| 1 | // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #include <kj/common.h> |
| 23 | #include <kj/memory.h> |
| 24 | #include <kj/mutex.h> |
| 25 | #include <kj/debug.h> |
| 26 | #include <kj/vector.h> |
| 27 | #include "common.h" |
| 28 | #include "layout.h" |
| 29 | #include "any.h" |
| 30 | |
| 31 | #pragma once |
| 32 | |
| 33 | #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS) |
| 34 | #pragma GCC system_header |
| 35 | #endif |
| 36 | |
| 37 | namespace capnp { |
| 38 | |
| 39 | namespace _ { // private |
| 40 | class ReaderArena; |
| 41 | class BuilderArena; |
| 42 | } |
| 43 | |
| 44 | class StructSchema; |
| 45 | class Orphanage; |
| 46 | template <typename T> |
| 47 | class Orphan; |
| 48 | |
| 49 | // ======================================================================================= |
| 50 | |
| 51 | struct ReaderOptions { |
| 52 | // Options controlling how data is read. |
| 53 | |
| 54 | uint64_t traversalLimitInWords = 8 * 1024 * 1024; |
| 55 | // Limits how many total words of data are allowed to be traversed. Traversal is counted when |
| 56 | // a new struct or list builder is obtained, e.g. from a get() accessor. This means that calling |
| 57 | // the getter for the same sub-struct multiple times will cause it to be double-counted. Once |
| 58 | // the traversal limit is reached, an error will be reported. |
| 59 | // |
| 60 | // This limit exists for security reasons. It is possible for an attacker to construct a message |
| 61 | // in which multiple pointers point at the same location. This is technically invalid, but hard |
| 62 | // to detect. Using such a message, an attacker could cause a message which is small on the wire |
| 63 | // to appear much larger when actually traversed, possibly exhausting server resources leading to |
| 64 | // denial-of-service. |
| 65 | // |
| 66 | // It makes sense to set a traversal limit that is much larger than the underlying message. |
| 67 | // Together with sensible coding practices (e.g. trying to avoid calling sub-object getters |
| 68 | // multiple times, which is expensive anyway), this should provide adequate protection without |
| 69 | // inconvenience. |
| 70 | // |
| 71 | // The default limit is 64 MiB. This may or may not be a sensible number for any given use case, |
| 72 | // but probably at least prevents easy exploitation while also avoiding causing problems in most |
| 73 | // typical cases. |
| 74 | |
| 75 | int nestingLimit = 64; |
| 76 | // Limits how deeply-nested a message structure can be, e.g. structs containing other structs or |
| 77 | // lists of structs. |
| 78 | // |
| 79 | // Like the traversal limit, this limit exists for security reasons. Since it is common to use |
| 80 | // recursive code to traverse recursive data structures, an attacker could easily cause a stack |
| 81 | // overflow by sending a very-deeply-nested (or even cyclic) message, without the message even |
| 82 | // being very large. The default limit of 64 is probably low enough to prevent any chance of |
| 83 | // stack overflow, yet high enough that it is never a problem in practice. |
| 84 | }; |
| 85 | |
| 86 | class MessageReader { |
| 87 | // Abstract interface for an object used to read a Cap'n Proto message. Subclasses of |
| 88 | // MessageReader are responsible for reading the raw, flat message content. Callers should |
| 89 | // usually call `messageReader.getRoot<MyStructType>()` to get a `MyStructType::Reader` |
| 90 | // representing the root of the message, then use that to traverse the message content. |
| 91 | // |
| 92 | // Some common subclasses of `MessageReader` include `SegmentArrayMessageReader`, whose |
| 93 | // constructor accepts pointers to the raw data, and `StreamFdMessageReader` (from |
| 94 | // `serialize.h`), which reads the message from a file descriptor. One might implement other |
