| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ********************************************************************** |
| 5 | * Copyright (C) 1999-2016, International Business Machines |
| 6 | * Corporation and others. All Rights Reserved. |
| 7 | ********************************************************************** |
| 8 | * Date Name Description |
| 9 | * 11/17/99 aliu Creation. |
| 10 | ********************************************************************** |
| 11 | */ |
| 12 | |
| 13 | #include "unicode/utypes.h" |
| 14 | |
| 15 | #if !UCONFIG_NO_TRANSLITERATION |
| 16 | |
| 17 | #include "unicode/uobject.h" |
| 18 | #include "unicode/parseerr.h" |
| 19 | #include "unicode/parsepos.h" |
| 20 | #include "unicode/putil.h" |
| 21 | #include "unicode/uchar.h" |
| 22 | #include "unicode/ustring.h" |
| 23 | #include "unicode/uniset.h" |
| 24 | #include "unicode/utf16.h" |
| 25 | #include "cstring.h" |
| 26 | #include "funcrepl.h" |
| 27 | #include "hash.h" |
| 28 | #include "quant.h" |
| 29 | #include "rbt.h" |
| 30 | #include "rbt_data.h" |
| 31 | #include "rbt_pars.h" |
| 32 | #include "rbt_rule.h" |
| 33 | #include "strmatch.h" |
| 34 | #include "strrepl.h" |
| 35 | #include "unicode/symtable.h" |
| 36 | #include "tridpars.h" |
| 37 | #include "uvector.h" |
| 38 | #include "hash.h" |
| 39 | #include "patternprops.h" |
| 40 | #include "util.h" |
| 41 | #include "cmemory.h" |
| 42 | #include "uprops.h" |
| 43 | #include "putilimp.h" |
| 44 | |
| 45 | // Operators |
| 46 | #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ |
| 47 | #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ |
| 48 | #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ |
| 49 | #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op |
| 50 | |
| 51 | // Other special characters |
| 52 | #define QUOTE ((UChar)0x0027) /*'*/ |
| 53 | #define ESCAPE ((UChar)0x005C) /*\*/ |
| 54 | #define END_OF_RULE ((UChar)0x003B) /*;*/ |
| 55 | #define ((UChar)0x0023) /*#*/ |
| 56 | |
| 57 | #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ |
| 58 | #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ |
| 59 | #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ |
| 60 | #define CONTEXT_POST ((UChar)0x007D) /*}*/ |
| 61 | #define CURSOR_POS ((UChar)0x007C) /*|*/ |
| 62 | #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ |
| 63 | #define ANCHOR_START ((UChar)0x005E) /*^*/ |
| 64 | #define KLEENE_STAR ((UChar)0x002A) /***/ |
| 65 | #define ONE_OR_MORE ((UChar)0x002B) /*+*/ |
| 66 | #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ |
| 67 | |
| 68 | #define DOT ((UChar)46) /*.*/ |
| 69 | |
| 70 | static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; |
| 71 | 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, |
| 72 | 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 |
| 73 | }; |
| 74 | |
| 75 | // A function is denoted &Source-Target/Variant(text) |
| 76 | #define FUNCTION ((UChar)38) /*&*/ |
| 77 | |
| 78 | // Aliases for some of the syntax characters. These are provided so |
| 79 | // transliteration rules can be expressed in XML without clashing with |
| 80 | // XML syntax characters '<', '>', and '&'. |
| 81 | #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow |
| 82 | #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow |
| 83 | #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow |
| 84 | #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) |
| 85 | |
| 86 | // Special characters disallowed at the top level |
| 87 | static const UChar ILLEGAL_TOP[] = {41,0}; // ")" |
| 88 | |
| 89 | // Special characters disallowed within a segment |
| 90 | static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" |
| 91 | |
| 92 | // Special characters disallowed within a function argument |
| 93 | static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" |
| 94 | |
| 95 | // By definition, the ANCHOR_END special character is a |
| 96 | // trailing SymbolTable.SYMBOL_REF character. |
| 97 | // private static final char ANCHOR_END = '$'; |
| 98 | |
| 99 | static const UChar gOPERATORS[] = { // "=><" |
| 100 | VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, |
| 101 | ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, |
| 102 | 0 |
| 103 | }; |
| 104 | |
| 105 | static const UChar HALF_ENDERS[] = { // "=><;" |
| 106 | VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, |
| 107 | ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, |
| 108 | END_OF_RULE, |
| 109 | 0 |
| 110 | }; |
| 111 | |
| 112 | // These are also used in Transliterator::toRules() |
| 113 | static const int32_t ID_TOKEN_LEN = 2; |
| 114 | static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' |
| 115 | |
| 116 | /* |
| 117 | commented out until we do real ::BEGIN/::END functionality |
| 118 | static const int32_t BEGIN_TOKEN_LEN = 5; |
| 119 | static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' |
| 120 | |
| 121 | static const int32_t END_TOKEN_LEN = 3; |
| 122 | static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' |
| 123 | */ |
| 124 | |
| 125 | U_NAMESPACE_BEGIN |
| 126 | |
| 127 | //---------------------------------------------------------------------- |
| 128 | // BEGIN ParseData |
| 129 | //---------------------------------------------------------------------- |
| 130 | |
| 131 | /** |
| 132 | * This class implements the SymbolTable interface. It is used |
| 133 | * during parsing to give UnicodeSet access to variables that |
| 134 | * have been defined so far. Note that it uses variablesVector, |
| 135 | * _not_ data.setVariables. |
| 136 | */ |
| 137 | class ParseData : public UMemory, public SymbolTable { |
| 138 | public: |
| 139 | const TransliterationRuleData* data; // alias |
| 140 | |
| 141 | const UVector* variablesVector; // alias |
| 142 | |
| 143 | const Hashtable* variableNames; // alias |
| 144 | |
| 145 | ParseData(const TransliterationRuleData* data = 0, |
| 146 | const UVector* variablesVector = 0, |
| 147 | const Hashtable* variableNames = 0); |
| 148 | |
| 149 | virtual ~ParseData(); |
| 150 | |
| 151 | virtual const UnicodeString* lookup(const UnicodeString& s) const; |
| 152 | |
| 153 | virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; |
| 154 | |
| 155 | virtual UnicodeString parseReference(const UnicodeString& text, |
| 156 | ParsePosition& pos, int32_t limit) const; |
| 157 | /** |
| 158 | * Return true if the given character is a matcher standin or a plain |
| 159 | * character (non standin). |
| 160 | */ |
| 161 | UBool isMatcher(UChar32 ch); |
| 162 | |
| 163 | /** |
| 164 | * Return true if the given character is a replacer standin or a plain |
| 165 | * character (non standin). |
| 166 | */ |
| 167 | UBool isReplacer(UChar32 ch); |
| 168 | |
| 169 | private: |
| 170 | ParseData(const ParseData &other); // forbid copying of this class |
| 171 | ParseData &operator=(const ParseData &other); // forbid copying of this class |
| 172 | }; |
| 173 | |
| 174 | ParseData::ParseData(const TransliterationRuleData* d, |
| 175 | const UVector* sets, |
| 176 | const Hashtable* vNames) : |
| 177 | data(d), variablesVector(sets), variableNames(vNames) {} |
| 178 | |
| 179 | ParseData::~ParseData() {} |
| 180 | |
| 181 | /** |
| 182 | * Implement SymbolTable API. |
| 183 | */ |
| 184 | const UnicodeString* ParseData::lookup(const UnicodeString& name) const { |
| 185 | return (const UnicodeString*) variableNames->get(name); |
| 186 | } |
| 187 | |
| 188 | /** |
| 189 | * Implement SymbolTable API. |
| 190 | */ |
| 191 | const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { |
| 192 | // Note that we cannot use data.lookupSet() because the |
| 193 | // set array has not been constructed yet. |
| 194 | const UnicodeFunctor* set = NULL; |
| 195 | int32_t i = ch - data->variablesBase; |
| 196 | if (i >= 0 && i < variablesVector->size()) { |
| 197 | int32_t j = ch - data->variablesBase; |
| 198 | set = (j < variablesVector->size()) ? |
| 199 | (UnicodeFunctor*) variablesVector->elementAt(j) : 0; |
| 200 | } |
| 201 | return set; |
| 202 | } |
| 203 | |
| 204 | /** |
| 205 | * Implement SymbolTable API. Parse out a symbol reference |
| 206 | * name. |
| 207 | */ |
