| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ******************************************************************************* |
| 5 | * Copyright (C) 2013-2014, International Business Machines |
| 6 | * Corporation and others. All Rights Reserved. |
| 7 | ******************************************************************************* |
| 8 | * collationbuilder.cpp |
| 9 | * |
| 10 | * (replaced the former ucol_bld.cpp) |
| 11 | * |
| 12 | * created on: 2013may06 |
| 13 | * created by: Markus W. Scherer |
| 14 | */ |
| 15 | |
| 16 | #ifdef DEBUG_COLLATION_BUILDER |
| 17 | #include <stdio.h> |
| 18 | #endif |
| 19 | |
| 20 | #include "unicode/utypes.h" |
| 21 | |
| 22 | #if !UCONFIG_NO_COLLATION |
| 23 | |
| 24 | #include "unicode/caniter.h" |
| 25 | #include "unicode/normalizer2.h" |
| 26 | #include "unicode/tblcoll.h" |
| 27 | #include "unicode/parseerr.h" |
| 28 | #include "unicode/uchar.h" |
| 29 | #include "unicode/ucol.h" |
| 30 | #include "unicode/unistr.h" |
| 31 | #include "unicode/usetiter.h" |
| 32 | #include "unicode/utf16.h" |
| 33 | #include "unicode/uversion.h" |
| 34 | #include "cmemory.h" |
| 35 | #include "collation.h" |
| 36 | #include "collationbuilder.h" |
| 37 | #include "collationdata.h" |
| 38 | #include "collationdatabuilder.h" |
| 39 | #include "collationfastlatin.h" |
| 40 | #include "collationroot.h" |
| 41 | #include "collationrootelements.h" |
| 42 | #include "collationruleparser.h" |
| 43 | #include "collationsettings.h" |
| 44 | #include "collationtailoring.h" |
| 45 | #include "collationweights.h" |
| 46 | #include "normalizer2impl.h" |
| 47 | #include "uassert.h" |
| 48 | #include "ucol_imp.h" |
| 49 | #include "utf16collationiterator.h" |
| 50 | |
| 51 | U_NAMESPACE_BEGIN |
| 52 | |
| 53 | namespace { |
| 54 | |
| 55 | class BundleImporter : public CollationRuleParser::Importer { |
| 56 | public: |
| 57 | BundleImporter() {} |
| 58 | virtual ~BundleImporter(); |
| 59 | virtual void getRules( |
| 60 | const char *localeID, const char *collationType, |
| 61 | UnicodeString &rules, |
| 62 | const char *&errorReason, UErrorCode &errorCode); |
| 63 | }; |
| 64 | |
| 65 | BundleImporter::~BundleImporter() {} |
| 66 | |
| 67 | void |
| 68 | BundleImporter::getRules( |
| 69 | const char *localeID, const char *collationType, |
| 70 | UnicodeString &rules, |
| 71 | const char *& /*errorReason*/, UErrorCode &errorCode) { |
| 72 | CollationLoader::loadRules(localeID, collationType, rules, errorCode); |
| 73 | } |
| 74 | |
| 75 | } // namespace |
| 76 | |
| 77 | // RuleBasedCollator implementation ---------------------------------------- *** |
| 78 | |
| 79 | // These methods are here, rather than in rulebasedcollator.cpp, |
| 80 | // for modularization: |
| 81 | // Most code using Collator does not need to build a Collator from rules. |
| 82 | // By moving these constructors and helper methods to a separate file, |
| 83 | // most code will not have a static dependency on the builder code. |
| 84 | |
| 85 | RuleBasedCollator::RuleBasedCollator() |
| 86 | : data(NULL), |
| 87 | settings(NULL), |
| 88 | tailoring(NULL), |
| 89 | cacheEntry(NULL), |
| 90 | validLocale("" ), |
| 91 | explicitlySetAttributes(0), |
| 92 | actualLocaleIsSameAsValid(FALSE) { |
| 93 | } |
| 94 | |
| 95 | RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode) |
| 96 | : data(NULL), |
| 97 | settings(NULL), |
| 98 | tailoring(NULL), |
| 99 | cacheEntry(NULL), |
| 100 | validLocale("" ), |
| 101 | explicitlySetAttributes(0), |
| 102 | actualLocaleIsSameAsValid(FALSE) { |
| 103 | internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode); |
| 104 | } |
| 105 | |
| 106 | RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength, |
| 107 | UErrorCode &errorCode) |
| 108 | : data(NULL), |
| 109 | settings(NULL), |
| 110 | tailoring(NULL), |
| 111 | cacheEntry(NULL), |
| 112 | validLocale("" ), |
| 113 | explicitlySetAttributes(0), |
| 114 | actualLocaleIsSameAsValid(FALSE) { |
| 115 | internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode); |
| 116 | } |
| 117 | |
| 118 | RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, |
| 119 | UColAttributeValue decompositionMode, |
| 120 | UErrorCode &errorCode) |
| 121 | : data(NULL), |
| 122 | settings(NULL), |
| 123 | tailoring(NULL), |
| 124 | cacheEntry(NULL), |
| 125 | validLocale("" ), |
| 126 | explicitlySetAttributes(0), |
| 127 | actualLocaleIsSameAsValid(FALSE) { |
| 128 | internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode); |
| 129 | } |
| 130 | |
| 131 | RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, |
| 132 | ECollationStrength strength, |
| 133 | UColAttributeValue decompositionMode, |
| 134 | UErrorCode &errorCode) |
| 135 | : data(NULL), |
| 136 | settings(NULL), |
| 137 | tailoring(NULL), |
| 138 | cacheEntry(NULL), |
| 139 | validLocale("" ), |
| 140 | explicitlySetAttributes(0), |
| 141 | actualLocaleIsSameAsValid(FALSE) { |
| 142 | internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode); |
| 143 | } |
| 144 | |
| 145 | RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, |
| 146 | UParseError &parseError, UnicodeString &reason, |
| 147 | UErrorCode &errorCode) |
| 148 | : data(NULL), |
| 149 | settings(NULL), |
| 150 | tailoring(NULL), |
| 151 | cacheEntry(NULL), |
| 152 | validLocale("" ), |
| 153 | explicitlySetAttributes(0), |
| 154 | actualLocaleIsSameAsValid(FALSE) { |
| 155 | internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode); |
| 156 | } |
| 157 | |
| 158 | void |
| 159 | RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules, |
| 160 | int32_t strength, |
| 161 | UColAttributeValue decompositionMode, |
| 162 | UParseError *outParseError, UnicodeString *outReason, |
| 163 | UErrorCode &errorCode) { |
| 164 | const CollationTailoring *base = CollationRoot::getRoot(errorCode); |
| 165 | if(U_FAILURE(errorCode)) { return; } |
| 166 | if(outReason != NULL) { outReason->remove(); } |
| 167 | CollationBuilder builder(base, errorCode); |
| 168 | UVersionInfo noVersion = { 0, 0, 0, 0 }; |
| 169 | BundleImporter importer; |
| 170 | LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion, |
| 171 | &importer, |
| 172 | outParseError, errorCode)); |
| 173 | if(U_FAILURE(errorCode)) { |
| 174 | const char *reason = builder.getErrorReason(); |
| 175 | if(reason != NULL && outReason != NULL) { |
| 176 | *outReason = UnicodeString(reason, -1, US_INV); |
| 177 | } |
| 178 | return; |
| 179 | } |
| 180 | t->actualLocale.setToBogus(); |
| 181 | adoptTailoring(t.orphan(), errorCode); |
| 182 | // Set attributes after building the collator, |
| 183 | // to keep the default settings consistent with the rule string. |
| 184 | if(strength != UCOL_DEFAULT) { |
| 185 | setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode); |
| 186 | } |
| 187 | if(decompositionMode != UCOL_DEFAULT) { |
| 188 | setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | // CollationBuilder implementation ----------------------------------------- *** |
| 193 | |
| 194 | // Some compilers don't care if constants are defined in the .cpp file. |
| 195 | // MS Visual C++ does not like it, but gcc requires it. clang does not care. |
| 196 | #ifndef _MSC_VER |
| 197 | const int32_t CollationBuilder::HAS_BEFORE2; |
| 198 | const int32_t CollationBuilder::HAS_BEFORE3; |
| 199 | #endif |
| 200 | |
| 201 | CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode) |
| 202 | : nfd(*Normalizer2::getNFDInstance(errorCode)), |
| 203 | fcd(*Normalizer2Factory::getFCDInstance(errorCode)), |
| 204 | nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)), |
| 205 | base(b), |
| 206 | baseData(b->data), |
| 207 | rootElements(b->data->rootElements, b->data->rootElementsLength), |
| 208 | variableTop(0), |
| 209 | dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE), |
| 210 | errorReason(NULL), |
| 211 | cesLength(0), |
| 212 | rootPrimaryIndexes(errorCode), nodes(errorCode) { |
| 213 | nfcImpl.ensureCanonIterData(errorCode); |
| 214 | if(U_FAILURE(errorCode)) { |
| 215 | errorReason = "CollationBuilder fields initialization failed" ; |
| 216 | return; |
| 217 | } |
| 218 | if(dataBuilder == NULL) { |
| 219 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
| 220 | return; |
| 221 | } |
| 222 | dataBuilder->initForTailoring(baseData, errorCode); |
| 223 | if(U_FAILURE(errorCode)) { |
| 224 | errorReason = "CollationBuilder initialization failed" ; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | CollationBuilder::~CollationBuilder() { |
| 229 | delete dataBuilder; |
| 230 | } |
| 231 | |
| 232 | CollationTailoring * |
| 233 | CollationBuilder::parseAndBuild(const UnicodeString &ruleString, |
| 234 | const UVersionInfo rulesVersion, |
| 235 | CollationRuleParser::Importer *importer, |
| 236 | UParseError *outParseError, |
| 237 | UErrorCode &errorCode) { |
| 238 | if(U_FAILURE(errorCode)) { return NULL; } |
| 239 | if(baseData->rootElements == NULL) { |
| 240 | errorCode = U_MISSING_RESOURCE_ERROR; |
| 241 | errorReason = "missing root elements data, tailoring not supported" ; |
| 242 | return NULL; |
| 243 | } |
| 244 | LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings)); |
| 245 | if(tailoring.isNull() || tailoring->isBogus()) { |