| 95 | // subclasses to handle things like reading from shared memory segments, mmap()ed files, etc. |
| 96 | |
| 97 | public: |
| 98 | MessageReader(ReaderOptions options); |
| 99 | // It is suggested that subclasses take ReaderOptions as a constructor parameter, but give it a |
| 100 | // default value of "ReaderOptions()". The base class constructor doesn't have a default value |
| 101 | // in order to remind subclasses that they really need to give the user a way to provide this. |
| 102 | |
| 103 | virtual ~MessageReader() noexcept(false); |
| 104 | |
| 105 | virtual kj::ArrayPtr<const word> getSegment(uint id) = 0; |
| 106 | // Gets the segment with the given ID, or returns null if no such segment exists. This method |
| 107 | // will be called at most once for each segment ID. |
| 108 | // |
| 109 | // The returned array must be aligned properly for the host architecture. This means that on |
| 110 | // x86/x64, alignment is optional, though recommended for performance, whereas on many other |
| 111 | // architectures, alignment is required. |
| 112 | |
| 113 | inline const ReaderOptions& getOptions(); |
| 114 | // Get the options passed to the constructor. |
| 115 | |
| 116 | template <typename RootType> |
| 117 | typename RootType::Reader getRoot(); |
| 118 | // Get the root struct of the message, interpreting it as the given struct type. |
| 119 | |
| 120 | template <typename RootType, typename SchemaType> |
| 121 | typename RootType::Reader getRoot(SchemaType schema); |
| 122 | // Dynamically interpret the root struct of the message using the given schema (a StructSchema). |
| 123 | // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
| 124 | // use this. |
| 125 | |
| 126 | bool isCanonical(); |
| 127 | // Returns whether the message encoded in the reader is in canonical form. |
| 128 | |
| 129 | private: |
| 130 | ReaderOptions options; |
| 131 | |
| 132 | // Space in which we can construct a ReaderArena. We don't use ReaderArena directly here |
| 133 | // because we don't want clients to have to #include arena.h, which itself includes a bunch of |
| 134 | // other headers. We don't use a pointer to a ReaderArena because that would require an |
| 135 | // extra malloc on every message which could be expensive when processing small messages. |
| 136 | void* arenaSpace[18 + sizeof(kj::MutexGuarded<void*>) / sizeof(void*)]; |
| 137 | bool allocatedArena; |
| 138 | |
| 139 | _::ReaderArena* arena() { return reinterpret_cast<_::ReaderArena*>(arenaSpace); } |
| 140 | AnyPointer::Reader getRootInternal(); |
| 141 | }; |
| 142 | |
| 143 | class MessageBuilder { |
| 144 | // Abstract interface for an object used to allocate and build a message. Subclasses of |
| 145 | // MessageBuilder are responsible for allocating the space in which the message will be written. |
| 146 | // The most common subclass is `MallocMessageBuilder`, but other subclasses may be used to do |
| 147 | // tricky things like allocate messages in shared memory or mmap()ed files. |
| 148 | // |
| 149 | // Creating a new message ususually means allocating a new MessageBuilder (ideally on the stack) |
| 150 | // and then calling `messageBuilder.initRoot<MyStructType>()` to get a `MyStructType::Builder`. |
| 151 | // That, in turn, can be used to fill in the message content. When done, you can call |
| 152 | // `messageBuilder.getSegmentsForOutput()` to get a list of flat data arrays containing the |
| 153 | // message. |
| 154 | |
| 155 | public: |
| 156 | MessageBuilder(); |
| 157 | virtual ~MessageBuilder() noexcept(false); |
| 158 | KJ_DISALLOW_COPY(MessageBuilder); |
| 159 | |
| 160 | struct SegmentInit { |
| 161 | kj::ArrayPtr<word> space; |
| 162 | |
| 163 | size_t wordsUsed; |
| 164 | // Number of words in `space` which are used; the rest are free space in which additional |
