| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors | 
|---|
| 2 | // Licensed under the MIT License: | 
|---|
| 3 | // | 
|---|
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
|---|
| 5 | // of this software and associated documentation files (the "Software"), to deal | 
|---|
| 6 | // in the Software without restriction, including without limitation the rights | 
|---|
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|---|
| 8 | // copies of the Software, and to permit persons to whom the Software is | 
|---|
| 9 | // furnished to do so, subject to the following conditions: | 
|---|
| 10 | // | 
|---|
| 11 | // The above copyright notice and this permission notice shall be included in | 
|---|
| 12 | // all copies or substantial portions of the Software. | 
|---|
| 13 | // | 
|---|
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|---|
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|---|
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|---|
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|---|
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|---|
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|---|
| 20 | // THE SOFTWARE. | 
|---|
| 21 |  | 
|---|
| 22 | #include "serialize-packed.h" | 
|---|
| 23 | #include <kj/debug.h> | 
|---|
| 24 | #include "layout.h" | 
|---|
| 25 | #include <vector> | 
|---|
| 26 |  | 
|---|
| 27 | namespace capnp { | 
|---|
| 28 |  | 
|---|
| 29 | namespace _ {  // private | 
|---|
| 30 |  | 
|---|
| 31 | PackedInputStream::PackedInputStream(kj::BufferedInputStream& inner): inner(inner) {} | 
|---|
| 32 | PackedInputStream::~PackedInputStream() noexcept(false) {} | 
|---|
| 33 |  | 
|---|
| 34 | size_t PackedInputStream::tryRead(void* dst, size_t minBytes, size_t maxBytes) { | 
|---|
| 35 | if (maxBytes == 0) { | 
|---|
| 36 | return 0; | 
|---|
| 37 | } | 
|---|
| 38 |  | 
|---|
| 39 | KJ_DREQUIRE(minBytes % sizeof(word) == 0, "PackedInputStream reads must be word-aligned."); | 
|---|
| 40 | KJ_DREQUIRE(maxBytes % sizeof(word) == 0, "PackedInputStream reads must be word-aligned."); | 
|---|
| 41 |  | 
|---|
| 42 | uint8_t* __restrict__ out = reinterpret_cast<uint8_t*>(dst); | 
|---|
| 43 | uint8_t* const outEnd = reinterpret_cast<uint8_t*>(dst) + maxBytes; | 
|---|
| 44 | uint8_t* const outMin = reinterpret_cast<uint8_t*>(dst) + minBytes; | 
|---|
| 45 |  | 
|---|
| 46 | kj::ArrayPtr<const byte> buffer = inner.tryGetReadBuffer(); | 
|---|
| 47 | if (buffer.size() == 0) { | 
|---|
| 48 | return 0; | 
|---|
| 49 | } | 
|---|
| 50 | const uint8_t* __restrict__ in = reinterpret_cast<const uint8_t*>(buffer.begin()); | 
|---|
| 51 |  | 
|---|
| 52 | #define REFRESH_BUFFER() \ | 
|---|
| 53 | inner.skip(buffer.size()); \ | 
|---|
| 54 | buffer = inner.getReadBuffer(); \ | 
|---|
| 55 | KJ_REQUIRE(buffer.size() > 0, "Premature end of packed input.") { \ | 
|---|
| 56 | return out - reinterpret_cast<uint8_t*>(dst); \ | 
|---|
| 57 | } \ | 
|---|
| 58 | in = reinterpret_cast<const uint8_t*>(buffer.begin()) | 
|---|
| 59 |  | 
|---|
| 60 | #define BUFFER_END (reinterpret_cast<const uint8_t*>(buffer.end())) | 
|---|
| 61 | #define BUFFER_REMAINING ((size_t)(BUFFER_END - in)) | 
