| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Analysis pass to reform leading dots. |
| 31 | * |
| 32 | * We have found that many regexes found in the wild use an anchored dot-repeat |
| 33 | * to represent an unanchored pattern, particularly if they have been used with |
| 34 | * a regex engine that assumes that a pattern is anchored. This pass reforms |
| 35 | * patterns that begin with sequences of dots into a more standard form. |
| 36 | * |
| 37 | * In addition, both anchored and unanchored patterns with dot repeats as |
| 38 | * prefixes will have these prefixes reformed into a canonical form, which some |
| 39 | * later analyses depend upon. |
| 40 | */ |
| 41 | #include "ng_anchored_dots.h" |
| 42 | |
| 43 | #include "grey.h" |
| 44 | #include "ng_holder.h" |
| 45 | #include "ng_util.h" |
| 46 | #include "ue2common.h" |
| 47 | #include "util/container.h" |
| 48 | #include "util/depth.h" |
| 49 | #include "util/graph_range.h" |
| 50 | |
| 51 | #include <algorithm> |
| 52 | #include <queue> |
| 53 | #include <set> |
| 54 | #include <vector> |
| 55 | |
| 56 | using namespace std; |
| 57 | |
| 58 | namespace ue2 { |
| 59 | |
| 60 | static |
| 61 | bool findStarts(const NGHolder &g, set<NFAVertex> &anchored, |
| 62 | set<NFAVertex> &unanchored) { |
| 63 | // Populate unanchored map |
| 64 | for (auto v : adjacent_vertices_range(g.startDs, g)) { |
| 65 | if (is_special(v, g)) { |
| 66 | continue; |
| 67 | } |
| 68 | unanchored.insert(v); |
| 69 | } |
| 70 | |
| 71 | // Populate anchored map |
| 72 | for (auto v : adjacent_vertices_range(g.start, g)) { |
| 73 | if (is_special(v, g)) { |
| 74 | continue; |
| 75 | } |
| 76 | anchored.insert(v); |
| 77 | } |
| 78 | |
| 79 | if (unanchored == anchored) { |
| 80 | anchored.clear(); |
| 81 | } else if (!unanchored.empty() && !anchored.empty()) { |
| 82 | return false; |
| 83 | } |
| 84 | |
| 85 | return !anchored.empty() || !unanchored.empty(); |
| 86 | } |
| 87 | |
| 88 | namespace { |
| 89 | class DotInfo { |
| 90 | public: |
| 91 | DotInfo(NFAVertex v, bool se, u32 idx) |
| 92 | : vertex(v), hasSelfLoop(se), index(idx) {} |
| 93 | |
| 94 | bool operator<(const DotInfo &other) const { |
| 95 | if (hasSelfLoop != other.hasSelfLoop) |
| 96 | return hasSelfLoop < other.hasSelfLoop; |
| 97 | // tie break with vertex id: lowest ID wins |
| 98 | return index > other.index; |
| 99 | } |
| 100 | |
| 101 | NFAVertex vertex; |
| 102 | bool hasSelfLoop; |
| 103 | u32 index; |
| 104 | }; |
| 105 | } |
| 106 | |
| 107 | // Returns nullptr if all vertices in the given set are not dots. |
| 108 | // We can only pick one dot vertex, so we go for a dot-star if it exists, |
| 109 | // otherwise the dot without a self-edge with the lowest ID. |
| 110 | static |
| 111 | NFAVertex findReformable(const NGHolder &g, const set<NFAVertex> &starts, |
| 112 | set<NFAVertex> &otherV) { |
| 113 | priority_queue<DotInfo> dotq; |
| 114 | for (auto v : starts) { |
| 115 | if (is_dot(v, g)) { |
| 116 | u32 idx = g[v].index; |
| 117 | dotq.push(DotInfo(v, hasSelfLoop(v, g), idx)); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | if (dotq.empty()) { |
| 122 | return NGHolder::null_vertex(); |
| 123 | } |
| 124 | |
| 125 | const DotInfo &dot = dotq.top(); |
| 126 | otherV = starts; |
| 127 | otherV.erase(dot.vertex); |
| 128 | DEBUG_PRINTF("selected dot vertex %u (%s)\n" , dot.index, |
| 129 | dot.hasSelfLoop ? "has self-edge" : "no self-edge" ); |