| 165 | // objects may be allocated. |
| 166 | }; |
| 167 | |
| 168 | explicit MessageBuilder(kj::ArrayPtr<SegmentInit> segments); |
| 169 | // Create a MessageBuilder backed by existing memory. This is an advanced interface that most |
| 170 | // people should not use. THIS METHOD IS INSECURE; see below. |
| 171 | // |
| 172 | // This allows a MessageBuilder to be constructed to modify an in-memory message without first |
| 173 | // making a copy of the content. This is especially useful in conjunction with mmap(). |
| 174 | // |
| 175 | // The contents of each segment must outlive the MessageBuilder, but the SegmentInit array itself |
| 176 | // only need outlive the constructor. |
| 177 | // |
| 178 | // SECURITY: Do not use this in conjunction with untrusted data. This constructor assumes that |
| 179 | // the input message is valid. This constructor is designed to be used with data you control, |
| 180 | // e.g. an mmap'd file which is owned and accessed by only one program. When reading data you |
| 181 | // do not trust, you *must* load it into a Reader and then copy into a Builder as a means of |
| 182 | // validating the content. |
| 183 | // |
| 184 | // WARNING: It is NOT safe to initialize a MessageBuilder in this way from memory that is |
| 185 | // currently in use by another MessageBuilder or MessageReader. Other readers/builders will |
| 186 | // not observe changes to the segment sizes nor newly-allocated segments caused by allocating |
| 187 | // new objects in this message. |
| 188 | |
| 189 | virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) = 0; |
| 190 | // Allocates an array of at least the given number of zero'd words, throwing an exception or |
| 191 | // crashing if this is not possible. It is expected that this method will usually return more |
| 192 | // space than requested, and the caller should use that extra space as much as possible before |
| 193 | // allocating more. The returned space remains valid at least until the MessageBuilder is |
| 194 | // destroyed. |
| 195 | // |
| 196 | // allocateSegment() is responsible for zeroing the memory before returning. This is required |
| 197 | // because otherwise the Cap'n Proto implementation would have to zero the memory anyway, and |
| 198 | // many allocators are able to provide already-zero'd memory more efficiently. |
| 199 | // |
| 200 | // The returned array must be aligned properly for the host architecture. This means that on |
| 201 | // x86/x64, alignment is optional, though recommended for performance, whereas on many other |
| 202 | // architectures, alignment is required. |
| 203 | |
| 204 | template <typename RootType> |
| 205 | typename RootType::Builder initRoot(); |
| 206 | // Initialize the root struct of the message as the given struct type. |
| 207 | |
| 208 | template <typename Reader> |
| 209 | void setRoot(Reader&& value); |
| 210 | // Set the root struct to a deep copy of the given struct. |
| 211 | |
| 212 | template <typename RootType> |
| 213 | typename RootType::Builder getRoot(); |
| 214 | // Get the root struct of the message, interpreting it as the given struct type. |
| 215 | |
| 216 | template <typename RootType, typename SchemaType> |
| 217 | typename RootType::Builder getRoot(SchemaType schema); |
| 218 | // Dynamically interpret the root struct of the message using the given schema (a StructSchema). |
| 219 | // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
| 220 | // use this. |
| 221 | |
| 222 | template <typename RootType, typename SchemaType> |
| 223 | typename RootType::Builder initRoot(SchemaType schema); |
| 224 | // Dynamically init the root struct of the message using the given schema (a StructSchema). |
| 225 | // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
| 226 | // use this. |
| 227 | |
| 228 | template <typename T> |