| 246 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
| 247 | return NULL; |
| 248 | } |
| 249 | CollationRuleParser parser(baseData, errorCode); |
| 250 | if(U_FAILURE(errorCode)) { return NULL; } |
| 251 | // Note: This always bases &[last variable] and &[first regular] |
| 252 | // on the root collator's maxVariable/variableTop. |
| 253 | // If we wanted this to change after [maxVariable x], then we would keep |
| 254 | // the tailoring.settings pointer here and read its variableTop when we need it. |
| 255 | // See http://unicode.org/cldr/trac/ticket/6070 |
| 256 | variableTop = base->settings->variableTop; |
| 257 | parser.setSink(this); |
| 258 | parser.setImporter(importer); |
| 259 | CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings); |
| 260 | parser.parse(ruleString, ownedSettings, outParseError, errorCode); |
| 261 | errorReason = parser.getErrorReason(); |
| 262 | if(U_FAILURE(errorCode)) { return NULL; } |
| 263 | if(dataBuilder->hasMappings()) { |
| 264 | makeTailoredCEs(errorCode); |
| 265 | closeOverComposites(errorCode); |
| 266 | finalizeCEs(errorCode); |
| 267 | // Copy all of ASCII, and Latin-1 letters, into each tailoring. |
| 268 | optimizeSet.add(0, 0x7f); |
| 269 | optimizeSet.add(0xc0, 0xff); |
| 270 | // Hangul is decomposed on the fly during collation, |
| 271 | // and the tailoring data is always built with HANGUL_TAG specials. |
| 272 | optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END); |
| 273 | dataBuilder->optimize(optimizeSet, errorCode); |
| 274 | tailoring->ensureOwnedData(errorCode); |
| 275 | if(U_FAILURE(errorCode)) { return NULL; } |
| 276 | if(fastLatinEnabled) { dataBuilder->enableFastLatin(); } |
| 277 | dataBuilder->build(*tailoring->ownedData, errorCode); |
| 278 | tailoring->builder = dataBuilder; |
| 279 | dataBuilder = NULL; |
| 280 | } else { |
| 281 | tailoring->data = baseData; |
| 282 | } |
| 283 | if(U_FAILURE(errorCode)) { return NULL; } |
| 284 | ownedSettings.fastLatinOptions = CollationFastLatin::getOptions( |
| 285 | tailoring->data, ownedSettings, |
| 286 | ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries)); |
| 287 | tailoring->rules = ruleString; |
| 288 | tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination |
| 289 | tailoring->setVersion(base->version, rulesVersion); |
| 290 | return tailoring.orphan(); |
| 291 | } |
| 292 | |
| 293 | void |
| 294 | CollationBuilder::addReset(int32_t strength, const UnicodeString &str, |
| 295 | const char *&parserErrorReason, UErrorCode &errorCode) { |
| 296 | if(U_FAILURE(errorCode)) { return; } |
| 297 | U_ASSERT(!str.isEmpty()); |
| 298 | if(str.charAt(0) == CollationRuleParser::POS_LEAD) { |
| 299 | ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode); |
| 300 | cesLength = 1; |
| 301 | if(U_FAILURE(errorCode)) { return; } |
| 302 | U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0); |
| 303 | } else { |
| 304 | // normal reset to a character or string |
| 305 | UnicodeString nfdString = nfd.normalize(str, errorCode); |
| 306 | if(U_FAILURE(errorCode)) { |
| 307 | parserErrorReason = "normalizing the reset position" ; |
| 308 | return; |
| 309 | } |
| 310 | cesLength = dataBuilder->getCEs(nfdString, ces, 0); |
| 311 | if(cesLength > Collation::MAX_EXPANSION_LENGTH) { |
| 312 | errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| 313 | parserErrorReason = "reset position maps to too many collation elements (more than 31)" ; |
| 314 | return; |
| 315 | } |
| 316 | } |
| 317 | if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position |
| 318 | |
| 319 | // &[before strength]position |
| 320 | U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY); |
| 321 | int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode); |
| 322 | if(U_FAILURE(errorCode)) { return; } |
| 323 | |
| 324 | int64_t node = nodes.elementAti(index); |
| 325 | // If the index is for a "weaker" node, |
| 326 | // then skip backwards over this and further "weaker" nodes. |
| 327 | while(strengthFromNode(node) > strength) { |
| 328 | index = previousIndexFromNode(node); |
| 329 | node = nodes.elementAti(index); |
| 330 | } |
| 331 | |
| 332 | // Find or insert a node whose index we will put into a temporary CE. |
| 333 | if(strengthFromNode(node) == strength && isTailoredNode(node)) { |
| 334 | // Reset to just before this same-strength tailored node. |
| 335 | index = previousIndexFromNode(node); |
| 336 | } else if(strength == UCOL_PRIMARY) { |
| 337 | // root primary node (has no previous index) |
| 338 | uint32_t p = weight32FromNode(node); |
| 339 | if(p == 0) { |
| 340 | errorCode = U_UNSUPPORTED_ERROR; |
| 341 | parserErrorReason = "reset primary-before ignorable not possible" ; |
| 342 | return; |
| 343 | } |
| 344 | if(p <= rootElements.getFirstPrimary()) { |
| 345 | // There is no primary gap between ignorables and the space-first-primary. |
| 346 | errorCode = U_UNSUPPORTED_ERROR; |
| 347 | parserErrorReason = "reset primary-before first non-ignorable not supported" ; |
| 348 | return; |
| 349 | } |
| 350 | if(p == Collation::FIRST_TRAILING_PRIMARY) { |
| 351 | // We do not support tailoring to an unassigned-implicit CE. |
| 352 | errorCode = U_UNSUPPORTED_ERROR; |
| 353 | parserErrorReason = "reset primary-before [first trailing] not supported" ; |
| 354 | return; |
| 355 | } |
| 356 | p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p)); |
| 357 | index = findOrInsertNodeForPrimary(p, errorCode); |
| 358 | // Go to the last node in this list: |
| 359 | // Tailor after the last node between adjacent root nodes. |
| 360 | for(;;) { |
| 361 | node = nodes.elementAti(index); |
| 362 | int32_t nextIndex = nextIndexFromNode(node); |
| 363 | if(nextIndex == 0) { break; } |
| 364 | index = nextIndex; |
| 365 | } |
| 366 | } else { |
| 367 | // &[before 2] or &[before 3] |
| 368 | index = findCommonNode(index, UCOL_SECONDARY); |
| 369 | if(strength >= UCOL_TERTIARY) { |
| 370 | index = findCommonNode(index, UCOL_TERTIARY); |
| 371 | } |
| 372 | // findCommonNode() stayed on the stronger node or moved to |
| 373 | // an explicit common-weight node of the reset-before strength. |
| 374 | node = nodes.elementAti(index); |
| 375 | if(strengthFromNode(node) == strength) { |
| 376 | // Found a same-strength node with an explicit weight. |
| 377 | uint32_t weight16 = weight16FromNode(node); |
| 378 | if(weight16 == 0) { |
| 379 | errorCode = U_UNSUPPORTED_ERROR; |
| 380 | if(strength == UCOL_SECONDARY) { |
| 381 | parserErrorReason = "reset secondary-before secondary ignorable not possible" ; |
| 382 | } else { |
| 383 | parserErrorReason = "reset tertiary-before completely ignorable not possible" ; |
| 384 | } |
| 385 | return; |
| 386 | } |
| 387 | U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16); |
| 388 | // Reset to just before this node. |
| 389 | // Insert the preceding same-level explicit weight if it is not there already. |
| 390 | // Which explicit weight immediately precedes this one? |
| 391 | weight16 = getWeight16Before(index, node, strength); |
| 392 | // Does this preceding weight have a node? |
| 393 | uint32_t previousWeight16; |
| 394 | int32_t previousIndex = previousIndexFromNode(node); |
| 395 | for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) { |
| 396 | node = nodes.elementAti(i); |
| 397 | int32_t previousStrength = strengthFromNode(node); |
| 398 | if(previousStrength < strength) { |
| 399 | U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex); |
| 400 | // Either the reset element has an above-common weight and |
| 401 | // the parent node provides the implied common weight, |
| 402 | // or the reset element has a weight<=common in the node |
| 403 | // right after the parent, and we need to insert the preceding weight. |
| 404 | previousWeight16 = Collation::COMMON_WEIGHT16; |
| 405 | break; |
| 406 | } else if(previousStrength == strength && !isTailoredNode(node)) { |
| 407 | previousWeight16 = weight16FromNode(node); |
| 408 | break; |
| 409 | } |
| 410 | // Skip weaker nodes and same-level tailored nodes. |
| 411 | } |
| 412 | if(previousWeight16 == weight16) { |
| 413 | // The preceding weight has a node, |
| 414 | // maybe with following weaker or tailored nodes. |
| 415 | // Reset to the last of them. |
| 416 | index = previousIndex; |
| 417 | } else { |
| 418 | // Insert a node with the preceding weight, reset to that. |
| 419 | node = nodeFromWeight16(weight16) | nodeFromStrength(strength); |
| 420 | index = insertNodeBetween(previousIndex, index, node, errorCode); |
| 421 | } |
| 422 | } else { |
| 423 | // Found a stronger node with implied strength-common weight. |
| 424 | uint32_t weight16 = getWeight16Before(index, node, strength); |
| 425 | index = findOrInsertWeakNode(index, weight16, strength, errorCode); |
| 426 | } |
| 427 | // Strength of the temporary CE = strength of its reset position. |
| 428 | // Code above raises an error if the before-strength is stronger. |
| 429 | strength = ceStrength(ces[cesLength - 1]); |
| 430 | } |
| 431 | if(U_FAILURE(errorCode)) { |
| 432 | parserErrorReason = "inserting reset position for &[before n]" ; |
| 433 | return; |
| 434 | } |