| 208 | UnicodeString ParseData::parseReference(const UnicodeString& text, |
| 209 | ParsePosition& pos, int32_t limit) const { |
| 210 | int32_t start = pos.getIndex(); |
| 211 | int32_t i = start; |
| 212 | UnicodeString result; |
| 213 | while (i < limit) { |
| 214 | UChar c = text.charAt(i); |
| 215 | if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { |
| 216 | break; |
| 217 | } |
| 218 | ++i; |
| 219 | } |
| 220 | if (i == start) { // No valid name chars |
| 221 | return result; // Indicate failure with empty string |
| 222 | } |
| 223 | pos.setIndex(i); |
| 224 | text.extractBetween(start, i, result); |
| 225 | return result; |
| 226 | } |
| 227 | |
| 228 | UBool ParseData::isMatcher(UChar32 ch) { |
| 229 | // Note that we cannot use data.lookup() because the |
| 230 | // set array has not been constructed yet. |
| 231 | int32_t i = ch - data->variablesBase; |
| 232 | if (i >= 0 && i < variablesVector->size()) { |
| 233 | UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); |
| 234 | return f != NULL && f->toMatcher() != NULL; |
| 235 | } |
| 236 | return TRUE; |
| 237 | } |
| 238 | |
| 239 | /** |
| 240 | * Return true if the given character is a replacer standin or a plain |
| 241 | * character (non standin). |
| 242 | */ |
| 243 | UBool ParseData::isReplacer(UChar32 ch) { |
| 244 | // Note that we cannot use data.lookup() because the |
| 245 | // set array has not been constructed yet. |
| 246 | int i = ch - data->variablesBase; |
| 247 | if (i >= 0 && i < variablesVector->size()) { |
| 248 | UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); |
| 249 | return f != NULL && f->toReplacer() != NULL; |
| 250 | } |
| 251 | return TRUE; |
| 252 | } |
| 253 | |
| 254 | //---------------------------------------------------------------------- |
| 255 | // BEGIN RuleHalf |
| 256 | //---------------------------------------------------------------------- |
| 257 | |
| 258 | /** |
| 259 | * A class representing one side of a rule. This class knows how to |
| 260 | * parse half of a rule. It is tightly coupled to the method |
| 261 | * RuleBasedTransliterator.Parser.parseRule(). |
| 262 | */ |
| 263 | class RuleHalf : public UMemory { |
| 264 | |
| 265 | public: |
| 266 | |
| 267 | UnicodeString text; |
| 268 | |
| 269 | int32_t cursor; // position of cursor in text |
| 270 | int32_t ante; // position of ante context marker '{' in text |
| 271 | int32_t post; // position of post context marker '}' in text |
| 272 | |
| 273 | // Record the offset to the cursor either to the left or to the |
| 274 | // right of the key. This is indicated by characters on the output |
| 275 | // side that allow the cursor to be positioned arbitrarily within |
| 276 | // the matching text. For example, abc{def} > | @@@ xyz; changes |
| 277 | // def to xyz and moves the cursor to before abc. Offset characters |
| 278 | // must be at the start or end, and they cannot move the cursor past |
| 279 | // the ante- or postcontext text. Placeholders are only valid in |
| 280 | // output text. The length of the ante and post context is |
| 281 | // determined at runtime, because of supplementals and quantifiers. |
| 282 | int32_t cursorOffset; // only nonzero on output side |
| 283 | |
| 284 | // Position of first CURSOR_OFFSET on _right_. This will be -1 |
| 285 | // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. |
| 286 | int32_t cursorOffsetPos; |
| 287 | |
| 288 | UBool anchorStart; |
| 289 | UBool anchorEnd; |
| 290 | |
| 291 | /** |
| 292 | * The segment number from 1..n of the next '(' we see |
| 293 | * during parsing; 1-based. |
| 294 | */ |
| 295 | int32_t nextSegmentNumber; |
| 296 | |
| 297 | TransliteratorParser& parser; |
| 298 | |
| 299 | //-------------------------------------------------- |
| 300 | // Methods |
| 301 | |
| 302 | RuleHalf(TransliteratorParser& parser); |
| 303 | ~RuleHalf(); |
| 304 | |
| 305 | int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status); |
| 306 | |
| 307 | int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, |
| 308 | UnicodeString& buf, |
| 309 | const UnicodeString& illegal, |
| 310 | UBool isSegment, |
| 311 | UErrorCode& status); |
| 312 | |
| 313 | /** |
| 314 | * Remove context. |
| 315 | */ |
| 316 | void removeContext(); |
| 317 | |
| 318 | /** |
| 319 | * Return true if this half looks like valid output, that is, does not |
| 320 | * contain quantifiers or other special input-only elements. |
| 321 | */ |
| 322 | UBool isValidOutput(TransliteratorParser& parser); |
| 323 | |
| 324 | /** |
| 325 | * Return true if this half looks like valid input, that is, does not |
| 326 | * contain functions or other special output-only elements. |
| 327 | */ |
| 328 | UBool isValidInput(TransliteratorParser& parser); |
| 329 | |
| 330 | int syntaxError(UErrorCode code, |
| 331 | const UnicodeString& rule, |
| 332 | int32_t start, |
| 333 | UErrorCode& status) { |
| 334 | return parser.syntaxError(code, rule, start, status); |
| 335 | } |
| 336 | |
| 337 | private: |
| 338 | // Disallowed methods; no impl. |
| 339 | RuleHalf(const RuleHalf&); |
| 340 | RuleHalf& operator=(const RuleHalf&); |
| 341 | }; |
| 342 | |
| 343 | RuleHalf::RuleHalf(TransliteratorParser& p) : |
| 344 | parser(p) |
| 345 | { |
| 346 | cursor = -1; |
| 347 | ante = -1; |
| 348 | post = -1; |
| 349 | cursorOffset = 0; |
| 350 | cursorOffsetPos = 0; |
| 351 | anchorStart = anchorEnd = FALSE; |
| 352 | nextSegmentNumber = 1; |
| 353 | } |
| 354 | |
| 355 | RuleHalf::~RuleHalf() { |
| 356 | } |
| 357 | |
| 358 | /** |
| 359 | * Parse one side of a rule, stopping at either the limit, |
| 360 | * the END_OF_RULE character, or an operator. |
| 361 | * @return the index after the terminating character, or |
| 362 | * if limit was reached, limit |
| 363 | */ |
| 364 | int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { |
| 365 | int32_t start = pos; |
| 366 | text.truncate(0); |
| 367 | pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status); |
| 368 | |
| 369 | if (cursorOffset > 0 && cursor != cursorOffsetPos) { |
| 370 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| 371 | } |
| 372 | |
| 373 | return pos; |
| 374 | } |
| 375 | |
| 376 | /** |
| 377 | * Parse a section of one side of a rule, stopping at either |
| 378 | * the limit, the END_OF_RULE character, an operator, or a |
| 379 | * segment close character. This method parses both a |
| 380 | * top-level rule half and a segment within such a rule half. |
| 381 | * It calls itself recursively to parse segments and nested |
| 382 | * segments. |
| 383 | * @param buf buffer into which to accumulate the rule pattern |
| 384 | * characters, either literal characters from the rule or |
| 385 | * standins for UnicodeMatcher objects including segments. |
| 386 | * @param illegal the set of special characters that is illegal during |
| 387 | * this parse. |
| 388 | * @param isSegment if true, then we've already seen a '(' and |
| 389 | * pos on entry points right after it. Accumulate everything |
| 390 | * up to the closing ')', put it in a segment matcher object, |
| 391 | * generate a standin for it, and add the standin to buf. As |
| 392 | * a side effect, update the segments vector with a reference |
| 393 | * to the segment matcher. This works recursively for nested |
| 394 | * segments. If isSegment is false, just accumulate |
| 395 | * characters into buf. |
| 396 | * @return the index after the terminating character, or |
| 397 | * if limit was reached, limit |
| 398 | */ |
| 399 | int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, |
| 400 | UnicodeString& buf, |
| 401 | const UnicodeString& illegal, |
| 402 | UBool isSegment, UErrorCode& status) { |
| 403 | int32_t start = pos; |
| 404 | ParsePosition pp; |
| 405 | UnicodeString scratch; |
| 406 | UBool done = FALSE; |
| 407 | int32_t quoteStart = -1; // Most recent 'single quoted string' |
| 408 | int32_t quoteLimit = -1; |
| 409 | int32_t varStart = -1; // Most recent $variableReference |
| 410 | int32_t varLimit = -1; |
| 411 | int32_t bufStart = buf.length(); |
| 412 | |
| 413 | while (pos < limit && !done) { |
| 414 | // Since all syntax characters are in the BMP, fetching |
| 415 | // 16-bit code units suffices here. |
