| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | // This file contains types which are intended to help detect incorrect usage at compile |
| 23 | // time, but should then be optimized down to basic primitives (usually, integers) by the |
| 24 | // compiler. |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS) |
| 29 | #pragma GCC system_header |
| 30 | #endif |
| 31 | |
| 32 | #include <inttypes.h> |
| 33 | #include <kj/string.h> |
| 34 | #include <kj/memory.h> |
| 35 | #include <kj/windows-sanity.h> // work-around macro conflict with `VOID` |
| 36 | |
| 37 | #if CAPNP_DEBUG_TYPES |
| 38 | #include <kj/units.h> |
| 39 | #endif |
| 40 | |
| 41 | namespace capnp { |
| 42 | |
| 43 | #define CAPNP_VERSION_MAJOR 0 |
| 44 | #define CAPNP_VERSION_MINOR 8 |
| 45 | #define CAPNP_VERSION_MICRO 0 |
| 46 | |
| 47 | #define CAPNP_VERSION \ |
| 48 | (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO) |
| 49 | |
| 50 | #ifndef CAPNP_LITE |
| 51 | #define CAPNP_LITE 0 |
| 52 | #endif |
| 53 | |
| 54 | #if CAPNP_TESTING_CAPNP // defined in Cap'n Proto's own unit tests; others should not define this |
| 55 | #define CAPNP_DEPRECATED(reason) |
| 56 | #else |
| 57 | #define CAPNP_DEPRECATED KJ_DEPRECATED |
| 58 | #endif |
| 59 | |
| 60 | typedef unsigned int uint; |
| 61 | |
| 62 | struct Void { |
| 63 | // Type used for Void fields. Using C++'s "void" type creates a bunch of issues since it behaves |
| 64 | // differently from other types. |
| 65 | |
| 66 | inline constexpr bool operator==(Void other) const { return true; } |
| 67 | inline constexpr bool operator!=(Void other) const { return false; } |
| 68 | }; |
| 69 | |
| 70 | static constexpr Void VOID = Void(); |
| 71 | // Constant value for `Void`, which is an empty struct. |
| 72 | |
| 73 | inline kj::StringPtr KJ_STRINGIFY(Void) { return "void" ; } |
| 74 | |
| 75 | struct Text; |
| 76 | struct Data; |
| 77 | |
| 78 | enum class Kind: uint8_t { |
| 79 | PRIMITIVE, |
| 80 | BLOB, |
| 81 | ENUM, |
| 82 | STRUCT, |
| 83 | UNION, |
| 84 | INTERFACE, |
| 85 | LIST, |
| 86 | |
| 87 | OTHER |
| 88 | // Some other type which is often a type parameter to Cap'n Proto templates, but which needs |
| 89 | // special handling. This includes types like AnyPointer, Dynamic*, etc. |
| 90 | }; |
| 91 | |
| 92 | enum class Style: uint8_t { |
| 93 | PRIMITIVE, |
| 94 | POINTER, // other than struct |
| 95 | STRUCT, |
| 96 | CAPABILITY |
| 97 | }; |
| 98 | |
| 99 | enum class ElementSize: uint8_t { |
| 100 | // Size of a list element. |
| 101 | |
| 102 | VOID = 0, |
| 103 | BIT = 1, |
| 104 | BYTE = 2, |
| 105 | TWO_BYTES = 3, |
| 106 | FOUR_BYTES = 4, |
| 107 | EIGHT_BYTES = 5, |
| 108 | |
| 109 | POINTER = 6, |
| 110 | |
| 111 | INLINE_COMPOSITE = 7 |
| 112 | }; |
| 113 | |
| 114 | enum class PointerType { |
| 115 | // Various wire types a pointer field can take |
| 116 | |
| 117 | NULL_, |
| 118 | // Should be NULL, but that's #defined in stddef.h |
| 119 | |
| 120 | STRUCT, |
| 121 | LIST, |
| 122 | CAPABILITY |
| 123 | }; |
| 124 | |
| 125 | namespace schemas { |
| 126 | |
| 127 | template <typename T> |
| 128 | struct EnumInfo; |
| 129 | |
| 130 | } // namespace schemas |
| 131 | |
| 132 | namespace _ { // private |
| 133 | |
| 134 | template <typename T, typename = void> struct Kind_; |
| 135 | |
| 136 | template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 137 | template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 138 | template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 139 | template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 140 | template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 141 | template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 142 | template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 143 | template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 144 | template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 145 | template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 146 | template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 147 | template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; }; |
| 148 | template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; }; |
| 149 | template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; }; |
| 150 | |
| 151 | template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> { |
| 152 | static constexpr Kind kind = Kind::STRUCT; |
