| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors | 
| 2 | // Licensed under the MIT License: | 
| 3 | // | 
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
| 5 | // of this software and associated documentation files (the "Software"), to deal | 
| 6 | // in the Software without restriction, including without limitation the rights | 
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
| 8 | // copies of the Software, and to permit persons to whom the Software is | 
| 9 | // furnished to do so, subject to the following conditions: | 
| 10 | // | 
| 11 | // The above copyright notice and this permission notice shall be included in | 
| 12 | // all copies or substantial portions of the Software. | 
| 13 | // | 
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
| 20 | // THE SOFTWARE. | 
| 21 |  | 
| 22 | // This file contains types which are intended to help detect incorrect usage at compile | 
| 23 | // time, but should then be optimized down to basic primitives (usually, integers) by the | 
| 24 | // compiler. | 
| 25 |  | 
| 26 | #pragma once | 
| 27 |  | 
| 28 | #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS) | 
| 29 | #pragma GCC system_header | 
| 30 | #endif | 
| 31 |  | 
| 32 | #include <inttypes.h> | 
| 33 | #include <kj/string.h> | 
| 34 | #include <kj/memory.h> | 
| 35 | #include <kj/windows-sanity.h>  // work-around macro conflict with `VOID` | 
| 36 |  | 
| 37 | #if CAPNP_DEBUG_TYPES | 
| 38 | #include <kj/units.h> | 
| 39 | #endif | 
| 40 |  | 
| 41 | namespace capnp { | 
| 42 |  | 
| 43 | #define CAPNP_VERSION_MAJOR 0 | 
| 44 | #define CAPNP_VERSION_MINOR 8 | 
| 45 | #define CAPNP_VERSION_MICRO 0 | 
| 46 |  | 
| 47 | #define CAPNP_VERSION \ | 
| 48 |   (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO) | 
| 49 |  | 
| 50 | #ifndef CAPNP_LITE | 
| 51 | #define CAPNP_LITE 0 | 
| 52 | #endif | 
| 53 |  | 
| 54 | #if CAPNP_TESTING_CAPNP  // defined in Cap'n Proto's own unit tests; others should not define this | 
| 55 | #define CAPNP_DEPRECATED(reason) | 
| 56 | #else | 
| 57 | #define CAPNP_DEPRECATED KJ_DEPRECATED | 
| 58 | #endif | 
| 59 |  | 
| 60 | typedef unsigned int uint; | 
| 61 |  | 
| 62 | struct Void { | 
| 63 |   // Type used for Void fields.  Using C++'s "void" type creates a bunch of issues since it behaves | 
| 64 |   // differently from other types. | 
| 65 |  | 
| 66 |   inline constexpr bool operator==(Void other) const { return true; } | 
| 67 |   inline constexpr bool operator!=(Void other) const { return false; } | 
| 68 | }; | 
| 69 |  | 
| 70 | static constexpr Void VOID = Void(); | 
| 71 | // Constant value for `Void`,  which is an empty struct. | 
| 72 |  | 
| 73 | inline kj::StringPtr KJ_STRINGIFY(Void) { return "void" ; } | 
| 74 |  | 
| 75 | struct Text; | 
| 76 | struct Data; | 
| 77 |  | 
| 78 | enum class Kind: uint8_t { | 
| 79 |   PRIMITIVE, | 
| 80 |   BLOB, | 
| 81 |   ENUM, | 
| 82 |   STRUCT, | 
| 83 |   UNION, | 
| 84 |   INTERFACE, | 
| 85 |   LIST, | 
| 86 |  | 
| 87 |   OTHER | 
| 88 |   // Some other type which is often a type parameter to Cap'n Proto templates, but which needs | 
| 89 |   // special handling. This includes types like AnyPointer, Dynamic*, etc. | 
| 90 | }; | 
| 91 |  | 
| 92 | enum class Style: uint8_t { | 
| 93 |   PRIMITIVE, | 
| 94 |   POINTER,      // other than struct | 
| 95 |   STRUCT, | 
| 96 |   CAPABILITY | 
| 97 | }; | 
| 98 |  | 
| 99 | enum class ElementSize: uint8_t { | 
| 100 |   // Size of a list element. | 
| 101 |  | 
| 102 |   VOID = 0, | 
| 103 |   BIT = 1, | 
| 104 |   BYTE = 2, | 
| 105 |   TWO_BYTES = 3, | 
| 106 |   FOUR_BYTES = 4, | 
| 107 |   EIGHT_BYTES = 5, | 
| 108 |  | 
| 109 |   POINTER = 6, | 
| 110 |  | 
| 111 |   INLINE_COMPOSITE = 7 | 
| 112 | }; | 
| 113 |  | 
| 114 | enum class PointerType { | 
| 115 |   // Various wire types a pointer field can take | 
| 116 |  | 
| 117 |   NULL_, | 
| 118 |   // Should be NULL, but that's #defined in stddef.h | 
| 119 |  | 
| 120 |   STRUCT, | 
| 121 |   LIST, | 
| 122 |   CAPABILITY | 
| 123 | }; | 
| 124 |  | 
| 125 | namespace schemas { | 
