1 | // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors |
2 | // Licensed under the MIT License: |
3 | // |
4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
5 | // of this software and associated documentation files (the "Software"), to deal |
6 | // in the Software without restriction, including without limitation the rights |
7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
8 | // copies of the Software, and to permit persons to whom the Software is |
9 | // furnished to do so, subject to the following conditions: |
10 | // |
11 | // The above copyright notice and this permission notice shall be included in |
12 | // all copies or substantial portions of the Software. |
13 | // |
14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
20 | // THE SOFTWARE. |
21 | |
22 | #include <kj/common.h> |
23 | #include <kj/memory.h> |
24 | #include <kj/mutex.h> |
25 | #include <kj/debug.h> |
26 | #include <kj/vector.h> |
27 | #include "common.h" |
28 | #include "layout.h" |
29 | #include "any.h" |
30 | |
31 | #pragma once |
32 | |
33 | #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS) |
34 | #pragma GCC system_header |
35 | #endif |
36 | |
37 | namespace capnp { |
38 | |
39 | namespace _ { // private |
40 | class ReaderArena; |
41 | class BuilderArena; |
42 | } |
43 | |
44 | class StructSchema; |
45 | class Orphanage; |
46 | template <typename T> |
47 | class Orphan; |
48 | |
49 | // ======================================================================================= |
50 | |
51 | struct ReaderOptions { |
52 | // Options controlling how data is read. |
53 | |
54 | uint64_t traversalLimitInWords = 8 * 1024 * 1024; |
55 | // Limits how many total words of data are allowed to be traversed. Traversal is counted when |
56 | // a new struct or list builder is obtained, e.g. from a get() accessor. This means that calling |
57 | // the getter for the same sub-struct multiple times will cause it to be double-counted. Once |
58 | // the traversal limit is reached, an error will be reported. |
59 | // |
60 | // This limit exists for security reasons. It is possible for an attacker to construct a message |
61 | // in which multiple pointers point at the same location. This is technically invalid, but hard |
62 | // to detect. Using such a message, an attacker could cause a message which is small on the wire |
63 | // to appear much larger when actually traversed, possibly exhausting server resources leading to |
64 | // denial-of-service. |
65 | // |
66 | // It makes sense to set a traversal limit that is much larger than the underlying message. |
67 | // Together with sensible coding practices (e.g. trying to avoid calling sub-object getters |
68 | // multiple times, which is expensive anyway), this should provide adequate protection without |
69 | // inconvenience. |
70 | // |
71 | // The default limit is 64 MiB. This may or may not be a sensible number for any given use case, |
72 | // but probably at least prevents easy exploitation while also avoiding causing problems in most |
73 | // typical cases. |
74 | |
75 | int nestingLimit = 64; |
76 | // Limits how deeply-nested a message structure can be, e.g. structs containing other structs or |
77 | // lists of structs. |
78 | // |
79 | // Like the traversal limit, this limit exists for security reasons. Since it is common to use |
80 | // recursive code to traverse recursive data structures, an attacker could easily cause a stack |
81 | // overflow by sending a very-deeply-nested (or even cyclic) message, without the message even |
82 | // being very large. The default limit of 64 is probably low enough to prevent any chance of |
83 | // stack overflow, yet high enough that it is never a problem in practice. |
84 | }; |
85 | |
86 | class MessageReader { |
87 | // Abstract interface for an object used to read a Cap'n Proto message. Subclasses of |
88 | // MessageReader are responsible for reading the raw, flat message content. Callers should |
89 | // usually call `messageReader.getRoot<MyStructType>()` to get a `MyStructType::Reader` |
90 | // representing the root of the message, then use that to traverse the message content. |
91 | // |
92 | // Some common subclasses of `MessageReader` include `SegmentArrayMessageReader`, whose |
93 | // constructor accepts pointers to the raw data, and `StreamFdMessageReader` (from |
94 | // `serialize.h`), which reads the message from a file descriptor. One might implement other |