| 153 | }; |
| 154 | template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> { |
| 155 | static constexpr Kind kind = Kind::INTERFACE; |
| 156 | }; |
| 157 | template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> { |
| 158 | static constexpr Kind kind = Kind::ENUM; |
| 159 | }; |
| 160 | |
| 161 | } // namespace _ (private) |
| 162 | |
| 163 | template <typename T, Kind k = _::Kind_<T>::kind> |
| 164 | inline constexpr Kind kind() { |
| 165 | // This overload of kind() matches types which have a Kind_ specialization. |
| 166 | |
| 167 | return k; |
| 168 | } |
| 169 | |
| 170 | #if _MSC_VER |
| 171 | |
| 172 | #define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind |
| 173 | // Avoid constexpr methods in MSVC (it remains buggy in many situations). |
| 174 | |
| 175 | #else // _MSC_VER |
| 176 | |
| 177 | #define CAPNP_KIND(T) ::capnp::kind<T>() |
| 178 | // Use this macro rather than kind<T>() in any code which must work in MSVC. |
| 179 | |
| 180 | #endif // _MSC_VER, else |
| 181 | |
| 182 | #if !CAPNP_LITE |
| 183 | |
| 184 | template <typename T, Kind k = kind<T>()> |
| 185 | inline constexpr Style style() { |
| 186 | return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE |
| 187 | : k == Kind::STRUCT ? Style::STRUCT |
| 188 | : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER; |
| 189 | } |
| 190 | |
| 191 | #endif // !CAPNP_LITE |
| 192 | |
| 193 | template <typename T, Kind k = CAPNP_KIND(T)> |
| 194 | struct List; |
| 195 | |
| 196 | #if _MSC_VER |
| 197 | |
| 198 | template <typename T, Kind k> |
| 199 | struct List {}; |
| 200 | // For some reason, without this declaration, MSVC will error out on some uses of List |
| 201 | // claiming that "T" -- as used in the default initializer for the second template param, "k" -- |
| 202 | // is not defined. I do not understand this error, but adding this empty default declaration fixes |
| 203 | // it. |
| 204 | |
| 205 | #endif |
| 206 | |
| 207 | template <typename T> struct ListElementType_; |
| 208 | template <typename T> struct ListElementType_<List<T>> { typedef T Type; }; |
| 209 | template <typename T> using ListElementType = typename ListElementType_<T>::Type; |
| 210 | |
| 211 | namespace _ { // private |
| 212 | template <typename T, Kind k> struct Kind_<List<T, k>> { |
| 213 | static constexpr Kind kind = Kind::LIST; |
| 214 | }; |
| 215 | } // namespace _ (private) |
| 216 | |
| 217 | template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; }; |
| 218 | template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; }; |
| 219 | template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; }; |
| 220 | template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; }; |
| 221 | template <typename T> using ReaderFor = typename ReaderFor_<T>::Type; |
| 222 | // The type returned by List<T>::Reader::operator[]. |
| 223 | |
| 224 | template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; }; |
| 225 | template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; }; |
| 226 | template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; }; |
| 227 | template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; }; |
| 228 | template <typename T> using BuilderFor = typename BuilderFor_<T>::Type; |
| 229 | // The type returned by List<T>::Builder::operator[]. |
| 230 | |
| 231 | template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;}; |
| 232 | template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; }; |
| 233 | template <typename T> using PipelineFor = typename PipelineFor_<T>::Type; |
| 234 | |
| 235 | template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_; |
| 236 | template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; }; |
| 237 | |
| 238 | template <typename T> |
| 239 | using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type; |
| 240 | |
| 241 | template <typename T> |
| 242 | using FromReader = typename kj::Decay<T>::Reads; |
| 243 | // FromReader<MyType::Reader> = MyType (for any Cap'n Proto type). |
| 244 | |
| 245 | template <typename T> |
| 246 | using FromBuilder = typename kj::Decay<T>::Builds; |
| 247 | // FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type). |
| 248 | |
| 249 | template <typename T> |
| 250 | using FromPipeline = typename kj::Decay<T>::Pipelines; |
| 251 | // FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type). |
| 252 | |