| 126 |  | 
| 127 | template <typename T> | 
| 128 | struct EnumInfo; | 
| 129 |  | 
| 130 | }  // namespace schemas | 
| 131 |  | 
| 132 | namespace _ {  // private | 
| 133 |  | 
| 134 | template <typename T, typename = void> struct Kind_; | 
| 135 |  | 
| 136 | template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 137 | template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 138 | template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 139 | template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 140 | template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 141 | template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 142 | template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 143 | template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 144 | template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 145 | template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 146 | template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 147 | template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; }; | 
| 148 | template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; }; | 
| 149 | template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; }; | 
| 150 |  | 
| 151 | template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> { | 
| 152 |   static constexpr Kind kind = Kind::STRUCT; | 
| 153 | }; | 
| 154 | template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> { | 
| 155 |   static constexpr Kind kind = Kind::INTERFACE; | 
| 156 | }; | 
| 157 | template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> { | 
| 158 |   static constexpr Kind kind = Kind::ENUM; | 
| 159 | }; | 
| 160 |  | 
| 161 | }  // namespace _ (private) | 
| 162 |  | 
| 163 | template <typename T, Kind k = _::Kind_<T>::kind> | 
| 164 | inline constexpr Kind kind() { | 
| 165 |   // This overload of kind() matches types which have a Kind_ specialization. | 
| 166 |  | 
| 167 |   return k; | 
| 168 | } | 
| 169 |  | 
| 170 | #if _MSC_VER | 
| 171 |  | 
| 172 | #define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind | 
| 173 | // Avoid constexpr methods in MSVC (it remains buggy in many situations). | 
| 174 |  | 
| 175 | #else  // _MSC_VER | 
| 176 |  | 
| 177 | #define CAPNP_KIND(T) ::capnp::kind<T>() | 
| 178 | // Use this macro rather than kind<T>() in any code which must work in MSVC. | 
| 179 |  | 
| 180 | #endif  // _MSC_VER, else | 
| 181 |  | 
| 182 | #if !CAPNP_LITE | 
| 183 |  | 
| 184 | template <typename T, Kind k = kind<T>()> | 
| 185 | inline constexpr Style style() { | 
| 186 |   return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE | 
| 187 |        : k == Kind::STRUCT ? Style::STRUCT | 
| 188 |        : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER; | 
| 189 | } | 
| 190 |  | 
| 191 | #endif  // !CAPNP_LITE | 
| 192 |  | 
| 193 | template <typename T, Kind k = CAPNP_KIND(T)> | 
| 194 | struct List; | 
| 195 |  | 
| 196 | #if _MSC_VER | 
| 197 |  | 
| 198 | template <typename T, Kind k> | 
| 199 | struct List {}; | 
| 200 | // For some reason, without this declaration, MSVC will error out on some uses of List | 
| 201 | // claiming that "T" -- as used in the default initializer for the second template param, "k" -- | 
| 202 | // is not defined. I do not understand this error, but adding this empty default declaration fixes | 
| 203 | // it. | 
| 204 |  | 
| 205 | #endif | 
| 206 |  | 
| 207 | template <typename T> struct ListElementType_; | 
| 208 | template <typename T> struct ListElementType_<List<T>> { typedef T Type; }; | 
| 209 | template <typename T> using ListElementType = typename ListElementType_<T>::Type; | 
| 210 |  | 
| 211 | namespace _ {  // private | 
| 212 | template <typename T, Kind k> struct Kind_<List<T, k>> { | 
| 213 |   static constexpr Kind kind = Kind::LIST; | 
| 214 | }; | 
| 215 | }  // namespace _ (private) | 
| 216 |  | 
| 217 | template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; }; | 
| 218 | template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; }; | 