| 130 | DEBUG_PRINTF("%zu other vertices\n" , otherV.size()); |
| 131 | return dot.vertex; |
| 132 | } |
| 133 | |
| 134 | // Returns true if the given vertex is only preceded by start. If start is |
| 135 | // graph.startDs (i.e. unanchored), the given vertex can also be connected to |
| 136 | // graph.start. If selfLoopIsAcceptable is set, self-loops are ignored. |
| 137 | static |
| 138 | bool isStartNode(NFAVertex v, NFAVertex start, const NGHolder &g, |
| 139 | bool selfLoopIsAcceptable) { |
| 140 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 141 | if (selfLoopIsAcceptable && u == v) { |
| 142 | continue; |
| 143 | } else if (u == start) { |
| 144 | continue; |
| 145 | } else if (start == g.startDs && u == g.start) { |
| 146 | continue; |
| 147 | } else { |
| 148 | return false; |
| 149 | } |
| 150 | } |
| 151 | return true; |
| 152 | } |
| 153 | |
| 154 | // Note: this will only remove the anchored first dot in the chain -- any other |
| 155 | // removable nodes will be handled by the unanchored case below. |
| 156 | static |
| 157 | void reformAnchoredRepeatsComponent(NGHolder &g, |
| 158 | set<NFAVertex> &compAnchoredStarts, |
| 159 | set<NFAVertex> &compUnanchoredStarts, |
| 160 | set<NFAVertex> &dead, depth *startBegin, |
| 161 | depth *startEnd) { |
| 162 | // anchored cases can not have any unanchored starts |
| 163 | if (!compUnanchoredStarts.empty()) { |
| 164 | DEBUG_PRINTF("we have unanchored starts, skipping\n" ); |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | NFAVertex dotV = NGHolder::null_vertex(); |
| 169 | set<NFAVertex> otherV; |
| 170 | dotV = findReformable(g, compAnchoredStarts, otherV); |
| 171 | if (dotV == NGHolder::null_vertex()) { |
| 172 | DEBUG_PRINTF("no candidate reformable dot found.\n" ); |
| 173 | return; |
| 174 | } |
| 175 | |
| 176 | NFAEdge loopEdge; |
| 177 | bool selfLoop = false; |
| 178 | bool bustOut = false; |
| 179 | |
| 180 | for (const auto &e : out_edges_range(dotV, g)) { |
| 181 | NFAVertex t = target(e, g); |
| 182 | if (t == dotV) { |
| 183 | selfLoop = true; |
| 184 | loopEdge = e; |
| 185 | continue; |
| 186 | } |
| 187 | |
| 188 | if (is_special(t, g)) { |
| 189 | bustOut = true; |
| 190 | break; |
| 191 | } |
| 192 | |
| 193 | if (!otherV.empty() && otherV.find(t) == otherV.end()) { |
| 194 | bustOut = true; |
| 195 | break; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | if (bustOut) { |
| 200 | DEBUG_PRINTF("busting out\n" ); |
| 201 | return; |
| 202 | } |
| 203 | |
| 204 | if (!isStartNode(dotV, g.start, g, true)) { |
| 205 | DEBUG_PRINTF("fleeing: vertex %zu has other preds\n" , g[dotV].index); |
| 206 | return; |
| 207 | } |
| 208 | |
| 209 | /* get bounds */ |
| 210 | depth min; |
| 211 | depth max(1); |
| 212 | |
| 213 | if (selfLoop) { |
| 214 | // A self-loop indicates that this is a '.+' or '.*' |
| 215 | max = depth::infinity(); |
| 216 | } |
| 217 | |
| 218 | if (!otherV.empty()) { |
| 219 | /* We require that the successors of the dot node are are the same |
| 220 | * as the start vertex. TODO: remember why. |
| 221 | */ |
| 222 | if (selfLoop) { |
| 223 | if (otherV.size() != out_degree(dotV, g) - 1) { |
| 224 | return; |
| 225 | } |
| 226 | } else { |
| 227 | if (otherV.size() != out_degree(dotV, g)) { |
| 228 | return; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | min = depth(0); |
| 233 | } else { |
| 234 | min = depth(1); |