|---|
| 62 |  | 
|---|
| 63 | for (;;) { | 
|---|
| 64 | uint8_t tag; | 
|---|
| 65 |  | 
|---|
| 66 | KJ_DASSERT((out - reinterpret_cast<uint8_t*>(dst)) % sizeof(word) == 0, | 
|---|
| 67 | "Output pointer should always be aligned here."); | 
|---|
| 68 |  | 
|---|
| 69 | if (BUFFER_REMAINING < 10) { | 
|---|
| 70 | if (out >= outMin) { | 
|---|
| 71 | // We read at least the minimum amount, so go ahead and return. | 
|---|
| 72 | inner.skip(in - reinterpret_cast<const uint8_t*>(buffer.begin())); | 
|---|
| 73 | return out - reinterpret_cast<uint8_t*>(dst); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | if (BUFFER_REMAINING == 0) { | 
|---|
| 77 | REFRESH_BUFFER(); | 
|---|
| 78 | continue; | 
|---|
| 79 | } | 
|---|
| 80 |  | 
|---|
| 81 | // We have at least 1, but not 10, bytes available.  We need to read slowly, doing a bounds | 
|---|
| 82 | // check on each byte. | 
|---|
| 83 |  | 
|---|
| 84 | tag = *in++; | 
|---|
| 85 |  | 
|---|
| 86 | for (uint i = 0; i < 8; i++) { | 
|---|
| 87 | if (tag & (1u << i)) { | 
|---|
| 88 | if (BUFFER_REMAINING == 0) { | 
|---|
| 89 | REFRESH_BUFFER(); | 
|---|
| 90 | } | 
|---|
| 91 | *out++ = *in++; | 
|---|
| 92 | } else { | 
|---|
| 93 | *out++ = 0; | 
|---|
| 94 | } | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | if (BUFFER_REMAINING == 0 && (tag == 0 || tag == 0xffu)) { | 
|---|
| 98 | REFRESH_BUFFER(); | 
|---|
| 99 | } | 
|---|
| 100 | } else { | 
|---|
| 101 | tag = *in++; | 
|---|
| 102 |  | 
|---|
| 103 | #define HANDLE_BYTE(n) \ | 
|---|
| 104 | { \ | 
|---|
| 105 | bool isNonzero = (tag & (1u << n)) != 0; \ | 
|---|
| 106 | *out++ = *in & (-(int8_t)isNonzero); \ | 
|---|
| 107 | in += isNonzero; \ | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | HANDLE_BYTE(0); | 
|---|
| 111 | HANDLE_BYTE(1); | 
|---|
| 112 | HANDLE_BYTE(2); | 
|---|
| 113 | HANDLE_BYTE(3); | 
|---|
| 114 | HANDLE_BYTE(4); | 
|---|
| 115 | HANDLE_BYTE(5); | 
|---|
| 116 | HANDLE_BYTE(6); | 
|---|
| 117 | HANDLE_BYTE(7); | 
|---|
| 118 | #undef HANDLE_BYTE | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | if (tag == 0) { | 
|---|
| 122 | KJ_DASSERT(BUFFER_REMAINING > 0, "Should always have non-empty buffer here."); | 
|---|
| 123 |  | 
|---|
| 124 | uint runLength = *in++ * sizeof(word); | 
|---|
| 125 |  | 
|---|
| 126 | KJ_REQUIRE(runLength <= outEnd - out, | 
|---|
| 127 | "Packed input did not end cleanly on a segment boundary.") { | 
|---|
| 128 | return out - reinterpret_cast<uint8_t*>(dst); | 
|---|
| 129 | } | 
|---|
| 130 | memset(out, 0, runLength); | 
|---|
| 131 | out += runLength; | 
|---|
| 132 |  | 
|---|
| 133 | } else if (tag == 0xffu) { | 
|---|
| 134 | KJ_DASSERT(BUFFER_REMAINING > 0, "Should always have non-empty buffer here."); | 
|---|
| 135 |  | 
|---|
| 136 | uint runLength = *in++ * sizeof(word); | 
|---|
| 137 |  | 
|---|
| 138 | KJ_REQUIRE(runLength <= outEnd - out, | 
|---|
| 139 | "Packed input did not end cleanly on a segment boundary.") { | 
|---|
| 140 | return out - reinterpret_cast<uint8_t*>(dst); | 
|---|
| 141 | } | 
|---|
| 142 |  | 
|---|
| 143 | uint inRemaining = BUFFER_REMAINING; | 
|---|