| 219 | template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; }; | 
| 220 | template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; }; | 
| 221 | template <typename T> using ReaderFor = typename ReaderFor_<T>::Type; | 
| 222 | // The type returned by List<T>::Reader::operator[]. | 
| 223 |  | 
| 224 | template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; }; | 
| 225 | template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; }; | 
| 226 | template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; }; | 
| 227 | template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; }; | 
| 228 | template <typename T> using BuilderFor = typename BuilderFor_<T>::Type; | 
| 229 | // The type returned by List<T>::Builder::operator[]. | 
| 230 |  | 
| 231 | template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;}; | 
| 232 | template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; }; | 
| 233 | template <typename T> using PipelineFor = typename PipelineFor_<T>::Type; | 
| 234 |  | 
| 235 | template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_; | 
| 236 | template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; }; | 
| 237 |  | 
| 238 | template <typename T> | 
| 239 | using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type; | 
| 240 |  | 
| 241 | template <typename T> | 
| 242 | using FromReader = typename kj::Decay<T>::Reads; | 
| 243 | // FromReader<MyType::Reader> = MyType (for any Cap'n Proto type). | 
| 244 |  | 
| 245 | template <typename T> | 
| 246 | using FromBuilder = typename kj::Decay<T>::Builds; | 
| 247 | // FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type). | 
| 248 |  | 
| 249 | template <typename T> | 
| 250 | using FromPipeline = typename kj::Decay<T>::Pipelines; | 
| 251 | // FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type). | 
| 252 |  | 
| 253 | template <typename T> | 
| 254 | using FromClient = typename kj::Decay<T>::Calls; | 
| 255 | // FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type). | 
| 256 |  | 
| 257 | template <typename T> | 
| 258 | using FromServer = typename kj::Decay<T>::Serves; | 
| 259 | // FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type). | 
| 260 |  | 
| 261 | template <typename T, typename = void> | 
| 262 | struct FromAny_; | 
| 263 |  | 
| 264 | template <typename T> | 
| 265 | struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> { | 
| 266 |   using Type = FromReader<T>; | 
| 267 | }; | 
| 268 |  | 
| 269 | template <typename T> | 
| 270 | struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> { | 
| 271 |   using Type = FromBuilder<T>; | 
| 272 | }; | 
| 273 |  | 
| 274 | template <typename T> | 
| 275 | struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> { | 
| 276 |   using Type = FromPipeline<T>; | 
| 277 | }; | 
| 278 |  | 
| 279 | // Note that T::Client is covered by FromReader | 
| 280 |  | 
| 281 | template <typename T> | 
| 282 | struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> { | 
| 283 |   using Type = FromServer<T>; | 
| 284 | }; | 
| 285 |  | 
| 286 | template <typename T> | 
| 287 | struct FromAny_<T, | 
| 288 |     kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> { | 
| 289 |   // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC | 
| 290 |   // cannot yet use style<T>() in this constexpr context. | 
| 291 |  | 
| 292 |   using Type = kj::Decay<T>; | 
| 293 | }; | 
| 294 |  | 
| 295 | template <typename T> | 
| 296 | using FromAny = typename FromAny_<T>::Type; | 
| 297 | // Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is: | 
| 298 | // | 
| 299 | //     Foo::Reader -> Foo | 
| 300 | //     Foo::Builder -> Foo | 
| 301 | //     Foo::Pipeline -> Foo | 
| 302 | //     Foo::Client -> Foo | 
| 303 | //     Own<Foo::Server> -> Foo | 
| 304 | //     uint32_t -> uint32_t | 
| 305 |  | 
| 306 | namespace _ {  // private | 
| 307 |  | 
| 308 | template <typename T, Kind k = CAPNP_KIND(T)> | 
| 309 | struct PointerHelpers; | 
| 310 |  | 
| 311 | #if _MSC_VER | 
| 312 |  | 
| 313 | template <typename T, Kind k> | 