95 | // subclasses to handle things like reading from shared memory segments, mmap()ed files, etc. |
96 | |
97 | public: |
98 | MessageReader(ReaderOptions options); |
99 | // It is suggested that subclasses take ReaderOptions as a constructor parameter, but give it a |
100 | // default value of "ReaderOptions()". The base class constructor doesn't have a default value |
101 | // in order to remind subclasses that they really need to give the user a way to provide this. |
102 | |
103 | virtual ~MessageReader() noexcept(false); |
104 | |
105 | virtual kj::ArrayPtr<const word> getSegment(uint id) = 0; |
106 | // Gets the segment with the given ID, or returns null if no such segment exists. This method |
107 | // will be called at most once for each segment ID. |
108 | // |
109 | // The returned array must be aligned properly for the host architecture. This means that on |
110 | // x86/x64, alignment is optional, though recommended for performance, whereas on many other |
111 | // architectures, alignment is required. |
112 | |
113 | inline const ReaderOptions& getOptions(); |
114 | // Get the options passed to the constructor. |
115 | |
116 | template <typename RootType> |
117 | typename RootType::Reader getRoot(); |
118 | // Get the root struct of the message, interpreting it as the given struct type. |
119 | |
120 | template <typename RootType, typename SchemaType> |
121 | typename RootType::Reader getRoot(SchemaType schema); |
122 | // Dynamically interpret the root struct of the message using the given schema (a StructSchema). |
123 | // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
124 | // use this. |
125 | |
126 | bool isCanonical(); |
127 | // Returns whether the message encoded in the reader is in canonical form. |
128 | |
129 | private: |
130 | ReaderOptions options; |
131 | |
132 | // Space in which we can construct a ReaderArena. We don't use ReaderArena directly here |
133 | // because we don't want clients to have to #include arena.h, which itself includes a bunch of |
134 | // other headers. We don't use a pointer to a ReaderArena because that would require an |
135 | // extra malloc on every message which could be expensive when processing small messages. |
136 | void* arenaSpace[18 + sizeof(kj::MutexGuarded<void*>) / sizeof(void*)]; |
137 | bool allocatedArena; |
138 | |
139 | _::ReaderArena* arena() { return reinterpret_cast<_::ReaderArena*>(arenaSpace); } |
140 | AnyPointer::Reader getRootInternal(); |
141 | }; |
142 | |
143 | class MessageBuilder { |
144 | // Abstract interface for an object used to allocate and build a message. Subclasses of |
145 | // MessageBuilder are responsible for allocating the space in which the message will be written. |
146 | // The most common subclass is `MallocMessageBuilder`, but other subclasses may be used to do |
147 | // tricky things like allocate messages in shared memory or mmap()ed files. |
148 | // |
149 | // Creating a new message ususually means allocating a new MessageBuilder (ideally on the stack) |
150 | // and then calling `messageBuilder.initRoot<MyStructType>()` to get a `MyStructType::Builder`. |
151 | // That, in turn, can be used to fill in the message content. When done, you can call |
152 | // `messageBuilder.getSegmentsForOutput()` to get a list of flat data arrays containing the |
153 | // message. |
154 | |
155 | public: |
156 | MessageBuilder(); |
157 | virtual ~MessageBuilder() noexcept(false); |
158 | KJ_DISALLOW_COPY(MessageBuilder); |
159 | |
160 | struct SegmentInit { |
161 | kj::ArrayPtr<word> space; |
162 | |
163 | size_t wordsUsed; |
164 | // Number of words in `space` which are used; the rest are free space in which additional |
165 | // objects may be allocated. |
166 | }; |
167 | |
168 | explicit MessageBuilder(kj::ArrayPtr<SegmentInit> segments); |
169 | // Create a MessageBuilder backed by existing memory. This is an advanced interface that most |
170 | // people should not use. THIS METHOD IS INSECURE; see below. |
171 | // |
172 | // This allows a MessageBuilder to be constructed to modify an in-memory message without first |
173 | // making a copy of the content. This is especially useful in conjunction with mmap(). |
174 | // |
175 | // The contents of each segment must outlive the MessageBuilder, but the SegmentInit array itself |
176 | // only need outlive the constructor. |
177 | // |
178 | // SECURITY: Do not use this in conjunction with untrusted data. This constructor assumes that |