| 144 | if (inRemaining >= runLength) { | 
|---|
| 145 | // Fast path. | 
|---|
| 146 | memcpy(out, in, runLength); | 
|---|
| 147 | out += runLength; | 
|---|
| 148 | in += runLength; | 
|---|
| 149 | } else { | 
|---|
| 150 | // Copy over the first buffer, then do one big read for the rest. | 
|---|
| 151 | memcpy(out, in, inRemaining); | 
|---|
| 152 | out += inRemaining; | 
|---|
| 153 | runLength -= inRemaining; | 
|---|
| 154 |  | 
|---|
| 155 | inner.skip(buffer.size()); | 
|---|
| 156 | inner.read(out, runLength); | 
|---|
| 157 | out += runLength; | 
|---|
| 158 |  | 
|---|
| 159 | if (out == outEnd) { | 
|---|
| 160 | return maxBytes; | 
|---|
| 161 | } else { | 
|---|
| 162 | buffer = inner.getReadBuffer(); | 
|---|
| 163 | in = reinterpret_cast<const uint8_t*>(buffer.begin()); | 
|---|
| 164 |  | 
|---|
| 165 | // Skip the bounds check below since we just did the same check above. | 
|---|
| 166 | continue; | 
|---|
| 167 | } | 
|---|
| 168 | } | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | if (out == outEnd) { | 
|---|
| 172 | inner.skip(in - reinterpret_cast<const uint8_t*>(buffer.begin())); | 
|---|
| 173 | return maxBytes; | 
|---|
| 174 | } | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | KJ_FAIL_ASSERT( "Can't get here."); | 
|---|
| 178 | return 0;  // GCC knows KJ_FAIL_ASSERT doesn't return, but Eclipse CDT still warns... | 
|---|
| 179 |  | 
|---|
| 180 | #undef REFRESH_BUFFER | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | void PackedInputStream::skip(size_t bytes) { | 
|---|
| 184 | // We can't just read into buffers because buffers must end on block boundaries. | 
|---|
| 185 |  | 
|---|
| 186 | if (bytes == 0) { | 
|---|
| 187 | return; | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | KJ_DREQUIRE(bytes % sizeof(word) == 0, "PackedInputStream reads must be word-aligned."); | 
|---|
| 191 |  | 
|---|
| 192 | kj::ArrayPtr<const byte> buffer = inner.getReadBuffer(); | 
|---|
| 193 | const uint8_t* __restrict__ in = reinterpret_cast<const uint8_t*>(buffer.begin()); | 
|---|
| 194 |  | 
|---|
| 195 | #define REFRESH_BUFFER() \ | 
|---|
| 196 | inner.skip(buffer.size()); \ | 
|---|
| 197 | buffer = inner.getReadBuffer(); \ | 
|---|
| 198 | KJ_REQUIRE(buffer.size() > 0, "Premature end of packed input.") { return; } \ | 
|---|
| 199 | in = reinterpret_cast<const uint8_t*>(buffer.begin()) | 
|---|
| 200 |  | 
|---|
| 201 | for (;;) { | 
|---|
| 202 | uint8_t tag; | 
|---|
| 203 |  | 
|---|
| 204 | if (BUFFER_REMAINING < 10) { | 
|---|
| 205 | if (BUFFER_REMAINING == 0) { | 
|---|
| 206 | REFRESH_BUFFER(); | 
|---|
| 207 | continue; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | // We have at least 1, but not 10, bytes available.  We need to read slowly, doing a bounds | 
|---|
| 211 | // check on each byte. | 
|---|
| 212 |  | 
|---|
| 213 | tag = *in++; | 
|---|
| 214 |  | 
|---|
| 215 | for (uint i = 0; i < 8; i++) { | 
|---|
| 216 | if (tag & (1u << i)) { | 
|---|
| 217 | if (BUFFER_REMAINING == 0) { | 
|---|
| 218 | REFRESH_BUFFER(); | 
|---|
| 219 | } | 
|---|
| 220 | in++; | 
|---|
| 221 | } | 
|---|
| 222 | } | 
|---|
| 223 | bytes -= 8; | 
|---|
| 224 |  | 
|---|