| 435 | ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength); |
| 436 | } |
| 437 | |
| 438 | uint32_t |
| 439 | CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) { |
| 440 | U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node)); |
| 441 | // Collect the root CE weights if this node is for a root CE. |
| 442 | // If it is not, then return the low non-primary boundary for a tailored CE. |
| 443 | uint32_t t; |
| 444 | if(strengthFromNode(node) == UCOL_TERTIARY) { |
| 445 | t = weight16FromNode(node); |
| 446 | } else { |
| 447 | t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight. |
| 448 | } |
| 449 | while(strengthFromNode(node) > UCOL_SECONDARY) { |
| 450 | index = previousIndexFromNode(node); |
| 451 | node = nodes.elementAti(index); |
| 452 | } |
| 453 | if(isTailoredNode(node)) { |
| 454 | return Collation::BEFORE_WEIGHT16; |
| 455 | } |
| 456 | uint32_t s; |
| 457 | if(strengthFromNode(node) == UCOL_SECONDARY) { |
| 458 | s = weight16FromNode(node); |
| 459 | } else { |
| 460 | s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight. |
| 461 | } |
| 462 | while(strengthFromNode(node) > UCOL_PRIMARY) { |
| 463 | index = previousIndexFromNode(node); |
| 464 | node = nodes.elementAti(index); |
| 465 | } |
| 466 | if(isTailoredNode(node)) { |
| 467 | return Collation::BEFORE_WEIGHT16; |
| 468 | } |
| 469 | // [p, s, t] is a root CE. Return the preceding weight for the requested level. |
| 470 | uint32_t p = weight32FromNode(node); |
| 471 | uint32_t weight16; |
| 472 | if(level == UCOL_SECONDARY) { |
| 473 | weight16 = rootElements.getSecondaryBefore(p, s); |
| 474 | } else { |
| 475 | weight16 = rootElements.getTertiaryBefore(p, s, t); |
| 476 | U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0); |
| 477 | } |
| 478 | return weight16; |
| 479 | } |
| 480 | |
| 481 | int64_t |
| 482 | CollationBuilder::getSpecialResetPosition(const UnicodeString &str, |
| 483 | const char *&parserErrorReason, UErrorCode &errorCode) { |
| 484 | U_ASSERT(str.length() == 2); |
| 485 | int64_t ce; |
| 486 | int32_t strength = UCOL_PRIMARY; |
| 487 | UBool isBoundary = FALSE; |
| 488 | UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE; |
| 489 | U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING); |
| 490 | switch(pos) { |
| 491 | case CollationRuleParser::FIRST_TERTIARY_IGNORABLE: |
| 492 | // Quaternary CEs are not supported. |
| 493 | // Non-zero quaternary weights are possible only on tertiary or stronger CEs. |
| 494 | return 0; |
| 495 | case CollationRuleParser::LAST_TERTIARY_IGNORABLE: |
| 496 | return 0; |
| 497 | case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: { |
| 498 | // Look for a tailored tertiary node after [0, 0, 0]. |
| 499 | int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode); |
| 500 | if(U_FAILURE(errorCode)) { return 0; } |
| 501 | int64_t node = nodes.elementAti(index); |
| 502 | if((index = nextIndexFromNode(node)) != 0) { |
| 503 | node = nodes.elementAti(index); |
| 504 | U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY); |
| 505 | if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) { |
| 506 | return tempCEFromIndexAndStrength(index, UCOL_TERTIARY); |
| 507 | } |
| 508 | } |
| 509 | return rootElements.getFirstTertiaryCE(); |
| 510 | // No need to look for nodeHasAnyBefore() on a tertiary node. |
| 511 | } |
| 512 | case CollationRuleParser::LAST_SECONDARY_IGNORABLE: |
| 513 | ce = rootElements.getLastTertiaryCE(); |
| 514 | strength = UCOL_TERTIARY; |
| 515 | break; |
| 516 | case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: { |
| 517 | // Look for a tailored secondary node after [0, 0, *]. |
| 518 | int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode); |
| 519 | if(U_FAILURE(errorCode)) { return 0; } |
| 520 | int64_t node = nodes.elementAti(index); |
| 521 | while((index = nextIndexFromNode(node)) != 0) { |
| 522 | node = nodes.elementAti(index); |
| 523 | strength = strengthFromNode(node); |
| 524 | if(strength < UCOL_SECONDARY) { break; } |
| 525 | if(strength == UCOL_SECONDARY) { |
| 526 | if(isTailoredNode(node)) { |
| 527 | if(nodeHasBefore3(node)) { |
| 528 | index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node))); |
| 529 | U_ASSERT(isTailoredNode(nodes.elementAti(index))); |
| 530 | } |
| 531 | return tempCEFromIndexAndStrength(index, UCOL_SECONDARY); |
| 532 | } else { |
| 533 | break; |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | ce = rootElements.getFirstSecondaryCE(); |
| 538 | strength = UCOL_SECONDARY; |
| 539 | break; |
| 540 | } |
| 541 | case CollationRuleParser::LAST_PRIMARY_IGNORABLE: |
| 542 | ce = rootElements.getLastSecondaryCE(); |
| 543 | strength = UCOL_SECONDARY; |
| 544 | break; |
| 545 | case CollationRuleParser::FIRST_VARIABLE: |
| 546 | ce = rootElements.getFirstPrimaryCE(); |
| 547 | isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary |
| 548 | break; |
| 549 | case CollationRuleParser::LAST_VARIABLE: |
| 550 | ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1); |
| 551 | break; |
| 552 | case CollationRuleParser::FIRST_REGULAR: |
| 553 | ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1); |
| 554 | isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary |
| 555 | break; |
| 556 | case CollationRuleParser::LAST_REGULAR: |
| 557 | // Use the Hani-first-primary rather than the actual last "regular" CE before it, |
| 558 | // for backward compatibility with behavior before the introduction of |
| 559 | // script-first-primary CEs in the root collator. |
| 560 | ce = rootElements.firstCEWithPrimaryAtLeast( |
| 561 | baseData->getFirstPrimaryForGroup(USCRIPT_HAN)); |
| 562 | break; |
| 563 | case CollationRuleParser::FIRST_IMPLICIT: |
| 564 | ce = baseData->getSingleCE(0x4e00, errorCode); |
| 565 | break; |
| 566 | case CollationRuleParser::LAST_IMPLICIT: |
| 567 | // We do not support tailoring to an unassigned-implicit CE. |
| 568 | errorCode = U_UNSUPPORTED_ERROR; |
| 569 | parserErrorReason = "reset to [last implicit] not supported" ; |
| 570 | return 0; |
| 571 | case CollationRuleParser::FIRST_TRAILING: |
| 572 | ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY); |
| 573 | isBoundary = TRUE; // trailing first primary (there is no mapping for it) |
| 574 | break; |
| 575 | case CollationRuleParser::LAST_TRAILING: |
| 576 | errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| 577 | parserErrorReason = "LDML forbids tailoring to U+FFFF" ; |
| 578 | return 0; |
| 579 | default: |
| 580 | UPRV_UNREACHABLE; |
| 581 | } |
| 582 | |
| 583 | int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode); |
| 584 | if(U_FAILURE(errorCode)) { return 0; } |
| 585 | int64_t node = nodes.elementAti(index); |
| 586 | if((pos & 1) == 0) { |
| 587 | // even pos = [first xyz] |
| 588 | if(!nodeHasAnyBefore(node) && isBoundary) { |
| 589 | // A <group> first primary boundary is artificially added to FractionalUCA.txt. |
| 590 | // It is reachable via its special contraction, but is not normally used. |
| 591 | // Find the first character tailored after the boundary CE, |
| 592 | // or the first real root CE after it. |
| 593 | if((index = nextIndexFromNode(node)) != 0) { |
| 594 | // If there is a following node, then it must be tailored |
| 595 | // because there are no root CEs with a boundary primary |
| 596 | // and non-common secondary/tertiary weights. |
| 597 | node = nodes.elementAti(index); |
| 598 | U_ASSERT(isTailoredNode(node)); |
| 599 | ce = tempCEFromIndexAndStrength(index, strength); |
| 600 | } else { |
| 601 | U_ASSERT(strength == UCOL_PRIMARY); |
| 602 | uint32_t p = (uint32_t)(ce >> 32); |
| 603 | int32_t pIndex = rootElements.findPrimary(p); |
| 604 | UBool isCompressible = baseData->isCompressiblePrimary(p); |
| 605 | p = rootElements.getPrimaryAfter(p, pIndex, isCompressible); |
| 606 | ce = Collation::makeCE(p); |
| 607 | index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode); |
| 608 | if(U_FAILURE(errorCode)) { return 0; } |
| 609 | node = nodes.elementAti(index); |
| 610 | } |
| 611 | } |
| 612 | if(nodeHasAnyBefore(node)) { |
| 613 | // Get the first node that was tailored before this one at a weaker strength. |
| 614 | if(nodeHasBefore2(node)) { |
| 615 | index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node))); |
| 616 | node = nodes.elementAti(index); |
| 617 | } |
| 618 | if(nodeHasBefore3(node)) { |
| 619 | index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node))); |
| 620 | } |
| 621 | U_ASSERT(isTailoredNode(nodes.elementAti(index))); |
| 622 | ce = tempCEFromIndexAndStrength(index, strength); |
| 623 | } |
| 624 | } else { |
| 625 | // odd pos = [last xyz] |
| 626 | // Find the last node that was tailored after the [last xyz] |
| 627 | // at a strength no greater than the position's strength. |
| 628 | for(;;) { |
| 629 | int32_t nextIndex = nextIndexFromNode(node); |
| 630 | if(nextIndex == 0) { break; } |
| 631 | int64_t nextNode = nodes.elementAti(nextIndex); |
| 632 | if(strengthFromNode(nextNode) < strength) { break; } |
| 633 | index = nextIndex; |
| 634 | node = nextNode; |
| 635 | } |
| 636 | // Do not make a temporary CE for a root node. |
| 637 | // This last node might be the node for the root CE itself, |
