | else |
| 752 | SKIP_READ(typeSize); |
| 753 | } |
| 754 | break; |
| 755 | } |
| 756 | default: |
| 757 | BS_EXCEPT(InternalErrorException, |
| 758 | "Error decoding data. Encountered a type I don't know how to decode. Type: " + toString(UINT32(fieldType)) + |
| 759 | ", Is array: " + toString(isArray)); |
| 760 | } |
| 761 | } |
| 762 | else |
| 763 | { |
| 764 | switch (fieldType) |
| 765 | { |
| 766 | case SerializableFT_ReflectablePtr: |
| 767 | { |
| 768 | RTTIReflectablePtrFieldBase* curField = static_cast<RTTIReflectablePtrFieldBase*>(curGenericField); |
| 769 | |
| 770 | int childObjectId = 0; |
| 771 | READ_FROM_BUFFER(&childObjectId, COMPLEX_TYPE_FIELD_SIZE) |
| 772 | |
| 773 | if (curField != nullptr) |
| 774 | { |
| 775 | auto findObj = mDecodeObjectMap.find(childObjectId); |
| 776 | |
| 777 | if(findObj == mDecodeObjectMap.end()) |
| 778 | { |
| 779 | if(childObjectId != 0) |
| 780 | { |
| 781 | LOGWRN("When deserializing, object ID: " + toString(childObjectId) + |
| 782 | " was found but no such object was contained in the file." ); |
| 783 | } |
| 784 | |
| 785 | curField->setValue(rttiInstance, output.get(), nullptr); |
| 786 | } |
| 787 | else |
| 788 | { |
| 789 | ObjectToDecode& objToDecode = findObj->second; |
| 790 | |
| 791 | const bool needsDecoding = !curField->getInfo().flags.isSet(RTTIFieldFlag::WeakRef) && !objToDecode.isDecoded; |
| 792 | if (needsDecoding) |
| 793 | { |
| 794 | if (objToDecode.decodeInProgress) |
| 795 | { |
| 796 | LOGWRN("Detected a circular reference when decoding. Referenced object's fields " \ |
| 797 | "will be resolved in an undefined order (i.e. one of the objects will not " \ |
| 798 | "be fully deserialized when assigned to its field). Use RTTI_Flag_WeakRef to " \ |
| 799 | "get rid of this warning and tell the system which of the objects is allowed " \ |
| 800 | "to be deserialized after it is assigned to its field." ); |
| 801 | } |
| 802 | else |
| 803 | { |
| 804 | objToDecode.decodeInProgress = true; |
| 805 | |
| 806 | const size_t curOffset = data->tell(); |
| 807 | data->seek(objToDecode.offset); |
| 808 | decodeEntry(data, dataEnd, objToDecode.object); |
| 809 | data->seek(curOffset); |
| 810 | |
| 811 | objToDecode.decodeInProgress = false; |
| 812 | objToDecode.isDecoded = true; |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | curField->setValue(rttiInstance, output.get(), objToDecode.object); |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | break; |
| 821 | } |
| 822 | case SerializableFT_Reflectable: |
| 823 | { |
| 824 | RTTIReflectableFieldBase* curField = static_cast<RTTIReflectableFieldBase*>(curGenericField); |
| 825 | |
| 826 | // Note: Ideally we can skip decoding the entry if the field no longer exists |
| 827 | SPtr<IReflectable> childObj; |
| 828 | if (curField) |
| 829 | childObj = curField->newObject(); |
| 830 | |
| 831 | decodeEntry(data, dataEnd, childObj); |
| 832 | |
| 833 | if (curField != nullptr) |
| 834 | { |
| 835 | // Note: Would be nice to avoid this copy by value and decode directly into the field |
| 836 | curField->setValue(rttiInstance, output.get(), *childObj); |
| 837 | } |
| 838 | |
| 839 | break; |
| 840 | } |
| 841 | case SerializableFT_Plain: |