| 416 | UChar c = rule.charAt(pos++); |
| 417 | if (PatternProps::isWhiteSpace(c)) { |
| 418 | // Ignore whitespace. Note that this is not Unicode |
| 419 | // spaces, but Java spaces -- a subset, representing |
| 420 | // whitespace likely to be seen in code. |
| 421 | continue; |
| 422 | } |
| 423 | if (u_strchr(HALF_ENDERS, c) != NULL) { |
| 424 | if (isSegment) { |
| 425 | // Unclosed segment |
| 426 | return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); |
| 427 | } |
| 428 | break; |
| 429 | } |
| 430 | if (anchorEnd) { |
| 431 | // Text after a presumed end anchor is a syntax err |
| 432 | return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status); |
| 433 | } |
| 434 | if (UnicodeSet::resemblesPattern(rule, pos-1)) { |
| 435 | pp.setIndex(pos-1); // Backup to opening '[' |
| 436 | buf.append(parser.parseSet(rule, pp, status)); |
| 437 | if (U_FAILURE(status)) { |
| 438 | return syntaxError(U_MALFORMED_SET, rule, start, status); |
| 439 | } |
| 440 | pos = pp.getIndex(); |
| 441 | continue; |
| 442 | } |
| 443 | // Handle escapes |
| 444 | if (c == ESCAPE) { |
| 445 | if (pos == limit) { |
| 446 | return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); |
| 447 | } |
| 448 | UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' |
| 449 | if (escaped == (UChar32) -1) { |
| 450 | return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status); |
| 451 | } |
| 452 | if (!parser.checkVariableRange(escaped)) { |
| 453 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| 454 | } |
| 455 | buf.append(escaped); |
| 456 | continue; |
| 457 | } |
| 458 | // Handle quoted matter |
| 459 | if (c == QUOTE) { |
| 460 | int32_t iq = rule.indexOf(QUOTE, pos); |
| 461 | if (iq == pos) { |
| 462 | buf.append(c); // Parse [''] outside quotes as ['] |
| 463 | ++pos; |
| 464 | } else { |
| 465 | /* This loop picks up a run of quoted text of the |
| 466 | * form 'aaaa' each time through. If this run |
| 467 | * hasn't really ended ('aaaa''bbbb') then it keeps |
| 468 | * looping, each time adding on a new run. When it |
| 469 | * reaches the final quote it breaks. |
| 470 | */ |
| 471 | quoteStart = buf.length(); |
| 472 | for (;;) { |
| 473 | if (iq < 0) { |
| 474 | return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status); |
| 475 | } |
| 476 | scratch.truncate(0); |
| 477 | rule.extractBetween(pos, iq, scratch); |
| 478 | buf.append(scratch); |
| 479 | pos = iq+1; |
| 480 | if (pos < limit && rule.charAt(pos) == QUOTE) { |
| 481 | // Parse [''] inside quotes as ['] |
| 482 | iq = rule.indexOf(QUOTE, pos+1); |
| 483 | // Continue looping |
| 484 | } else { |
| 485 | break; |
| 486 | } |
| 487 | } |
| 488 | quoteLimit = buf.length(); |
| 489 | |
| 490 | for (iq=quoteStart; iq<quoteLimit; ++iq) { |
| 491 | if (!parser.checkVariableRange(buf.charAt(iq))) { |
| 492 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| 493 | } |
| 494 | } |
| 495 | } |
| 496 | continue; |
| 497 | } |
| 498 | |
| 499 | if (!parser.checkVariableRange(c)) { |
| 500 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| 501 | } |
| 502 | |
| 503 | if (illegal.indexOf(c) >= 0) { |
| 504 | syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); |
| 505 | } |
| 506 | |
| 507 | switch (c) { |
| 508 | |
| 509 | //------------------------------------------------------ |
| 510 | // Elements allowed within and out of segments |
| 511 | //------------------------------------------------------ |
| 512 | case ANCHOR_START: |
| 513 | if (buf.length() == 0 && !anchorStart) { |
| 514 | anchorStart = TRUE; |
| 515 | } else { |
| 516 | return syntaxError(U_MISPLACED_ANCHOR_START, |
| 517 | rule, start, status); |
| 518 | } |
| 519 | break; |
| 520 | case SEGMENT_OPEN: |
| 521 | { |
| 522 | // bufSegStart is the offset in buf to the first |
| 523 | // character of the segment we are parsing. |
| 524 | int32_t bufSegStart = buf.length(); |
| 525 | |
| 526 | // Record segment number now, since nextSegmentNumber |
| 527 | // will be incremented during the call to parseSection |
| 528 | // if there are nested segments. |
| 529 | int32_t segmentNumber = nextSegmentNumber++; // 1-based |
| 530 | |
| 531 | // Parse the segment |
| 532 | pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status); |
| 533 | |
| 534 | // After parsing a segment, the relevant characters are |
| 535 | // in buf, starting at offset bufSegStart. Extract them |
| 536 | // into a string matcher, and replace them with a |
| 537 | // standin for that matcher. |
| 538 | StringMatcher* m = |
| 539 | new StringMatcher(buf, bufSegStart, buf.length(), |
| 540 | segmentNumber, *parser.curData); |
| 541 | if (m == NULL) { |
| 542 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 543 | } |
| 544 | |
| 545 | // Record and associate object and segment number |
| 546 | parser.setSegmentObject(segmentNumber, m, status); |
| 547 | buf.truncate(bufSegStart); |
| 548 | buf.append(parser.getSegmentStandin(segmentNumber, status)); |
| 549 | } |
| 550 | break; |
| 551 | case FUNCTION: |
| 552 | case ALT_FUNCTION: |
| 553 | { |
| 554 | int32_t iref = pos; |
| 555 | TransliteratorIDParser::SingleID* single = |
| 556 | TransliteratorIDParser::parseFilterID(rule, iref); |
| 557 | // The next character MUST be a segment open |
| 558 | if (single == NULL || |
| 559 | !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { |
| 560 | return syntaxError(U_INVALID_FUNCTION, rule, start, status); |
| 561 | } |
| 562 | |
| 563 | Transliterator *t = single->createInstance(); |
| 564 | delete single; |
| 565 | if (t == NULL) { |
| 566 | return syntaxError(U_INVALID_FUNCTION, rule, start, status); |
| 567 | } |
| 568 | |
| 569 | // bufSegStart is the offset in buf to the first |
| 570 | // character of the segment we are parsing. |
| 571 | int32_t bufSegStart = buf.length(); |
| 572 | |
| 573 | // Parse the segment |
| 574 | pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status); |
| 575 | |
| 576 | // After parsing a segment, the relevant characters are |
| 577 | // in buf, starting at offset bufSegStart. |
| 578 | UnicodeString output; |
| 579 | buf.extractBetween(bufSegStart, buf.length(), output); |
| 580 | FunctionReplacer *r = |
| 581 | new FunctionReplacer(t, new StringReplacer(output, parser.curData)); |
| 582 | if (r == NULL) { |
| 583 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 584 | } |
| 585 | |
| 586 | // Replace the buffer contents with a stand-in |
| 587 | buf.truncate(bufSegStart); |
| 588 | buf.append(parser.generateStandInFor(r, status)); |
| 589 | } |
| 590 | break; |
| 591 | case SymbolTable::SYMBOL_REF: |
| 592 | // Handle variable references and segment references "$1" .. "$9" |
| 593 | { |
| 594 | // A variable reference must be followed immediately |
| 595 | // by a Unicode identifier start and zero or more |
| 596 | // Unicode identifier part characters, or by a digit |
| 597 | // 1..9 if it is a segment reference. |
| 598 | if (pos == limit) { |
| 599 | // A variable ref character at the end acts as |
| 600 | // an anchor to the context limit, as in perl. |
| 601 | anchorEnd = TRUE; |
| 602 | break; |
| 603 | } |
| 604 | // Parse "$1" "$2" .. "$9" .. (no upper limit) |
| 605 | c = rule.charAt(pos); |
| 606 | int32_t r = u_digit(c, 10); |
| 607 | if (r >= 1 && r <= 9) { |
| 608 | r = ICU_Utility::parseNumber(rule, pos, 10); |
| 609 | if (r < 0) { |
| 610 | return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, |
| 611 | rule, start, status); |
| 612 | } |
| 613 | buf.append(parser.getSegmentStandin(r, status)); |
| 614 | } else { |
| 615 | pp.setIndex(pos); |
| 616 | UnicodeString name = parser.parseData-> |
| 617 | parseReference(rule, pp, limit); |
| 618 | if (name.length() == 0) { |
| 619 | // This means the '$' was not followed by a |
| 620 | // valid name. Try to interpret it as an |
| 621 | // end anchor then. If this also doesn't work |
| 622 | // (if we see a following character) then signal |
| 623 | // an error. |
| 624 | anchorEnd = TRUE; |
| 625 | break; |
| 626 | } |
| 627 | pos = pp.getIndex(); |
| 628 | // If this is a variable definition statement, |
| 629 | // then the LHS variable will be undefined. In |
