1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ************************************************************************** |
5 | * Copyright (C) 2002-2016 International Business Machines Corporation |
6 | * and others. All rights reserved. |
7 | ************************************************************************** |
8 | */ |
9 | // |
10 | // file: rematch.cpp |
11 | // |
12 | // Contains the implementation of class RegexMatcher, |
13 | // which is one of the main API classes for the ICU regular expression package. |
14 | // |
15 | |
16 | #include "unicode/utypes.h" |
17 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS |
18 | |
19 | #include "unicode/regex.h" |
20 | #include "unicode/uniset.h" |
21 | #include "unicode/uchar.h" |
22 | #include "unicode/ustring.h" |
23 | #include "unicode/rbbi.h" |
24 | #include "unicode/utf.h" |
25 | #include "unicode/utf16.h" |
26 | #include "uassert.h" |
27 | #include "cmemory.h" |
28 | #include "cstr.h" |
29 | #include "uvector.h" |
30 | #include "uvectr32.h" |
31 | #include "uvectr64.h" |
32 | #include "regeximp.h" |
33 | #include "regexst.h" |
34 | #include "regextxt.h" |
35 | #include "ucase.h" |
36 | |
37 | // #include <malloc.h> // Needed for heapcheck testing |
38 | |
39 | |
40 | U_NAMESPACE_BEGIN |
41 | |
42 | // Default limit for the size of the back track stack, to avoid system |
43 | // failures causedby heap exhaustion. Units are in 32 bit words, not bytes. |
44 | // This value puts ICU's limits higher than most other regexp implementations, |
45 | // which use recursion rather than the heap, and take more storage per |
46 | // backtrack point. |
47 | // |
48 | static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000; |
49 | |
50 | // Time limit counter constant. |
51 | // Time limits for expression evaluation are in terms of quanta of work by |
52 | // the engine, each of which is 10,000 state saves. |
53 | // This constant determines that state saves per tick number. |
54 | static const int32_t TIMER_INITIAL_VALUE = 10000; |
55 | |
56 | |
57 | // Test for any of the Unicode line terminating characters. |
58 | static inline UBool isLineTerminator(UChar32 c) { |
59 | if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) { |
60 | return false; |
61 | } |
62 | return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029; |
63 | } |
64 | |
65 | //----------------------------------------------------------------------------- |
66 | // |
67 | // Constructor and Destructor |
68 | // |
69 | //----------------------------------------------------------------------------- |
70 | RegexMatcher::RegexMatcher(const RegexPattern *pat) { |
71 | fDeferredStatus = U_ZERO_ERROR; |
72 | init(fDeferredStatus); |
73 | if (U_FAILURE(fDeferredStatus)) { |
74 | return; |
75 | } |
76 | if (pat==NULL) { |
77 | fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; |
78 | return; |
79 | } |
80 | fPattern = pat; |
81 | init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus); |
82 | } |
83 | |
84 | |
85 | |
86 | RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, |
87 | uint32_t flags, UErrorCode &status) { |
88 | init(status); |
89 | if (U_FAILURE(status)) { |
90 | return; |
91 | } |
92 | UParseError pe; |
93 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
94 | fPattern = fPatternOwned; |
95 | |
96 | UText inputText = UTEXT_INITIALIZER; |
97 | utext_openConstUnicodeString(&inputText, &input, &status); |
98 | init2(&inputText, status); |
99 | utext_close(&inputText); |
100 | |
101 | fInputUniStrMaybeMutable = TRUE; |
102 | } |
103 | |
104 | |
105 | RegexMatcher::RegexMatcher(UText *regexp, UText *input, |
106 | uint32_t flags, UErrorCode &status) { |
107 | init(status); |
108 | if (U_FAILURE(status)) { |
109 | return; |
110 | } |
111 | UParseError pe; |
112 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
113 | if (U_FAILURE(status)) { |
114 | return; |
115 | } |
116 | |
117 | fPattern = fPatternOwned; |
118 | init2(input, status); |
119 | } |
120 | |
121 | |
122 | RegexMatcher::RegexMatcher(const UnicodeString ®exp, |
123 | uint32_t flags, UErrorCode &status) { |
124 | init(status); |
125 | if (U_FAILURE(status)) { |
126 | return; |
127 | } |
128 | UParseError pe; |
129 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
130 | if (U_FAILURE(status)) { |
131 | return; |
132 | } |
133 | fPattern = fPatternOwned; |
134 | init2(RegexStaticSets::gStaticSets->fEmptyText, status); |
135 | } |
136 | |
137 | RegexMatcher::RegexMatcher(UText *regexp, |
138 | uint32_t flags, UErrorCode &status) { |
139 | init(status); |
140 | if (U_FAILURE(status)) { |
141 | return; |
142 | } |
143 | UParseError pe; |
144 | fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); |
145 | if (U_FAILURE(status)) { |
146 | return; |
147 | } |
148 | |
149 | fPattern = fPatternOwned; |
150 | init2(RegexStaticSets::gStaticSets->fEmptyText, status); |
151 | } |
152 | |
153 | |
154 | |
155 | |
156 | RegexMatcher::~RegexMatcher() { |
157 | delete fStack; |
158 | if (fData != fSmallData) { |
159 | uprv_free(fData); |
160 | fData = NULL; |
161 | } |
162 | if (fPatternOwned) { |
163 | delete fPatternOwned; |
164 | fPatternOwned = NULL; |
165 | fPattern = NULL; |
166 | } |
167 | |
168 | if (fInput) { |
169 | delete fInput; |
170 | } |
171 | if (fInputText) { |
172 | utext_close(fInputText); |
173 | } |
174 | if (fAltInputText) { |
175 | utext_close(fAltInputText); |
176 | } |
177 | |
178 | #if UCONFIG_NO_BREAK_ITERATION==0 |
179 | delete fWordBreakItr; |