| 235 | } |
| 236 | |
| 237 | *startBegin = min; |
| 238 | *startEnd = max; |
| 239 | |
| 240 | for (auto t : adjacent_vertices_range(dotV, g)) { |
| 241 | if (t != dotV) { |
| 242 | add_edge_if_not_present(g.startDs, t, g); |
| 243 | add_edge_if_not_present(g.start, t, g); |
| 244 | compUnanchoredStarts.insert(t); |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | for (auto v : otherV) { |
| 249 | remove_edge(g.start, v, g); |
| 250 | } |
| 251 | |
| 252 | DEBUG_PRINTF("removing vertex %zu\n" , g[dotV].index); |
| 253 | clear_vertex(dotV, g); |
| 254 | dead.insert(dotV); |
| 255 | compAnchoredStarts.erase(dotV); |
| 256 | } |
| 257 | |
| 258 | static |
| 259 | void reformUnanchoredRepeatsComponent(NGHolder &g, |
| 260 | set<NFAVertex> &compAnchoredStarts, |
| 261 | set<NFAVertex> &compUnanchoredStarts, |
| 262 | set<NFAVertex> &dead, |
| 263 | depth *startBegin, depth *startEnd) { |
| 264 | // unanchored cases can not have any anchored starts |
| 265 | if (!compAnchoredStarts.empty()) { |
| 266 | DEBUG_PRINTF("we have anchored starts, skipping\n" ); |
| 267 | return; |
| 268 | } |
| 269 | |
| 270 | while (true) { |
| 271 | NFAVertex dotV = NGHolder::null_vertex(); |
| 272 | set<NFAVertex> otherV; |
| 273 | dotV = findReformable(g, compUnanchoredStarts, otherV); |
| 274 | if (dotV == NGHolder::null_vertex()) { |
| 275 | DEBUG_PRINTF("no candidate reformable dot found.\n" ); |
| 276 | return; |
| 277 | } |
| 278 | |
| 279 | NFAEdge loopEdge; |
| 280 | bool selfLoop = false; |
| 281 | bool bustOut = false; |
| 282 | |
| 283 | for (const auto &e : out_edges_range(dotV, g)) { |
| 284 | NFAVertex t = target(e, g); |
| 285 | |
| 286 | if (t == dotV) { |
| 287 | selfLoop = true; |
| 288 | loopEdge = e; |
| 289 | continue; |
| 290 | } |
| 291 | |
| 292 | if (is_special(t, g)) { |
| 293 | bustOut = true; |
| 294 | break; |
| 295 | } |
| 296 | |
| 297 | if (!otherV.empty() && otherV.find(t) == otherV.end()) { |
| 298 | bustOut = true; |
| 299 | break; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | if (bustOut) { |
| 304 | DEBUG_PRINTF("busting out\n" ); |
| 305 | if (!selfLoop) { |
| 306 | return; |
| 307 | } |
| 308 | |
| 309 | for (auto v : otherV) { |
| 310 | if (!edge(dotV, v, g).second) { |
| 311 | return; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | // A self-loop indicates that this is a '.+' or '.*' |
| 316 | DEBUG_PRINTF("self-loop detected on %zu\n" , g[dotV].index); |
| 317 | *startEnd = depth::infinity(); |
| 318 | remove_edge(dotV, dotV, g); |
| 319 | return; |
| 320 | } |
| 321 | |
| 322 | if (!isStartNode(dotV, g.startDs, g, true)) { |
| 323 | DEBUG_PRINTF("fleeing: vertex %zu has other preds\n" , |
| 324 | g[dotV].index); |
| 325 | return; |
| 326 | } |
| 327 | |
| 328 | /* get bounds */ |
| 329 | depth min(1); |
| 330 | depth max(1); |
| 331 | |
| 332 | if (selfLoop) { |
| 333 | // A self-loop indicates that this is a '.+' or '.*' |
| 334 | DEBUG_PRINTF("self-loop detected\n" ); |
| 335 | max = depth::infinity(); |
| 336 | } |
| 337 | |
| 338 | if (!otherV.empty()) { |
| 339 | if (!selfLoop && otherV.size() != out_degree(dotV, g)) { |
| 340 | return; |
| 341 | } |
| 342 | |
| 343 | if (selfLoop && otherV.size() != out_degree(dotV, g) - 1) { |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | if (min > depth(1)) { |
| 348 | /* this is not a case we can handle */ |
| 349 | DEBUG_PRINTF("min greater than one, skipping\n" ); |