| 225 | if (BUFFER_REMAINING == 0 && (tag == 0 || tag == 0xffu)) { | 
|---|
| 226 | REFRESH_BUFFER(); | 
|---|
| 227 | } | 
|---|
| 228 | } else { | 
|---|
| 229 | tag = *in++; | 
|---|
| 230 |  | 
|---|
| 231 | #define HANDLE_BYTE(n) \ | 
|---|
| 232 | in += (tag & (1u << n)) != 0 | 
|---|
| 233 |  | 
|---|
| 234 | HANDLE_BYTE(0); | 
|---|
| 235 | HANDLE_BYTE(1); | 
|---|
| 236 | HANDLE_BYTE(2); | 
|---|
| 237 | HANDLE_BYTE(3); | 
|---|
| 238 | HANDLE_BYTE(4); | 
|---|
| 239 | HANDLE_BYTE(5); | 
|---|
| 240 | HANDLE_BYTE(6); | 
|---|
| 241 | HANDLE_BYTE(7); | 
|---|
| 242 | #undef HANDLE_BYTE | 
|---|
| 243 |  | 
|---|
| 244 | bytes -= 8; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | if (tag == 0) { | 
|---|
| 248 | KJ_DASSERT(BUFFER_REMAINING > 0, "Should always have non-empty buffer here."); | 
|---|
| 249 |  | 
|---|
| 250 | uint runLength = *in++ * sizeof(word); | 
|---|
| 251 |  | 
|---|
| 252 | KJ_REQUIRE(runLength <= bytes, "Packed input did not end cleanly on a segment boundary.") { | 
|---|
| 253 | return; | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | bytes -= runLength; | 
|---|
| 257 |  | 
|---|
| 258 | } else if (tag == 0xffu) { | 
|---|
| 259 | KJ_DASSERT(BUFFER_REMAINING > 0, "Should always have non-empty buffer here."); | 
|---|
| 260 |  | 
|---|
| 261 | uint runLength = *in++ * sizeof(word); | 
|---|
| 262 |  | 
|---|
| 263 | KJ_REQUIRE(runLength <= bytes, "Packed input did not end cleanly on a segment boundary.") { | 
|---|
| 264 | return; | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 | bytes -= runLength; | 
|---|
| 268 |  | 
|---|
| 269 | uint inRemaining = BUFFER_REMAINING; | 
|---|
| 270 | if (inRemaining > runLength) { | 
|---|
| 271 | // Fast path. | 
|---|
| 272 | in += runLength; | 
|---|
| 273 | } else { | 
|---|
| 274 | // Forward skip to the underlying stream. | 
|---|
| 275 | runLength -= inRemaining; | 
|---|
| 276 | inner.skip(buffer.size() + runLength); | 
|---|
| 277 |  | 
|---|
| 278 | if (bytes == 0) { | 
|---|
| 279 | return; | 
|---|
| 280 | } else { | 
|---|
| 281 | buffer = inner.getReadBuffer(); | 
|---|
| 282 | in = reinterpret_cast<const uint8_t*>(buffer.begin()); | 
|---|
| 283 |  | 
|---|
| 284 | // Skip the bounds check below since we just did the same check above. | 
|---|
| 285 | continue; | 
|---|
| 286 | } | 
|---|
| 287 | } | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | if (bytes == 0) { | 
|---|
| 291 | inner.skip(in - reinterpret_cast<const uint8_t*>(buffer.begin())); | 
|---|
| 292 | return; | 
|---|
| 293 | } | 
|---|
| 294 | } | 
|---|
| 295 |  | 
|---|
| 296 | KJ_FAIL_ASSERT( "Can't get here."); | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | // ------------------------------------------------------------------- | 
|---|
| 300 |  | 
|---|
| 301 | PackedOutputStream::PackedOutputStream(kj::BufferedOutputStream& inner) | 
|---|
| 302 | : inner(inner) {} | 
|---|
| 303 | PackedOutputStream::~PackedOutputStream() noexcept(false) {} | 
|---|
| 304 |  | 
|---|
| 305 | void PackedOutputStream::write(const void* src, size_t size) { | 
|---|
| 306 | kj::ArrayPtr<byte> buffer = inner.getWriteBuffer(); | 
|---|
| 307 | byte slowBuffer[20]; | 