| 638 | // or a node with a common secondary or tertiary weight. |
| 639 | if(isTailoredNode(node)) { |
| 640 | ce = tempCEFromIndexAndStrength(index, strength); |
| 641 | } |
| 642 | } |
| 643 | return ce; |
| 644 | } |
| 645 | |
| 646 | void |
| 647 | CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix, |
| 648 | const UnicodeString &str, const UnicodeString &extension, |
| 649 | const char *&parserErrorReason, UErrorCode &errorCode) { |
| 650 | if(U_FAILURE(errorCode)) { return; } |
| 651 | UnicodeString nfdPrefix; |
| 652 | if(!prefix.isEmpty()) { |
| 653 | nfd.normalize(prefix, nfdPrefix, errorCode); |
| 654 | if(U_FAILURE(errorCode)) { |
| 655 | parserErrorReason = "normalizing the relation prefix" ; |
| 656 | return; |
| 657 | } |
| 658 | } |
| 659 | UnicodeString nfdString = nfd.normalize(str, errorCode); |
| 660 | if(U_FAILURE(errorCode)) { |
| 661 | parserErrorReason = "normalizing the relation string" ; |
| 662 | return; |
| 663 | } |
| 664 | |
| 665 | // The runtime code decomposes Hangul syllables on the fly, |
| 666 | // with recursive processing but without making the Jamo pieces visible for matching. |
| 667 | // It does not work with certain types of contextual mappings. |
| 668 | int32_t nfdLength = nfdString.length(); |
| 669 | if(nfdLength >= 2) { |
| 670 | UChar c = nfdString.charAt(0); |
| 671 | if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) { |
| 672 | // While handling a Hangul syllable, contractions starting with Jamo L or V |
| 673 | // would not see the following Jamo of that syllable. |
| 674 | errorCode = U_UNSUPPORTED_ERROR; |
| 675 | parserErrorReason = "contractions starting with conjoining Jamo L or V not supported" ; |
| 676 | return; |
| 677 | } |
| 678 | c = nfdString.charAt(nfdLength - 1); |
| 679 | if(Hangul::isJamoL(c) || |
| 680 | (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) { |
| 681 | // A contraction ending with Jamo L or L+V would require |
| 682 | // generating Hangul syllables in addTailComposites() (588 for a Jamo L), |
| 683 | // or decomposing a following Hangul syllable on the fly, during contraction matching. |
| 684 | errorCode = U_UNSUPPORTED_ERROR; |
| 685 | parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported" ; |
| 686 | return; |
| 687 | } |
| 688 | // A Hangul syllable completely inside a contraction is ok. |
| 689 | } |
| 690 | // Note: If there is a prefix, then the parser checked that |
| 691 | // both the prefix and the string beging with NFC boundaries (not Jamo V or T). |
| 692 | // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0)) |
| 693 | // (While handling a Hangul syllable, prefixes on Jamo V or T |
| 694 | // would not see the previous Jamo of that syllable.) |
| 695 | |
| 696 | if(strength != UCOL_IDENTICAL) { |
| 697 | // Find the node index after which we insert the new tailored node. |
| 698 | int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode); |
| 699 | U_ASSERT(cesLength > 0); |
| 700 | int64_t ce = ces[cesLength - 1]; |
| 701 | if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) { |
| 702 | // There is no primary gap between ignorables and the space-first-primary. |
| 703 | errorCode = U_UNSUPPORTED_ERROR; |
| 704 | parserErrorReason = "tailoring primary after ignorables not supported" ; |
| 705 | return; |
| 706 | } |
| 707 | if(strength == UCOL_QUATERNARY && ce == 0) { |
| 708 | // The CE data structure does not support non-zero quaternary weights |
| 709 | // on tertiary ignorables. |
| 710 | errorCode = U_UNSUPPORTED_ERROR; |
| 711 | parserErrorReason = "tailoring quaternary after tertiary ignorables not supported" ; |
| 712 | return; |
| 713 | } |
| 714 | // Insert the new tailored node. |
| 715 | index = insertTailoredNodeAfter(index, strength, errorCode); |
| 716 | if(U_FAILURE(errorCode)) { |
| 717 | parserErrorReason = "modifying collation elements" ; |
| 718 | return; |
| 719 | } |
| 720 | // Strength of the temporary CE: |
| 721 | // The new relation may yield a stronger CE but not a weaker one. |
| 722 | int32_t tempStrength = ceStrength(ce); |
| 723 | if(strength < tempStrength) { tempStrength = strength; } |
| 724 | ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength); |
| 725 | } |
| 726 | |
| 727 | setCaseBits(nfdString, parserErrorReason, errorCode); |
| 728 | if(U_FAILURE(errorCode)) { return; } |
| 729 | |
| 730 | int32_t cesLengthBeforeExtension = cesLength; |
| 731 | if(!extension.isEmpty()) { |
| 732 | UnicodeString nfdExtension = nfd.normalize(extension, errorCode); |
| 733 | if(U_FAILURE(errorCode)) { |
| 734 | parserErrorReason = "normalizing the relation extension" ; |
| 735 | return; |
| 736 | } |
| 737 | cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength); |
| 738 | if(cesLength > Collation::MAX_EXPANSION_LENGTH) { |
| 739 | errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| 740 | parserErrorReason = |
| 741 | "extension string adds too many collation elements (more than 31 total)" ; |
| 742 | return; |
| 743 | } |
| 744 | } |
| 745 | uint32_t ce32 = Collation::UNASSIGNED_CE32; |
| 746 | if((prefix != nfdPrefix || str != nfdString) && |
| 747 | !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) { |
| 748 | // Map from the original input to the CEs. |
| 749 | // We do this in case the canonical closure is incomplete, |
| 750 | // so that it is possible to explicitly provide the missing mappings. |
| 751 | ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode); |
| 752 | } |
| 753 | addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode); |
| 754 | if(U_FAILURE(errorCode)) { |
| 755 | parserErrorReason = "writing collation elements" ; |
| 756 | return; |
| 757 | } |
| 758 | cesLength = cesLengthBeforeExtension; |
| 759 | } |
| 760 | |
| 761 | int32_t |
| 762 | CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason, |
| 763 | UErrorCode &errorCode) { |
| 764 | if(U_FAILURE(errorCode)) { return 0; } |
| 765 | U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY); |
| 766 | |
| 767 | // Find the last CE that is at least as "strong" as the requested difference. |
| 768 | // Note: Stronger is smaller (UCOL_PRIMARY=0). |
| 769 | int64_t ce; |
| 770 | for(;; --cesLength) { |
| 771 | if(cesLength == 0) { |
| 772 | ce = ces[0] = 0; |
| 773 | cesLength = 1; |
| 774 | break; |
| 775 | } else { |
| 776 | ce = ces[cesLength - 1]; |
| 777 | } |
| 778 | if(ceStrength(ce) <= strength) { break; } |
| 779 | } |
| 780 | |
| 781 | if(isTempCE(ce)) { |
| 782 | // No need to findCommonNode() here for lower levels |
| 783 | // because insertTailoredNodeAfter() will do that anyway. |
| 784 | return indexFromTempCE(ce); |
| 785 | } |
| 786 | |
| 787 | // root CE |
| 788 | if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) { |
| 789 | errorCode = U_UNSUPPORTED_ERROR; |
| 790 | parserErrorReason = "tailoring relative to an unassigned code point not supported" ; |
| 791 | return 0; |
| 792 | } |
| 793 | return findOrInsertNodeForRootCE(ce, strength, errorCode); |
| 794 | } |
| 795 | |
| 796 | int32_t |
| 797 | CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) { |
| 798 | if(U_FAILURE(errorCode)) { return 0; } |
| 799 | U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE); |
| 800 | |
| 801 | // Find or insert the node for each of the root CE's weights, |
| 802 | // down to the requested level/strength. |
| 803 | // Root CEs must have common=zero quaternary weights (for which we never insert any nodes). |
| 804 | U_ASSERT((ce & 0xc0) == 0); |
| 805 | int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode); |
| 806 | if(strength >= UCOL_SECONDARY) { |
| 807 | uint32_t lower32 = (uint32_t)ce; |
| 808 | index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode); |
| 809 | if(strength >= UCOL_TERTIARY) { |
| 810 | index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK, |
| 811 | UCOL_TERTIARY, errorCode); |
| 812 | } |
| 813 | } |
| 814 | return index; |
| 815 | } |
| 816 | |
| 817 | namespace { |
| 818 | |
| 819 | /** |
| 820 | * Like Java Collections.binarySearch(List, key, Comparator). |
| 821 | * |
| 822 | * @return the index>=0 where the item was found, |
| 823 | * or the index<0 for inserting the string at ~index in sorted order |
| 824 | * (index into rootPrimaryIndexes) |
| 825 | */ |
| 826 | int32_t |
| 827 | binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length, |
| 828 | const int64_t *nodes, uint32_t p) { |
| 829 | if(length == 0) { return ~0; } |
| 830 | int32_t start = 0; |
| 831 | int32_t limit = length; |
| 832 | for (;;) { |
| 833 | int32_t i = (start + limit) / 2; |
| 834 | int64_t node = nodes[rootPrimaryIndexes[i]]; |
| 835 | uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node) |
| 836 | if (p == nodePrimary) { |
| 837 | return i; |
| 838 | } else if (p < nodePrimary) { |
| 839 | if (i == start) { |
| 840 | return ~start; // insert s before i |
| 841 | } |
| 842 | limit = i; |
| 843 | } else { |
| 844 | if (i == start) { |
| 845 | return ~(start + 1); // insert s after i |
| 846 | } |
| 847 | start = i; |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | } // namespace |
| 853 | |
| 854 | int32_t |
| 855 | CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) { |