| 350 | return; |
| 351 | } |
| 352 | min = depth(0); |
| 353 | } |
| 354 | |
| 355 | *startBegin += min; |
| 356 | *startEnd += max; |
| 357 | |
| 358 | for (auto v : otherV) { |
| 359 | remove_edge(g.start, v, g); |
| 360 | remove_edge(g.startDs, v, g); |
| 361 | } |
| 362 | |
| 363 | compUnanchoredStarts.clear(); |
| 364 | for (auto t : adjacent_vertices_range(dotV, g)) { |
| 365 | if (t != dotV) { |
| 366 | DEBUG_PRINTF("connecting sds -> %zu\n" , g[t].index); |
| 367 | add_edge(g.startDs, t, g); |
| 368 | add_edge(g.start, t, g); |
| 369 | compUnanchoredStarts.insert(t); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | DEBUG_PRINTF("removing vertex %zu\n" , g[dotV].index); |
| 374 | dead.insert(dotV); |
| 375 | clear_vertex(dotV, g); |
| 376 | compUnanchoredStarts.erase(dotV); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // for t to be another optional dot, it must have only in-edges from v and from |
| 381 | // starts |
| 382 | static |
| 383 | bool isOptionalDot(NFAVertex t, NFAVertex v, const NGHolder &g) { |
| 384 | if (!is_dot(t, g)) { |
| 385 | return false; |
| 386 | } |
| 387 | |
| 388 | bool found_v = false, found_start = false; |
| 389 | |
| 390 | for (auto u : inv_adjacent_vertices_range(t, g)) { |
| 391 | if (u == v) { |
| 392 | found_v = true; |
| 393 | } else if (u == g.start || u == g.startDs) { |
| 394 | found_start = true; |
| 395 | } else { |
| 396 | return false; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | return found_v && found_start; |
| 401 | } |
| 402 | |
| 403 | static |
| 404 | bool gatherParticipants(const NGHolder &g, |
| 405 | NFAVertex start, NFAVertex initialDot, |
| 406 | set<NFAVertex> &dots, set<NFAVertex> &succ) { |
| 407 | // Walk the graph downwards from the initial dot; each dot will have: |
| 408 | // 1) a single optional dot successor, or |
| 409 | // 2) N successors (our terminating case) |
| 410 | dots.insert(initialDot); |
| 411 | NFAVertex v = initialDot; |
| 412 | |
| 413 | while (out_degree(v, g) == 1) { |
| 414 | NFAVertex t = *(adjacent_vertices(v, g).first); |
| 415 | // for t to be another optional dot, it must have only in-edges from v |
| 416 | // and from starts |
| 417 | if (isOptionalDot(t, v, g)) { |
| 418 | // another dot; bail if we've seen it once already |
| 419 | if (dots.find(t) != dots.end()) { |
| 420 | DEBUG_PRINTF("cycle detected at vertex %zu\n" , g[t].index); |
| 421 | return false; |
| 422 | } |
| 423 | dots.insert(t); |
| 424 | v = t; |
| 425 | continue; |
| 426 | } |
| 427 | // otherwise, we found a terminating dot state |
| 428 | break; |
| 429 | } |
| 430 | |
| 431 | // Our terminating states are the successors of v. |
| 432 | // All of these MUST have an edge from start as well. |
| 433 | for (auto w : adjacent_vertices_range(v, g)) { |
| 434 | succ.insert(w); |
| 435 | if (!edge(start, w, g).second) { |
| 436 | DEBUG_PRINTF("failing, vertex %zu does not have edge from start\n" , |
| 437 | g[w].index); |
| 438 | return false; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | /* All the non chained v connected to start must be in succ as well |
| 443 | * TODO: remember why (and document). */ |
| 444 | for (auto u : adjacent_vertices_range(start, g)) { |
| 445 | if (is_special(u, g)) { |
| 446 | continue; |
| 447 | } |
| 448 | if (!contains(dots, u) && !contains(succ, u)) { |
| 449 | return false; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | return !succ.empty(); |