|---|
| 308 |  | 
|---|
| 309 | uint8_t* __restrict__ out = reinterpret_cast<uint8_t*>(buffer.begin()); | 
|---|
| 310 |  | 
|---|
| 311 | const uint8_t* __restrict__ in = reinterpret_cast<const uint8_t*>(src); | 
|---|
| 312 | const uint8_t* const inEnd = reinterpret_cast<const uint8_t*>(src) + size; | 
|---|
| 313 |  | 
|---|
| 314 | while (in < inEnd) { | 
|---|
| 315 | if (reinterpret_cast<uint8_t*>(buffer.end()) - out < 10) { | 
|---|
| 316 | // Oops, we're out of space.  We need at least 10 bytes for the fast path, since we don't | 
|---|
| 317 | // bounds-check on every byte. | 
|---|
| 318 |  | 
|---|
| 319 | // Write what we have so far. | 
|---|
| 320 | inner.write(buffer.begin(), out - reinterpret_cast<uint8_t*>(buffer.begin())); | 
|---|
| 321 |  | 
|---|
| 322 | // Use a slow buffer into which we'll encode 10 to 20 bytes.  This should get us past the | 
|---|
| 323 | // output stream's buffer boundary. | 
|---|
| 324 | buffer = kj::arrayPtr(slowBuffer, sizeof(slowBuffer)); | 
|---|
| 325 | out = reinterpret_cast<uint8_t*>(buffer.begin()); | 
|---|
| 326 | } | 
|---|
| 327 |  | 
|---|
| 328 | uint8_t* tagPos = out++; | 
|---|
| 329 |  | 
|---|
| 330 | #define HANDLE_BYTE(n) \ | 
|---|
| 331 | uint8_t bit##n = *in != 0; \ | 
|---|
| 332 | *out = *in; \ | 
|---|
| 333 | out += bit##n; /* out only advances if the byte was non-zero */ \ | 
|---|
| 334 | ++in | 
|---|
| 335 |  | 
|---|
| 336 | HANDLE_BYTE(0); | 
|---|
| 337 | HANDLE_BYTE(1); | 
|---|
| 338 | HANDLE_BYTE(2); | 
|---|
| 339 | HANDLE_BYTE(3); | 
|---|
| 340 | HANDLE_BYTE(4); | 
|---|
| 341 | HANDLE_BYTE(5); | 
|---|
| 342 | HANDLE_BYTE(6); | 
|---|
| 343 | HANDLE_BYTE(7); | 
|---|
| 344 | #undef HANDLE_BYTE | 
|---|
| 345 |  | 
|---|
| 346 | uint8_t tag = (bit0 << 0) | (bit1 << 1) | (bit2 << 2) | (bit3 << 3) | 
|---|
| 347 | | (bit4 << 4) | (bit5 << 5) | (bit6 << 6) | (bit7 << 7); | 
|---|
| 348 | *tagPos = tag; | 
|---|
| 349 |  | 
|---|
| 350 | if (tag == 0) { | 
|---|
| 351 | // An all-zero word is followed by a count of consecutive zero words (not including the | 
|---|
| 352 | // first one). | 
|---|
| 353 |  | 
|---|
| 354 | // We can check a whole word at a time. (Here is where we use the assumption that | 
|---|
| 355 | // `src` is word-aligned.) | 
|---|
| 356 | const uint64_t* inWord = reinterpret_cast<const uint64_t*>(in); | 
|---|
| 357 |  | 
|---|
| 358 | // The count must fit it 1 byte, so limit to 255 words. | 
|---|
| 359 | const uint64_t* limit = reinterpret_cast<const uint64_t*>(inEnd); | 
|---|
| 360 | if (limit - inWord > 255) { | 
|---|
| 361 | limit = inWord + 255; | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | while (inWord < limit && *inWord == 0) { | 
|---|
| 365 | ++inWord; | 
|---|
| 366 | } | 
|---|
| 367 |  | 
|---|
| 368 | // Write the count. | 
|---|
| 369 | *out++ = inWord - reinterpret_cast<const uint64_t*>(in); | 
|---|
| 370 |  | 
|---|
| 371 | // Advance input. | 
|---|
| 372 | in = reinterpret_cast<const uint8_t*>(inWord); | 
|---|
| 373 |  | 
|---|
| 374 | } else if (tag == 0xffu) { | 
|---|
| 375 | // An all-nonzero word is followed by a count of consecutive uncompressed words, followed | 
|---|