179 | // the input message is valid. This constructor is designed to be used with data you control, |
180 | // e.g. an mmap'd file which is owned and accessed by only one program. When reading data you |
181 | // do not trust, you *must* load it into a Reader and then copy into a Builder as a means of |
182 | // validating the content. |
183 | // |
184 | // WARNING: It is NOT safe to initialize a MessageBuilder in this way from memory that is |
185 | // currently in use by another MessageBuilder or MessageReader. Other readers/builders will |
186 | // not observe changes to the segment sizes nor newly-allocated segments caused by allocating |
187 | // new objects in this message. |
188 | |
189 | virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) = 0; |
190 | // Allocates an array of at least the given number of zero'd words, throwing an exception or |
191 | // crashing if this is not possible. It is expected that this method will usually return more |
192 | // space than requested, and the caller should use that extra space as much as possible before |
193 | // allocating more. The returned space remains valid at least until the MessageBuilder is |
194 | // destroyed. |
195 | // |
196 | // allocateSegment() is responsible for zeroing the memory before returning. This is required |
197 | // because otherwise the Cap'n Proto implementation would have to zero the memory anyway, and |
198 | // many allocators are able to provide already-zero'd memory more efficiently. |
199 | // |
200 | // The returned array must be aligned properly for the host architecture. This means that on |
201 | // x86/x64, alignment is optional, though recommended for performance, whereas on many other |
202 | // architectures, alignment is required. |
203 | |
204 | template <typename RootType> |
205 | typename RootType::Builder initRoot(); |
206 | // Initialize the root struct of the message as the given struct type. |
207 | |
208 | template <typename Reader> |
209 | void setRoot(Reader&& value); |
210 | // Set the root struct to a deep copy of the given struct. |
211 | |
212 | template <typename RootType> |
213 | typename RootType::Builder getRoot(); |
214 | // Get the root struct of the message, interpreting it as the given struct type. |
215 | |
216 | template <typename RootType, typename SchemaType> |
217 | typename RootType::Builder getRoot(SchemaType schema); |
218 | // Dynamically interpret the root struct of the message using the given schema (a StructSchema). |
219 | // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
220 | // use this. |
221 | |
222 | template <typename RootType, typename SchemaType> |
223 | typename RootType::Builder initRoot(SchemaType schema); |
224 | // Dynamically init the root struct of the message using the given schema (a StructSchema). |
225 | // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
226 | // use this. |
227 | |
228 | template <typename T> |
229 | void adoptRoot(Orphan<T>&& orphan); |
230 | // Like setRoot() but adopts the orphan without copying. |
231 | |
232 | kj::ArrayPtr<const kj::ArrayPtr<const word>> getSegmentsForOutput(); |
233 | // Get the raw data that makes up the message. |
234 | |
235 | Orphanage getOrphanage(); |
236 | |
237 | bool isCanonical(); |
238 | // Check whether the message builder is in canonical form |
239 | |
240 | private: |
241 | void* arenaSpace[22]; |
242 | // Space in which we can construct a BuilderArena. We don't use BuilderArena directly here |
243 | // because we don't want clients to have to #include arena.h, which itself includes a bunch of |
244 | // big STL headers. We don't use a pointer to a BuilderArena because that would require an |
245 | // extra malloc on every message which could be expensive when processing small messages. |
246 | |
247 | bool allocatedArena = false; |
248 | // We have to initialize the arena lazily because when we do so we want to allocate the root |
249 | // pointer immediately, and this will allocate a segment, which requires a virtual function |
250 | // call on the MessageBuilder. We can't do such a call in the constructor since the subclass |
251 | // isn't constructed yet. This is kind of annoying because it means that getOrphanage() is |
252 | // not thread-safe, but that shouldn't be a huge deal... |
253 | |
254 | _::BuilderArena* arena() { return reinterpret_cast<_::BuilderArena*>(arenaSpace); } |