| 842 | { |
| 843 | RTTIPlainFieldBase* curField = static_cast<RTTIPlainFieldBase*>(curGenericField); |
| 844 | |
| 845 | UINT32 typeSize = fieldSize; |
| 846 | if (hasDynamicSize) |
| 847 | { |
| 848 | data->read(&typeSize, sizeof(UINT32)); |
| 849 | data->seek(data->tell() - sizeof(UINT32)); |
| 850 | } |
| 851 | |
| 852 | if (curField != nullptr) |
| 853 | { |
| 854 | // Note: Two data copies that can potentially be avoided: |
| 855 | // - Copy from stream into a temporary buffer (use stream directly for decoding) |
| 856 | // - Internally the field will do a value copy of the decoded object (ideally we decode directly into the destination) |
| 857 | void* fieldValue = bs_stack_alloc(typeSize); |
| 858 | READ_FROM_BUFFER(fieldValue, typeSize) |
| 859 | |
| 860 | curField->fromBuffer(rttiInstance, output.get(), fieldValue); |
| 861 | bs_stack_free(fieldValue); |
| 862 | } |
| 863 | else |
| 864 | SKIP_READ(typeSize); |
| 865 | |
| 866 | break; |
| 867 | } |
| 868 | case SerializableFT_DataBlock: |
| 869 | { |
| 870 | RTTIManagedDataBlockFieldBase* curField = static_cast<RTTIManagedDataBlockFieldBase*>(curGenericField); |
| 871 | |
| 872 | // Data block size |
| 873 | UINT32 dataBlockSize = 0; |
| 874 | READ_FROM_BUFFER(&dataBlockSize, DATA_BLOCK_TYPE_FIELD_SIZE) |
| 875 | |
| 876 | // Data block data |
| 877 | if (curField != nullptr) |
| 878 | { |
| 879 | if (data->isFile()) // Allow streaming |
| 880 | { |
| 881 | const size_t dataBlockOffset = data->tell(); |
| 882 | curField->setValue(rttiInstance, output.get(), data, dataBlockSize); |
| 883 | REPORT_READ(dataBlockSize); |
| 884 | |
| 885 | // Seek past the data (use original offset in case the field read from the stream) |
| 886 | data->seek(dataBlockOffset + dataBlockSize); |
| 887 | } |
| 888 | else |
| 889 | { |
| 890 | UINT8* dataBlockBuffer = (UINT8*)bs_alloc(dataBlockSize); |
| 891 | READ_FROM_BUFFER(dataBlockBuffer, dataBlockSize) |
| 892 | |
| 893 | SPtr<DataStream> stream = bs_shared_ptr_new<MemoryDataStream>(dataBlockBuffer, dataBlockSize); |
| 894 | curField->setValue(rttiInstance, output.get(), stream, dataBlockSize); |
| 895 | } |
| 896 | } |
| 897 | else |
| 898 | SKIP_READ(dataBlockSize) |
| 899 | |
| 900 | break; |
| 901 | } |
| 902 | default: |
| 903 | BS_EXCEPT(InternalErrorException, |
| 904 | "Error decoding data. Encountered a type I don't know how to decode. Type: " + toString(UINT32(fieldType)) + |
| 905 | ", Is array: " + toString(isArray)); |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | finalizeObject(output.get()); |
| 911 | return false; |
| 912 | } |
| 913 | |
| 914 | UINT8* BinarySerializer::complexTypeToBuffer(IReflectable* object, UINT8* buffer, UINT32& bufferLength, |
| 915 | UINT32* bytesWritten, std::function<UINT8*(UINT8*, UINT32, UINT32&)> flushBufferCallback, bool shallow) |
| 916 | { |
| 917 | if (object != nullptr) |
| 918 | { |
| 919 | buffer = encodeEntry(object, 0, buffer, bufferLength, bytesWritten, flushBufferCallback, shallow); |
| 920 | |
| 921 | // Encode terminator field |
| 922 | // Complex types require terminator fields because they can be embedded within other complex types and we need |
| 923 | // to know when their fields end and parent's resume |