180 | #endif |
181 | } |
182 | |
183 | // |
184 | // init() common initialization for use by all constructors. |
185 | // Initialize all fields, get the object into a consistent state. |
186 | // This must be done even when the initial status shows an error, |
187 | // so that the object is initialized sufficiently well for the destructor |
188 | // to run safely. |
189 | // |
190 | void RegexMatcher::init(UErrorCode &status) { |
191 | fPattern = NULL; |
192 | fPatternOwned = NULL; |
193 | fFrameSize = 0; |
194 | fRegionStart = 0; |
195 | fRegionLimit = 0; |
196 | fAnchorStart = 0; |
197 | fAnchorLimit = 0; |
198 | fLookStart = 0; |
199 | fLookLimit = 0; |
200 | fActiveStart = 0; |
201 | fActiveLimit = 0; |
202 | fTransparentBounds = FALSE; |
203 | fAnchoringBounds = TRUE; |
204 | fMatch = FALSE; |
205 | fMatchStart = 0; |
206 | fMatchEnd = 0; |
207 | fLastMatchEnd = -1; |
208 | fAppendPosition = 0; |
209 | fHitEnd = FALSE; |
210 | fRequireEnd = FALSE; |
211 | fStack = NULL; |
212 | fFrame = NULL; |
213 | fTimeLimit = 0; |
214 | fTime = 0; |
215 | fTickCounter = 0; |
216 | fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY; |
217 | fCallbackFn = NULL; |
218 | fCallbackContext = NULL; |
219 | fFindProgressCallbackFn = NULL; |
220 | fFindProgressCallbackContext = NULL; |
221 | fTraceDebug = FALSE; |
222 | fDeferredStatus = status; |
223 | fData = fSmallData; |
224 | fWordBreakItr = NULL; |
225 | |
226 | fStack = NULL; |
227 | fInputText = NULL; |
228 | fAltInputText = NULL; |
229 | fInput = NULL; |
230 | fInputLength = 0; |
231 | fInputUniStrMaybeMutable = FALSE; |
232 | } |
233 | |
234 | // |
235 | // init2() Common initialization for use by RegexMatcher constructors, part 2. |
236 | // This handles the common setup to be done after the Pattern is available. |
237 | // |
238 | void RegexMatcher::init2(UText *input, UErrorCode &status) { |
239 | if (U_FAILURE(status)) { |
240 | fDeferredStatus = status; |
241 | return; |
242 | } |
243 | |
244 | if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)) { |
245 | fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t)); |
246 | if (fData == NULL) { |
247 | status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
248 | return; |
249 | } |
250 | } |
251 | |
252 | fStack = new UVector64(status); |
253 | if (fStack == NULL) { |
254 | status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
255 | return; |
256 | } |
257 | |
258 | reset(input); |
259 | setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status); |
260 | if (U_FAILURE(status)) { |
261 | fDeferredStatus = status; |
262 | return; |
263 | } |
264 | } |
265 | |
266 | |
267 | static const UChar BACKSLASH = 0x5c; |
268 | static const UChar DOLLARSIGN = 0x24; |
269 | static const UChar LEFTBRACKET = 0x7b; |
270 | static const UChar RIGHTBRACKET = 0x7d; |
271 | |
272 | //-------------------------------------------------------------------------------- |
273 | // |
274 | // appendReplacement |
275 | // |
276 | //-------------------------------------------------------------------------------- |
277 | RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, |
278 | const UnicodeString &replacement, |
279 | UErrorCode &status) { |
280 | UText replacementText = UTEXT_INITIALIZER; |
281 | |
282 | utext_openConstUnicodeString(&replacementText, &replacement, &status); |
283 | if (U_SUCCESS(status)) { |
284 | UText resultText = UTEXT_INITIALIZER; |
285 | utext_openUnicodeString(&resultText, &dest, &status); |
286 | |
287 | if (U_SUCCESS(status)) { |
288 | appendReplacement(&resultText, &replacementText, status); |
289 | utext_close(&resultText); |
290 | } |
291 | utext_close(&replacementText); |
292 | } |
293 | |
294 | return *this; |
295 | } |
296 | |
297 | // |
298 | // appendReplacement, UText mode |
299 | // |
300 | RegexMatcher &RegexMatcher::appendReplacement(UText *dest, |
301 | UText *replacement, |
302 | UErrorCode &status) { |
303 | if (U_FAILURE(status)) { |
304 | return *this; |
305 | } |
306 | if (U_FAILURE(fDeferredStatus)) { |
307 | status = fDeferredStatus; |
308 | return *this; |
309 | } |
310 | if (fMatch == FALSE) { |
311 | status = U_REGEX_INVALID_STATE; |
312 | return *this; |
313 | } |
314 | |
315 | // Copy input string from the end of previous match to start of current match |
316 | int64_t destLen = utext_nativeLength(dest); |
317 | if (fMatchStart > fAppendPosition) { |
318 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
319 | destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, |
320 | (int32_t)(fMatchStart-fAppendPosition), &status); |
321 | } else { |
322 | int32_t len16; |
323 | if (UTEXT_USES_U16(fInputText)) { |
324 | len16 = (int32_t)(fMatchStart-fAppendPosition); |
325 | } else { |
326 | UErrorCode lengthStatus = U_ZERO_ERROR; |
327 | len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus); |
328 | } |
329 | UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); |
330 | if (inputChars == NULL) { |
331 | status = U_MEMORY_ALLOCATION_ERROR; |
332 | return *this; |
333 | } |
334 | utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status); |
335 | destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status); |
336 | uprv_free(inputChars); |
337 | } |
338 | } |
339 | fAppendPosition = fMatchEnd; |
340 | |
341 | |
342 | // scan the replacement text, looking for substitutions ($n) and \escapes. |
343 | // TODO: optimize this loop by efficiently scanning for '$' or '\', |
344 | // move entire ranges not containing substitutions. |