| 454 | } |
| 455 | |
| 456 | static |
| 457 | void collapseVariableDotRepeat(NGHolder &g, NFAVertex start, |
| 458 | set<NFAVertex> &dead, UNUSED depth *startBegin, |
| 459 | depth *startEnd) { |
| 460 | // Handle optional dot repeat prefixes, e.g. |
| 461 | // /^.{0,30}foo/s, /^.{0,5}foo/s, unanchored equivs |
| 462 | // Note that this code assumes that fixed repeats ('^.{5,20}') have been |
| 463 | // pruned already, down (in this case) to '^.{0,15}'. |
| 464 | |
| 465 | // The first of our optional dots must be connected to start. The jump edge |
| 466 | // past it will be verified in gatherParticipants(). If start is |
| 467 | // graph.start, it should not be connected to startDs. |
| 468 | NFAVertex initialDot = NGHolder::null_vertex(); |
| 469 | for (auto v : adjacent_vertices_range(start, g)) { |
| 470 | if (is_special(v, g)) { |
| 471 | continue; |
| 472 | } |
| 473 | if (is_dot(v, g) && isStartNode(v, start, g, false)) { |
| 474 | if (initialDot) { |
| 475 | return; |
| 476 | } |
| 477 | initialDot = v; |
| 478 | DEBUG_PRINTF("initial dot vertex is %zu\n" , g[v].index); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | if (!initialDot) { |
| 483 | return; |
| 484 | } |
| 485 | |
| 486 | // Collect all the other optional dot vertices and the successor vertices |
| 487 | // by walking down the graph from initialDot |
| 488 | set<NFAVertex> dots, succ; |
| 489 | if (!gatherParticipants(g, start, initialDot, dots, succ)) { |
| 490 | DEBUG_PRINTF("gatherParticipants failed\n" ); |
| 491 | return; |
| 492 | } |
| 493 | |
| 494 | DEBUG_PRINTF("optional dot repeat with %zu participants, " |
| 495 | "terminating in %zu non-dot nodes\n" , |
| 496 | dots.size(), succ.size()); |
| 497 | |
| 498 | // Remove all the participants and set the start offset |
| 499 | dead.insert(dots.begin(), dots.end()); |
| 500 | |
| 501 | DEBUG_PRINTF("current offsets: %s-%s\n" , startBegin->str().c_str(), |
| 502 | startEnd->str().c_str()); |
| 503 | |
| 504 | if (start == g.start && startEnd->is_infinite()) { |
| 505 | *startEnd = depth(dots.size()); |
| 506 | } else if (startEnd->is_finite()) { |
| 507 | *startEnd += dots.size(); |
| 508 | } |
| 509 | assert(startEnd->is_reachable()); |
| 510 | |
| 511 | // Connect our successor vertices to both start and startDs. |
| 512 | for (auto v : succ) { |
| 513 | add_edge_if_not_present(g.start, v, g); |
| 514 | add_edge_if_not_present(g.startDs, v, g); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | static |
| 519 | void deleteVertices(set<NFAVertex> &dead, NGHolder &g) { |
| 520 | if (!dead.empty()) { |
| 521 | DEBUG_PRINTF("pruning %zu vertices\n" , dead.size()); |
| 522 | remove_vertices(dead, g); |
| 523 | } |
| 524 | dead.clear(); |
| 525 | } |
| 526 | |
| 527 | static |
| 528 | void reformAnchoredRepeats(NGHolder &g, depth *startBegin, depth *startEnd) { |
| 529 | DEBUG_PRINTF("component\n" ); |
| 530 | set<NFAVertex> anchored, unanchored, dead; |
| 531 | if (!findStarts(g, anchored, unanchored)) { |
| 532 | DEBUG_PRINTF("no starts\n" ); |
| 533 | return; |
| 534 | } |
| 535 | |
| 536 | reformAnchoredRepeatsComponent(g, anchored, unanchored, dead, startBegin, |
| 537 | startEnd); |
| 538 | deleteVertices(dead, g); |
| 539 | |
| 540 | reformUnanchoredRepeatsComponent(g, anchored, unanchored, dead, startBegin, |
| 541 | startEnd); |
| 542 | deleteVertices(dead, g); |
| 543 | } |
| 544 | |