| 856 | if(U_FAILURE(errorCode)) { return 0; } |
| 857 | |
| 858 | int32_t rootIndex = binarySearchForRootPrimaryNode( |
| 859 | rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p); |
| 860 | if(rootIndex >= 0) { |
| 861 | return rootPrimaryIndexes.elementAti(rootIndex); |
| 862 | } else { |
| 863 | // Start a new list of nodes with this primary. |
| 864 | int32_t index = nodes.size(); |
| 865 | nodes.addElement(nodeFromWeight32(p), errorCode); |
| 866 | rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode); |
| 867 | return index; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | int32_t |
| 872 | CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) { |
| 873 | if(U_FAILURE(errorCode)) { return 0; } |
| 874 | U_ASSERT(0 <= index && index < nodes.size()); |
| 875 | U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY); |
| 876 | |
| 877 | if(weight16 == Collation::COMMON_WEIGHT16) { |
| 878 | return findCommonNode(index, level); |
| 879 | } |
| 880 | |
| 881 | // If this will be the first below-common weight for the parent node, |
| 882 | // then we will also need to insert a common weight after it. |
| 883 | int64_t node = nodes.elementAti(index); |
| 884 | U_ASSERT(strengthFromNode(node) < level); // parent node is stronger |
| 885 | if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) { |
| 886 | int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3; |
| 887 | if((node & hasThisLevelBefore) == 0) { |
| 888 | // The parent node has an implied level-common weight. |
| 889 | int64_t commonNode = |
| 890 | nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level); |
| 891 | if(level == UCOL_SECONDARY) { |
| 892 | // Move the HAS_BEFORE3 flag from the parent node |
| 893 | // to the new secondary common node. |
| 894 | commonNode |= node & HAS_BEFORE3; |
| 895 | node &= ~(int64_t)HAS_BEFORE3; |
| 896 | } |
| 897 | nodes.setElementAt(node | hasThisLevelBefore, index); |
| 898 | // Insert below-common-weight node. |
| 899 | int32_t nextIndex = nextIndexFromNode(node); |
| 900 | node = nodeFromWeight16(weight16) | nodeFromStrength(level); |
| 901 | index = insertNodeBetween(index, nextIndex, node, errorCode); |
| 902 | // Insert common-weight node. |
| 903 | insertNodeBetween(index, nextIndex, commonNode, errorCode); |
| 904 | // Return index of below-common-weight node. |
| 905 | return index; |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | // Find the root CE's weight for this level. |
| 910 | // Postpone insertion if not found: |
| 911 | // Insert the new root node before the next stronger node, |
| 912 | // or before the next root node with the same strength and a larger weight. |
| 913 | int32_t nextIndex; |
| 914 | while((nextIndex = nextIndexFromNode(node)) != 0) { |
| 915 | node = nodes.elementAti(nextIndex); |
| 916 | int32_t nextStrength = strengthFromNode(node); |
| 917 | if(nextStrength <= level) { |
| 918 | // Insert before a stronger node. |
| 919 | if(nextStrength < level) { break; } |
| 920 | // nextStrength == level |
| 921 | if(!isTailoredNode(node)) { |
| 922 | uint32_t nextWeight16 = weight16FromNode(node); |
| 923 | if(nextWeight16 == weight16) { |
| 924 | // Found the node for the root CE up to this level. |
| 925 | return nextIndex; |
| 926 | } |
| 927 | // Insert before a node with a larger same-strength weight. |
| 928 | if(nextWeight16 > weight16) { break; } |
| 929 | } |
| 930 | } |
| 931 | // Skip the next node. |
| 932 | index = nextIndex; |
| 933 | } |
| 934 | node = nodeFromWeight16(weight16) | nodeFromStrength(level); |
| 935 | return insertNodeBetween(index, nextIndex, node, errorCode); |
| 936 | } |
| 937 | |
| 938 | int32_t |
| 939 | CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) { |
| 940 | if(U_FAILURE(errorCode)) { return 0; } |
| 941 | U_ASSERT(0 <= index && index < nodes.size()); |
| 942 | if(strength >= UCOL_SECONDARY) { |
| 943 | index = findCommonNode(index, UCOL_SECONDARY); |
| 944 | if(strength >= UCOL_TERTIARY) { |
| 945 | index = findCommonNode(index, UCOL_TERTIARY); |
| 946 | } |
| 947 | } |
| 948 | // Postpone insertion: |
| 949 | // Insert the new node before the next one with a strength at least as strong. |
| 950 | int64_t node = nodes.elementAti(index); |
| 951 | int32_t nextIndex; |
| 952 | while((nextIndex = nextIndexFromNode(node)) != 0) { |
| 953 | node = nodes.elementAti(nextIndex); |
| 954 | if(strengthFromNode(node) <= strength) { break; } |
| 955 | // Skip the next node which has a weaker (larger) strength than the new one. |
| 956 | index = nextIndex; |
| 957 | } |
| 958 | node = IS_TAILORED | nodeFromStrength(strength); |
| 959 | return insertNodeBetween(index, nextIndex, node, errorCode); |
| 960 | } |
| 961 | |
| 962 | int32_t |
| 963 | CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node, |
| 964 | UErrorCode &errorCode) { |
| 965 | if(U_FAILURE(errorCode)) { return 0; } |
| 966 | U_ASSERT(previousIndexFromNode(node) == 0); |
| 967 | U_ASSERT(nextIndexFromNode(node) == 0); |
| 968 | U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex); |
| 969 | // Append the new node and link it to the existing nodes. |
| 970 | int32_t newIndex = nodes.size(); |
| 971 | node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex); |
| 972 | nodes.addElement(node, errorCode); |
| 973 | if(U_FAILURE(errorCode)) { return 0; } |
| 974 | // nodes[index].nextIndex = newIndex |
| 975 | node = nodes.elementAti(index); |
| 976 | nodes.setElementAt(changeNodeNextIndex(node, newIndex), index); |
| 977 | // nodes[nextIndex].previousIndex = newIndex |
| 978 | if(nextIndex != 0) { |
| 979 | node = nodes.elementAti(nextIndex); |
| 980 | nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex); |
| 981 | } |
| 982 | return newIndex; |
| 983 | } |
| 984 | |
| 985 | int32_t |
| 986 | CollationBuilder::findCommonNode(int32_t index, int32_t strength) const { |
| 987 | U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY); |
| 988 | int64_t node = nodes.elementAti(index); |
| 989 | if(strengthFromNode(node) >= strength) { |
| 990 | // The current node is no stronger. |
| 991 | return index; |
| 992 | } |
| 993 | if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) { |
| 994 | // The current node implies the strength-common weight. |
| 995 | return index; |
| 996 | } |
| 997 | index = nextIndexFromNode(node); |
| 998 | node = nodes.elementAti(index); |
| 999 | U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength && |
| 1000 | weight16FromNode(node) < Collation::COMMON_WEIGHT16); |
| 1001 | // Skip to the explicit common node. |
| 1002 | do { |
| 1003 | index = nextIndexFromNode(node); |
| 1004 | node = nodes.elementAti(index); |
| 1005 | U_ASSERT(strengthFromNode(node) >= strength); |
| 1006 | } while(isTailoredNode(node) || strengthFromNode(node) > strength || |
| 1007 | weight16FromNode(node) < Collation::COMMON_WEIGHT16); |
| 1008 | U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16); |
| 1009 | return index; |
| 1010 | } |
| 1011 | |
| 1012 | void |
| 1013 | CollationBuilder::setCaseBits(const UnicodeString &nfdString, |
| 1014 | const char *&parserErrorReason, UErrorCode &errorCode) { |
| 1015 | if(U_FAILURE(errorCode)) { return; } |
| 1016 | int32_t numTailoredPrimaries = 0; |
| 1017 | for(int32_t i = 0; i < cesLength; ++i) { |
| 1018 | if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; } |
| 1019 | } |
| 1020 | // We should not be able to get too many case bits because |
| 1021 | // cesLength<=31==MAX_EXPANSION_LENGTH. |
| 1022 | // 31 pairs of case bits fit into an int64_t without setting its sign bit. |
| 1023 | U_ASSERT(numTailoredPrimaries <= 31); |
| 1024 | |
| 1025 | int64_t cases = 0; |
| 1026 | if(numTailoredPrimaries > 0) { |
| 1027 | const UChar *s = nfdString.getBuffer(); |
| 1028 | UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length()); |
| 1029 | int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1; |
| 1030 | if(U_FAILURE(errorCode)) { |
| 1031 | parserErrorReason = "fetching root CEs for tailored string" ; |
| 1032 | return; |
| 1033 | } |
| 1034 | U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE); |
| 1035 | |
| 1036 | uint32_t lastCase = 0; |
| 1037 | int32_t numBasePrimaries = 0; |
| 1038 | for(int32_t i = 0; i < baseCEsLength; ++i) { |
| 1039 | int64_t ce = baseCEs.getCE(i); |
| 1040 | if((ce >> 32) != 0) { |
| 1041 | ++numBasePrimaries; |
| 1042 | uint32_t c = ((uint32_t)ce >> 14) & 3; |
| 1043 | U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE |
| 1044 | if(numBasePrimaries < numTailoredPrimaries) { |
| 1045 | cases |= (int64_t)c << ((numBasePrimaries - 1) * 2); |
| 1046 | } else if(numBasePrimaries == numTailoredPrimaries) { |
| 1047 | lastCase = c; |
| 1048 | } else if(c != lastCase) { |
| 1049 | // There are more base primary CEs than tailored primaries. |
| 1050 | // Set mixed case if the case bits of the remainder differ. |
| 1051 | lastCase = 1; |
| 1052 | // Nothing more can change. |
| 1053 | break; |
| 1054 | } |
| 1055 | } |
| 1056 | } |
| 1057 | if(numBasePrimaries >= numTailoredPrimaries) { |
| 1058 | cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2); |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | for(int32_t i = 0; i < cesLength; ++i) { |