| 229 | void adoptRoot(Orphan<T>&& orphan); |
| 230 | // Like setRoot() but adopts the orphan without copying. |
| 231 | |
| 232 | kj::ArrayPtr<const kj::ArrayPtr<const word>> getSegmentsForOutput(); |
| 233 | // Get the raw data that makes up the message. |
| 234 | |
| 235 | Orphanage getOrphanage(); |
| 236 | |
| 237 | bool isCanonical(); |
| 238 | // Check whether the message builder is in canonical form |
| 239 | |
| 240 | private: |
| 241 | void* arenaSpace[22]; |
| 242 | // Space in which we can construct a BuilderArena. We don't use BuilderArena directly here |
| 243 | // because we don't want clients to have to #include arena.h, which itself includes a bunch of |
| 244 | // big STL headers. We don't use a pointer to a BuilderArena because that would require an |
| 245 | // extra malloc on every message which could be expensive when processing small messages. |
| 246 | |
| 247 | bool allocatedArena = false; |
| 248 | // We have to initialize the arena lazily because when we do so we want to allocate the root |
| 249 | // pointer immediately, and this will allocate a segment, which requires a virtual function |
| 250 | // call on the MessageBuilder. We can't do such a call in the constructor since the subclass |
| 251 | // isn't constructed yet. This is kind of annoying because it means that getOrphanage() is |
| 252 | // not thread-safe, but that shouldn't be a huge deal... |
| 253 | |
| 254 | _::BuilderArena* arena() { return reinterpret_cast<_::BuilderArena*>(arenaSpace); } |
| 255 | _::SegmentBuilder* getRootSegment(); |
| 256 | AnyPointer::Builder getRootInternal(); |
| 257 | }; |
| 258 | |
| 259 | template <typename RootType> |
| 260 | typename RootType::Reader readMessageUnchecked(const word* data); |
| 261 | // IF THE INPUT IS INVALID, THIS MAY CRASH, CORRUPT MEMORY, CREATE A SECURITY HOLE IN YOUR APP, |
| 262 | // MURDER YOUR FIRST-BORN CHILD, AND/OR BRING ABOUT ETERNAL DAMNATION ON ALL OF HUMANITY. DO NOT |
| 263 | // USE UNLESS YOU UNDERSTAND THE CONSEQUENCES. |
| 264 | // |
| 265 | // Given a pointer to a known-valid message located in a single contiguous memory segment, |
| 266 | // returns a reader for that message. No bounds-checking will be done while traversing this |
| 267 | // message. Use this only if you have already verified that all pointers are valid and in-bounds, |
| 268 | // and there are no far pointers in the message. |
| 269 | // |
| 270 | // To create a message that can be passed to this function, build a message using a MallocAllocator |
| 271 | // whose preferred segment size is larger than the message size. This guarantees that the message |
| 272 | // will be allocated as a single segment, meaning getSegmentsForOutput() returns a single word |
| 273 | // array. That word array is your message; you may pass a pointer to its first word into |
| 274 | // readMessageUnchecked() to read the message. |
| 275 | // |
| 276 | // This can be particularly handy for embedding messages in generated code: you can |
| 277 | // embed the raw bytes (using AlignedData) then make a Reader for it using this. This is the way |
| 278 | // default values are embedded in code generated by the Cap'n Proto compiler. E.g., if you have |
| 279 | // a message MyMessage, you can read its default value like so: |
| 280 | // MyMessage::Reader reader = Message<MyMessage>::readMessageUnchecked(MyMessage::DEFAULT.words); |
| 281 | // |
| 282 | // To sanitize a message from an untrusted source such that it can be safely passed to |
| 283 | // readMessageUnchecked(), use copyToUnchecked(). |
| 284 | |
| 285 | template <typename Reader> |
| 286 | void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer); |
| 287 | // Copy the content of the given reader into the given buffer, such that it can safely be passed to |