| 545 | static |
| 546 | void collapseVariableRepeats(NGHolder &g, depth *startBegin, depth *startEnd) { |
| 547 | DEBUG_PRINTF("collapseVariableRepeats\n" ); |
| 548 | set<NFAVertex> dead; |
| 549 | |
| 550 | collapseVariableDotRepeat(g, g.start, dead, startBegin, startEnd); |
| 551 | deleteVertices(dead, g); |
| 552 | |
| 553 | collapseVariableDotRepeat(g, g.startDs, dead, startBegin, startEnd); |
| 554 | deleteVertices(dead, g); |
| 555 | } |
| 556 | |
| 557 | static |
| 558 | void addDotsBetween(NGHolder &g, NFAVertex lhs, vector<NFAVertex> &rhs, |
| 559 | depth min_repeat, depth max_repeat) { |
| 560 | const bool unbounded = max_repeat.is_infinite(); |
| 561 | if (unbounded) { |
| 562 | max_repeat = min_repeat; |
| 563 | } |
| 564 | |
| 565 | assert(max_repeat.is_finite()); |
| 566 | |
| 567 | NFAVertex u = lhs; |
| 568 | |
| 569 | if (!min_repeat && unbounded) { |
| 570 | NFAVertex v = add_vertex(g); |
| 571 | add_edge(u, v, g); |
| 572 | g[v].char_reach.setall(); |
| 573 | |
| 574 | for (auto w : rhs) { |
| 575 | add_edge(lhs, w, g); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | for (u32 i = 0; i < min_repeat; i++) { |
| 580 | NFAVertex v = add_vertex(g); |
| 581 | add_edge(u, v, g); |
| 582 | g[v].char_reach.setall(); |
| 583 | u = v; |
| 584 | } |
| 585 | |
| 586 | NFAVertex split = u; |
| 587 | /* lhs now split point for optional */ |
| 588 | for (u32 i = min_repeat; i < max_repeat; i++) { |
| 589 | NFAVertex v = add_vertex(g); |
| 590 | add_edge(u, v, g); |
| 591 | if (u != split) { |
| 592 | add_edge(split, v, g); |
| 593 | } |
| 594 | g[v].char_reach.setall(); |
| 595 | u = v; |
| 596 | } |
| 597 | |
| 598 | if (unbounded) { |
| 599 | add_edge(u, u, g); |
| 600 | } |
| 601 | |
| 602 | for (auto w : rhs) { |
| 603 | add_edge(u, w, g); |
| 604 | if (split != u) { |
| 605 | add_edge(split, w, g); |
| 606 | } |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | static |
| 611 | void restoreLeadingDots(NGHolder &g, const depth &startBegin, |
| 612 | const depth &startEnd) { |
| 613 | if (startBegin == depth(0) && startEnd.is_infinite()) { |
| 614 | return; |
| 615 | } |
| 616 | DEBUG_PRINTF("ungobble (%s, %s)\n" , startBegin.str().c_str(), |
| 617 | startEnd.str().c_str()); |
| 618 | |
| 619 | for (UNUSED auto v : adjacent_vertices_range(g.start, g)) { |
| 620 | assert(edge(g.startDs, v, g).second); |
| 621 | } |
| 622 | clear_out_edges(g.start, g); |
| 623 | add_edge(g.start, g.startDs, g); |
| 624 | |
| 625 | const bool unbounded = startEnd.is_infinite(); |
| 626 | |
| 627 | NFAVertex root = unbounded ? g.startDs : g.start; |
| 628 | |
| 629 | vector<NFAVertex> rhs; |
| 630 | insert(&rhs, rhs.end(), adjacent_vertices(g.startDs, g)); |
| 631 | rhs.erase(remove(rhs.begin(), rhs.end(), g.startDs), rhs.end()); |
| 632 | for (auto v : rhs) { |
| 633 | remove_edge(g.startDs, v, g); |
| 634 | } |
| 635 | |
| 636 | addDotsBetween(g, root, rhs, startBegin, startEnd); |
| 637 | renumber_vertices(g); |
| 638 | renumber_edges(g); |
| 639 | } |
| 640 | |
| 641 | // Entry point. |
| 642 | void reformLeadingDots(NGHolder &g) { |
| 643 | depth startBegin(0); |
| 644 | depth startEnd = depth::infinity(); |
| 645 | |
| 646 | reformAnchoredRepeats(g, &startBegin, &startEnd); |
| 647 | collapseVariableRepeats(g, &startBegin, &startEnd); |
| 648 | restoreLeadingDots(g, startBegin, startEnd); |
| 649 | } |
| 650 | |
| 651 | } // namespace ue2 |
| 652 | |