| 253 | template <typename T> |
| 254 | using FromClient = typename kj::Decay<T>::Calls; |
| 255 | // FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type). |
| 256 | |
| 257 | template <typename T> |
| 258 | using FromServer = typename kj::Decay<T>::Serves; |
| 259 | // FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type). |
| 260 | |
| 261 | template <typename T, typename = void> |
| 262 | struct FromAny_; |
| 263 | |
| 264 | template <typename T> |
| 265 | struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> { |
| 266 | using Type = FromReader<T>; |
| 267 | }; |
| 268 | |
| 269 | template <typename T> |
| 270 | struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> { |
| 271 | using Type = FromBuilder<T>; |
| 272 | }; |
| 273 | |
| 274 | template <typename T> |
| 275 | struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> { |
| 276 | using Type = FromPipeline<T>; |
| 277 | }; |
| 278 | |
| 279 | // Note that T::Client is covered by FromReader |
| 280 | |
| 281 | template <typename T> |
| 282 | struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> { |
| 283 | using Type = FromServer<T>; |
| 284 | }; |
| 285 | |
| 286 | template <typename T> |
| 287 | struct FromAny_<T, |
| 288 | kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> { |
| 289 | // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC |
| 290 | // cannot yet use style<T>() in this constexpr context. |
| 291 | |
| 292 | using Type = kj::Decay<T>; |
| 293 | }; |
| 294 | |
| 295 | template <typename T> |
| 296 | using FromAny = typename FromAny_<T>::Type; |
| 297 | // Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is: |
| 298 | // |
| 299 | // Foo::Reader -> Foo |
| 300 | // Foo::Builder -> Foo |
| 301 | // Foo::Pipeline -> Foo |
| 302 | // Foo::Client -> Foo |
| 303 | // Own<Foo::Server> -> Foo |
| 304 | // uint32_t -> uint32_t |
| 305 | |
| 306 | namespace _ { // private |
| 307 | |
| 308 | template <typename T, Kind k = CAPNP_KIND(T)> |
| 309 | struct PointerHelpers; |
| 310 | |
| 311 | #if _MSC_VER |
| 312 | |
| 313 | template <typename T, Kind k> |
| 314 | struct PointerHelpers {}; |
| 315 | // For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers |
| 316 | // claiming that "T" -- as used in the default initializer for the second template param, "k" -- |
| 317 | // is not defined. I do not understand this error, but adding this empty default declaration fixes |
| 318 | // it. |
| 319 | |
| 320 | #endif |
| 321 | |
| 322 | } // namespace _ (private) |
| 323 | |
| 324 | struct MessageSize { |
| 325 | // Size of a message. Every struct and list type has a method `.totalSize()` that returns this. |
| 326 | uint64_t wordCount; |
| 327 | uint capCount; |
| 328 | |
| 329 | inline constexpr MessageSize operator+(const MessageSize& other) const { |
| 330 | return { wordCount + other.wordCount, capCount + other.capCount }; |
| 331 | } |
| 332 | }; |
| 333 | |
| 334 | // ======================================================================================= |
| 335 | // Raw memory types and measures |
| 336 | |
| 337 | using kj::byte; |
| 338 | |
| 339 | class word { |
| 340 | // word is an opaque type with size of 64 bits. This type is useful only to make pointer |
| 341 | // arithmetic clearer. Since the contents are private, the only way to access them is to first |
| 342 | // reinterpret_cast to some other pointer type. |
| 343 | // |
| 344 | // Copying is disallowed because you should always use memcpy(). Otherwise, you may run afoul of |
| 345 | // aliasing rules. |
| 346 | // |
| 347 | // A pointer of type word* should always be word-aligned even if won't actually be dereferenced |
| 348 | // as that type. |
| 349 | public: |
| 350 | word() = default; |
| 351 | private: |
| 352 | uint64_t content KJ_UNUSED_MEMBER; |
| 353 | #if __GNUC__ < 8 || __clang__ |
| 354 | // GCC 8's -Wclass-memaccess complains whenever we try to memcpy() a `word` if we've disallowed |
| 355 | // the copy constructor. We don't want to disable the warning becaues it's a useful warning and |
| 356 | // we'd have to disable it for all applications that include this header. Instead we allow `word` |
| 357 | // to be copyable on GCC. |
| 358 | KJ_DISALLOW_COPY(word); |
| 359 | #endif |
| 360 | }; |
| 361 | |
| 362 | static_assert(sizeof(byte) == 1, "uint8_t is not one byte?" ); |
| 363 | static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?" ); |
| 364 | |