| 288 | // readMessageUnchecked(). The buffer's size must be exactly reader.totalSizeInWords() + 1, |
| 289 | // otherwise an exception will be thrown. The buffer must be zero'd before calling. |
| 290 | |
| 291 | template <typename RootType> |
| 292 | typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data); |
| 293 | // Interprets the given data as a single, data-only struct. Only primitive fields (booleans, |
| 294 | // numbers, and enums) will be readable; all pointers will be null. This is useful if you want |
| 295 | // to use Cap'n Proto as a language/platform-neutral way to pack some bits. |
| 296 | // |
| 297 | // The input is a word array rather than a byte array to enforce alignment. If you have a byte |
| 298 | // array which you know is word-aligned (or if your platform supports unaligned reads and you don't |
| 299 | // mind the performance penalty), then you can use `reinterpret_cast` to convert a byte array into |
| 300 | // a word array: |
| 301 | // |
| 302 | // kj::arrayPtr(reinterpret_cast<const word*>(bytes.begin()), |
| 303 | // reinterpret_cast<const word*>(bytes.end())) |
| 304 | |
| 305 | template <typename BuilderType> |
| 306 | typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder); |
| 307 | // Given a struct builder, get the underlying data section as a word array, suitable for passing |
| 308 | // to `readDataStruct()`. |
| 309 | // |
| 310 | // Note that you may call `.toBytes()` on the returned value to convert to `ArrayPtr<const byte>`. |
| 311 | |
| 312 | template <typename Type> |
| 313 | static typename Type::Reader defaultValue(); |
| 314 | // Get a default instance of the given struct or list type. |
| 315 | // |
| 316 | // TODO(cleanup): Find a better home for this function? |
| 317 | |
| 318 | // ======================================================================================= |
| 319 | |
| 320 | class SegmentArrayMessageReader: public MessageReader { |
| 321 | // A simple MessageReader that reads from an array of word arrays representing all segments. |
| 322 | // In particular you can read directly from the output of MessageBuilder::getSegmentsForOutput() |
| 323 | // (although it would probably make more sense to call builder.getRoot().asReader() in that case). |
| 324 | |
| 325 | public: |
| 326 | SegmentArrayMessageReader(kj::ArrayPtr<const kj::ArrayPtr<const word>> segments, |
| 327 | ReaderOptions options = ReaderOptions()); |
| 328 | // Creates a message pointing at the given segment array, without taking ownership of the |
| 329 | // segments. All arrays passed in must remain valid until the MessageReader is destroyed. |
| 330 | |
| 331 | KJ_DISALLOW_COPY(SegmentArrayMessageReader); |
| 332 | ~SegmentArrayMessageReader() noexcept(false); |
| 333 | |
| 334 | virtual kj::ArrayPtr<const word> getSegment(uint id) override; |
| 335 | |
| 336 | private: |
| 337 | kj::ArrayPtr<const kj::ArrayPtr<const word>> segments; |
| 338 | }; |
| 339 | |
| 340 | enum class AllocationStrategy: uint8_t { |
| 341 | FIXED_SIZE, |
| 342 | // The builder will prefer to allocate the same amount of space for each segment with no |
| 343 | // heuristic growth. It will still allocate larger segments when the preferred size is too small |
| 344 | // for some single object. This mode is generally not recommended, but can be particularly useful |
| 345 | // for testing in order to force a message to allocate a predictable number of segments. Note |
| 346 | // that you can force every single object in the message to be located in a separate segment by |
| 347 | // using this mode with firstSegmentWords = 0. |
| 348 | |
| 349 | GROW_HEURISTICALLY |
| 350 | // The builder will heuristically decide how much space to allocate for each segment. Each |
| 351 | // allocated segment will be progressively larger than the previous segments on the assumption |