| 630 | // that case appendVariableDef() will append the |
| 631 | // special placeholder char variableLimit-1. |
| 632 | varStart = buf.length(); |
| 633 | parser.appendVariableDef(name, buf, status); |
| 634 | varLimit = buf.length(); |
| 635 | } |
| 636 | } |
| 637 | break; |
| 638 | case DOT: |
| 639 | buf.append(parser.getDotStandIn(status)); |
| 640 | break; |
| 641 | case KLEENE_STAR: |
| 642 | case ONE_OR_MORE: |
| 643 | case ZERO_OR_ONE: |
| 644 | // Quantifiers. We handle single characters, quoted strings, |
| 645 | // variable references, and segments. |
| 646 | // a+ matches aaa |
| 647 | // 'foo'+ matches foofoofoo |
| 648 | // $v+ matches xyxyxy if $v == xy |
| 649 | // (seg)+ matches segsegseg |
| 650 | { |
| 651 | if (isSegment && buf.length() == bufStart) { |
| 652 | // The */+ immediately follows '(' |
| 653 | return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status); |
| 654 | } |
| 655 | |
| 656 | int32_t qstart, qlimit; |
| 657 | // The */+ follows an isolated character or quote |
| 658 | // or variable reference |
| 659 | if (buf.length() == quoteLimit) { |
| 660 | // The */+ follows a 'quoted string' |
| 661 | qstart = quoteStart; |
| 662 | qlimit = quoteLimit; |
| 663 | } else if (buf.length() == varLimit) { |
| 664 | // The */+ follows a $variableReference |
| 665 | qstart = varStart; |
| 666 | qlimit = varLimit; |
| 667 | } else { |
| 668 | // The */+ follows a single character, possibly |
| 669 | // a segment standin |
| 670 | qstart = buf.length() - 1; |
| 671 | qlimit = qstart + 1; |
| 672 | } |
| 673 | |
| 674 | UnicodeFunctor *m = |
| 675 | new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); |
| 676 | if (m == NULL) { |
| 677 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 678 | } |
| 679 | int32_t min = 0; |
| 680 | int32_t max = Quantifier::MAX; |
| 681 | switch (c) { |
| 682 | case ONE_OR_MORE: |
| 683 | min = 1; |
| 684 | break; |
| 685 | case ZERO_OR_ONE: |
| 686 | min = 0; |
| 687 | max = 1; |
| 688 | break; |
| 689 | // case KLEENE_STAR: |
| 690 | // do nothing -- min, max already set |
| 691 | } |
| 692 | m = new Quantifier(m, min, max); |
| 693 | if (m == NULL) { |
| 694 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 695 | } |
| 696 | buf.truncate(qstart); |
| 697 | buf.append(parser.generateStandInFor(m, status)); |
| 698 | } |
| 699 | break; |
| 700 | |
| 701 | //------------------------------------------------------ |
| 702 | // Elements allowed ONLY WITHIN segments |
| 703 | //------------------------------------------------------ |
| 704 | case SEGMENT_CLOSE: |
| 705 | // assert(isSegment); |
| 706 | // We're done parsing a segment. |
| 707 | done = TRUE; |
| 708 | break; |
| 709 | |
| 710 | //------------------------------------------------------ |
| 711 | // Elements allowed ONLY OUTSIDE segments |
| 712 | //------------------------------------------------------ |
| 713 | case CONTEXT_ANTE: |
| 714 | if (ante >= 0) { |
| 715 | return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status); |
| 716 | } |
| 717 | ante = buf.length(); |
| 718 | break; |
| 719 | case CONTEXT_POST: |
| 720 | if (post >= 0) { |
| 721 | return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status); |
| 722 | } |
| 723 | post = buf.length(); |
| 724 | break; |
| 725 | case CURSOR_POS: |
| 726 | if (cursor >= 0) { |
| 727 | return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); |
| 728 | } |
| 729 | cursor = buf.length(); |
| 730 | break; |
| 731 | case CURSOR_OFFSET: |
| 732 | if (cursorOffset < 0) { |
| 733 | if (buf.length() > 0) { |
| 734 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| 735 | } |
| 736 | --cursorOffset; |
| 737 | } else if (cursorOffset > 0) { |
| 738 | if (buf.length() != cursorOffsetPos || cursor >= 0) { |
| 739 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| 740 | } |
| 741 | ++cursorOffset; |
| 742 | } else { |
| 743 | if (cursor == 0 && buf.length() == 0) { |
| 744 | cursorOffset = -1; |
| 745 | } else if (cursor < 0) { |
| 746 | cursorOffsetPos = buf.length(); |
| 747 | cursorOffset = 1; |
| 748 | } else { |
| 749 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| 750 | } |
| 751 | } |
| 752 | break; |
| 753 | |
| 754 | |
| 755 | //------------------------------------------------------ |
| 756 | // Non-special characters |
| 757 | //------------------------------------------------------ |
| 758 | default: |
| 759 | // Disallow unquoted characters other than [0-9A-Za-z] |
| 760 | // in the printable ASCII range. These characters are |
| 761 | // reserved for possible future use. |
| 762 | if (c >= 0x0021 && c <= 0x007E && |
| 763 | !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || |
| 764 | (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || |
| 765 | (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { |
| 766 | return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); |
| 767 | } |
| 768 | buf.append(c); |
| 769 | break; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | return pos; |
| 774 | } |
| 775 | |
| 776 | /** |
| 777 | * Remove context. |
| 778 | */ |
| 779 | void RuleHalf::removeContext() { |
| 780 | //text = text.substring(ante < 0 ? 0 : ante, |
| 781 | // post < 0 ? text.length() : post); |
| 782 | if (post >= 0) { |
| 783 | text.remove(post); |
| 784 | } |
| 785 | if (ante >= 0) { |
| 786 | text.removeBetween(0, ante); |
| 787 | } |
| 788 | ante = post = -1; |
| 789 | anchorStart = anchorEnd = FALSE; |
| 790 | } |
| 791 | |
| 792 | /** |
| 793 | * Return true if this half looks like valid output, that is, does not |
| 794 | * contain quantifiers or other special input-only elements. |
| 795 | */ |
| 796 | UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { |
| 797 | for (int32_t i=0; i<text.length(); ) { |
| 798 | UChar32 c = text.char32At(i); |
| 799 | i += U16_LENGTH(c); |
| 800 | if (!transParser.parseData->isReplacer(c)) { |
| 801 | return FALSE; |
| 802 | } |
| 803 | } |
| 804 | return TRUE; |
| 805 | } |
| 806 | |
| 807 | /** |
| 808 | * Return true if this half looks like valid input, that is, does not |
| 809 | * contain functions or other special output-only elements. |
| 810 | */ |
| 811 | UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { |
| 812 | for (int32_t i=0; i<text.length(); ) { |
| 813 | UChar32 c = text.char32At(i); |
| 814 | i += U16_LENGTH(c); |
| 815 | if (!transParser.parseData->isMatcher(c)) { |
| 816 | return FALSE; |
| 817 | } |
| 818 | } |
| 819 | return TRUE; |
| 820 | } |
| 821 | |
| 822 | //---------------------------------------------------------------------- |
| 823 | // PUBLIC API |
| 824 | //---------------------------------------------------------------------- |
| 825 | |
| 826 | /** |
| 827 | * Constructor. |
| 828 | */ |
| 829 | TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : |
| 830 | dataVector(statusReturn), |
| 831 | idBlockVector(statusReturn), |
| 832 | variablesVector(statusReturn), |
| 833 | segmentObjects(statusReturn) |
| 834 | { |
| 835 | idBlockVector.setDeleter(uprv_deleteUObject); |
| 836 | curData = NULL; |
| 837 | compoundFilter = NULL; |
| 838 | parseData = NULL; |
| 839 | variableNames.setValueDeleter(uprv_deleteUObject); |
| 840 | } |
| 841 | |
| 842 | /** |
| 843 | * Destructor. |
| 844 | */ |
| 845 | TransliteratorParser::~TransliteratorParser() { |
| 846 | while (!dataVector.isEmpty()) |
| 847 | delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); |
| 848 | delete compoundFilter; |
| 849 | delete parseData; |
| 850 | while (!variablesVector.isEmpty()) |
| 851 | delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); |
| 852 | } |
| 853 | |
| 854 | void |
| 855 | TransliteratorParser::parse(const UnicodeString& rules, |
| 856 | UTransDirection transDirection, |
| 857 | UParseError& pe, |
| 858 | UErrorCode& ec) { |
| 859 | if (U_SUCCESS(ec)) { |
| 860 | parseRules(rules, transDirection, ec); |
| 861 | pe = parseError; |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | /** |
| 866 | * Return the compound filter parsed by parse(). Caller owns result. |
| 867 | */ |
| 868 | UnicodeSet* TransliteratorParser::orphanCompoundFilter() { |
| 869 | UnicodeSet* f = compoundFilter; |
| 870 | compoundFilter = NULL; |