| 365 | #if CAPNP_DEBUG_TYPES |
| 366 | // Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types. Otherwise, plain integers are |
| 367 | // used. All the code should still operate exactly the same, we just lose compile-time checking. |
| 368 | // Note that this will also change symbol names, so it's important that the library and any clients |
| 369 | // be compiled with the same setting here. |
| 370 | // |
| 371 | // We disable this by default to reduce symbol name size and avoid any possibility of the compiler |
| 372 | // failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this |
| 373 | // during development and testing. |
| 374 | |
| 375 | namespace _ { class BitLabel; class ElementLabel; struct WirePointer; } |
| 376 | |
| 377 | template <uint width, typename T = uint> |
| 378 | using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>; |
| 379 | template <uint width, typename T = uint> |
| 380 | using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>; |
| 381 | template <uint width, typename T = uint> |
| 382 | using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>; |
| 383 | template <uint width, typename T = uint> |
| 384 | using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>; |
| 385 | template <uint width, typename T = uint> |
| 386 | using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>; |
| 387 | |
| 388 | typedef BitCountN<8, uint8_t> BitCount8; |
| 389 | typedef BitCountN<16, uint16_t> BitCount16; |
| 390 | typedef BitCountN<32, uint32_t> BitCount32; |
| 391 | typedef BitCountN<64, uint64_t> BitCount64; |
| 392 | typedef BitCountN<sizeof(uint) * 8, uint> BitCount; |
| 393 | |
| 394 | typedef ByteCountN<8, uint8_t> ByteCount8; |
| 395 | typedef ByteCountN<16, uint16_t> ByteCount16; |
| 396 | typedef ByteCountN<32, uint32_t> ByteCount32; |
| 397 | typedef ByteCountN<64, uint64_t> ByteCount64; |
| 398 | typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount; |
| 399 | |
| 400 | typedef WordCountN<8, uint8_t> WordCount8; |
| 401 | typedef WordCountN<16, uint16_t> WordCount16; |
| 402 | typedef WordCountN<32, uint32_t> WordCount32; |
| 403 | typedef WordCountN<64, uint64_t> WordCount64; |
| 404 | typedef WordCountN<sizeof(uint) * 8, uint> WordCount; |
| 405 | |
| 406 | typedef ElementCountN<8, uint8_t> ElementCount8; |
| 407 | typedef ElementCountN<16, uint16_t> ElementCount16; |
| 408 | typedef ElementCountN<32, uint32_t> ElementCount32; |
| 409 | typedef ElementCountN<64, uint64_t> ElementCount64; |
| 410 | typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount; |
| 411 | |
| 412 | typedef WirePointerCountN<8, uint8_t> WirePointerCount8; |
| 413 | typedef WirePointerCountN<16, uint16_t> WirePointerCount16; |
| 414 | typedef WirePointerCountN<32, uint32_t> WirePointerCount32; |
| 415 | typedef WirePointerCountN<64, uint64_t> WirePointerCount64; |
| 416 | typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount; |
| 417 | |
| 418 | template <uint width> |
| 419 | using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>()); |
| 420 | template <uint width> |
| 421 | using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>()); |
| 422 | template <uint width> |
| 423 | using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>()); |
| 424 | template <uint width> |
| 425 | using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>()); |
| 426 | |
| 427 | using kj::bounded; |
| 428 | using kj::unbound; |
| 429 | using kj::unboundAs; |
| 430 | using kj::unboundMax; |
| 431 | using kj::unboundMaxBits; |
| 432 | using kj::assertMax; |
| 433 | using kj::assertMaxBits; |
| 434 | using kj::upgradeBound; |
| 435 | using kj::ThrowOverflow; |
| 436 | using kj::assumeBits; |
| 437 | using kj::assumeMax; |
| 438 | using kj::subtractChecked; |
| 439 | using kj::trySubtract; |
| 440 | |
| 441 | template <typename T, typename U> |
| 442 | inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) { |
| 443 | return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 444 | } |
| 445 | template <typename T, typename U> |
| 446 | inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) { |
| 447 | return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 448 | } |
| 449 | template <typename T, typename U> |
| 450 | inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) { |
| 451 | return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 452 | } |
| 453 | template <typename T, typename U> |