| 376 | // by the uncompressed words themselves. | 
|---|
| 377 |  | 
|---|
| 378 | // Count the number of consecutive words in the input which have no more than a single | 
|---|
| 379 | // zero-byte.  We look for at least two zeros because that's the point where our compression | 
|---|
| 380 | // scheme becomes a net win. | 
|---|
| 381 | // TODO(perf):  Maybe look for three zeros?  Compressing a two-zero word is a loss if the | 
|---|
| 382 | //   following word has no zeros. | 
|---|
| 383 | const uint8_t* runStart = in; | 
|---|
| 384 |  | 
|---|
| 385 | const uint8_t* limit = inEnd; | 
|---|
| 386 | if ((size_t)(limit - in) > 255 * sizeof(word)) { | 
|---|
| 387 | limit = in + 255 * sizeof(word); | 
|---|
| 388 | } | 
|---|
| 389 |  | 
|---|
| 390 | while (in < limit) { | 
|---|
| 391 | // Check eight input bytes for zeros. | 
|---|
| 392 | uint c = *in++ == 0; | 
|---|
| 393 | c += *in++ == 0; | 
|---|
| 394 | c += *in++ == 0; | 
|---|
| 395 | c += *in++ == 0; | 
|---|
| 396 | c += *in++ == 0; | 
|---|
| 397 | c += *in++ == 0; | 
|---|
| 398 | c += *in++ == 0; | 
|---|
| 399 | c += *in++ == 0; | 
|---|
| 400 |  | 
|---|
| 401 | if (c >= 2) { | 
|---|
| 402 | // Un-read the word with multiple zeros, since we'll want to compress that one. | 
|---|
| 403 | in -= 8; | 
|---|
| 404 | break; | 
|---|
| 405 | } | 
|---|
| 406 | } | 
|---|
| 407 |  | 
|---|
| 408 | // Write the count. | 
|---|
| 409 | uint count = in - runStart; | 
|---|
| 410 | *out++ = count / sizeof(word); | 
|---|
| 411 |  | 
|---|
| 412 | if (count <= reinterpret_cast<uint8_t*>(buffer.end()) - out) { | 
|---|
| 413 | // There's enough space to memcpy. | 
|---|
| 414 | memcpy(out, runStart, count); | 
|---|
| 415 | out += count; | 
|---|
| 416 | } else { | 
|---|
| 417 | // Input overruns the output buffer.  We'll give it to the output stream in one chunk | 
|---|
| 418 | // and let it decide what to do. | 
|---|
| 419 | inner.write(buffer.begin(), reinterpret_cast<byte*>(out) - buffer.begin()); | 
|---|
| 420 | inner.write(runStart, in - runStart); | 
|---|
| 421 | buffer = inner.getWriteBuffer(); | 
|---|
| 422 | out = reinterpret_cast<uint8_t*>(buffer.begin()); | 
|---|
| 423 | } | 
|---|
| 424 | } | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | // Write whatever is left. | 
|---|
| 428 | inner.write(buffer.begin(), reinterpret_cast<byte*>(out) - buffer.begin()); | 
|---|
| 429 | } | 
|---|
| 430 |  | 
|---|
| 431 | }  // namespace _ (private) | 
|---|
| 432 |  | 
|---|
| 433 | // ======================================================================================= | 
|---|
| 434 |  | 
|---|
| 435 | PackedMessageReader::PackedMessageReader( | 
|---|
| 436 | kj::BufferedInputStream& inputStream, ReaderOptions options, kj::ArrayPtr<word> scratchSpace) | 
|---|
| 437 | : PackedInputStream(inputStream), | 
|---|
| 438 | InputStreamMessageReader(static_cast<PackedInputStream&>(*this), options, scratchSpace) {} | 
|---|
| 439 |  | 
|---|
| 440 | PackedMessageReader::~PackedMessageReader() noexcept(false) {} | 
|---|
| 441 |  | 
|---|
| 442 | PackedFdMessageReader::PackedFdMessageReader( | 
|---|
| 443 | int fd, ReaderOptions options, kj::ArrayPtr<word> scratchSpace) | 