345 | UTEXT_SETNATIVEINDEX(replacement, 0); |
346 | for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL; c = UTEXT_NEXT32(replacement)) { |
347 | if (c == BACKSLASH) { |
348 | // Backslash Escape. Copy the following char out without further checks. |
349 | // Note: Surrogate pairs don't need any special handling |
350 | // The second half wont be a '$' or a '\', and |
351 | // will move to the dest normally on the next |
352 | // loop iteration. |
353 | c = UTEXT_CURRENT32(replacement); |
354 | if (c == U_SENTINEL) { |
355 | break; |
356 | } |
357 | |
358 | if (c==0x55/*U*/ || c==0x75/*u*/) { |
359 | // We have a \udddd or \Udddddddd escape sequence. |
360 | int32_t offset = 0; |
361 | struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement); |
362 | UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context); |
363 | if (escapedChar != (UChar32)0xFFFFFFFF) { |
364 | if (U_IS_BMP(escapedChar)) { |
365 | UChar c16 = (UChar)escapedChar; |
366 | destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
367 | } else { |
368 | UChar surrogate[2]; |
369 | surrogate[0] = U16_LEAD(escapedChar); |
370 | surrogate[1] = U16_TRAIL(escapedChar); |
371 | if (U_SUCCESS(status)) { |
372 | destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); |
373 | } |
374 | } |
375 | // TODO: Report errors for mal-formed \u escapes? |
376 | // As this is, the original sequence is output, which may be OK. |
377 | if (context.lastOffset == offset) { |
378 | (void)UTEXT_PREVIOUS32(replacement); |
379 | } else if (context.lastOffset != offset-1) { |
380 | utext_moveIndex32(replacement, offset - context.lastOffset - 1); |
381 | } |
382 | } |
383 | } else { |
384 | (void)UTEXT_NEXT32(replacement); |
385 | // Plain backslash escape. Just put out the escaped character. |
386 | if (U_IS_BMP(c)) { |
387 | UChar c16 = (UChar)c; |
388 | destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
389 | } else { |
390 | UChar surrogate[2]; |
391 | surrogate[0] = U16_LEAD(c); |
392 | surrogate[1] = U16_TRAIL(c); |
393 | if (U_SUCCESS(status)) { |
394 | destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); |
395 | } |
396 | } |
397 | } |
398 | } else if (c != DOLLARSIGN) { |
399 | // Normal char, not a $. Copy it out without further checks. |
400 | if (U_IS_BMP(c)) { |
401 | UChar c16 = (UChar)c; |
402 | destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); |
403 | } else { |
404 | UChar surrogate[2]; |
405 | surrogate[0] = U16_LEAD(c); |
406 | surrogate[1] = U16_TRAIL(c); |
407 | if (U_SUCCESS(status)) { |
408 | destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); |
409 | } |
410 | } |
411 | } else { |
412 | // We've got a $. Pick up a capture group name or number if one follows. |
413 | // Consume digits so long as the resulting group number <= the number of |
414 | // number of capture groups in the pattern. |
415 | |
416 | int32_t groupNum = 0; |
417 | int32_t numDigits = 0; |
418 | UChar32 nextChar = utext_current32(replacement); |
419 | if (nextChar == LEFTBRACKET) { |
420 | // Scan for a Named Capture Group, ${name}. |
421 | UnicodeString groupName; |
422 | utext_next32(replacement); |
423 | while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) { |
424 | nextChar = utext_next32(replacement); |
425 | if (nextChar == U_SENTINEL) { |
426 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
427 | } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z |
428 | (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z |
429 | (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9 |
430 | groupName.append(nextChar); |
431 | } else if (nextChar == RIGHTBRACKET) { |
432 | groupNum = fPattern->fNamedCaptureMap ? uhash_geti(fPattern->fNamedCaptureMap, &groupName) : 0; |
433 | if (groupNum == 0) { |
434 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
435 | } |
436 | } else { |
437 | // Character was something other than a name char or a closing '}' |
438 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
439 | } |
440 | } |
441 | |
442 | } else if (u_isdigit(nextChar)) { |
443 | // $n Scan for a capture group number |
444 | int32_t numCaptureGroups = fPattern->fGroupMap->size(); |
445 | for (;;) { |
446 | nextChar = UTEXT_CURRENT32(replacement); |
447 | if (nextChar == U_SENTINEL) { |
448 | break; |
449 | } |
450 | if (u_isdigit(nextChar) == FALSE) { |
451 | break; |
452 | } |
453 | int32_t nextDigitVal = u_charDigitValue(nextChar); |
454 | if (groupNum*10 + nextDigitVal > numCaptureGroups) { |
455 | // Don't consume the next digit if it makes the capture group number too big. |
456 | if (numDigits == 0) { |
457 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
458 | } |
459 | break; |
460 | } |
461 | (void)UTEXT_NEXT32(replacement); |
462 | groupNum=groupNum*10 + nextDigitVal; |
463 | ++numDigits; |
464 | } |
465 | } else { |
466 | // $ not followed by capture group name or number. |
467 | status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; |
468 | } |
469 | |
470 | if (U_SUCCESS(status)) { |
471 | destLen += appendGroup(groupNum, dest, status); |
472 | } |
473 | } // End of $ capture group handling |
474 | } // End of per-character loop through the replacement string. |
475 | |
476 | return *this; |
477 | } |
478 | |
479 | |
480 | |
481 | //-------------------------------------------------------------------------------- |
482 | // |
483 | // appendTail Intended to be used in conjunction with appendReplacement() |