255 | _::SegmentBuilder* getRootSegment(); |
256 | AnyPointer::Builder getRootInternal(); |
257 | }; |
258 | |
259 | template <typename RootType> |
260 | typename RootType::Reader readMessageUnchecked(const word* data); |
261 | // IF THE INPUT IS INVALID, THIS MAY CRASH, CORRUPT MEMORY, CREATE A SECURITY HOLE IN YOUR APP, |
262 | // MURDER YOUR FIRST-BORN CHILD, AND/OR BRING ABOUT ETERNAL DAMNATION ON ALL OF HUMANITY. DO NOT |
263 | // USE UNLESS YOU UNDERSTAND THE CONSEQUENCES. |
264 | // |
265 | // Given a pointer to a known-valid message located in a single contiguous memory segment, |
266 | // returns a reader for that message. No bounds-checking will be done while traversing this |
267 | // message. Use this only if you have already verified that all pointers are valid and in-bounds, |
268 | // and there are no far pointers in the message. |
269 | // |
270 | // To create a message that can be passed to this function, build a message using a MallocAllocator |
271 | // whose preferred segment size is larger than the message size. This guarantees that the message |
272 | // will be allocated as a single segment, meaning getSegmentsForOutput() returns a single word |
273 | // array. That word array is your message; you may pass a pointer to its first word into |
274 | // readMessageUnchecked() to read the message. |
275 | // |
276 | // This can be particularly handy for embedding messages in generated code: you can |
277 | // embed the raw bytes (using AlignedData) then make a Reader for it using this. This is the way |
278 | // default values are embedded in code generated by the Cap'n Proto compiler. E.g., if you have |
279 | // a message MyMessage, you can read its default value like so: |
280 | // MyMessage::Reader reader = Message<MyMessage>::readMessageUnchecked(MyMessage::DEFAULT.words); |
281 | // |
282 | // To sanitize a message from an untrusted source such that it can be safely passed to |
283 | // readMessageUnchecked(), use copyToUnchecked(). |
284 | |
285 | template <typename Reader> |
286 | void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer); |
287 | // Copy the content of the given reader into the given buffer, such that it can safely be passed to |
288 | // readMessageUnchecked(). The buffer's size must be exactly reader.totalSizeInWords() + 1, |
289 | // otherwise an exception will be thrown. The buffer must be zero'd before calling. |
290 | |
291 | template <typename RootType> |
292 | typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data); |
293 | // Interprets the given data as a single, data-only struct. Only primitive fields (booleans, |
294 | // numbers, and enums) will be readable; all pointers will be null. This is useful if you want |
295 | // to use Cap'n Proto as a language/platform-neutral way to pack some bits. |
296 | // |
297 | // The input is a word array rather than a byte array to enforce alignment. If you have a byte |
298 | // array which you know is word-aligned (or if your platform supports unaligned reads and you don't |
299 | // mind the performance penalty), then you can use `reinterpret_cast` to convert a byte array into |
300 | // a word array: |
301 | // |
302 | // kj::arrayPtr(reinterpret_cast<const word*>(bytes.begin()), |
303 | // reinterpret_cast<const word*>(bytes.end())) |
304 | |
305 | template <typename BuilderType> |
306 | typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder); |
307 | // Given a struct builder, get the underlying data section as a word array, suitable for passing |
308 | // to `readDataStruct()`. |
309 | // |
310 | // Note that you may call `.toBytes()` on the returned value to convert to `ArrayPtr<const byte>`. |
311 | |
312 | template <typename Type> |
313 | static typename Type::Reader defaultValue(); |
314 | // Get a default instance of the given struct or list type. |
315 | // |
316 | // TODO(cleanup): Find a better home for this function? |
317 | |
318 | // ======================================================================================= |
319 | |
320 | class SegmentArrayMessageReader: public MessageReader { |
321 | // A simple MessageReader that reads from an array of word arrays representing all segments. |
322 | // In particular you can read directly from the output of MessageBuilder::getSegmentsForOutput() |
323 | // (although it would probably make more sense to call builder.getRoot().asReader() in that case). |
324 | |
325 | public: |