| 314 | struct PointerHelpers {}; | 
| 315 | // For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers | 
| 316 | // claiming that "T" -- as used in the default initializer for the second template param, "k" -- | 
| 317 | // is not defined. I do not understand this error, but adding this empty default declaration fixes | 
| 318 | // it. | 
| 319 |  | 
| 320 | #endif | 
| 321 |  | 
| 322 | }  // namespace _ (private) | 
| 323 |  | 
| 324 | struct MessageSize { | 
| 325 |   // Size of a message. Every struct and list type has a method `.totalSize()` that returns this. | 
| 326 |   uint64_t wordCount; | 
| 327 |   uint capCount; | 
| 328 |  | 
| 329 |   inline constexpr MessageSize operator+(const MessageSize& other) const { | 
| 330 |     return { wordCount + other.wordCount, capCount + other.capCount }; | 
| 331 |   } | 
| 332 | }; | 
| 333 |  | 
| 334 | // ======================================================================================= | 
| 335 | // Raw memory types and measures | 
| 336 |  | 
| 337 | using kj::byte; | 
| 338 |  | 
| 339 | class word { | 
| 340 |   // word is an opaque type with size of 64 bits.  This type is useful only to make pointer | 
| 341 |   // arithmetic clearer.  Since the contents are private, the only way to access them is to first | 
| 342 |   // reinterpret_cast to some other pointer type. | 
| 343 |   // | 
| 344 |   // Copying is disallowed because you should always use memcpy().  Otherwise, you may run afoul of | 
| 345 |   // aliasing rules. | 
| 346 |   // | 
| 347 |   // A pointer of type word* should always be word-aligned even if won't actually be dereferenced | 
| 348 |   // as that type. | 
| 349 | public: | 
| 350 |   word() = default; | 
| 351 | private: | 
| 352 |   uint64_t content KJ_UNUSED_MEMBER; | 
| 353 | #if __GNUC__ < 8 || __clang__ | 
| 354 |   // GCC 8's -Wclass-memaccess complains whenever we try to memcpy() a `word` if we've disallowed | 
| 355 |   // the copy constructor. We don't want to disable the warning becaues it's a useful warning and | 
| 356 |   // we'd have to disable it for all applications that include this header. Instead we allow `word` | 
| 357 |   // to be copyable on GCC. | 
| 358 |   KJ_DISALLOW_COPY(word); | 
| 359 | #endif | 
| 360 | }; | 
| 361 |  | 
| 362 | static_assert(sizeof(byte) == 1, "uint8_t is not one byte?" ); | 
| 363 | static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?" ); | 
| 364 |  | 
| 365 | #if CAPNP_DEBUG_TYPES | 
| 366 | // Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types.  Otherwise, plain integers are | 
| 367 | // used.  All the code should still operate exactly the same, we just lose compile-time checking. | 
| 368 | // Note that this will also change symbol names, so it's important that the library and any clients | 
| 369 | // be compiled with the same setting here. | 
| 370 | // | 
| 371 | // We disable this by default to reduce symbol name size and avoid any possibility of the compiler | 
| 372 | // failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this | 
| 373 | // during development and testing. | 
| 374 |  | 
| 375 | namespace _ { class BitLabel; class ElementLabel; struct WirePointer; } | 
| 376 |  | 
| 377 | template <uint width, typename T = uint> | 
| 378 | using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>; | 
| 379 | template <uint width, typename T = uint> | 
| 380 | using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>; | 
| 381 | template <uint width, typename T = uint> | 
| 382 | using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>; | 
| 383 | template <uint width, typename T = uint> | 
| 384 | using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>; | 
| 385 | template <uint width, typename T = uint> | 
| 386 | using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>; | 
| 387 |  | 
| 388 | typedef BitCountN<8, uint8_t> BitCount8; | 
| 389 | typedef BitCountN<16, uint16_t> BitCount16; | 
| 390 | typedef BitCountN<32, uint32_t> BitCount32; | 
| 391 | typedef BitCountN<64, uint64_t> BitCount64; | 
| 392 | typedef BitCountN<sizeof(uint) * 8, uint> BitCount; | 