484 | // To the destination string, append everything following |
485 | // the last match position from the input string. |
486 | // |
487 | // Note: Match ranges do not affect appendTail or appendReplacement |
488 | // |
489 | //-------------------------------------------------------------------------------- |
490 | UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { |
491 | UErrorCode status = U_ZERO_ERROR; |
492 | UText resultText = UTEXT_INITIALIZER; |
493 | utext_openUnicodeString(&resultText, &dest, &status); |
494 | |
495 | if (U_SUCCESS(status)) { |
496 | appendTail(&resultText, status); |
497 | utext_close(&resultText); |
498 | } |
499 | |
500 | return dest; |
501 | } |
502 | |
503 | // |
504 | // appendTail, UText mode |
505 | // |
506 | UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) { |
507 | if (U_FAILURE(status)) { |
508 | return dest; |
509 | } |
510 | if (U_FAILURE(fDeferredStatus)) { |
511 | status = fDeferredStatus; |
512 | return dest; |
513 | } |
514 | |
515 | if (fInputLength > fAppendPosition) { |
516 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
517 | int64_t destLen = utext_nativeLength(dest); |
518 | utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, |
519 | (int32_t)(fInputLength-fAppendPosition), &status); |
520 | } else { |
521 | int32_t len16; |
522 | if (UTEXT_USES_U16(fInputText)) { |
523 | len16 = (int32_t)(fInputLength-fAppendPosition); |
524 | } else { |
525 | len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status); |
526 | status = U_ZERO_ERROR; // buffer overflow |
527 | } |
528 | |
529 | UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16)); |
530 | if (inputChars == NULL) { |
531 | fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; |
532 | } else { |
533 | utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated |
534 | int64_t destLen = utext_nativeLength(dest); |
535 | utext_replace(dest, destLen, destLen, inputChars, len16, &status); |
536 | uprv_free(inputChars); |
537 | } |
538 | } |
539 | } |
540 | return dest; |
541 | } |
542 | |
543 | |
544 | |
545 | //-------------------------------------------------------------------------------- |
546 | // |
547 | // end |
548 | // |
549 | //-------------------------------------------------------------------------------- |
550 | int32_t RegexMatcher::end(UErrorCode &err) const { |
551 | return end(0, err); |
552 | } |
553 | |
554 | int64_t RegexMatcher::end64(UErrorCode &err) const { |
555 | return end64(0, err); |
556 | } |
557 | |
558 | int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const { |
559 | if (U_FAILURE(err)) { |
560 | return -1; |
561 | } |
562 | if (fMatch == FALSE) { |
563 | err = U_REGEX_INVALID_STATE; |
564 | return -1; |
565 | } |
566 | if (group < 0 || group > fPattern->fGroupMap->size()) { |
567 | err = U_INDEX_OUTOFBOUNDS_ERROR; |
568 | return -1; |
569 | } |
570 | int64_t e = -1; |
571 | if (group == 0) { |
572 | e = fMatchEnd; |
573 | } else { |
574 | // Get the position within the stack frame of the variables for |
575 | // this capture group. |
576 | int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); |
577 | U_ASSERT(groupOffset < fPattern->fFrameSize); |
578 | U_ASSERT(groupOffset >= 0); |
579 | e = fFrame->fExtra[groupOffset + 1]; |
580 | } |
581 | |
582 | return e; |
583 | } |
584 | |
585 | int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { |
586 | return (int32_t)end64(group, err); |
587 | } |
588 | |
589 | //-------------------------------------------------------------------------------- |
590 | // |
591 | // findProgressInterrupt This function is called once for each advance in the target |
592 | // string from the find() function, and calls the user progress callback |
593 | // function if there is one installed. |
594 | // |
595 | // Return: TRUE if the find operation is to be terminated. |
596 | // FALSE if the find operation is to continue running. |
597 | // |
598 | //-------------------------------------------------------------------------------- |
599 | UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) { |
600 | if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) { |
601 | status = U_REGEX_STOPPED_BY_CALLER; |
602 | return TRUE; |
603 | } |
604 | return FALSE; |
605 | } |
606 | |
607 | //-------------------------------------------------------------------------------- |
608 | // |
609 | // find() |
610 | // |
611 | //-------------------------------------------------------------------------------- |
612 | UBool RegexMatcher::find() { |
613 | if (U_FAILURE(fDeferredStatus)) { |
614 | return FALSE; |
615 | } |
616 | UErrorCode status = U_ZERO_ERROR; |
617 | UBool result = find(status); |
618 | return result; |
619 | } |
620 | |
621 | //-------------------------------------------------------------------------------- |
622 | // |
623 | // find() |
624 | // |
625 | //-------------------------------------------------------------------------------- |
626 | UBool RegexMatcher::find(UErrorCode &status) { |
627 | // Start at the position of the last match end. (Will be zero if the |
628 | // matcher has been reset.) |
629 | // |
630 | if (U_FAILURE(status)) { |
631 | return FALSE; |
632 | } |
633 | if (U_FAILURE(fDeferredStatus)) { |
634 | status = fDeferredStatus; |
635 | return FALSE; |
636 | } |
637 | |
638 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
639 | return findUsingChunk(status); |
640 | } |
641 | |
642 | int64_t startPos = fMatchEnd; |
643 | if (startPos==0) { |