| 1063 | int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits |
| 1064 | int32_t strength = ceStrength(ce); |
| 1065 | if(strength == UCOL_PRIMARY) { |
| 1066 | ce |= (cases & 3) << 14; |
| 1067 | cases >>= 2; |
| 1068 | } else if(strength == UCOL_TERTIARY) { |
| 1069 | // Tertiary CEs must have uppercase bits. |
| 1070 | // See the LDML spec, and comments in class CollationCompare. |
| 1071 | ce |= 0x8000; |
| 1072 | } |
| 1073 | // Tertiary ignorable CEs must have 0 case bits. |
| 1074 | // We set 0 case bits for secondary CEs too |
| 1075 | // since currently only U+0345 is cased and maps to a secondary CE, |
| 1076 | // and it is lowercase. Other secondaries are uncased. |
| 1077 | // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight. |
| 1078 | ces[i] = ce; |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | void |
| 1083 | CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason, |
| 1084 | UErrorCode &errorCode) { |
| 1085 | if(U_FAILURE(errorCode)) { return; } |
| 1086 | dataBuilder->suppressContractions(set, errorCode); |
| 1087 | if(U_FAILURE(errorCode)) { |
| 1088 | parserErrorReason = "application of [suppressContractions [set]] failed" ; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | void |
| 1093 | CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */, |
| 1094 | UErrorCode &errorCode) { |
| 1095 | if(U_FAILURE(errorCode)) { return; } |
| 1096 | optimizeSet.addAll(set); |
| 1097 | } |
| 1098 | |
| 1099 | uint32_t |
| 1100 | CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, |
| 1101 | const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, |
| 1102 | UErrorCode &errorCode) { |
| 1103 | // Map from the NFD input to the CEs. |
| 1104 | ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode); |
| 1105 | ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode); |
| 1106 | addTailComposites(nfdPrefix, nfdString, errorCode); |
| 1107 | return ce32; |
| 1108 | } |
| 1109 | |
| 1110 | uint32_t |
| 1111 | CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, |
| 1112 | const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, |
| 1113 | UErrorCode &errorCode) { |
| 1114 | if(U_FAILURE(errorCode)) { return ce32; } |
| 1115 | |
| 1116 | // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.) |
| 1117 | if(nfdPrefix.isEmpty()) { |
| 1118 | CanonicalIterator stringIter(nfdString, errorCode); |
| 1119 | if(U_FAILURE(errorCode)) { return ce32; } |
| 1120 | UnicodeString prefix; |
| 1121 | for(;;) { |
| 1122 | UnicodeString str = stringIter.next(); |
| 1123 | if(str.isBogus()) { break; } |
| 1124 | if(ignoreString(str, errorCode) || str == nfdString) { continue; } |
| 1125 | ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode); |
| 1126 | if(U_FAILURE(errorCode)) { return ce32; } |
| 1127 | } |
| 1128 | } else { |
| 1129 | CanonicalIterator prefixIter(nfdPrefix, errorCode); |
| 1130 | CanonicalIterator stringIter(nfdString, errorCode); |
| 1131 | if(U_FAILURE(errorCode)) { return ce32; } |
| 1132 | for(;;) { |
| 1133 | UnicodeString prefix = prefixIter.next(); |
| 1134 | if(prefix.isBogus()) { break; } |
| 1135 | if(ignorePrefix(prefix, errorCode)) { continue; } |
| 1136 | UBool samePrefix = prefix == nfdPrefix; |
| 1137 | for(;;) { |
| 1138 | UnicodeString str = stringIter.next(); |
| 1139 | if(str.isBogus()) { break; } |
| 1140 | if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; } |
| 1141 | ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode); |
| 1142 | if(U_FAILURE(errorCode)) { return ce32; } |
| 1143 | } |
| 1144 | stringIter.reset(); |
| 1145 | } |
| 1146 | } |
| 1147 | return ce32; |
| 1148 | } |
| 1149 | |
| 1150 | void |
| 1151 | CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, |
| 1152 | UErrorCode &errorCode) { |
| 1153 | if(U_FAILURE(errorCode)) { return; } |
| 1154 | |
| 1155 | // Look for the last starter in the NFD string. |
| 1156 | UChar32 lastStarter; |
| 1157 | int32_t indexAfterLastStarter = nfdString.length(); |
| 1158 | for(;;) { |
| 1159 | if(indexAfterLastStarter == 0) { return; } // no starter at all |
| 1160 | lastStarter = nfdString.char32At(indexAfterLastStarter - 1); |
| 1161 | if(nfd.getCombiningClass(lastStarter) == 0) { break; } |
| 1162 | indexAfterLastStarter -= U16_LENGTH(lastStarter); |
| 1163 | } |
| 1164 | // No closure to Hangul syllables since we decompose them on the fly. |
| 1165 | if(Hangul::isJamoL(lastStarter)) { return; } |
| 1166 | |
| 1167 | // Are there any composites whose decomposition starts with the lastStarter? |
| 1168 | // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters. |
| 1169 | // We might find some more equivalent mappings here if it did. |
| 1170 | UnicodeSet composites; |
| 1171 | if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; } |
| 1172 | |
| 1173 | UnicodeString decomp; |
| 1174 | UnicodeString newNFDString, newString; |
| 1175 | int64_t newCEs[Collation::MAX_EXPANSION_LENGTH]; |
| 1176 | UnicodeSetIterator iter(composites); |
| 1177 | while(iter.next()) { |
| 1178 | U_ASSERT(!iter.isString()); |
| 1179 | UChar32 composite = iter.getCodepoint(); |
| 1180 | nfd.getDecomposition(composite, decomp); |
| 1181 | if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp, |
| 1182 | newNFDString, newString, errorCode)) { |
| 1183 | continue; |
| 1184 | } |
| 1185 | int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0); |
| 1186 | if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) { |
| 1187 | // Ignore mappings that we cannot store. |
| 1188 | continue; |
| 1189 | } |
| 1190 | // Note: It is possible that the newCEs do not make use of the mapping |
| 1191 | // for which we are adding the tail composites, in which case we might be adding |
| 1192 | // unnecessary mappings. |
| 1193 | // For example, when we add tail composites for ae^ (^=combining circumflex), |
| 1194 | // UCA discontiguous-contraction matching does not find any matches |
| 1195 | // for ae_^ (_=any combining diacritic below) *unless* there is also |
| 1196 | // a contraction mapping for ae. |
| 1197 | // Thus, if there is no ae contraction, then the ae^ mapping is ignored |
| 1198 | // while fetching the newCEs for ae_^. |
| 1199 | // TODO: Try to detect this effectively. |
| 1200 | // (Alternatively, print a warning when prefix contractions are missing.) |
| 1201 | |
| 1202 | // We do not need an explicit mapping for the NFD strings. |
| 1203 | // It is fine if the NFD input collates like this via a sequence of mappings. |
| 1204 | // It also saves a little bit of space, and may reduce the set of characters with contractions. |
| 1205 | uint32_t ce32 = addIfDifferent(nfdPrefix, newString, |
| 1206 | newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode); |
| 1207 | if(ce32 != Collation::UNASSIGNED_CE32) { |
| 1208 | // was different, was added |
| 1209 | addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode); |
| 1210 | } |
| 1211 | } |
| 1212 | } |
| 1213 | |
| 1214 | UBool |
| 1215 | CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString, |
| 1216 | int32_t indexAfterLastStarter, |
| 1217 | UChar32 composite, const UnicodeString &decomp, |
| 1218 | UnicodeString &newNFDString, UnicodeString &newString, |
| 1219 | UErrorCode &errorCode) const { |
| 1220 | if(U_FAILURE(errorCode)) { return FALSE; } |
| 1221 | U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0)); |
| 1222 | int32_t lastStarterLength = decomp.moveIndex32(0, 1); |
| 1223 | if(lastStarterLength == decomp.length()) { |
| 1224 | // Singleton decompositions should be found by addWithClosure() |
| 1225 | // and the CanonicalIterator, so we can ignore them here. |
| 1226 | return FALSE; |
| 1227 | } |
| 1228 | if(nfdString.compare(indexAfterLastStarter, 0x7fffffff, |
| 1229 | decomp, lastStarterLength, 0x7fffffff) == 0) { |
| 1230 | // same strings, nothing new to be found here |
| 1231 | return FALSE; |
| 1232 | } |
| 1233 | |
| 1234 | // Make new FCD strings that combine a composite, or its decomposition, |
| 1235 | // into the nfdString's last starter and the combining marks following it. |
| 1236 | // Make an NFD version, and a version with the composite. |
| 1237 | newNFDString.setTo(nfdString, 0, indexAfterLastStarter); |
| 1238 | newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite); |
| 1239 | |
| 1240 | // The following is related to discontiguous contraction matching, |
| 1241 | // but builds only FCD strings (or else returns FALSE). |
| 1242 | int32_t sourceIndex = indexAfterLastStarter; |
| 1243 | int32_t decompIndex = lastStarterLength; |
| 1244 | // Small optimization: We keep the source character across loop iterations |
| 1245 | // because we do not always consume it, |
| 1246 | // and then need not fetch it again nor look up its combining class again. |
| 1247 | UChar32 sourceChar = U_SENTINEL; |
| 1248 | // The cc variables need to be declared before the loop so that at the end |
| 1249 | // they are set to the last combining classes seen. |
| 1250 | uint8_t sourceCC = 0; |
| 1251 | uint8_t decompCC = 0; |
| 1252 | for(;;) { |
| 1253 | if(sourceChar < 0) { |
| 1254 | if(sourceIndex >= nfdString.length()) { break; } |
| 1255 | sourceChar = nfdString.char32At(sourceIndex); |