| 393 |  | 
| 394 | typedef ByteCountN<8, uint8_t> ByteCount8; | 
| 395 | typedef ByteCountN<16, uint16_t> ByteCount16; | 
| 396 | typedef ByteCountN<32, uint32_t> ByteCount32; | 
| 397 | typedef ByteCountN<64, uint64_t> ByteCount64; | 
| 398 | typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount; | 
| 399 |  | 
| 400 | typedef WordCountN<8, uint8_t> WordCount8; | 
| 401 | typedef WordCountN<16, uint16_t> WordCount16; | 
| 402 | typedef WordCountN<32, uint32_t> WordCount32; | 
| 403 | typedef WordCountN<64, uint64_t> WordCount64; | 
| 404 | typedef WordCountN<sizeof(uint) * 8, uint> WordCount; | 
| 405 |  | 
| 406 | typedef ElementCountN<8, uint8_t> ElementCount8; | 
| 407 | typedef ElementCountN<16, uint16_t> ElementCount16; | 
| 408 | typedef ElementCountN<32, uint32_t> ElementCount32; | 
| 409 | typedef ElementCountN<64, uint64_t> ElementCount64; | 
| 410 | typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount; | 
| 411 |  | 
| 412 | typedef WirePointerCountN<8, uint8_t> WirePointerCount8; | 
| 413 | typedef WirePointerCountN<16, uint16_t> WirePointerCount16; | 
| 414 | typedef WirePointerCountN<32, uint32_t> WirePointerCount32; | 
| 415 | typedef WirePointerCountN<64, uint64_t> WirePointerCount64; | 
| 416 | typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount; | 
| 417 |  | 
| 418 | template <uint width> | 
| 419 | using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>()); | 
| 420 | template <uint width> | 
| 421 | using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>()); | 
| 422 | template <uint width> | 
| 423 | using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>()); | 
| 424 | template <uint width> | 
| 425 | using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>()); | 
| 426 |  | 
| 427 | using kj::bounded; | 
| 428 | using kj::unbound; | 
| 429 | using kj::unboundAs; | 
| 430 | using kj::unboundMax; | 
| 431 | using kj::unboundMaxBits; | 
| 432 | using kj::assertMax; | 
| 433 | using kj::assertMaxBits; | 
| 434 | using kj::upgradeBound; | 
| 435 | using kj::ThrowOverflow; | 
| 436 | using kj::assumeBits; | 
| 437 | using kj::assumeMax; | 
| 438 | using kj::subtractChecked; | 
| 439 | using kj::trySubtract; | 
| 440 |  | 
| 441 | template <typename T, typename U> | 
| 442 | inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) { | 
| 443 |   return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 444 | } | 
| 445 | template <typename T, typename U> | 
| 446 | inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) { | 
| 447 |   return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 448 | } | 
| 449 | template <typename T, typename U> | 
| 450 | inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) { | 
| 451 |   return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 452 | } | 
| 453 | template <typename T, typename U> | 
| 454 | inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) { | 
| 455 |   return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 456 | } | 
| 457 |  | 
| 458 | template <typename T, typename U> | 
| 459 | inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) { | 
| 460 |   return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 461 | } | 
| 462 | template <typename T, typename U> | 
| 463 | inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) { | 
| 464 |   return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 465 | } | 
| 466 | template <typename T, typename U> | 
| 467 | inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) { | 
| 468 |   return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 469 | } | 
| 470 | template <typename T, typename U> | 
| 471 | inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) { | 
| 472 |   return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>()); | 
| 473 | } | 
| 474 |  | 
| 475 | constexpr auto BITS = kj::unit<BitCountN<1>>(); | 
| 476 | constexpr auto BYTES = kj::unit<ByteCountN<1>>(); | 
| 477 | constexpr auto WORDS = kj::unit<WordCountN<1>>(); | 
| 478 | constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>(); | 