| 454 | inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) { |
| 455 | return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 456 | } |
| 457 | |
| 458 | template <typename T, typename U> |
| 459 | inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) { |
| 460 | return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 461 | } |
| 462 | template <typename T, typename U> |
| 463 | inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) { |
| 464 | return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 465 | } |
| 466 | template <typename T, typename U> |
| 467 | inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) { |
| 468 | return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 469 | } |
| 470 | template <typename T, typename U> |
| 471 | inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) { |
| 472 | return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); |
| 473 | } |
| 474 | |
| 475 | constexpr auto BITS = kj::unit<BitCountN<1>>(); |
| 476 | constexpr auto BYTES = kj::unit<ByteCountN<1>>(); |
| 477 | constexpr auto WORDS = kj::unit<WordCountN<1>>(); |
| 478 | constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>(); |
| 479 | constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>(); |
| 480 | |
| 481 | constexpr auto ZERO = kj::bounded<0>(); |
| 482 | constexpr auto ONE = kj::bounded<1>(); |
| 483 | |
| 484 | // GCC 4.7 actually gives unused warnings on these constants in opt mode... |
| 485 | constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES; |
| 486 | constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS; |
| 487 | constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS; |
| 488 | |
| 489 | constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS; |
| 490 | constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS; |
| 491 | constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS; |
| 492 | |
| 493 | constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER; |
| 494 | |
| 495 | constexpr uint SEGMENT_WORD_COUNT_BITS = 29; // Number of words in a segment. |
| 496 | constexpr uint LIST_ELEMENT_COUNT_BITS = 29; // Number of elements in a list. |
| 497 | constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16; // Number of words in a Struct data section. |
| 498 | constexpr uint STRUCT_POINTER_COUNT_BITS = 16; // Number of pointers in a Struct pointer section. |
| 499 | constexpr uint BLOB_SIZE_BITS = 29; // Number of bytes in a blob. |
| 500 | |
| 501 | typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount; |
| 502 | typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount; |
| 503 | typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount; |
| 504 | typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount; |
| 505 | typedef ByteCountN<BLOB_SIZE_BITS> BlobSize; |
| 506 | |
| 507 | constexpr auto MAX_SEGMENT_WORDS = |
| 508 | bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS; |
| 509 | constexpr auto MAX_LIST_ELEMENTS = |
| 510 | bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS; |
| 511 | constexpr auto MAX_STUCT_DATA_WORDS = |
| 512 | bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS; |
| 513 | constexpr auto MAX_STRUCT_POINTER_COUNT = |
| 514 | bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS; |
| 515 | |
| 516 | using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD); |
| 517 | // Number of bits in a Struct data segment (should come out to BitCountN<22>). |
| 518 | |
| 519 | using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS)); |
| 520 | using StructPointerOffset = StructPointerCount; |
| 521 | // Type of a field offset. |
| 522 | |
| 523 | inline StructDataOffset assumeDataOffset(uint32_t offset) { |
| 524 | return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS), |
| 525 | bounded(offset) * ELEMENTS); |
| 526 | } |
| 527 | |
| 528 | inline StructPointerOffset assumePointerOffset(uint32_t offset) { |
| 529 | return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS); |
| 530 | } |
| 531 | |
| 532 | constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1; |
| 533 | typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize; |
| 534 | // Not including NUL terminator. |
| 535 | |
| 536 | template <typename T> |
| 537 | inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() { |
| 538 | return bounded<sizeof(T)>() * BYTES / ELEMENTS; |
| 539 | } |