326 | SegmentArrayMessageReader(kj::ArrayPtr<const kj::ArrayPtr<const word>> segments, |
327 | ReaderOptions options = ReaderOptions()); |
328 | // Creates a message pointing at the given segment array, without taking ownership of the |
329 | // segments. All arrays passed in must remain valid until the MessageReader is destroyed. |
330 | |
331 | KJ_DISALLOW_COPY(SegmentArrayMessageReader); |
332 | ~SegmentArrayMessageReader() noexcept(false); |
333 | |
334 | virtual kj::ArrayPtr<const word> getSegment(uint id) override; |
335 | |
336 | private: |
337 | kj::ArrayPtr<const kj::ArrayPtr<const word>> segments; |
338 | }; |
339 | |
340 | enum class AllocationStrategy: uint8_t { |
341 | FIXED_SIZE, |
342 | // The builder will prefer to allocate the same amount of space for each segment with no |
343 | // heuristic growth. It will still allocate larger segments when the preferred size is too small |
344 | // for some single object. This mode is generally not recommended, but can be particularly useful |
345 | // for testing in order to force a message to allocate a predictable number of segments. Note |
346 | // that you can force every single object in the message to be located in a separate segment by |
347 | // using this mode with firstSegmentWords = 0. |
348 | |
349 | GROW_HEURISTICALLY |
350 | // The builder will heuristically decide how much space to allocate for each segment. Each |
351 | // allocated segment will be progressively larger than the previous segments on the assumption |
352 | // that message sizes are exponentially distributed. The total number of segments that will be |
353 | // allocated for a message of size n is O(log n). |
354 | }; |
355 | |
356 | constexpr uint SUGGESTED_FIRST_SEGMENT_WORDS = 1024; |
357 | constexpr AllocationStrategy SUGGESTED_ALLOCATION_STRATEGY = AllocationStrategy::GROW_HEURISTICALLY; |
358 | |
359 | class MallocMessageBuilder: public MessageBuilder { |
360 | // A simple MessageBuilder that uses malloc() (actually, calloc()) to allocate segments. This |
361 | // implementation should be reasonable for any case that doesn't require writing the message to |
362 | // a specific location in memory. |
363 | |
364 | public: |
365 | explicit MallocMessageBuilder(uint firstSegmentWords = SUGGESTED_FIRST_SEGMENT_WORDS, |
366 | AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY); |
367 | // Creates a BuilderContext which allocates at least the given number of words for the first |
368 | // segment, and then uses the given strategy to decide how much to allocate for subsequent |
369 | // segments. When choosing a value for firstSegmentWords, consider that: |
370 | // 1) Reading and writing messages gets slower when multiple segments are involved, so it's good |
371 | // if most messages fit in a single segment. |
372 | // 2) Unused bytes will not be written to the wire, so generally it is not a big deal to allocate |
373 | // more space than you need. It only becomes problematic if you are allocating many messages |
374 | // in parallel and thus use lots of memory, or if you allocate so much extra space that just |
375 | // zeroing it out becomes a bottleneck. |
376 | // The defaults have been chosen to be reasonable for most people, so don't change them unless you |
377 | // have reason to believe you need to. |
378 | |
379 | explicit MallocMessageBuilder(kj::ArrayPtr<word> firstSegment, |
380 | AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY); |
381 | // This version always returns the given array for the first segment, and then proceeds with the |
382 | // allocation strategy. This is useful for optimization when building lots of small messages in |
383 | // a tight loop: you can reuse the space for the first segment. |
384 | // |
385 | // firstSegment MUST be zero-initialized. MallocMessageBuilder's destructor will write new zeros |
386 | // over any space that was used so that it can be reused. |
387 | |
388 | KJ_DISALLOW_COPY(MallocMessageBuilder); |
389 | virtual ~MallocMessageBuilder() noexcept(false); |
390 | |
391 | virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override; |
392 | |
393 | private: |
394 | uint nextSize; |
395 | AllocationStrategy allocationStrategy; |
396 | |
397 | bool ownFirstSegment; |
398 | bool returnedFirstSegment; |
399 | |
400 | void* firstSegment; |
401 | kj::Vector<void*> moreSegments; |
402 | }; |
403 | |
404 | class FlatMessageBuilder: public MessageBuilder { |
405 | // THIS IS NOT THE CLASS YOU'RE LOOKING FOR. |