644 | startPos = fActiveStart; |
645 | } |
646 | |
647 | if (fMatch) { |
648 | // Save the position of any previous successful match. |
649 | fLastMatchEnd = fMatchEnd; |
650 | |
651 | if (fMatchStart == fMatchEnd) { |
652 | // Previous match had zero length. Move start position up one position |
653 | // to avoid sending find() into a loop on zero-length matches. |
654 | if (startPos >= fActiveLimit) { |
655 | fMatch = FALSE; |
656 | fHitEnd = TRUE; |
657 | return FALSE; |
658 | } |
659 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
660 | (void)UTEXT_NEXT32(fInputText); |
661 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
662 | } |
663 | } else { |
664 | if (fLastMatchEnd >= 0) { |
665 | // A previous find() failed to match. Don't try again. |
666 | // (without this test, a pattern with a zero-length match |
667 | // could match again at the end of an input string.) |
668 | fHitEnd = TRUE; |
669 | return FALSE; |
670 | } |
671 | } |
672 | |
673 | |
674 | // Compute the position in the input string beyond which a match can not begin, because |
675 | // the minimum length match would extend past the end of the input. |
676 | // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. |
677 | // Be aware of possible overflows if making changes here. |
678 | int64_t testStartLimit; |
679 | if (UTEXT_USES_U16(fInputText)) { |
680 | testStartLimit = fActiveLimit - fPattern->fMinMatchLen; |
681 | if (startPos > testStartLimit) { |
682 | fMatch = FALSE; |
683 | fHitEnd = TRUE; |
684 | return FALSE; |
685 | } |
686 | } else { |
687 | // We don't know exactly how long the minimum match length is in native characters. |
688 | // Treat anything > 0 as 1. |
689 | testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0); |
690 | } |
691 | |
692 | UChar32 c; |
693 | U_ASSERT(startPos >= 0); |
694 | |
695 | switch (fPattern->fStartType) { |
696 | case START_NO_INFO: |
697 | // No optimization was found. |
698 | // Try a match at each input position. |
699 | for (;;) { |
700 | MatchAt(startPos, FALSE, status); |
701 | if (U_FAILURE(status)) { |
702 | return FALSE; |
703 | } |
704 | if (fMatch) { |
705 | return TRUE; |
706 | } |
707 | if (startPos >= testStartLimit) { |
708 | fHitEnd = TRUE; |
709 | return FALSE; |
710 | } |
711 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
712 | (void)UTEXT_NEXT32(fInputText); |
713 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
714 | // Note that it's perfectly OK for a pattern to have a zero-length |
715 | // match at the end of a string, so we must make sure that the loop |
716 | // runs with startPos == testStartLimit the last time through. |
717 | if (findProgressInterrupt(startPos, status)) |
718 | return FALSE; |
719 | } |
720 | UPRV_UNREACHABLE; |
721 | |
722 | case START_START: |
723 | // Matches are only possible at the start of the input string |
724 | // (pattern begins with ^ or \A) |
725 | if (startPos > fActiveStart) { |
726 | fMatch = FALSE; |
727 | return FALSE; |
728 | } |
729 | MatchAt(startPos, FALSE, status); |
730 | if (U_FAILURE(status)) { |
731 | return FALSE; |
732 | } |
733 | return fMatch; |
734 | |
735 | |
736 | case START_SET: |
737 | { |
738 | // Match may start on any char from a pre-computed set. |
739 | U_ASSERT(fPattern->fMinMatchLen > 0); |
740 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
741 | for (;;) { |
742 | int64_t pos = startPos; |
743 | c = UTEXT_NEXT32(fInputText); |
744 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
745 | // c will be -1 (U_SENTINEL) at end of text, in which case we |
746 | // skip this next block (so we don't have a negative array index) |
747 | // and handle end of text in the following block. |
748 | if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) || |
749 | (c>=256 && fPattern->fInitialChars->contains(c)))) { |
750 | MatchAt(pos, FALSE, status); |
751 | if (U_FAILURE(status)) { |
752 | return FALSE; |
753 | } |
754 | if (fMatch) { |
755 | return TRUE; |
756 | } |
757 | UTEXT_SETNATIVEINDEX(fInputText, pos); |
758 | } |
759 | if (startPos > testStartLimit) { |
760 | fMatch = FALSE; |
761 | fHitEnd = TRUE; |
762 | return FALSE; |
763 | } |
764 | if (findProgressInterrupt(startPos, status)) |
765 | return FALSE; |
766 | } |
767 | } |
768 | UPRV_UNREACHABLE; |
769 | |
770 | case START_STRING: |
771 | case START_CHAR: |
772 | { |
773 | // Match starts on exactly one char. |
774 | U_ASSERT(fPattern->fMinMatchLen > 0); |
775 | UChar32 theChar = fPattern->fInitialChar; |
776 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
777 | for (;;) { |
778 | int64_t pos = startPos; |
779 | c = UTEXT_NEXT32(fInputText); |
780 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
781 | if (c == theChar) { |
782 | MatchAt(pos, FALSE, status); |
783 | if (U_FAILURE(status)) { |
784 | return FALSE; |
785 | } |
786 | if (fMatch) { |
787 | return TRUE; |
788 | } |
789 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
790 | } |
791 | if (startPos > testStartLimit) { |
792 | fMatch = FALSE; |
793 | fHitEnd = TRUE; |
794 | return FALSE; |
795 | } |
796 | if (findProgressInterrupt(startPos, status)) |
797 | return FALSE; |
798 | } |
799 | } |
800 | UPRV_UNREACHABLE; |
801 | |
802 | case START_LINE: |
803 | { |
804 | UChar32 ch; |
805 | if (startPos == fAnchorStart) { |
806 | MatchAt(startPos, FALSE, status); |
807 | if (U_FAILURE(status)) { |
808 | return FALSE; |
809 | } |
810 | if (fMatch) { |
811 | return TRUE; |
812 | } |
813 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