|---|
| 444 | : FdInputStream(fd), | 
|---|
| 445 | BufferedInputStreamWrapper(static_cast<FdInputStream&>(*this)), | 
|---|
| 446 | PackedMessageReader(static_cast<BufferedInputStreamWrapper&>(*this), | 
|---|
| 447 | options, scratchSpace) {} | 
|---|
| 448 |  | 
|---|
| 449 | PackedFdMessageReader::PackedFdMessageReader( | 
|---|
| 450 | kj::AutoCloseFd fd, ReaderOptions options, kj::ArrayPtr<word> scratchSpace) | 
|---|
| 451 | : FdInputStream(kj::mv(fd)), | 
|---|
| 452 | BufferedInputStreamWrapper(static_cast<FdInputStream&>(*this)), | 
|---|
| 453 | PackedMessageReader(static_cast<BufferedInputStreamWrapper&>(*this), | 
|---|
| 454 | options, scratchSpace) {} | 
|---|
| 455 |  | 
|---|
| 456 | PackedFdMessageReader::~PackedFdMessageReader() noexcept(false) {} | 
|---|
| 457 |  | 
|---|
| 458 | void writePackedMessage(kj::BufferedOutputStream& output, | 
|---|
| 459 | kj::ArrayPtr<const kj::ArrayPtr<const word>> segments) { | 
|---|
| 460 | _::PackedOutputStream packedOutput(output); | 
|---|
| 461 | writeMessage(packedOutput, segments); | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | void writePackedMessage(kj::OutputStream& output, | 
|---|
| 465 | kj::ArrayPtr<const kj::ArrayPtr<const word>> segments) { | 
|---|
| 466 | KJ_IF_MAYBE(bufferedOutputPtr, kj::dynamicDowncastIfAvailable<kj::BufferedOutputStream>(output)) { | 
|---|
| 467 | writePackedMessage(*bufferedOutputPtr, segments); | 
|---|
| 468 | } else { | 
|---|
| 469 | byte buffer[8192]; | 
|---|
| 470 | kj::BufferedOutputStreamWrapper bufferedOutput(output, kj::arrayPtr(buffer, sizeof(buffer))); | 
|---|
| 471 | writePackedMessage(bufferedOutput, segments); | 
|---|
| 472 | } | 
|---|
| 473 | } | 
|---|
| 474 |  | 
|---|
| 475 | void writePackedMessageToFd(int fd, kj::ArrayPtr<const kj::ArrayPtr<const word>> segments) { | 
|---|
| 476 | kj::FdOutputStream output(fd); | 
|---|
| 477 | writePackedMessage(output, segments); | 
|---|
| 478 | } | 
|---|
| 479 |  | 
|---|
| 480 | size_t computeUnpackedSizeInWords(kj::ArrayPtr<const byte> packedBytes) { | 
|---|
| 481 | const byte* ptr = packedBytes.begin(); | 
|---|
| 482 | const byte* end = packedBytes.end(); | 
|---|
| 483 |  | 
|---|
| 484 | size_t total = 0; | 
|---|
| 485 | while (ptr < end) { | 
|---|
| 486 | uint tag = *ptr; | 
|---|
| 487 | size_t count = kj::popCount(tag); | 
|---|
| 488 | total += 1; | 
|---|
| 489 | KJ_REQUIRE(end - ptr >= count, "invalid packed data"); | 
|---|
| 490 | ptr += count + 1; | 
|---|
| 491 |  | 
|---|
| 492 | if (tag == 0) { | 
|---|
| 493 | KJ_REQUIRE(ptr < end, "invalid packed data"); | 
|---|
| 494 | total += *ptr++; | 
|---|
| 495 | } else if (tag == 0xff) { | 
|---|
| 496 | KJ_REQUIRE(ptr < end, "invalid packed data"); | 
|---|
| 497 | size_t words = *ptr++; | 
|---|
| 498 | total += words; | 
|---|
| 499 | size_t bytes = words * sizeof(word); | 
|---|
| 500 | KJ_REQUIRE(end - ptr >= bytes, "invalid packed data"); | 
|---|
| 501 | ptr += bytes; | 
|---|
| 502 | } | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | return total; | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | }  // namespace capnp | 
|---|
| 509 |  | 
|---|