| 924 | int metaData = encodeFieldMetaData(0, 0, false, SerializableFT_Plain, false, true); |
| 925 | COPY_TO_BUFFER(&metaData, META_SIZE) |
| 926 | } |
| 927 | |
| 928 | return buffer; |
| 929 | } |
| 930 | |
| 931 | UINT32 BinarySerializer::encodeFieldMetaData(UINT16 id, UINT8 size, bool array, SerializableFieldType type, |
| 932 | bool hasDynamicSize, bool terminator) |
| 933 | { |
| 934 | // If O == 0 - Meta contains field information (Encoded using this method) |
| 935 | //// Encoding: IIII IIII IIII IIII SSSS SSSS xTYP DCAO |
| 936 | //// I - Id |
| 937 | //// S - Size |
| 938 | //// C - Complex |
| 939 | //// A - Array |
| 940 | //// D - Data block |
| 941 | //// P - Complex ptr |
| 942 | //// O - Object descriptor |
| 943 | //// Y - Plain field has dynamic size |
| 944 | //// T - Terminator (last field in an object) |
| 945 | |
| 946 | return (id << 16 | size << 8 | |
| 947 | (array ? 0x02 : 0) | |
| 948 | ((type == SerializableFT_DataBlock) ? 0x04 : 0) | |
| 949 | ((type == SerializableFT_Reflectable) ? 0x08 : 0) | |
| 950 | ((type == SerializableFT_ReflectablePtr) ? 0x10 : 0) | |
| 951 | (hasDynamicSize ? 0x20 : 0) | |
| 952 | (terminator ? 0x40 : 0)); // TODO - Low priority. Technically I could encode this much more tightly, and use var-ints for ID |
| 953 | } |
| 954 | |
| 955 | void BinarySerializer::decodeFieldMetaData(UINT32 encodedData, UINT16& id, UINT8& size, |
| 956 | bool& array, SerializableFieldType& type, bool& hasDynamicSize, bool& terminator) |
| 957 | { |
| 958 | if(isObjectMetaData(encodedData)) |
| 959 | { |
| 960 | BS_EXCEPT(InternalErrorException, |
| 961 | "Meta data represents an object description but is trying to be decoded as a field descriptor." ); |
| 962 | } |
| 963 | |
| 964 | terminator = (encodedData & 0x40) != 0; |
| 965 | hasDynamicSize = (encodedData & 0x20) != 0; |
| 966 | |
| 967 | if((encodedData & 0x10) != 0) |
| 968 | type = SerializableFT_ReflectablePtr; |
| 969 | else if((encodedData & 0x08) != 0) |
| 970 | type = SerializableFT_Reflectable; |
| 971 | else if((encodedData & 0x04) != 0) |
| 972 | type = SerializableFT_DataBlock; |
| 973 | else |
| 974 | type = SerializableFT_Plain; |
| 975 | |
| 976 | array = (encodedData & 0x02) != 0; |
| 977 | size = (UINT8)((encodedData >> 8) & 0xFF); |
| 978 | id = (UINT16)((encodedData >> 16) & 0xFFFF); |
| 979 | } |
| 980 | |
| 981 | BinarySerializer::ObjectMetaData BinarySerializer::encodeObjectMetaData(UINT32 objId, UINT32 objTypeId, bool isBaseClass) |
| 982 | { |
| 983 | // If O == 1 - Meta contains object instance information (Encoded using encodeObjectMetaData) |
| 984 | //// Encoding: SSSS SSSS SSSS SSSS xxxx xxxx xxxx xxBO |
| 985 | //// S - Size of the object identifier |
| 986 | //// O - Object descriptor |
| 987 | //// B - Base class indicator |
| 988 | |
| 989 | if(objId > 1073741823) |
| 990 | { |
| 991 | BS_EXCEPT(InvalidParametersException, "Object ID is larger than we can store (max 30 bits): " + toString(objId)); |
| 992 | } |
| 993 | |
| 994 | ObjectMetaData metaData; |
| 995 | metaData.objectMeta = (objId << 2) | (isBaseClass ? 0x02 : 0) | 0x01; |
| 996 | metaData.typeId = objTypeId; |
| 997 | return metaData; |
| 998 | } |
| 999 | |