| 871 | return f; |
| 872 | } |
| 873 | |
| 874 | //---------------------------------------------------------------------- |
| 875 | // Private implementation |
| 876 | //---------------------------------------------------------------------- |
| 877 | |
| 878 | /** |
| 879 | * Parse the given string as a sequence of rules, separated by newline |
| 880 | * characters ('\n'), and cause this object to implement those rules. Any |
| 881 | * previous rules are discarded. Typically this method is called exactly |
| 882 | * once, during construction. |
| 883 | * @exception IllegalArgumentException if there is a syntax error in the |
| 884 | * rules |
| 885 | */ |
| 886 | void TransliteratorParser::parseRules(const UnicodeString& rule, |
| 887 | UTransDirection theDirection, |
| 888 | UErrorCode& status) |
| 889 | { |
| 890 | // Clear error struct |
| 891 | uprv_memset(&parseError, 0, sizeof(parseError)); |
| 892 | parseError.line = parseError.offset = -1; |
| 893 | |
| 894 | UBool parsingIDs = TRUE; |
| 895 | int32_t ruleCount = 0; |
| 896 | |
| 897 | while (!dataVector.isEmpty()) { |
| 898 | delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); |
| 899 | } |
| 900 | if (U_FAILURE(status)) { |
| 901 | return; |
| 902 | } |
| 903 | |
| 904 | idBlockVector.removeAllElements(); |
| 905 | curData = NULL; |
| 906 | direction = theDirection; |
| 907 | ruleCount = 0; |
| 908 | |
| 909 | delete compoundFilter; |
| 910 | compoundFilter = NULL; |
| 911 | |
| 912 | while (!variablesVector.isEmpty()) { |
| 913 | delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); |
| 914 | } |
| 915 | variableNames.removeAll(); |
| 916 | parseData = new ParseData(0, &variablesVector, &variableNames); |
| 917 | if (parseData == NULL) { |
| 918 | status = U_MEMORY_ALLOCATION_ERROR; |
| 919 | return; |
| 920 | } |
| 921 | |
| 922 | dotStandIn = (UChar) -1; |
| 923 | |
| 924 | UnicodeString *tempstr = NULL; // used for memory allocation error checking |
| 925 | UnicodeString str; // scratch |
| 926 | UnicodeString idBlockResult; |
| 927 | int32_t pos = 0; |
| 928 | int32_t limit = rule.length(); |
| 929 | |
| 930 | // The compound filter offset is an index into idBlockResult. |
| 931 | // If it is 0, then the compound filter occurred at the start, |
| 932 | // and it is the offset to the _start_ of the compound filter |
| 933 | // pattern. Otherwise it is the offset to the _limit_ of the |
| 934 | // compound filter pattern within idBlockResult. |
| 935 | compoundFilter = NULL; |
| 936 | int32_t compoundFilterOffset = -1; |
| 937 | |
| 938 | while (pos < limit && U_SUCCESS(status)) { |
| 939 | UChar c = rule.charAt(pos++); |
| 940 | if (PatternProps::isWhiteSpace(c)) { |
| 941 | // Ignore leading whitespace. |
| 942 | continue; |
| 943 | } |
| 944 | // Skip lines starting with the comment character |
| 945 | if (c == RULE_COMMENT_CHAR) { |
| 946 | pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; |
| 947 | if (pos == 0) { |
| 948 | break; // No "\n" found; rest of rule is a commnet |
| 949 | } |
| 950 | continue; // Either fall out or restart with next line |
| 951 | } |
| 952 | |
| 953 | // skip empty rules |
| 954 | if (c == END_OF_RULE) |
| 955 | continue; |
| 956 | |
| 957 | // keep track of how many rules we've seen |
| 958 | ++ruleCount; |
| 959 | |
| 960 | // We've found the start of a rule or ID. c is its first |
| 961 | // character, and pos points past c. |
| 962 | --pos; |
| 963 | // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 |
| 964 | // chars left. |
| 965 | if ((pos + ID_TOKEN_LEN + 1) <= limit && |
| 966 | rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { |
| 967 | pos += ID_TOKEN_LEN; |
| 968 | c = rule.charAt(pos); |
| 969 | while (PatternProps::isWhiteSpace(c) && pos < limit) { |
| 970 | ++pos; |
| 971 | c = rule.charAt(pos); |
| 972 | } |
| 973 | |
| 974 | int32_t p = pos; |
| 975 | |
| 976 | if (!parsingIDs) { |
| 977 | if (curData != NULL) { |
| 978 | if (direction == UTRANS_FORWARD) |
| 979 | dataVector.addElement(curData, status); |
| 980 | else |
| 981 | dataVector.insertElementAt(curData, 0, status); |
| 982 | curData = NULL; |
| 983 | } |
| 984 | parsingIDs = TRUE; |
| 985 | } |
| 986 | |
| 987 | TransliteratorIDParser::SingleID* id = |
| 988 | TransliteratorIDParser::parseSingleID(rule, p, direction, status); |
| 989 | if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { |
| 990 | // Successful ::ID parse. |
| 991 | |
| 992 | if (direction == UTRANS_FORWARD) { |
| 993 | idBlockResult.append(id->canonID).append(END_OF_RULE); |
| 994 | } else { |
| 995 | idBlockResult.insert(0, END_OF_RULE); |
| 996 | idBlockResult.insert(0, id->canonID); |
| 997 | } |
| 998 | |
| 999 | } else { |
| 1000 | // Couldn't parse an ID. Try to parse a global filter |
| 1001 | int32_t withParens = -1; |
| 1002 | UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL); |
| 1003 | if (f != NULL) { |
| 1004 | if (ICU_Utility::parseChar(rule, p, END_OF_RULE) |
| 1005 | && (direction == UTRANS_FORWARD) == (withParens == 0)) |
| 1006 | { |
| 1007 | if (compoundFilter != NULL) { |
| 1008 | // Multiple compound filters |
| 1009 | syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status); |
| 1010 | delete f; |
| 1011 | } else { |
| 1012 | compoundFilter = f; |
| 1013 | compoundFilterOffset = ruleCount; |
| 1014 | } |
| 1015 | } else { |
| 1016 | delete f; |
| 1017 | } |
| 1018 | } else { |
| 1019 | // Invalid ::id |
| 1020 | // Can be parsed as neither an ID nor a global filter |
| 1021 | syntaxError(U_INVALID_ID, rule, pos, status); |
| 1022 | } |
| 1023 | } |
| 1024 | delete id; |
| 1025 | pos = p; |
| 1026 | } else { |
| 1027 | if (parsingIDs) { |
| 1028 | tempstr = new UnicodeString(idBlockResult); |
| 1029 | // NULL pointer check |
| 1030 | if (tempstr == NULL) { |
| 1031 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1032 | return; |
| 1033 | } |
| 1034 | if (direction == UTRANS_FORWARD) |
| 1035 | idBlockVector.addElement(tempstr, status); |
| 1036 | else |
| 1037 | idBlockVector.insertElementAt(tempstr, 0, status); |
| 1038 | idBlockResult.remove(); |
| 1039 | parsingIDs = FALSE; |
| 1040 | curData = new TransliterationRuleData(status); |
| 1041 | // NULL pointer check |
| 1042 | if (curData == NULL) { |
| 1043 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1044 | return; |
| 1045 | } |
| 1046 | parseData->data = curData; |
| 1047 | |
| 1048 | // By default, rules use part of the private use area |
| 1049 | // E000..F8FF for variables and other stand-ins. Currently |
| 1050 | // the range F000..F8FF is typically sufficient. The 'use |
| 1051 | // variable range' pragma allows rule sets to modify this. |
| 1052 | setVariableRange(0xF000, 0xF8FF, status); |
| 1053 | } |
| 1054 | |
| 1055 | if (resemblesPragma(rule, pos, limit)) { |
| 1056 | int32_t ppp = parsePragma(rule, pos, limit, status); |
| 1057 | if (ppp < 0) { |
| 1058 | syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); |
| 1059 | } |
| 1060 | pos = ppp; |
| 1061 | // Parse a rule |
| 1062 | } else { |
| 1063 | pos = parseRule(rule, pos, limit, status); |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | if (parsingIDs && idBlockResult.length() > 0) { |
| 1069 | tempstr = new UnicodeString(idBlockResult); |
| 1070 | // NULL pointer check |
| 1071 | if (tempstr == NULL) { |
| 1072 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1073 | return; |
| 1074 | } |
| 1075 | if (direction == UTRANS_FORWARD) |
| 1076 | idBlockVector.addElement(tempstr, status); |
| 1077 | else |
| 1078 | idBlockVector.insertElementAt(tempstr, 0, status); |
| 1079 | } |
| 1080 | else if (!parsingIDs && curData != NULL) { |
| 1081 | if (direction == UTRANS_FORWARD) |
| 1082 | dataVector.addElement(curData, status); |
| 1083 | else |
| 1084 | dataVector.insertElementAt(curData, 0, status); |
| 1085 | } |
| 1086 | |
| 1087 | if (U_SUCCESS(status)) { |
| 1088 | // Convert the set vector to an array |
| 1089 | int32_t i, dataVectorSize = dataVector.size(); |
| 1090 | for (i = 0; i < dataVectorSize; i++) { |
| 1091 | TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); |
| 1092 | data->variablesLength = variablesVector.size(); |
| 1093 | if (data->variablesLength == 0) { |