| 1256 | sourceCC = nfd.getCombiningClass(sourceChar); |
| 1257 | U_ASSERT(sourceCC != 0); |
| 1258 | } |
| 1259 | // We consume a decomposition character in each iteration. |
| 1260 | if(decompIndex >= decomp.length()) { break; } |
| 1261 | UChar32 decompChar = decomp.char32At(decompIndex); |
| 1262 | decompCC = nfd.getCombiningClass(decompChar); |
| 1263 | // Compare the two characters and their combining classes. |
| 1264 | if(decompCC == 0) { |
| 1265 | // Unable to merge because the source contains a non-zero combining mark |
| 1266 | // but the composite's decomposition contains another starter. |
| 1267 | // The strings would not be equivalent. |
| 1268 | return FALSE; |
| 1269 | } else if(sourceCC < decompCC) { |
| 1270 | // Composite + sourceChar would not be FCD. |
| 1271 | return FALSE; |
| 1272 | } else if(decompCC < sourceCC) { |
| 1273 | newNFDString.append(decompChar); |
| 1274 | decompIndex += U16_LENGTH(decompChar); |
| 1275 | } else if(decompChar != sourceChar) { |
| 1276 | // Blocked because same combining class. |
| 1277 | return FALSE; |
| 1278 | } else { // match: decompChar == sourceChar |
| 1279 | newNFDString.append(decompChar); |
| 1280 | decompIndex += U16_LENGTH(decompChar); |
| 1281 | sourceIndex += U16_LENGTH(decompChar); |
| 1282 | sourceChar = U_SENTINEL; |
| 1283 | } |
| 1284 | } |
| 1285 | // We are at the end of at least one of the two inputs. |
| 1286 | if(sourceChar >= 0) { // more characters from nfdString but not from decomp |
| 1287 | if(sourceCC < decompCC) { |
| 1288 | // Appending the next source character to the composite would not be FCD. |
| 1289 | return FALSE; |
| 1290 | } |
| 1291 | newNFDString.append(nfdString, sourceIndex, 0x7fffffff); |
| 1292 | newString.append(nfdString, sourceIndex, 0x7fffffff); |
| 1293 | } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString |
| 1294 | newNFDString.append(decomp, decompIndex, 0x7fffffff); |
| 1295 | } |
| 1296 | U_ASSERT(nfd.isNormalized(newNFDString, errorCode)); |
| 1297 | U_ASSERT(fcd.isNormalized(newString, errorCode)); |
| 1298 | U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent |
| 1299 | return TRUE; |
| 1300 | } |
| 1301 | |
| 1302 | UBool |
| 1303 | CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const { |
| 1304 | // Do not map non-FCD prefixes. |
| 1305 | return !isFCD(s, errorCode); |
| 1306 | } |
| 1307 | |
| 1308 | UBool |
| 1309 | CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const { |
| 1310 | // Do not map non-FCD strings. |
| 1311 | // Do not map strings that start with Hangul syllables: We decompose those on the fly. |
| 1312 | return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0)); |
| 1313 | } |
| 1314 | |
| 1315 | UBool |
| 1316 | CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const { |
| 1317 | return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode); |
| 1318 | } |
| 1319 | |
| 1320 | void |
| 1321 | CollationBuilder::closeOverComposites(UErrorCode &errorCode) { |
| 1322 | UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]" ), errorCode); // Java: static final |
| 1323 | if(U_FAILURE(errorCode)) { return; } |
| 1324 | // Hangul is decomposed on the fly during collation. |
| 1325 | composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END); |
| 1326 | UnicodeString prefix; // empty |
| 1327 | UnicodeString nfdString; |
| 1328 | UnicodeSetIterator iter(composites); |
| 1329 | while(iter.next()) { |
| 1330 | U_ASSERT(!iter.isString()); |
| 1331 | nfd.getDecomposition(iter.getCodepoint(), nfdString); |
| 1332 | cesLength = dataBuilder->getCEs(nfdString, ces, 0); |
| 1333 | if(cesLength > Collation::MAX_EXPANSION_LENGTH) { |
| 1334 | // Too many CEs from the decomposition (unusual), ignore this composite. |
| 1335 | // We could add a capacity parameter to getCEs() and reallocate if necessary. |
| 1336 | // However, this can only really happen in contrived cases. |
| 1337 | continue; |
| 1338 | } |
| 1339 | const UnicodeString &composite(iter.getString()); |
| 1340 | addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode); |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | uint32_t |
| 1345 | CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str, |
| 1346 | const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, |
| 1347 | UErrorCode &errorCode) { |
| 1348 | if(U_FAILURE(errorCode)) { return ce32; } |
| 1349 | int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH]; |
| 1350 | int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0); |
| 1351 | if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) { |
| 1352 | if(ce32 == Collation::UNASSIGNED_CE32) { |
| 1353 | ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode); |
| 1354 | } |
| 1355 | dataBuilder->addCE32(prefix, str, ce32, errorCode); |
| 1356 | } |
| 1357 | return ce32; |
| 1358 | } |
| 1359 | |
| 1360 | UBool |
| 1361 | CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length, |
| 1362 | const int64_t ces2[], int32_t ces2Length) { |
| 1363 | if(ces1Length != ces2Length) { |
| 1364 | return FALSE; |
| 1365 | } |
| 1366 | U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH); |
| 1367 | for(int32_t i = 0; i < ces1Length; ++i) { |
| 1368 | if(ces1[i] != ces2[i]) { return FALSE; } |
| 1369 | } |
| 1370 | return TRUE; |
| 1371 | } |
| 1372 | |
| 1373 | #ifdef DEBUG_COLLATION_BUILDER |
| 1374 | |
| 1375 | uint32_t |
| 1376 | alignWeightRight(uint32_t w) { |
| 1377 | if(w != 0) { |
| 1378 | while((w & 0xff) == 0) { w >>= 8; } |
| 1379 | } |
| 1380 | return w; |
| 1381 | } |
| 1382 | |
| 1383 | #endif |
| 1384 | |
| 1385 | void |
| 1386 | CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) { |
| 1387 | if(U_FAILURE(errorCode)) { return; } |
| 1388 | |
| 1389 | CollationWeights primaries, secondaries, tertiaries; |
| 1390 | int64_t *nodesArray = nodes.getBuffer(); |
| 1391 | #ifdef DEBUG_COLLATION_BUILDER |
| 1392 | puts("\nCollationBuilder::makeTailoredCEs()" ); |
| 1393 | #endif |
| 1394 | |
| 1395 | for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) { |
| 1396 | int32_t i = rootPrimaryIndexes.elementAti(rpi); |
| 1397 | int64_t node = nodesArray[i]; |
| 1398 | uint32_t p = weight32FromNode(node); |
| 1399 | uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16; |
| 1400 | uint32_t t = s; |
| 1401 | uint32_t q = 0; |
| 1402 | UBool pIsTailored = FALSE; |
| 1403 | UBool sIsTailored = FALSE; |
| 1404 | UBool tIsTailored = FALSE; |
| 1405 | #ifdef DEBUG_COLLATION_BUILDER |
| 1406 | printf("\nprimary %lx\n" , (long)alignWeightRight(p)); |
| 1407 | #endif |
| 1408 | int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p); |
| 1409 | int32_t nextIndex = nextIndexFromNode(node); |
| 1410 | while(nextIndex != 0) { |
| 1411 | i = nextIndex; |
| 1412 | node = nodesArray[i]; |
| 1413 | nextIndex = nextIndexFromNode(node); |
| 1414 | int32_t strength = strengthFromNode(node); |
| 1415 | if(strength == UCOL_QUATERNARY) { |
| 1416 | U_ASSERT(isTailoredNode(node)); |
| 1417 | #ifdef DEBUG_COLLATION_BUILDER |
| 1418 | printf(" quat+ " ); |
| 1419 | #endif |
| 1420 | if(q == 3) { |
| 1421 | errorCode = U_BUFFER_OVERFLOW_ERROR; |
| 1422 | errorReason = "quaternary tailoring gap too small" ; |
| 1423 | return; |
| 1424 | } |
| 1425 | ++q; |
| 1426 | } else { |
| 1427 | if(strength == UCOL_TERTIARY) { |
| 1428 | if(isTailoredNode(node)) { |
| 1429 | #ifdef DEBUG_COLLATION_BUILDER |
| 1430 | printf(" ter+ " ); |
| 1431 | #endif |
| 1432 | if(!tIsTailored) { |
| 1433 | // First tailored tertiary node for [p, s]. |
| 1434 | int32_t tCount = countTailoredNodes(nodesArray, nextIndex, |
| 1435 | UCOL_TERTIARY) + 1; |
| 1436 | uint32_t tLimit; |
| 1437 | if(t == 0) { |
| 1438 | // Gap at the beginning of the tertiary CE range. |
| 1439 | t = rootElements.getTertiaryBoundary() - 0x100; |
| 1440 | tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK; |
| 1441 | } else if(!pIsTailored && !sIsTailored) { |
| 1442 | // p and s are root weights. |
| 1443 | tLimit = rootElements.getTertiaryAfter(pIndex, s, t); |
| 1444 | } else if(t == Collation::BEFORE_WEIGHT16) { |
| 1445 | tLimit = Collation::COMMON_WEIGHT16; |
| 1446 | } else { |
| 1447 | // [p, s] is tailored. |
| 1448 | U_ASSERT(t == Collation::COMMON_WEIGHT16); |
| 1449 | tLimit = rootElements.getTertiaryBoundary(); |
| 1450 | } |
| 1451 | U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0); |
| 1452 | tertiaries.initForTertiary(); |
| 1453 | if(!tertiaries.allocWeights(t, tLimit, tCount)) { |
| 1454 | errorCode = U_BUFFER_OVERFLOW_ERROR; |
| 1455 | errorReason = "tertiary tailoring gap too small" ; |
| 1456 | return; |
| 1457 | } |
| 1458 | tIsTailored = TRUE; |
| 1459 | } |
| 1460 | t = tertiaries.nextWeight(); |
| 1461 | U_ASSERT(t != 0xffffffff); |
| 1462 | } else { |
| 1463 | t = weight16FromNode(node); |
| 1464 | tIsTailored = FALSE; |
| 1465 | #ifdef DEBUG_COLLATION_BUILDER |
| 1466 | printf(" ter %lx\n" , (long)alignWeightRight(t)); |
| 1467 | #endif |
| 1468 | } |
| 1469 | } else { |
| 1470 | if(strength == UCOL_SECONDARY) { |
| 1471 | if(isTailoredNode(node)) { |
| 1472 | #ifdef DEBUG_COLLATION_BUILDER |
| 1473 | printf(" sec+ " ); |
| 1474 | #endif |
| 1475 | if(!sIsTailored) { |