| 479 | constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>(); | 
| 480 |  | 
| 481 | constexpr auto ZERO = kj::bounded<0>(); | 
| 482 | constexpr auto ONE = kj::bounded<1>(); | 
| 483 |  | 
| 484 | // GCC 4.7 actually gives unused warnings on these constants in opt mode... | 
| 485 | constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES; | 
| 486 | constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS; | 
| 487 | constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS; | 
| 488 |  | 
| 489 | constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS; | 
| 490 | constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS; | 
| 491 | constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS; | 
| 492 |  | 
| 493 | constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER; | 
| 494 |  | 
| 495 | constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment. | 
| 496 | constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list. | 
| 497 | constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section. | 
| 498 | constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section. | 
| 499 | constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob. | 
| 500 |  | 
| 501 | typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount; | 
| 502 | typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount; | 
| 503 | typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount; | 
| 504 | typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount; | 
| 505 | typedef ByteCountN<BLOB_SIZE_BITS> BlobSize; | 
| 506 |  | 
| 507 | constexpr auto MAX_SEGMENT_WORDS = | 
| 508 |     bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS; | 
| 509 | constexpr auto MAX_LIST_ELEMENTS = | 
| 510 |     bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS; | 
| 511 | constexpr auto MAX_STUCT_DATA_WORDS = | 
| 512 |     bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS; | 
| 513 | constexpr auto MAX_STRUCT_POINTER_COUNT = | 
| 514 |     bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS; | 
| 515 |  | 
| 516 | using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD); | 
| 517 | // Number of bits in a Struct data segment (should come out to BitCountN<22>). | 
| 518 |  | 
| 519 | using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS)); | 
| 520 | using StructPointerOffset = StructPointerCount; | 
| 521 | // Type of a field offset. | 
| 522 |  | 
| 523 | inline StructDataOffset assumeDataOffset(uint32_t offset) { | 
| 524 |   return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS), | 
| 525 |                    bounded(offset) * ELEMENTS); | 
| 526 | } | 
| 527 |  | 
| 528 | inline StructPointerOffset assumePointerOffset(uint32_t offset) { | 
| 529 |   return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS); | 
| 530 | } | 
| 531 |  | 
| 532 | constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1; | 
| 533 | typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize; | 
| 534 | // Not including NUL terminator. | 
| 535 |  | 
| 536 | template <typename T> | 
| 537 | inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() { | 
| 538 |   return bounded<sizeof(T)>() * BYTES / ELEMENTS; | 
| 539 | } | 
| 540 |  | 
| 541 | template <typename T> | 
| 542 | inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() { | 
| 543 |   return bounded<sizeof(T) * 8>() * BITS / ELEMENTS; | 
| 544 | } | 
| 545 |  | 
| 546 | template <typename T, uint maxN> | 
| 547 | inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T> | 
| 548 | intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) { | 
| 549 |   return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>(); | 
| 550 | } | 
| 551 |  | 
| 552 | template <typename T, typename U> | 
| 553 | inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) { | 
| 554 |   return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>())); | 
| 555 | } | 
| 556 | template <typename T, typename U> | 
| 557 | inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) { | 