| 1094 | data->variables = 0; |
| 1095 | } else { |
| 1096 | data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*)); |
| 1097 | // NULL pointer check |
| 1098 | if (data->variables == NULL) { |
| 1099 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1100 | return; |
| 1101 | } |
| 1102 | data->variablesAreOwned = (i == 0); |
| 1103 | } |
| 1104 | |
| 1105 | for (int32_t j = 0; j < data->variablesLength; j++) { |
| 1106 | data->variables[j] = |
| 1107 | static_cast<UnicodeFunctor *>(variablesVector.elementAt(j)); |
| 1108 | } |
| 1109 | |
| 1110 | data->variableNames.removeAll(); |
| 1111 | int32_t p = UHASH_FIRST; |
| 1112 | const UHashElement* he = variableNames.nextElement(p); |
| 1113 | while (he != NULL) { |
| 1114 | UnicodeString* tempus = ((UnicodeString*)(he->value.pointer))->clone(); |
| 1115 | if (tempus == NULL) { |
| 1116 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1117 | return; |
| 1118 | } |
| 1119 | data->variableNames.put(*((UnicodeString*)(he->key.pointer)), |
| 1120 | tempus, status); |
| 1121 | he = variableNames.nextElement(p); |
| 1122 | } |
| 1123 | } |
| 1124 | variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed |
| 1125 | |
| 1126 | // Index the rules |
| 1127 | if (compoundFilter != NULL) { |
| 1128 | if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || |
| 1129 | (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) { |
| 1130 | status = U_MISPLACED_COMPOUND_FILTER; |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | for (i = 0; i < dataVectorSize; i++) { |
| 1135 | TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); |
| 1136 | data->ruleSet.freeze(parseError, status); |
| 1137 | } |
| 1138 | if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) { |
| 1139 | idBlockVector.removeElementAt(0); |
| 1140 | } |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | /** |
| 1145 | * Set the variable range to [start, end] (inclusive). |
| 1146 | */ |
| 1147 | void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) { |
| 1148 | if (start > end || start < 0 || end > 0xFFFF) { |
| 1149 | status = U_MALFORMED_PRAGMA; |
| 1150 | return; |
| 1151 | } |
| 1152 | |
| 1153 | curData->variablesBase = (UChar) start; |
| 1154 | if (dataVector.size() == 0) { |
| 1155 | variableNext = (UChar) start; |
| 1156 | variableLimit = (UChar) (end + 1); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | /** |
| 1161 | * Assert that the given character is NOT within the variable range. |
| 1162 | * If it is, return FALSE. This is neccesary to ensure that the |
| 1163 | * variable range does not overlap characters used in a rule. |
| 1164 | */ |
| 1165 | UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { |
| 1166 | return !(ch >= curData->variablesBase && ch < variableLimit); |
| 1167 | } |
| 1168 | |
| 1169 | /** |
| 1170 | * Set the maximum backup to 'backup', in response to a pragma |
| 1171 | * statement. |
| 1172 | */ |
| 1173 | void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { |
| 1174 | //TODO Finish |
| 1175 | } |
| 1176 | |
| 1177 | /** |
| 1178 | * Begin normalizing all rules using the given mode, in response |
| 1179 | * to a pragma statement. |
| 1180 | */ |
| 1181 | void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { |
| 1182 | //TODO Finish |
| 1183 | } |
| 1184 | |
| 1185 | static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " |
| 1186 | |
| 1187 | static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" |
| 1188 | |
| 1189 | static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" |
| 1190 | |
| 1191 | static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" |
| 1192 | |
| 1193 | static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" |
| 1194 | |
| 1195 | /** |
| 1196 | * Return true if the given rule looks like a pragma. |
| 1197 | * @param pos offset to the first non-whitespace character |
| 1198 | * of the rule. |
| 1199 | * @param limit pointer past the last character of the rule. |
| 1200 | */ |
| 1201 | UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { |
| 1202 | // Must start with /use\s/i |
| 1203 | return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0; |
| 1204 | } |
| 1205 | |
| 1206 | /** |
| 1207 | * Parse a pragma. This method assumes resemblesPragma() has |
| 1208 | * already returned true. |
| 1209 | * @param pos offset to the first non-whitespace character |
| 1210 | * of the rule. |
| 1211 | * @param limit pointer past the last character of the rule. |
| 1212 | * @return the position index after the final ';' of the pragma, |
| 1213 | * or -1 on failure. |
| 1214 | */ |
| 1215 | int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { |
| 1216 | int32_t array[2]; |
| 1217 | |
| 1218 | // resemblesPragma() has already returned true, so we |
| 1219 | // know that pos points to /use\s/i; we can skip 4 characters |
| 1220 | // immediately |
| 1221 | pos += 4; |
| 1222 | |
| 1223 | // Here are the pragmas we recognize: |
| 1224 | // use variable range 0xE000 0xEFFF; |
| 1225 | // use maximum backup 16; |
| 1226 | // use nfd rules; |
| 1227 | // use nfc rules; |
| 1228 | int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array); |
| 1229 | if (p >= 0) { |
| 1230 | setVariableRange(array[0], array[1], status); |
| 1231 | return p; |
| 1232 | } |
| 1233 | |
| 1234 | p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array); |
| 1235 | if (p >= 0) { |
| 1236 | pragmaMaximumBackup(array[0]); |
| 1237 | return p; |
| 1238 | } |
| 1239 | |
| 1240 | p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL); |
| 1241 | if (p >= 0) { |
| 1242 | pragmaNormalizeRules(UNORM_NFD); |
| 1243 | return p; |
| 1244 | } |
| 1245 | |
| 1246 | p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL); |
| 1247 | if (p >= 0) { |
| 1248 | pragmaNormalizeRules(UNORM_NFC); |
| 1249 | return p; |
| 1250 | } |
| 1251 | |
| 1252 | // Syntax error: unable to parse pragma |
| 1253 | return -1; |
| 1254 | } |
| 1255 | |
| 1256 | /** |
| 1257 | * MAIN PARSER. Parse the next rule in the given rule string, starting |
| 1258 | * at pos. Return the index after the last character parsed. Do not |
| 1259 | * parse characters at or after limit. |
| 1260 | * |
| 1261 | * Important: The character at pos must be a non-whitespace character |
| 1262 | * that is not the comment character. |
| 1263 | * |
| 1264 | * This method handles quoting, escaping, and whitespace removal. It |
| 1265 | * parses the end-of-rule character. It recognizes context and cursor |
| 1266 | * indicators. Once it does a lexical breakdown of the rule at pos, it |
| 1267 | * creates a rule object and adds it to our rule list. |
| 1268 | */ |
| 1269 | int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { |
| 1270 | // Locate the left side, operator, and right side |
| 1271 | int32_t start = pos; |
| 1272 | UChar op = 0; |
| 1273 | int32_t i; |
| 1274 | |
| 1275 | // Set up segments data |
| 1276 | segmentStandins.truncate(0); |
| 1277 | segmentObjects.removeAllElements(); |
| 1278 | |
| 1279 | // Use pointers to automatics to make swapping possible. |
| 1280 | RuleHalf _left(*this), _right(*this); |
| 1281 | RuleHalf* left = &_left; |
| 1282 | RuleHalf* right = &_right; |
| 1283 | |
| 1284 | undefinedVariableName.remove(); |
| 1285 | pos = left->parse(rule, pos, limit, status); |
| 1286 | if (U_FAILURE(status)) { |
| 1287 | return start; |
| 1288 | } |
| 1289 | |
| 1290 | if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { |
| 1291 | return syntaxError(U_MISSING_OPERATOR, rule, start, status); |
| 1292 | } |
| 1293 | ++pos; |
| 1294 | |
| 1295 | // Found an operator char. Check for forward-reverse operator. |
| 1296 | if (op == REVERSE_RULE_OP && |
| 1297 | (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { |
| 1298 | ++pos; |
| 1299 | op = FWDREV_RULE_OP; |
| 1300 | } |
| 1301 | |
| 1302 | // Translate alternate op characters. |
| 1303 | switch (op) { |
| 1304 | case ALT_FORWARD_RULE_OP: |
| 1305 | op = FORWARD_RULE_OP; |
| 1306 | break; |
| 1307 | case ALT_REVERSE_RULE_OP: |
| 1308 | op = REVERSE_RULE_OP; |
| 1309 | break; |
| 1310 | case ALT_FWDREV_RULE_OP: |
| 1311 | op = FWDREV_RULE_OP; |
| 1312 | break; |
| 1313 | } |
| 1314 | |