814 | ch = UTEXT_NEXT32(fInputText); |
815 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
816 | } else { |
817 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
818 | ch = UTEXT_PREVIOUS32(fInputText); |
819 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
820 | } |
821 | |
822 | if (fPattern->fFlags & UREGEX_UNIX_LINES) { |
823 | for (;;) { |
824 | if (ch == 0x0a) { |
825 | MatchAt(startPos, FALSE, status); |
826 | if (U_FAILURE(status)) { |
827 | return FALSE; |
828 | } |
829 | if (fMatch) { |
830 | return TRUE; |
831 | } |
832 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
833 | } |
834 | if (startPos >= testStartLimit) { |
835 | fMatch = FALSE; |
836 | fHitEnd = TRUE; |
837 | return FALSE; |
838 | } |
839 | ch = UTEXT_NEXT32(fInputText); |
840 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
841 | // Note that it's perfectly OK for a pattern to have a zero-length |
842 | // match at the end of a string, so we must make sure that the loop |
843 | // runs with startPos == testStartLimit the last time through. |
844 | if (findProgressInterrupt(startPos, status)) |
845 | return FALSE; |
846 | } |
847 | } else { |
848 | for (;;) { |
849 | if (isLineTerminator(ch)) { |
850 | if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { |
851 | (void)UTEXT_NEXT32(fInputText); |
852 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
853 | } |
854 | MatchAt(startPos, FALSE, status); |
855 | if (U_FAILURE(status)) { |
856 | return FALSE; |
857 | } |
858 | if (fMatch) { |
859 | return TRUE; |
860 | } |
861 | UTEXT_SETNATIVEINDEX(fInputText, startPos); |
862 | } |
863 | if (startPos >= testStartLimit) { |
864 | fMatch = FALSE; |
865 | fHitEnd = TRUE; |
866 | return FALSE; |
867 | } |
868 | ch = UTEXT_NEXT32(fInputText); |
869 | startPos = UTEXT_GETNATIVEINDEX(fInputText); |
870 | // Note that it's perfectly OK for a pattern to have a zero-length |
871 | // match at the end of a string, so we must make sure that the loop |
872 | // runs with startPos == testStartLimit the last time through. |
873 | if (findProgressInterrupt(startPos, status)) |
874 | return FALSE; |
875 | } |
876 | } |
877 | } |
878 | |
879 | default: |
880 | UPRV_UNREACHABLE; |
881 | } |
882 | |
883 | UPRV_UNREACHABLE; |
884 | } |
885 | |
886 | |
887 | |
888 | UBool RegexMatcher::find(int64_t start, UErrorCode &status) { |
889 | if (U_FAILURE(status)) { |
890 | return FALSE; |
891 | } |
892 | if (U_FAILURE(fDeferredStatus)) { |
893 | status = fDeferredStatus; |
894 | return FALSE; |
895 | } |
896 | this->reset(); // Note: Reset() is specified by Java Matcher documentation. |
897 | // This will reset the region to be the full input length. |
898 | if (start < 0) { |
899 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
900 | return FALSE; |
901 | } |
902 | |
903 | int64_t nativeStart = start; |
904 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
905 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
906 | return FALSE; |
907 | } |
908 | fMatchEnd = nativeStart; |
909 | return find(status); |
910 | } |
911 | |
912 | |
913 | //-------------------------------------------------------------------------------- |
914 | // |
915 | // findUsingChunk() -- like find(), but with the advance knowledge that the |
916 | // entire string is available in the UText's chunk buffer. |
917 | // |
918 | //-------------------------------------------------------------------------------- |
919 | UBool RegexMatcher::findUsingChunk(UErrorCode &status) { |
920 | // Start at the position of the last match end. (Will be zero if the |
921 | // matcher has been reset. |
922 | // |
923 | |
924 | int32_t startPos = (int32_t)fMatchEnd; |
925 | if (startPos==0) { |
926 | startPos = (int32_t)fActiveStart; |
927 | } |
928 | |
929 | const UChar *inputBuf = fInputText->chunkContents; |
930 | |
931 | if (fMatch) { |
932 | // Save the position of any previous successful match. |
933 | fLastMatchEnd = fMatchEnd; |
934 | |
935 | if (fMatchStart == fMatchEnd) { |
936 | // Previous match had zero length. Move start position up one position |
937 | // to avoid sending find() into a loop on zero-length matches. |
938 | if (startPos >= fActiveLimit) { |
939 | fMatch = FALSE; |
940 | fHitEnd = TRUE; |
941 | return FALSE; |
942 | } |
943 | U16_FWD_1(inputBuf, startPos, fInputLength); |
944 | } |
945 | } else { |
946 | if (fLastMatchEnd >= 0) { |
947 | // A previous find() failed to match. Don't try again. |
948 | // (without this test, a pattern with a zero-length match |
949 | // could match again at the end of an input string.) |
950 | fHitEnd = TRUE; |
951 | return FALSE; |
952 | } |
953 | } |
954 | |
955 | |
956 | // Compute the position in the input string beyond which a match can not begin, because |
957 | // the minimum length match would extend past the end of the input. |
958 | // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. |
959 | // Be aware of possible overflows if making changes here. |
960 | // Note: a match can begin at inputBuf + testLen; it is an inclusive limit. |
961 | int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen); |
962 | if (startPos > testLen) { |
963 | fMatch = FALSE; |
964 | fHitEnd = TRUE; |
965 | return FALSE; |
966 | } |
967 | |
968 | UChar32 c; |
969 | U_ASSERT(startPos >= 0); |
970 | |
971 | switch (fPattern->fStartType) { |
972 | case START_NO_INFO: |
973 | // No optimization was found. |
974 | // Try a match at each input position. |
975 | for (;;) { |