| 558 |   return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>())); | 
| 559 | } | 
| 560 |  | 
| 561 | #else | 
| 562 |  | 
| 563 | template <uint width, typename T = uint> | 
| 564 | using BitCountN = T; | 
| 565 | template <uint width, typename T = uint> | 
| 566 | using ByteCountN = T; | 
| 567 | template <uint width, typename T = uint> | 
| 568 | using WordCountN = T; | 
| 569 | template <uint width, typename T = uint> | 
| 570 | using ElementCountN = T; | 
| 571 | template <uint width, typename T = uint> | 
| 572 | using WirePointerCountN = T; | 
| 573 |  | 
| 574 |  | 
| 575 | // XXX | 
| 576 | typedef BitCountN<8, uint8_t> BitCount8; | 
| 577 | typedef BitCountN<16, uint16_t> BitCount16; | 
| 578 | typedef BitCountN<32, uint32_t> BitCount32; | 
| 579 | typedef BitCountN<64, uint64_t> BitCount64; | 
| 580 | typedef BitCountN<sizeof(uint) * 8, uint> BitCount; | 
| 581 |  | 
| 582 | typedef ByteCountN<8, uint8_t> ByteCount8; | 
| 583 | typedef ByteCountN<16, uint16_t> ByteCount16; | 
| 584 | typedef ByteCountN<32, uint32_t> ByteCount32; | 
| 585 | typedef ByteCountN<64, uint64_t> ByteCount64; | 
| 586 | typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount; | 
| 587 |  | 
| 588 | typedef WordCountN<8, uint8_t> WordCount8; | 
| 589 | typedef WordCountN<16, uint16_t> WordCount16; | 
| 590 | typedef WordCountN<32, uint32_t> WordCount32; | 
| 591 | typedef WordCountN<64, uint64_t> WordCount64; | 
| 592 | typedef WordCountN<sizeof(uint) * 8, uint> WordCount; | 
| 593 |  | 
| 594 | typedef ElementCountN<8, uint8_t> ElementCount8; | 
| 595 | typedef ElementCountN<16, uint16_t> ElementCount16; | 
| 596 | typedef ElementCountN<32, uint32_t> ElementCount32; | 
| 597 | typedef ElementCountN<64, uint64_t> ElementCount64; | 
| 598 | typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount; | 
| 599 |  | 
| 600 | typedef WirePointerCountN<8, uint8_t> WirePointerCount8; | 
| 601 | typedef WirePointerCountN<16, uint16_t> WirePointerCount16; | 
| 602 | typedef WirePointerCountN<32, uint32_t> WirePointerCount32; | 
| 603 | typedef WirePointerCountN<64, uint64_t> WirePointerCount64; | 
| 604 | typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount; | 
| 605 |  | 
| 606 | template <uint width> | 
| 607 | using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>()); | 
| 608 | template <uint width> | 
| 609 | using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>()); | 
| 610 | template <uint width> | 
| 611 | using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>()); | 
| 612 | template <uint width> | 
| 613 | using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>()); | 
| 614 |  | 
| 615 | using kj::ThrowOverflow; | 
| 616 | // YYY | 
| 617 |  | 
| 618 | template <uint i> inline constexpr uint bounded() { return i; } | 
| 619 | template <typename T> inline constexpr T bounded(T i) { return i; } | 
| 620 | template <typename T> inline constexpr T unbound(T i) { return i; } | 
| 621 |  | 
| 622 | template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; } | 
| 623 |  | 
| 624 | template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; } | 
| 625 | template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; } | 
| 626 |  | 
| 627 | template <uint newMax, typename T, typename ErrorFunc> | 
| 628 | inline T assertMax(T value, ErrorFunc&& func) { | 
| 629 |   if (KJ_UNLIKELY(value > newMax)) func(); | 
| 630 |   return value; | 
| 631 | } | 
| 632 |  | 
| 633 | template <typename T, typename ErrorFunc> | 
| 634 | inline T assertMax(uint newMax, T value, ErrorFunc&& func) { | 
| 635 |   if (KJ_UNLIKELY(value > newMax)) func(); | 
| 636 |   return value; | 
| 637 | } | 
| 638 |  | 
| 639 | template <uint bits, typename T, typename ErrorFunc = ThrowOverflow> | 
| 640 | inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) { | 
| 641 |   if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func(); | 
| 642 |   return value; | 
| 643 | } | 
| 644 |  | 
| 645 | template <typename T, typename ErrorFunc = ThrowOverflow> | 
| 646 | inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) { | 