| 1315 | pos = right->parse(rule, pos, limit, status); |
| 1316 | if (U_FAILURE(status)) { |
| 1317 | return start; |
| 1318 | } |
| 1319 | |
| 1320 | if (pos < limit) { |
| 1321 | if (rule.charAt(--pos) == END_OF_RULE) { |
| 1322 | ++pos; |
| 1323 | } else { |
| 1324 | // RuleHalf parser must have terminated at an operator |
| 1325 | return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | if (op == VARIABLE_DEF_OP) { |
| 1330 | // LHS is the name. RHS is a single character, either a literal |
| 1331 | // or a set (already parsed). If RHS is longer than one |
| 1332 | // character, it is either a multi-character string, or multiple |
| 1333 | // sets, or a mixture of chars and sets -- syntax error. |
| 1334 | |
| 1335 | // We expect to see a single undefined variable (the one being |
| 1336 | // defined). |
| 1337 | if (undefinedVariableName.length() == 0) { |
| 1338 | // "Missing '$' or duplicate definition" |
| 1339 | return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); |
| 1340 | } |
| 1341 | if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { |
| 1342 | // "Malformed LHS" |
| 1343 | return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); |
| 1344 | } |
| 1345 | if (left->anchorStart || left->anchorEnd || |
| 1346 | right->anchorStart || right->anchorEnd) { |
| 1347 | return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); |
| 1348 | } |
| 1349 | // We allow anything on the right, including an empty string. |
| 1350 | UnicodeString* value = new UnicodeString(right->text); |
| 1351 | // NULL pointer check |
| 1352 | if (value == NULL) { |
| 1353 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 1354 | } |
| 1355 | variableNames.put(undefinedVariableName, value, status); |
| 1356 | ++variableLimit; |
| 1357 | return pos; |
| 1358 | } |
| 1359 | |
| 1360 | // If this is not a variable definition rule, we shouldn't have |
| 1361 | // any undefined variable names. |
| 1362 | if (undefinedVariableName.length() != 0) { |
| 1363 | return syntaxError(// "Undefined variable $" + undefinedVariableName, |
| 1364 | U_UNDEFINED_VARIABLE, |
| 1365 | rule, start, status); |
| 1366 | } |
| 1367 | |
| 1368 | // Verify segments |
| 1369 | if (segmentStandins.length() > segmentObjects.size()) { |
| 1370 | syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); |
| 1371 | } |
| 1372 | for (i=0; i<segmentStandins.length(); ++i) { |
| 1373 | if (segmentStandins.charAt(i) == 0) { |
| 1374 | syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen |
| 1375 | } |
| 1376 | } |
| 1377 | for (i=0; i<segmentObjects.size(); ++i) { |
| 1378 | if (segmentObjects.elementAt(i) == NULL) { |
| 1379 | syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | // If the direction we want doesn't match the rule |
| 1384 | // direction, do nothing. |
| 1385 | if (op != FWDREV_RULE_OP && |
| 1386 | ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { |
| 1387 | return pos; |
| 1388 | } |
| 1389 | |
| 1390 | // Transform the rule into a forward rule by swapping the |
| 1391 | // sides if necessary. |
| 1392 | if (direction == UTRANS_REVERSE) { |
| 1393 | left = &_right; |
| 1394 | right = &_left; |
| 1395 | } |
| 1396 | |
| 1397 | // Remove non-applicable elements in forward-reverse |
| 1398 | // rules. Bidirectional rules ignore elements that do not |
| 1399 | // apply. |
| 1400 | if (op == FWDREV_RULE_OP) { |
| 1401 | right->removeContext(); |
| 1402 | left->cursor = -1; |
| 1403 | left->cursorOffset = 0; |
| 1404 | } |
| 1405 | |
| 1406 | // Normalize context |
| 1407 | if (left->ante < 0) { |
| 1408 | left->ante = 0; |
| 1409 | } |
| 1410 | if (left->post < 0) { |
| 1411 | left->post = left->text.length(); |
| 1412 | } |
| 1413 | |
| 1414 | // Context is only allowed on the input side. Cursors are only |
| 1415 | // allowed on the output side. Segment delimiters can only appear |
| 1416 | // on the left, and references on the right. Cursor offset |
| 1417 | // cannot appear without an explicit cursor. Cursor offset |
| 1418 | // cannot place the cursor outside the limits of the context. |
| 1419 | // Anchors are only allowed on the input side. |
| 1420 | if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || |
| 1421 | (right->cursorOffset != 0 && right->cursor < 0) || |
| 1422 | // - The following two checks were used to ensure that the |
| 1423 | // - the cursor offset stayed within the ante- or postcontext. |
| 1424 | // - However, with the addition of quantifiers, we have to |
| 1425 | // - allow arbitrary cursor offsets and do runtime checking. |
| 1426 | //(right->cursorOffset > (left->text.length() - left->post)) || |
| 1427 | //(-right->cursorOffset > left->ante) || |
| 1428 | right->anchorStart || right->anchorEnd || |
| 1429 | !left->isValidInput(*this) || !right->isValidOutput(*this) || |
| 1430 | left->ante > left->post) { |
| 1431 | |
| 1432 | return syntaxError(U_MALFORMED_RULE, rule, start, status); |
| 1433 | } |
| 1434 | |
| 1435 | // Flatten segment objects vector to an array |
| 1436 | UnicodeFunctor** segmentsArray = NULL; |
| 1437 | if (segmentObjects.size() > 0) { |
| 1438 | segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *)); |
| 1439 | // Null pointer check |
| 1440 | if (segmentsArray == NULL) { |
| 1441 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 1442 | } |
| 1443 | segmentObjects.toArray((void**) segmentsArray); |
| 1444 | } |
| 1445 | TransliterationRule* temptr = new TransliterationRule( |
| 1446 | left->text, left->ante, left->post, |
| 1447 | right->text, right->cursor, right->cursorOffset, |
| 1448 | segmentsArray, |
| 1449 | segmentObjects.size(), |
| 1450 | left->anchorStart, left->anchorEnd, |
| 1451 | curData, |
| 1452 | status); |
| 1453 | //Null pointer check |
| 1454 | if (temptr == NULL) { |
| 1455 | uprv_free(segmentsArray); |
| 1456 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 1457 | } |
| 1458 | |
| 1459 | curData->ruleSet.addRule(temptr, status); |
| 1460 | |
| 1461 | return pos; |
| 1462 | } |
| 1463 | |
| 1464 | /** |
| 1465 | * Called by main parser upon syntax error. Search the rule string |
| 1466 | * for the probable end of the rule. Of course, if the error is that |
| 1467 | * the end of rule marker is missing, then the rule end will not be found. |
| 1468 | * In any case the rule start will be correctly reported. |
| 1469 | * @param msg error description |
| 1470 | * @param rule pattern string |
| 1471 | * @param start position of first character of current rule |
| 1472 | */ |
| 1473 | int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, |
| 1474 | const UnicodeString& rule, |
| 1475 | int32_t pos, |
| 1476 | UErrorCode& status) |
| 1477 | { |
| 1478 | parseError.offset = pos; |
| 1479 | parseError.line = 0 ; /* we are not using line numbers */ |
| 1480 | |
| 1481 | // for pre-context |
| 1482 | const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; |
| 1483 | int32_t start = uprv_max(pos - LEN, 0); |
| 1484 | int32_t stop = pos; |
| 1485 | |
| 1486 | rule.extract(start,stop-start,parseError.preContext); |
| 1487 | //null terminate the buffer |
| 1488 | parseError.preContext[stop-start] = 0; |
| 1489 | |
| 1490 | //for post-context |
| 1491 | start = pos; |
| 1492 | stop = uprv_min(pos + LEN, rule.length()); |
| 1493 | |
| 1494 | rule.extract(start,stop-start,parseError.postContext); |
| 1495 | //null terminate the buffer |
| 1496 | parseError.postContext[stop-start]= 0; |
| 1497 | |
| 1498 | status = (UErrorCode)parseErrorCode; |
| 1499 | return pos; |
| 1500 | |
| 1501 | } |
| 1502 | |
| 1503 | /** |
| 1504 | * Parse a UnicodeSet out, store it, and return the stand-in character |
| 1505 | * used to represent it. |
| 1506 | */ |
| 1507 | UChar TransliteratorParser::parseSet(const UnicodeString& rule, |
| 1508 | ParsePosition& pos, |
| 1509 | UErrorCode& status) { |
| 1510 | UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); |
| 1511 | // Null pointer check |
| 1512 | if (set == NULL) { |
| 1513 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1514 | return (UChar)0x0000; // Return empty character with error. |
| 1515 | } |
| 1516 | set->compact(); |
| 1517 | return generateStandInFor(set, status); |
| 1518 | } |
| 1519 | |
| 1520 | /** |