| 1000 | void BinarySerializer::decodeObjectMetaData(ObjectMetaData encodedData, UINT32& objId, UINT32& objTypeId, bool& isBaseClass) |
| 1001 | { |
| 1002 | if(!isObjectMetaData(encodedData.objectMeta)) |
| 1003 | { |
| 1004 | BS_EXCEPT(InternalErrorException, |
| 1005 | "Meta data represents a field description but is trying to be decoded as an object descriptor." ); |
| 1006 | } |
| 1007 | |
| 1008 | objId = (encodedData.objectMeta >> 2) & 0x3FFFFFFF; |
| 1009 | isBaseClass = (encodedData.objectMeta & 0x02) != 0; |
| 1010 | objTypeId = encodedData.typeId; |
| 1011 | } |
| 1012 | |
| 1013 | bool BinarySerializer::isObjectMetaData(UINT32 encodedData) |
| 1014 | { |
| 1015 | return ((encodedData & 0x01) != 0); |
| 1016 | } |
| 1017 | |
| 1018 | UINT8* BinarySerializer::dataBlockToBuffer(UINT8* data, UINT32 size, UINT8* buffer, UINT32& bufferLength, UINT32* bytesWritten, |
| 1019 | std::function<UINT8*(UINT8* buffer, UINT32 bytesWritten, UINT32& newBufferSize)> flushBufferCallback) |
| 1020 | { |
| 1021 | UINT32 remainingSize = size; |
| 1022 | while (remainingSize > 0) |
| 1023 | { |
| 1024 | UINT32 remainingSpaceInBuffer = bufferLength - *bytesWritten; |
| 1025 | |
| 1026 | if (remainingSize <= remainingSpaceInBuffer) |
| 1027 | { |
| 1028 | COPY_TO_BUFFER(data, remainingSize); |
| 1029 | remainingSize = 0; |
| 1030 | } |
| 1031 | else |
| 1032 | { |
| 1033 | memcpy(buffer, data, remainingSpaceInBuffer); |
| 1034 | buffer += remainingSpaceInBuffer; |
| 1035 | *bytesWritten += remainingSpaceInBuffer; |
| 1036 | data += remainingSpaceInBuffer; |
| 1037 | remainingSize -= remainingSpaceInBuffer; |
| 1038 | |
| 1039 | mTotalBytesWritten += *bytesWritten; |
| 1040 | buffer = flushBufferCallback(buffer - *bytesWritten, *bytesWritten, bufferLength); |
| 1041 | if (buffer == nullptr || bufferLength == 0) |
| 1042 | return nullptr; |
| 1043 | |
| 1044 | *bytesWritten = 0; |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | return buffer; |
| 1049 | } |
| 1050 | |
| 1051 | UINT32 BinarySerializer::findOrCreatePersistentId(IReflectable* object) |
| 1052 | { |
| 1053 | void* ptrAddress = (void*)object; |
| 1054 | |
| 1055 | auto findIter = mObjectAddrToId.find(ptrAddress); |
| 1056 | if(findIter != mObjectAddrToId.end()) |
| 1057 | return findIter->second; |
| 1058 | |
| 1059 | UINT32 objId = mLastUsedObjectId++; |
| 1060 | mObjectAddrToId.insert(std::make_pair(ptrAddress, objId)); |
| 1061 | |
| 1062 | return objId; |
| 1063 | } |
| 1064 | |
| 1065 | UINT32 BinarySerializer::registerObjectPtr(SPtr<IReflectable> object) |
| 1066 | { |
| 1067 | if(object == nullptr) |
| 1068 | return 0; |
| 1069 | |
| 1070 | void* ptrAddress = (void*)object.get(); |
| 1071 | |
| 1072 | auto iterFind = mObjectAddrToId.find(ptrAddress); |
| 1073 | if(iterFind == mObjectAddrToId.end()) |
| 1074 | { |
| 1075 | UINT32 objId = findOrCreatePersistentId(object.get()); |
| 1076 | |
| 1077 | mObjectsToEncode.push_back(ObjectToEncode(objId, object)); |
| 1078 | mObjectAddrToId.insert(std::make_pair(ptrAddress, objId)); |
| 1079 | |
| 1080 | return objId; |
| 1081 | } |
| 1082 | |
| 1083 | return iterFind->second; |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | #undef COPY_TO_BUFFER |
| 1088 | |