| 352 | // that message sizes are exponentially distributed. The total number of segments that will be |
| 353 | // allocated for a message of size n is O(log n). |
| 354 | }; |
| 355 | |
| 356 | constexpr uint SUGGESTED_FIRST_SEGMENT_WORDS = 1024; |
| 357 | constexpr AllocationStrategy SUGGESTED_ALLOCATION_STRATEGY = AllocationStrategy::GROW_HEURISTICALLY; |
| 358 | |
| 359 | class MallocMessageBuilder: public MessageBuilder { |
| 360 | // A simple MessageBuilder that uses malloc() (actually, calloc()) to allocate segments. This |
| 361 | // implementation should be reasonable for any case that doesn't require writing the message to |
| 362 | // a specific location in memory. |
| 363 | |
| 364 | public: |
| 365 | explicit MallocMessageBuilder(uint firstSegmentWords = SUGGESTED_FIRST_SEGMENT_WORDS, |
| 366 | AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY); |
| 367 | // Creates a BuilderContext which allocates at least the given number of words for the first |
| 368 | // segment, and then uses the given strategy to decide how much to allocate for subsequent |
| 369 | // segments. When choosing a value for firstSegmentWords, consider that: |
| 370 | // 1) Reading and writing messages gets slower when multiple segments are involved, so it's good |
| 371 | // if most messages fit in a single segment. |
| 372 | // 2) Unused bytes will not be written to the wire, so generally it is not a big deal to allocate |
| 373 | // more space than you need. It only becomes problematic if you are allocating many messages |
| 374 | // in parallel and thus use lots of memory, or if you allocate so much extra space that just |
| 375 | // zeroing it out becomes a bottleneck. |
| 376 | // The defaults have been chosen to be reasonable for most people, so don't change them unless you |
| 377 | // have reason to believe you need to. |
| 378 | |
| 379 | explicit MallocMessageBuilder(kj::ArrayPtr<word> firstSegment, |
| 380 | AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY); |
| 381 | // This version always returns the given array for the first segment, and then proceeds with the |
| 382 | // allocation strategy. This is useful for optimization when building lots of small messages in |
| 383 | // a tight loop: you can reuse the space for the first segment. |
| 384 | // |
| 385 | // firstSegment MUST be zero-initialized. MallocMessageBuilder's destructor will write new zeros |
| 386 | // over any space that was used so that it can be reused. |
| 387 | |
| 388 | KJ_DISALLOW_COPY(MallocMessageBuilder); |
| 389 | virtual ~MallocMessageBuilder() noexcept(false); |
| 390 | |
| 391 | virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override; |
| 392 | |
| 393 | private: |
| 394 | uint nextSize; |
| 395 | AllocationStrategy allocationStrategy; |
| 396 | |
| 397 | bool ownFirstSegment; |
| 398 | bool returnedFirstSegment; |
| 399 | |
| 400 | void* firstSegment; |
| 401 | kj::Vector<void*> moreSegments; |
| 402 | }; |
| 403 | |
| 404 | class FlatMessageBuilder: public MessageBuilder { |
| 405 | // THIS IS NOT THE CLASS YOU'RE LOOKING FOR. |
| 406 | // |
| 407 | // If you want to write a message into already-existing scratch space, use `MallocMessageBuilder` |
| 408 | // and pass the scratch space to its constructor. It will then only fall back to malloc() if |
| 409 | // the scratch space is not large enough. |
| 410 | // |
| 411 | // Do NOT use this class unless you really know what you're doing. This class is problematic |
| 412 | // because it requires advance knowledge of the size of your message, which is usually impossible |
| 413 | // to determine without actually building the message. The class was created primarily to |
| 414 | // implement `copyToUnchecked()`, which itself exists only to support other internal parts of |
| 415 | // the Cap'n Proto implementation. |
| 416 | |
| 417 | public: |