406 | // |
407 | // If you want to write a message into already-existing scratch space, use `MallocMessageBuilder` |
408 | // and pass the scratch space to its constructor. It will then only fall back to malloc() if |
409 | // the scratch space is not large enough. |
410 | // |
411 | // Do NOT use this class unless you really know what you're doing. This class is problematic |
412 | // because it requires advance knowledge of the size of your message, which is usually impossible |
413 | // to determine without actually building the message. The class was created primarily to |
414 | // implement `copyToUnchecked()`, which itself exists only to support other internal parts of |
415 | // the Cap'n Proto implementation. |
416 | |
417 | public: |
418 | explicit FlatMessageBuilder(kj::ArrayPtr<word> array); |
419 | KJ_DISALLOW_COPY(FlatMessageBuilder); |
420 | virtual ~FlatMessageBuilder() noexcept(false); |
421 | |
422 | void requireFilled(); |
423 | // Throws an exception if the flat array is not exactly full. |
424 | |
425 | virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override; |
426 | |
427 | private: |
428 | kj::ArrayPtr<word> array; |
429 | bool allocated; |
430 | }; |
431 | |
432 | // ======================================================================================= |
433 | // implementation details |
434 | |
435 | inline const ReaderOptions& MessageReader::getOptions() { |
436 | return options; |
437 | } |
438 | |
439 | template <typename RootType> |
440 | inline typename RootType::Reader MessageReader::getRoot() { |
441 | return getRootInternal().getAs<RootType>(); |
442 | } |
443 | |
444 | template <typename RootType> |
445 | inline typename RootType::Builder MessageBuilder::initRoot() { |
446 | return getRootInternal().initAs<RootType>(); |
447 | } |
448 | |
449 | template <typename Reader> |
450 | inline void MessageBuilder::setRoot(Reader&& value) { |
451 | getRootInternal().setAs<FromReader<Reader>>(value); |
452 | } |
453 | |
454 | template <typename RootType> |
455 | inline typename RootType::Builder MessageBuilder::getRoot() { |
456 | return getRootInternal().getAs<RootType>(); |
457 | } |
458 | |
459 | template <typename T> |
460 | void MessageBuilder::adoptRoot(Orphan<T>&& orphan) { |
461 | return getRootInternal().adopt(kj::mv(orphan)); |
462 | } |
463 | |
464 | template <typename RootType, typename SchemaType> |
465 | typename RootType::Reader MessageReader::getRoot(SchemaType schema) { |
466 | return getRootInternal().getAs<RootType>(schema); |
467 | } |
468 | |
469 | template <typename RootType, typename SchemaType> |
470 | typename RootType::Builder MessageBuilder::getRoot(SchemaType schema) { |
471 | return getRootInternal().getAs<RootType>(schema); |
472 | } |
473 | |
474 | template <typename RootType, typename SchemaType> |
475 | typename RootType::Builder MessageBuilder::initRoot(SchemaType schema) { |
476 | return getRootInternal().initAs<RootType>(schema); |
477 | } |
478 | |
479 | template <typename RootType> |
480 | typename RootType::Reader readMessageUnchecked(const word* data) { |
481 | return AnyPointer::Reader(_::PointerReader::getRootUnchecked(data)).getAs<RootType>(); |
482 | } |
483 | |
484 | template <typename Reader> |
485 | void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer) { |
486 | FlatMessageBuilder builder(uncheckedBuffer); |
487 | builder.setRoot(kj::fwd<Reader>(reader)); |
488 | builder.requireFilled(); |
489 | } |
490 | |
491 | template <typename RootType> |
492 | typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data) { |
493 | return typename RootType::Reader(_::StructReader(data)); |
494 | } |
495 | |
496 | template <typename BuilderType> |
497 | typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder) { |
498 | auto bytes = _::PointerHelpers<FromBuilder<BuilderType>>::getInternalBuilder(kj::mv(builder)) |
499 | .getDataSectionAsBlob(); |
500 | return kj::arrayPtr(reinterpret_cast<word*>(bytes.begin()), |
501 | reinterpret_cast<word*>(bytes.end())); |
502 | } |
503 | |
504 | template <typename Type> |
505 | static typename Type::Reader defaultValue() { |
506 | return typename Type::Reader(_::StructReader()); |
507 | } |
508 | |
509 | template <typename T> |
510 | kj::Array<word> canonicalize(T&& reader) { |
511 | return _::PointerHelpers<FromReader<T>>::getInternalReader(reader).canonicalize(); |
512 | } |
513 | |
514 | } // namespace capnp |
515 | |