976 | MatchChunkAt(startPos, FALSE, status); |
977 | if (U_FAILURE(status)) { |
978 | return FALSE; |
979 | } |
980 | if (fMatch) { |
981 | return TRUE; |
982 | } |
983 | if (startPos >= testLen) { |
984 | fHitEnd = TRUE; |
985 | return FALSE; |
986 | } |
987 | U16_FWD_1(inputBuf, startPos, fActiveLimit); |
988 | // Note that it's perfectly OK for a pattern to have a zero-length |
989 | // match at the end of a string, so we must make sure that the loop |
990 | // runs with startPos == testLen the last time through. |
991 | if (findProgressInterrupt(startPos, status)) |
992 | return FALSE; |
993 | } |
994 | UPRV_UNREACHABLE; |
995 | |
996 | case START_START: |
997 | // Matches are only possible at the start of the input string |
998 | // (pattern begins with ^ or \A) |
999 | if (startPos > fActiveStart) { |
1000 | fMatch = FALSE; |
1001 | return FALSE; |
1002 | } |
1003 | MatchChunkAt(startPos, FALSE, status); |
1004 | if (U_FAILURE(status)) { |
1005 | return FALSE; |
1006 | } |
1007 | return fMatch; |
1008 | |
1009 | |
1010 | case START_SET: |
1011 | { |
1012 | // Match may start on any char from a pre-computed set. |
1013 | U_ASSERT(fPattern->fMinMatchLen > 0); |
1014 | for (;;) { |
1015 | int32_t pos = startPos; |
1016 | U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; |
1017 | if ((c<256 && fPattern->fInitialChars8->contains(c)) || |
1018 | (c>=256 && fPattern->fInitialChars->contains(c))) { |
1019 | MatchChunkAt(pos, FALSE, status); |
1020 | if (U_FAILURE(status)) { |
1021 | return FALSE; |
1022 | } |
1023 | if (fMatch) { |
1024 | return TRUE; |
1025 | } |
1026 | } |
1027 | if (startPos > testLen) { |
1028 | fMatch = FALSE; |
1029 | fHitEnd = TRUE; |
1030 | return FALSE; |
1031 | } |
1032 | if (findProgressInterrupt(startPos, status)) |
1033 | return FALSE; |
1034 | } |
1035 | } |
1036 | UPRV_UNREACHABLE; |
1037 | |
1038 | case START_STRING: |
1039 | case START_CHAR: |
1040 | { |
1041 | // Match starts on exactly one char. |
1042 | U_ASSERT(fPattern->fMinMatchLen > 0); |
1043 | UChar32 theChar = fPattern->fInitialChar; |
1044 | for (;;) { |
1045 | int32_t pos = startPos; |
1046 | U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; |
1047 | if (c == theChar) { |
1048 | MatchChunkAt(pos, FALSE, status); |
1049 | if (U_FAILURE(status)) { |
1050 | return FALSE; |
1051 | } |
1052 | if (fMatch) { |
1053 | return TRUE; |
1054 | } |
1055 | } |
1056 | if (startPos > testLen) { |
1057 | fMatch = FALSE; |
1058 | fHitEnd = TRUE; |
1059 | return FALSE; |
1060 | } |
1061 | if (findProgressInterrupt(startPos, status)) |
1062 | return FALSE; |
1063 | } |
1064 | } |
1065 | UPRV_UNREACHABLE; |
1066 | |
1067 | case START_LINE: |
1068 | { |
1069 | UChar32 ch; |
1070 | if (startPos == fAnchorStart) { |
1071 | MatchChunkAt(startPos, FALSE, status); |
1072 | if (U_FAILURE(status)) { |
1073 | return FALSE; |
1074 | } |
1075 | if (fMatch) { |
1076 | return TRUE; |
1077 | } |
1078 | U16_FWD_1(inputBuf, startPos, fActiveLimit); |
1079 | } |
1080 | |
1081 | if (fPattern->fFlags & UREGEX_UNIX_LINES) { |
1082 | for (;;) { |
1083 | ch = inputBuf[startPos-1]; |
1084 | if (ch == 0x0a) { |
1085 | MatchChunkAt(startPos, FALSE, status); |
1086 | if (U_FAILURE(status)) { |
1087 | return FALSE; |
1088 | } |
1089 | if (fMatch) { |
1090 | return TRUE; |
1091 | } |
1092 | } |
1093 | if (startPos >= testLen) { |
1094 | fMatch = FALSE; |
1095 | fHitEnd = TRUE; |
1096 | return FALSE; |
1097 | } |
1098 | U16_FWD_1(inputBuf, startPos, fActiveLimit); |
1099 | // Note that it's perfectly OK for a pattern to have a zero-length |
1100 | // match at the end of a string, so we must make sure that the loop |
1101 | // runs with startPos == testLen the last time through. |
1102 | if (findProgressInterrupt(startPos, status)) |
1103 | return FALSE; |
1104 | } |
1105 | } else { |
1106 | for (;;) { |
1107 | ch = inputBuf[startPos-1]; |
1108 | if (isLineTerminator(ch)) { |
1109 | if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) { |
1110 | startPos++; |
1111 | } |
1112 | MatchChunkAt(startPos, FALSE, status); |
1113 | if (U_FAILURE(status)) { |
1114 | return FALSE; |
1115 | } |
1116 | if (fMatch) { |
1117 | return TRUE; |
1118 | } |
1119 | } |
1120 | if (startPos >= testLen) { |
1121 | fMatch = FALSE; |
1122 | fHitEnd = TRUE; |
1123 | return FALSE; |
1124 | } |
1125 | U16_FWD_1(inputBuf, startPos, fActiveLimit); |
1126 | // Note that it's perfectly OK for a pattern to have a zero-length |
1127 | // match at the end of a string, so we must make sure that the loop |
1128 | // runs with startPos == testLen the last time through. |
1129 | if (findProgressInterrupt(startPos, status)) |
1130 | return FALSE; |
1131 | } |
1132 | } |
1133 | } |
1134 | |
1135 | default: |
1136 | UPRV_UNREACHABLE; |
1137 | } |
1138 | |
1139 | UPRV_UNREACHABLE; |
1140 | } |
1141 | |
1142 | |
1143 | |
1144 | //-------------------------------------------------------------------------------- |
1145 | // |
1146 | // group() |
1147 | // |
1148 | //-------------------------------------------------------------------------------- |
1149 | UnicodeString RegexMatcher::group(UErrorCode &status) const { |
1150 | return group(0, status); |
1151 | } |
1152 | |
1153 | // Return immutable shallow clone |
1154 | UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const { |
1155 | return group(0, dest, group_len, status); |
1156 | } |
1157 | |
1158 | // Return immutable shallow clone |
1159 | UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const { |