| 1521 | * Generate and return a stand-in for a new UnicodeFunctor. Store |
| 1522 | * the matcher (adopt it). |
| 1523 | */ |
| 1524 | UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) { |
| 1525 | // assert(obj != null); |
| 1526 | |
| 1527 | // Look up previous stand-in, if any. This is a short list |
| 1528 | // (typical n is 0, 1, or 2); linear search is optimal. |
| 1529 | for (int32_t i=0; i<variablesVector.size(); ++i) { |
| 1530 | if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison |
| 1531 | return (UChar) (curData->variablesBase + i); |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | if (variableNext >= variableLimit) { |
| 1536 | delete adopted; |
| 1537 | status = U_VARIABLE_RANGE_EXHAUSTED; |
| 1538 | return 0; |
| 1539 | } |
| 1540 | variablesVector.addElement(adopted, status); |
| 1541 | return variableNext++; |
| 1542 | } |
| 1543 | |
| 1544 | /** |
| 1545 | * Return the standin for segment seg (1-based). |
| 1546 | */ |
| 1547 | UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { |
| 1548 | // Special character used to indicate an empty spot |
| 1549 | UChar empty = curData->variablesBase - 1; |
| 1550 | while (segmentStandins.length() < seg) { |
| 1551 | segmentStandins.append(empty); |
| 1552 | } |
| 1553 | UChar c = segmentStandins.charAt(seg-1); |
| 1554 | if (c == empty) { |
| 1555 | if (variableNext >= variableLimit) { |
| 1556 | status = U_VARIABLE_RANGE_EXHAUSTED; |
| 1557 | return 0; |
| 1558 | } |
| 1559 | c = variableNext++; |
| 1560 | // Set a placeholder in the master variables vector that will be |
| 1561 | // filled in later by setSegmentObject(). We know that we will get |
| 1562 | // called first because setSegmentObject() will call us. |
| 1563 | variablesVector.addElement((void*) NULL, status); |
| 1564 | segmentStandins.setCharAt(seg-1, c); |
| 1565 | } |
| 1566 | return c; |
| 1567 | } |
| 1568 | |
| 1569 | /** |
| 1570 | * Set the object for segment seg (1-based). |
| 1571 | */ |
| 1572 | void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) { |
| 1573 | // Since we call parseSection() recursively, nested |
| 1574 | // segments will result in segment i+1 getting parsed |
| 1575 | // and stored before segment i; be careful with the |
| 1576 | // vector handling here. |
| 1577 | if (segmentObjects.size() < seg) { |
| 1578 | segmentObjects.setSize(seg, status); |
| 1579 | } |
| 1580 | int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; |
| 1581 | if (segmentObjects.elementAt(seg-1) != NULL || |
| 1582 | variablesVector.elementAt(index) != NULL) { |
| 1583 | // should never happen |
| 1584 | status = U_INTERNAL_TRANSLITERATOR_ERROR; |
| 1585 | return; |
| 1586 | } |
| 1587 | segmentObjects.setElementAt(adopted, seg-1); |
| 1588 | variablesVector.setElementAt(adopted, index); |
| 1589 | } |
| 1590 | |
| 1591 | /** |
| 1592 | * Return the stand-in for the dot set. It is allocated the first |
| 1593 | * time and reused thereafter. |
| 1594 | */ |
| 1595 | UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { |
| 1596 | if (dotStandIn == (UChar) -1) { |
| 1597 | UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status); |
| 1598 | // Null pointer check. |
| 1599 | if (tempus == NULL) { |
| 1600 | status = U_MEMORY_ALLOCATION_ERROR; |
| 1601 | return (UChar)0x0000; |
| 1602 | } |
| 1603 | dotStandIn = generateStandInFor(tempus, status); |
| 1604 | } |
| 1605 | return dotStandIn; |
| 1606 | } |
| 1607 | |
| 1608 | /** |
| 1609 | * Append the value of the given variable name to the given |
| 1610 | * UnicodeString. |
| 1611 | */ |
| 1612 | void TransliteratorParser::appendVariableDef(const UnicodeString& name, |
| 1613 | UnicodeString& buf, |
| 1614 | UErrorCode& status) { |
| 1615 | const UnicodeString* s = (const UnicodeString*) variableNames.get(name); |
| 1616 | if (s == NULL) { |
| 1617 | // We allow one undefined variable so that variable definition |
| 1618 | // statements work. For the first undefined variable we return |
| 1619 | // the special placeholder variableLimit-1, and save the variable |
| 1620 | // name. |
| 1621 | if (undefinedVariableName.length() == 0) { |
| 1622 | undefinedVariableName = name; |
| 1623 | if (variableNext >= variableLimit) { |
| 1624 | // throw new RuntimeException("Private use variables exhausted"); |
| 1625 | status = U_ILLEGAL_ARGUMENT_ERROR; |
| 1626 | return; |
| 1627 | } |
| 1628 | buf.append((UChar) --variableLimit); |
| 1629 | } else { |
| 1630 | //throw new IllegalArgumentException("Undefined variable $" |
| 1631 | // + name); |
| 1632 | status = U_ILLEGAL_ARGUMENT_ERROR; |
| 1633 | return; |
| 1634 | } |
| 1635 | } else { |
| 1636 | buf.append(*s); |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | /** |
| 1641 | * Glue method to get around access restrictions in C++. |
| 1642 | */ |
| 1643 | /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { |
| 1644 | return Transliterator::createBasicInstance(id, canonID); |
| 1645 | }*/ |
| 1646 | |
| 1647 | U_NAMESPACE_END |
| 1648 | |
| 1649 | U_CAPI int32_t |
| 1650 | utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) { |
| 1651 | U_NAMESPACE_USE |
| 1652 | |
| 1653 | //const UChar *sourceStart = source; |
| 1654 | const UChar *targetStart = target; |
| 1655 | const UChar *sourceLimit = source+sourceLen; |
| 1656 | UChar *targetLimit = target+sourceLen; |
| 1657 | UChar32 c = 0; |
| 1658 | UBool quoted = FALSE; |
| 1659 | int32_t index; |
| 1660 | |
| 1661 | uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); |
| 1662 | |
| 1663 | /* read the rules into the buffer */ |
| 1664 | while (source < sourceLimit) |
| 1665 | { |
| 1666 | index=0; |
| 1667 | U16_NEXT_UNSAFE(source, index, c); |
| 1668 | source+=index; |
| 1669 | if(c == QUOTE) { |
| 1670 | quoted = (UBool)!quoted; |
| 1671 | } |
| 1672 | else if (!quoted) { |
| 1673 | if (c == RULE_COMMENT_CHAR) { |
| 1674 | /* skip comments and all preceding spaces */ |
| 1675 | while (targetStart < target && *(target - 1) == 0x0020) { |
| 1676 | target--; |
| 1677 | } |
| 1678 | do { |
| 1679 | if (source == sourceLimit) { |
| 1680 | c = U_SENTINEL; |
| 1681 | break; |
| 1682 | } |
| 1683 | c = *(source++); |
| 1684 | } |
| 1685 | while (c != CR && c != LF); |
| 1686 | if (c < 0) { |
| 1687 | break; |
| 1688 | } |
| 1689 | } |
| 1690 | else if (c == ESCAPE && source < sourceLimit) { |
| 1691 | UChar32 c2 = *source; |
| 1692 | if (c2 == CR || c2 == LF) { |
| 1693 | /* A backslash at the end of a line. */ |
| 1694 | /* Since we're stripping lines, ignore the backslash. */ |
| 1695 | source++; |
| 1696 | continue; |
| 1697 | } |
| 1698 | if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */ |
| 1699 | int32_t escapeOffset = 0; |
| 1700 | UnicodeString escapedStr(source, 5); |
| 1701 | c2 = escapedStr.unescapeAt(escapeOffset); |
| 1702 | |
| 1703 | if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) |
| 1704 | { |
| 1705 | *status = U_PARSE_ERROR; |
| 1706 | return 0; |
| 1707 | } |
| 1708 | if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) { |
| 1709 | /* It was escaped for a reason. Write what it was suppose to be. */ |
| 1710 | source+=5; |
| 1711 | c = c2; |
| 1712 | } |
| 1713 | } |
| 1714 | else if (c2 == QUOTE) { |
| 1715 | /* \' seen. Make sure we don't do anything when we see it again. */ |
| 1716 | quoted = (UBool)!quoted; |
| 1717 | } |
| 1718 | } |
| 1719 | } |
| 1720 | if (c == CR || c == LF) |
| 1721 | { |
| 1722 | /* ignore spaces carriage returns, and all leading spaces on the next line. |
| 1723 | * and line feed unless in the form \uXXXX |
| 1724 | */ |
| 1725 | quoted = FALSE; |
| 1726 | while (source < sourceLimit) { |
| 1727 | c = *(source); |
| 1728 | if (c != CR && c != LF && c != 0x0020) { |
| 1729 | break; |
| 1730 | } |
| 1731 | source++; |
| 1732 | } |
| 1733 | continue; |
| 1734 | } |
| 1735 | |
| 1736 | /* Append UChar * after dissembling if c > 0xffff*/ |
| 1737 | index=0; |
| 1738 | U16_APPEND_UNSAFE(target, index, c); |
| 1739 | target+=index; |
| 1740 | } |
| 1741 | if (target < targetLimit) { |
| 1742 | *target = 0; |
| 1743 | } |
| 1744 | return (int32_t)(target-targetStart); |
| 1745 | } |
| 1746 | |
| 1747 | #endif /* #if !UCONFIG_NO_TRANSLITERATION */ |
| 1748 | |