| 1476 | // First tailored secondary node for p. |
| 1477 | int32_t sCount = countTailoredNodes(nodesArray, nextIndex, |
| 1478 | UCOL_SECONDARY) + 1; |
| 1479 | uint32_t sLimit; |
| 1480 | if(s == 0) { |
| 1481 | // Gap at the beginning of the secondary CE range. |
| 1482 | s = rootElements.getSecondaryBoundary() - 0x100; |
| 1483 | sLimit = rootElements.getFirstSecondaryCE() >> 16; |
| 1484 | } else if(!pIsTailored) { |
| 1485 | // p is a root primary. |
| 1486 | sLimit = rootElements.getSecondaryAfter(pIndex, s); |
| 1487 | } else if(s == Collation::BEFORE_WEIGHT16) { |
| 1488 | sLimit = Collation::COMMON_WEIGHT16; |
| 1489 | } else { |
| 1490 | // p is a tailored primary. |
| 1491 | U_ASSERT(s == Collation::COMMON_WEIGHT16); |
| 1492 | sLimit = rootElements.getSecondaryBoundary(); |
| 1493 | } |
| 1494 | if(s == Collation::COMMON_WEIGHT16) { |
| 1495 | // Do not tailor into the getSortKey() range of |
| 1496 | // compressed common secondaries. |
| 1497 | s = rootElements.getLastCommonSecondary(); |
| 1498 | } |
| 1499 | secondaries.initForSecondary(); |
| 1500 | if(!secondaries.allocWeights(s, sLimit, sCount)) { |
| 1501 | errorCode = U_BUFFER_OVERFLOW_ERROR; |
| 1502 | errorReason = "secondary tailoring gap too small" ; |
| 1503 | #ifdef DEBUG_COLLATION_BUILDER |
| 1504 | printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n" , |
| 1505 | (long)alignWeightRight(s), (long)alignWeightRight(sLimit), |
| 1506 | (long)alignWeightRight(sCount)); |
| 1507 | #endif |
| 1508 | return; |
| 1509 | } |
| 1510 | sIsTailored = TRUE; |
| 1511 | } |
| 1512 | s = secondaries.nextWeight(); |
| 1513 | U_ASSERT(s != 0xffffffff); |
| 1514 | } else { |
| 1515 | s = weight16FromNode(node); |
| 1516 | sIsTailored = FALSE; |
| 1517 | #ifdef DEBUG_COLLATION_BUILDER |
| 1518 | printf(" sec %lx\n" , (long)alignWeightRight(s)); |
| 1519 | #endif |
| 1520 | } |
| 1521 | } else /* UCOL_PRIMARY */ { |
| 1522 | U_ASSERT(isTailoredNode(node)); |
| 1523 | #ifdef DEBUG_COLLATION_BUILDER |
| 1524 | printf("pri+ " ); |
| 1525 | #endif |
| 1526 | if(!pIsTailored) { |
| 1527 | // First tailored primary node in this list. |
| 1528 | int32_t pCount = countTailoredNodes(nodesArray, nextIndex, |
| 1529 | UCOL_PRIMARY) + 1; |
| 1530 | UBool isCompressible = baseData->isCompressiblePrimary(p); |
| 1531 | uint32_t pLimit = |
| 1532 | rootElements.getPrimaryAfter(p, pIndex, isCompressible); |
| 1533 | primaries.initForPrimary(isCompressible); |
| 1534 | if(!primaries.allocWeights(p, pLimit, pCount)) { |
| 1535 | errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode? |
| 1536 | errorReason = "primary tailoring gap too small" ; |
| 1537 | return; |
| 1538 | } |
| 1539 | pIsTailored = TRUE; |
| 1540 | } |
| 1541 | p = primaries.nextWeight(); |
| 1542 | U_ASSERT(p != 0xffffffff); |
| 1543 | s = Collation::COMMON_WEIGHT16; |
| 1544 | sIsTailored = FALSE; |
| 1545 | } |
| 1546 | t = s == 0 ? 0 : Collation::COMMON_WEIGHT16; |
| 1547 | tIsTailored = FALSE; |
| 1548 | } |
| 1549 | q = 0; |
| 1550 | } |
| 1551 | if(isTailoredNode(node)) { |
| 1552 | nodesArray[i] = Collation::makeCE(p, s, t, q); |
| 1553 | #ifdef DEBUG_COLLATION_BUILDER |
| 1554 | printf("%016llx\n" , (long long)nodesArray[i]); |
| 1555 | #endif |
| 1556 | } |
| 1557 | } |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | int32_t |
| 1562 | CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) { |
| 1563 | int32_t count = 0; |
| 1564 | for(;;) { |
| 1565 | if(i == 0) { break; } |
| 1566 | int64_t node = nodesArray[i]; |
| 1567 | if(strengthFromNode(node) < strength) { break; } |
| 1568 | if(strengthFromNode(node) == strength) { |
| 1569 | if(isTailoredNode(node)) { |
| 1570 | ++count; |
| 1571 | } else { |
| 1572 | break; |
| 1573 | } |
| 1574 | } |
| 1575 | i = nextIndexFromNode(node); |
| 1576 | } |
| 1577 | return count; |
| 1578 | } |
| 1579 | |
| 1580 | class CEFinalizer : public CollationDataBuilder::CEModifier { |
| 1581 | public: |
| 1582 | CEFinalizer(const int64_t *ces) : finalCEs(ces) {} |
| 1583 | virtual ~CEFinalizer(); |
| 1584 | virtual int64_t modifyCE32(uint32_t ce32) const { |
| 1585 | U_ASSERT(!Collation::isSpecialCE32(ce32)); |
| 1586 | if(CollationBuilder::isTempCE32(ce32)) { |
| 1587 | // retain case bits |
| 1588 | return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8); |
| 1589 | } else { |
| 1590 | return Collation::NO_CE; |
| 1591 | } |
| 1592 | } |
| 1593 | virtual int64_t modifyCE(int64_t ce) const { |
| 1594 | if(CollationBuilder::isTempCE(ce)) { |
| 1595 | // retain case bits |
| 1596 | return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000); |
| 1597 | } else { |
| 1598 | return Collation::NO_CE; |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | private: |
| 1603 | const int64_t *finalCEs; |
| 1604 | }; |
| 1605 | |
| 1606 | CEFinalizer::~CEFinalizer() {} |
| 1607 | |
| 1608 | void |
| 1609 | CollationBuilder::finalizeCEs(UErrorCode &errorCode) { |
| 1610 | if(U_FAILURE(errorCode)) { return; } |
| 1611 | LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode), errorCode); |
| 1612 | if(U_FAILURE(errorCode)) { |
| 1613 | return; |
| 1614 | } |
| 1615 | newBuilder->initForTailoring(baseData, errorCode); |
| 1616 | CEFinalizer finalizer(nodes.getBuffer()); |
| 1617 | newBuilder->copyFrom(*dataBuilder, finalizer, errorCode); |
| 1618 | if(U_FAILURE(errorCode)) { return; } |
| 1619 | delete dataBuilder; |
| 1620 | dataBuilder = newBuilder.orphan(); |
| 1621 | } |
| 1622 | |
| 1623 | int32_t |
| 1624 | CollationBuilder::ceStrength(int64_t ce) { |
| 1625 | return |
| 1626 | isTempCE(ce) ? strengthFromTempCE(ce) : |
| 1627 | (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY : |
| 1628 | ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY : |
| 1629 | ce != 0 ? UCOL_TERTIARY : |
| 1630 | UCOL_IDENTICAL; |
| 1631 | } |
| 1632 | |
| 1633 | U_NAMESPACE_END |
| 1634 | |
| 1635 | U_NAMESPACE_USE |
| 1636 | |
| 1637 | U_CAPI UCollator * U_EXPORT2 |
| 1638 | ucol_openRules(const UChar *rules, int32_t rulesLength, |
| 1639 | UColAttributeValue normalizationMode, UCollationStrength strength, |
| 1640 | UParseError *parseError, UErrorCode *pErrorCode) { |
| 1641 | if(U_FAILURE(*pErrorCode)) { return NULL; } |
| 1642 | if(rules == NULL && rulesLength != 0) { |
| 1643 | *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| 1644 | return NULL; |
| 1645 | } |
| 1646 | RuleBasedCollator *coll = new RuleBasedCollator(); |
| 1647 | if(coll == NULL) { |
| 1648 | *pErrorCode = U_MEMORY_ALLOCATION_ERROR; |
| 1649 | return NULL; |
| 1650 | } |
| 1651 | UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength); |
| 1652 | coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode); |
| 1653 | if(U_FAILURE(*pErrorCode)) { |
| 1654 | delete coll; |
| 1655 | return NULL; |
| 1656 | } |
| 1657 | return coll->toUCollator(); |
| 1658 | } |
| 1659 | |
| 1660 | static const int32_t internalBufferSize = 512; |
| 1661 | |
| 1662 | // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp |
| 1663 | // because it calls UnicodeSet "builder" code that depends on all Unicode properties, |
| 1664 | // and the rest of the collation "runtime" code only depends on normalization. |
| 1665 | // This function is not related to the collation builder, |
| 1666 | // but it did not seem worth moving it into its own .cpp file, |
| 1667 | // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods. |
| 1668 | U_CAPI int32_t U_EXPORT2 |
| 1669 | ucol_getUnsafeSet( const UCollator *coll, |
| 1670 | USet *unsafe, |
| 1671 | UErrorCode *status) |
| 1672 | { |
| 1673 | UChar buffer[internalBufferSize]; |
| 1674 | int32_t len = 0; |
| 1675 | |
| 1676 | uset_clear(unsafe); |
| 1677 | |
| 1678 | // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant |
| 1679 | static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, |
| 1680 | 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 }; |
| 1681 | |
| 1682 | // add chars that fail the fcd check |
| 1683 | uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status); |
| 1684 | |
| 1685 | // add lead/trail surrogates |
| 1686 | // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*, |
| 1687 | // not when testing code *points*) |
| 1688 | uset_addRange(unsafe, 0xd800, 0xdfff); |
| 1689 | |
| 1690 | USet *contractions = uset_open(0,0); |
| 1691 | |
| 1692 | int32_t i = 0, j = 0; |
| 1693 | ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status); |
| 1694 | int32_t contsSize = uset_size(contractions); |
| 1695 | UChar32 c = 0; |
| 1696 | // Contraction set consists only of strings |
| 1697 | // to get unsafe code points, we need to |
| 1698 | // break the strings apart and add them to the unsafe set |
| 1699 | for(i = 0; i < contsSize; i++) { |
| 1700 | len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status); |
| 1701 | if(len > 0) { |
| 1702 | j = 0; |
| 1703 | while(j < len) { |
| 1704 | U16_NEXT(buffer, j, len, c); |
| 1705 | if(j < len) { |
| 1706 | uset_add(unsafe, c); |
| 1707 | } |
| 1708 | } |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | uset_close(contractions); |
| 1713 | |
| 1714 | return uset_size(unsafe); |
| 1715 | } |
| 1716 | |
| 1717 | #endif // !UCONFIG_NO_COLLATION |
| 1718 | |