| 540 | |
| 541 | template <typename T> |
| 542 | inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() { |
| 543 | return bounded<sizeof(T) * 8>() * BITS / ELEMENTS; |
| 544 | } |
| 545 | |
| 546 | template <typename T, uint maxN> |
| 547 | inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T> |
| 548 | intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) { |
| 549 | return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>(); |
| 550 | } |
| 551 | |
| 552 | template <typename T, typename U> |
| 553 | inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) { |
| 554 | return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>())); |
| 555 | } |
| 556 | template <typename T, typename U> |
| 557 | inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) { |
| 558 | return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>())); |
| 559 | } |
| 560 | |
| 561 | #else |
| 562 | |
| 563 | template <uint width, typename T = uint> |
| 564 | using BitCountN = T; |
| 565 | template <uint width, typename T = uint> |
| 566 | using ByteCountN = T; |
| 567 | template <uint width, typename T = uint> |
| 568 | using WordCountN = T; |
| 569 | template <uint width, typename T = uint> |
| 570 | using ElementCountN = T; |
| 571 | template <uint width, typename T = uint> |
| 572 | using WirePointerCountN = T; |
| 573 | |
| 574 | |
| 575 | // XXX |
| 576 | typedef BitCountN<8, uint8_t> BitCount8; |
| 577 | typedef BitCountN<16, uint16_t> BitCount16; |
| 578 | typedef BitCountN<32, uint32_t> BitCount32; |
| 579 | typedef BitCountN<64, uint64_t> BitCount64; |
| 580 | typedef BitCountN<sizeof(uint) * 8, uint> BitCount; |
| 581 | |
| 582 | typedef ByteCountN<8, uint8_t> ByteCount8; |
| 583 | typedef ByteCountN<16, uint16_t> ByteCount16; |
| 584 | typedef ByteCountN<32, uint32_t> ByteCount32; |
| 585 | typedef ByteCountN<64, uint64_t> ByteCount64; |
| 586 | typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount; |
| 587 | |
| 588 | typedef WordCountN<8, uint8_t> WordCount8; |
| 589 | typedef WordCountN<16, uint16_t> WordCount16; |
| 590 | typedef WordCountN<32, uint32_t> WordCount32; |
| 591 | typedef WordCountN<64, uint64_t> WordCount64; |
| 592 | typedef WordCountN<sizeof(uint) * 8, uint> WordCount; |
| 593 | |
| 594 | typedef ElementCountN<8, uint8_t> ElementCount8; |
| 595 | typedef ElementCountN<16, uint16_t> ElementCount16; |
| 596 | typedef ElementCountN<32, uint32_t> ElementCount32; |
| 597 | typedef ElementCountN<64, uint64_t> ElementCount64; |
| 598 | typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount; |
| 599 | |
| 600 | typedef WirePointerCountN<8, uint8_t> WirePointerCount8; |
| 601 | typedef WirePointerCountN<16, uint16_t> WirePointerCount16; |
| 602 | typedef WirePointerCountN<32, uint32_t> WirePointerCount32; |
| 603 | typedef WirePointerCountN<64, uint64_t> WirePointerCount64; |
| 604 | typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount; |
| 605 | |
| 606 | template <uint width> |
| 607 | using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>()); |
| 608 | template <uint width> |
| 609 | using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>()); |
| 610 | template <uint width> |
| 611 | using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>()); |
| 612 | template <uint width> |
| 613 | using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>()); |
| 614 | |
| 615 | using kj::ThrowOverflow; |
| 616 | // YYY |
| 617 | |
| 618 | template <uint i> inline constexpr uint bounded() { return i; } |
| 619 | template <typename T> inline constexpr T bounded(T i) { return i; } |
| 620 | template <typename T> inline constexpr T unbound(T i) { return i; } |
| 621 | |
| 622 | template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; } |
| 623 | |
| 624 | template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; } |
| 625 | template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; } |
| 626 | |
| 627 | template <uint newMax, typename T, typename ErrorFunc> |
| 628 | inline T assertMax(T value, ErrorFunc&& func) { |
| 629 | if (KJ_UNLIKELY(value > newMax)) func(); |
| 630 | return value; |
| 631 | } |
| 632 | |
| 633 | template <typename T, typename ErrorFunc> |
| 634 | inline T assertMax(uint newMax, T value, ErrorFunc&& func) { |
| 635 | if (KJ_UNLIKELY(value > newMax)) func(); |
| 636 | return value; |
| 637 | } |
| 638 | |
| 639 | template <uint bits, typename T, typename ErrorFunc = ThrowOverflow> |