| 647 |   if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func(); | 
| 648 |   return value; | 
| 649 | } | 
| 650 |  | 
| 651 | template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; } | 
| 652 |  | 
| 653 | template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; } | 
| 654 | template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; } | 
| 655 |  | 
| 656 | template <typename T, typename U, typename ErrorFunc = ThrowOverflow> | 
| 657 | inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc()) | 
| 658 |     -> decltype(a - b) { | 
| 659 |   if (b > a) errorFunc(); | 
| 660 |   return a - b; | 
| 661 | } | 
| 662 |  | 
| 663 | template <typename T, typename U> | 
| 664 | inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> { | 
| 665 |   if (b > a) { | 
| 666 |     return nullptr; | 
| 667 |   } else { | 
| 668 |     return a - b; | 
| 669 |   } | 
| 670 | } | 
| 671 |  | 
| 672 | constexpr uint BITS = 1; | 
| 673 | constexpr uint BYTES = 1; | 
| 674 | constexpr uint WORDS = 1; | 
| 675 | constexpr uint ELEMENTS = 1; | 
| 676 | constexpr uint POINTERS = 1; | 
| 677 |  | 
| 678 | constexpr uint ZERO = 0; | 
| 679 | constexpr uint ONE = 1; | 
| 680 |  | 
| 681 | // GCC 4.7 actually gives unused warnings on these constants in opt mode... | 
| 682 | constexpr uint BITS_PER_BYTE KJ_UNUSED = 8; | 
| 683 | constexpr uint BITS_PER_WORD KJ_UNUSED = 64; | 
| 684 | constexpr uint BYTES_PER_WORD KJ_UNUSED = 8; | 
| 685 |  | 
| 686 | constexpr uint BITS_PER_POINTER KJ_UNUSED = 64; | 
| 687 | constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8; | 
| 688 | constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1; | 
| 689 |  | 
| 690 | // XXX | 
| 691 | constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER; | 
| 692 |  | 
| 693 | constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment. | 
| 694 | constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list. | 
| 695 | constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section. | 
| 696 | constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section. | 
| 697 | constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob. | 
| 698 |  | 
| 699 | typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount; | 
| 700 | typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount; | 
| 701 | typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount; | 
| 702 | typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount; | 
| 703 | typedef ByteCountN<BLOB_SIZE_BITS> BlobSize; | 
| 704 | // YYY | 
| 705 |  | 
| 706 | constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>(); | 
| 707 | constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>(); | 
| 708 | constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>(); | 
| 709 | constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>(); | 
| 710 |  | 
| 711 | typedef uint StructDataBitCount; | 
| 712 | typedef uint StructDataOffset; | 
| 713 | typedef uint StructPointerOffset; | 
| 714 |  | 
| 715 | inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; } | 
| 716 | inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; } | 
| 717 |  | 
| 718 | constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1; | 
| 719 | typedef uint TextSize; | 
| 720 |  | 
| 721 | template <typename T> | 
| 722 | inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); } | 
| 723 |  | 
| 724 | template <typename T> | 
| 725 | inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; } | 
| 726 |  | 
| 727 | template <typename T> | 
| 728 | inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) { | 
| 729 |   return b - a; | 
| 730 | } | 
| 731 |  | 
| 732 | template <typename T, typename U> | 
| 733 | inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) { | 
| 734 |   return kj::arrayPtr(ptr, size); | 
| 735 | } | 
| 736 | template <typename T, typename U> | 
| 737 | inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) { | 
| 738 |   return kj::arrayPtr(ptr, size); | 
| 739 | } | 
| 740 |  | 
| 741 | #endif | 
| 742 |  | 
| 743 | }  // namespace capnp | 
| 744 |  |