| 418 | explicit FlatMessageBuilder(kj::ArrayPtr<word> array); |
| 419 | KJ_DISALLOW_COPY(FlatMessageBuilder); |
| 420 | virtual ~FlatMessageBuilder() noexcept(false); |
| 421 | |
| 422 | void requireFilled(); |
| 423 | // Throws an exception if the flat array is not exactly full. |
| 424 | |
| 425 | virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override; |
| 426 | |
| 427 | private: |
| 428 | kj::ArrayPtr<word> array; |
| 429 | bool allocated; |
| 430 | }; |
| 431 | |
| 432 | // ======================================================================================= |
| 433 | // implementation details |
| 434 | |
| 435 | inline const ReaderOptions& MessageReader::getOptions() { |
| 436 | return options; |
| 437 | } |
| 438 | |
| 439 | template <typename RootType> |
| 440 | inline typename RootType::Reader MessageReader::getRoot() { |
| 441 | return getRootInternal().getAs<RootType>(); |
| 442 | } |
| 443 | |
| 444 | template <typename RootType> |
| 445 | inline typename RootType::Builder MessageBuilder::initRoot() { |
| 446 | return getRootInternal().initAs<RootType>(); |
| 447 | } |
| 448 | |
| 449 | template <typename Reader> |
| 450 | inline void MessageBuilder::setRoot(Reader&& value) { |
| 451 | getRootInternal().setAs<FromReader<Reader>>(value); |
| 452 | } |
| 453 | |
| 454 | template <typename RootType> |
| 455 | inline typename RootType::Builder MessageBuilder::getRoot() { |
| 456 | return getRootInternal().getAs<RootType>(); |
| 457 | } |
| 458 | |
| 459 | template <typename T> |
| 460 | void MessageBuilder::adoptRoot(Orphan<T>&& orphan) { |
| 461 | return getRootInternal().adopt(kj::mv(orphan)); |
| 462 | } |
| 463 | |
| 464 | template <typename RootType, typename SchemaType> |
| 465 | typename RootType::Reader MessageReader::getRoot(SchemaType schema) { |
| 466 | return getRootInternal().getAs<RootType>(schema); |
| 467 | } |
| 468 | |
| 469 | template <typename RootType, typename SchemaType> |
| 470 | typename RootType::Builder MessageBuilder::getRoot(SchemaType schema) { |
| 471 | return getRootInternal().getAs<RootType>(schema); |
| 472 | } |
| 473 | |
| 474 | template <typename RootType, typename SchemaType> |
| 475 | typename RootType::Builder MessageBuilder::initRoot(SchemaType schema) { |
| 476 | return getRootInternal().initAs<RootType>(schema); |
| 477 | } |
| 478 | |
| 479 | template <typename RootType> |
| 480 | typename RootType::Reader readMessageUnchecked(const word* data) { |
| 481 | return AnyPointer::Reader(_::PointerReader::getRootUnchecked(data)).getAs<RootType>(); |
| 482 | } |
| 483 | |
| 484 | template <typename Reader> |
| 485 | void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer) { |
| 486 | FlatMessageBuilder builder(uncheckedBuffer); |
| 487 | builder.setRoot(kj::fwd<Reader>(reader)); |
| 488 | builder.requireFilled(); |
| 489 | } |
| 490 | |
| 491 | template <typename RootType> |
| 492 | typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data) { |
| 493 | return typename RootType::Reader(_::StructReader(data)); |
| 494 | } |
| 495 | |
| 496 | template <typename BuilderType> |
| 497 | typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder) { |
| 498 | auto bytes = _::PointerHelpers<FromBuilder<BuilderType>>::getInternalBuilder(kj::mv(builder)) |
| 499 | .getDataSectionAsBlob(); |
| 500 | return kj::arrayPtr(reinterpret_cast<word*>(bytes.begin()), |
| 501 | reinterpret_cast<word*>(bytes.end())); |
| 502 | } |
| 503 | |
| 504 | template <typename Type> |
| 505 | static typename Type::Reader defaultValue() { |
| 506 | return typename Type::Reader(_::StructReader()); |
| 507 | } |
| 508 | |
| 509 | template <typename T> |
| 510 | kj::Array<word> canonicalize(T&& reader) { |
| 511 | return _::PointerHelpers<FromReader<T>>::getInternalReader(reader).canonicalize(); |
| 512 | } |
| 513 | |
| 514 | } // namespace capnp |
| 515 | |