| 640 | inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) { |
| 641 | if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func(); |
| 642 | return value; |
| 643 | } |
| 644 | |
| 645 | template <typename T, typename ErrorFunc = ThrowOverflow> |
| 646 | inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) { |
| 647 | if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func(); |
| 648 | return value; |
| 649 | } |
| 650 | |
| 651 | template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; } |
| 652 | |
| 653 | template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; } |
| 654 | template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; } |
| 655 | |
| 656 | template <typename T, typename U, typename ErrorFunc = ThrowOverflow> |
| 657 | inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc()) |
| 658 | -> decltype(a - b) { |
| 659 | if (b > a) errorFunc(); |
| 660 | return a - b; |
| 661 | } |
| 662 | |
| 663 | template <typename T, typename U> |
| 664 | inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> { |
| 665 | if (b > a) { |
| 666 | return nullptr; |
| 667 | } else { |
| 668 | return a - b; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | constexpr uint BITS = 1; |
| 673 | constexpr uint BYTES = 1; |
| 674 | constexpr uint WORDS = 1; |
| 675 | constexpr uint ELEMENTS = 1; |
| 676 | constexpr uint POINTERS = 1; |
| 677 | |
| 678 | constexpr uint ZERO = 0; |
| 679 | constexpr uint ONE = 1; |
| 680 | |
| 681 | // GCC 4.7 actually gives unused warnings on these constants in opt mode... |
| 682 | constexpr uint BITS_PER_BYTE KJ_UNUSED = 8; |
| 683 | constexpr uint BITS_PER_WORD KJ_UNUSED = 64; |
| 684 | constexpr uint BYTES_PER_WORD KJ_UNUSED = 8; |
| 685 | |
| 686 | constexpr uint BITS_PER_POINTER KJ_UNUSED = 64; |
| 687 | constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8; |
| 688 | constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1; |
| 689 | |
| 690 | // XXX |
| 691 | constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER; |
| 692 | |
| 693 | constexpr uint SEGMENT_WORD_COUNT_BITS = 29; // Number of words in a segment. |
| 694 | constexpr uint LIST_ELEMENT_COUNT_BITS = 29; // Number of elements in a list. |
| 695 | constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16; // Number of words in a Struct data section. |
| 696 | constexpr uint STRUCT_POINTER_COUNT_BITS = 16; // Number of pointers in a Struct pointer section. |
| 697 | constexpr uint BLOB_SIZE_BITS = 29; // Number of bytes in a blob. |
| 698 | |
| 699 | typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount; |
| 700 | typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount; |
| 701 | typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount; |
| 702 | typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount; |
| 703 | typedef ByteCountN<BLOB_SIZE_BITS> BlobSize; |
| 704 | // YYY |
| 705 | |
| 706 | constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>(); |
| 707 | constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>(); |
| 708 | constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>(); |
| 709 | constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>(); |
| 710 | |
| 711 | typedef uint StructDataBitCount; |
| 712 | typedef uint StructDataOffset; |
| 713 | typedef uint StructPointerOffset; |
| 714 | |
| 715 | inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; } |
| 716 | inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; } |
| 717 | |
| 718 | constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1; |
| 719 | typedef uint TextSize; |
| 720 | |
| 721 | template <typename T> |
| 722 | inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); } |
| 723 | |
| 724 | template <typename T> |
| 725 | inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; } |
| 726 | |
| 727 | template <typename T> |
| 728 | inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) { |
| 729 | return b - a; |
| 730 | } |
| 731 | |
| 732 | template <typename T, typename U> |
| 733 | inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) { |
| 734 | return kj::arrayPtr(ptr, size); |
| 735 | } |
| 736 | template <typename T, typename U> |
| 737 | inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) { |
| 738 | return kj::arrayPtr(ptr, size); |
| 739 | } |
| 740 | |
| 741 | #endif |
| 742 | |
| 743 | } // namespace capnp |
| 744 | |