1160 | group_len = 0; |
1161 | if (U_FAILURE(status)) { |
1162 | return dest; |
1163 | } |
1164 | if (U_FAILURE(fDeferredStatus)) { |
1165 | status = fDeferredStatus; |
1166 | } else if (fMatch == FALSE) { |
1167 | status = U_REGEX_INVALID_STATE; |
1168 | } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
1169 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1170 | } |
1171 | |
1172 | if (U_FAILURE(status)) { |
1173 | return dest; |
1174 | } |
1175 | |
1176 | int64_t s, e; |
1177 | if (groupNum == 0) { |
1178 | s = fMatchStart; |
1179 | e = fMatchEnd; |
1180 | } else { |
1181 | int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
1182 | U_ASSERT(groupOffset < fPattern->fFrameSize); |
1183 | U_ASSERT(groupOffset >= 0); |
1184 | s = fFrame->fExtra[groupOffset]; |
1185 | e = fFrame->fExtra[groupOffset+1]; |
1186 | } |
1187 | |
1188 | if (s < 0) { |
1189 | // A capture group wasn't part of the match |
1190 | return utext_clone(dest, fInputText, FALSE, TRUE, &status); |
1191 | } |
1192 | U_ASSERT(s <= e); |
1193 | group_len = e - s; |
1194 | |
1195 | dest = utext_clone(dest, fInputText, FALSE, TRUE, &status); |
1196 | if (dest) |
1197 | UTEXT_SETNATIVEINDEX(dest, s); |
1198 | return dest; |
1199 | } |
1200 | |
1201 | UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { |
1202 | UnicodeString result; |
1203 | int64_t groupStart = start64(groupNum, status); |
1204 | int64_t groupEnd = end64(groupNum, status); |
1205 | if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) { |
1206 | return result; |
1207 | } |
1208 | |
1209 | // Get the group length using a utext_extract preflight. |
1210 | // UText is actually pretty efficient at this when underlying encoding is UTF-16. |
1211 | int32_t length = utext_extract(fInputText, groupStart, groupEnd, NULL, 0, &status); |
1212 | if (status != U_BUFFER_OVERFLOW_ERROR) { |
1213 | return result; |
1214 | } |
1215 | |
1216 | status = U_ZERO_ERROR; |
1217 | UChar *buf = result.getBuffer(length); |
1218 | if (buf == NULL) { |
1219 | status = U_MEMORY_ALLOCATION_ERROR; |
1220 | } else { |
1221 | int32_t = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status); |
1222 | result.releaseBuffer(extractLength); |
1223 | U_ASSERT(length == extractLength); |
1224 | } |
1225 | return result; |
1226 | } |
1227 | |
1228 | |
1229 | //-------------------------------------------------------------------------------- |
1230 | // |
1231 | // appendGroup() -- currently internal only, appends a group to a UText rather |
1232 | // than replacing its contents |
1233 | // |
1234 | //-------------------------------------------------------------------------------- |
1235 | |
1236 | int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const { |
1237 | if (U_FAILURE(status)) { |
1238 | return 0; |
1239 | } |
1240 | if (U_FAILURE(fDeferredStatus)) { |
1241 | status = fDeferredStatus; |
1242 | return 0; |
1243 | } |
1244 | int64_t destLen = utext_nativeLength(dest); |
1245 | |
1246 | if (fMatch == FALSE) { |
1247 | status = U_REGEX_INVALID_STATE; |
1248 | return utext_replace(dest, destLen, destLen, NULL, 0, &status); |
1249 | } |
1250 | if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { |
1251 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1252 | return utext_replace(dest, destLen, destLen, NULL, 0, &status); |
1253 | } |
1254 | |
1255 | int64_t s, e; |
1256 | if (groupNum == 0) { |
1257 | s = fMatchStart; |
1258 | e = fMatchEnd; |
1259 | } else { |
1260 | int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); |
1261 | U_ASSERT(groupOffset < fPattern->fFrameSize); |
1262 | U_ASSERT(groupOffset >= 0); |
1263 | s = fFrame->fExtra[groupOffset]; |
1264 | e = fFrame->fExtra[groupOffset+1]; |
1265 | } |
1266 | |
1267 | if (s < 0) { |
1268 | // A capture group wasn't part of the match |
1269 | return utext_replace(dest, destLen, destLen, NULL, 0, &status); |
1270 | } |
1271 | U_ASSERT(s <= e); |
1272 | |
1273 | int64_t deltaLen; |
1274 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
1275 | U_ASSERT(e <= fInputLength); |
1276 | deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status); |
1277 | } else { |
1278 | int32_t len16; |
1279 | if (UTEXT_USES_U16(fInputText)) { |
1280 | len16 = (int32_t)(e-s); |
1281 | } else { |
1282 | UErrorCode lengthStatus = U_ZERO_ERROR; |
1283 | len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus); |
1284 | } |
1285 | UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); |
1286 | if (groupChars == NULL) { |
1287 | status = U_MEMORY_ALLOCATION_ERROR; |
1288 | return 0; |
1289 | } |
1290 | utext_extract(fInputText, s, e, groupChars, len16+1, &status); |
1291 | |
1292 | deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status); |
1293 | uprv_free(groupChars); |
1294 | } |
1295 | return deltaLen; |
1296 | } |
1297 | |
1298 | |
1299 | |
1300 | //-------------------------------------------------------------------------------- |
1301 | // |
1302 | // groupCount() |
1303 | // |
1304 | //-------------------------------------------------------------------------------- |
1305 | int32_t RegexMatcher::groupCount() const { |
1306 | return fPattern->fGroupMap->size(); |
1307 | } |
1308 | |
1309 | //-------------------------------------------------------------------------------- |
1310 | // |
1311 | // hasAnchoringBounds() |
1312 | // |
1313 | //-------------------------------------------------------------------------------- |
1314 | UBool RegexMatcher::hasAnchoringBounds() const { |
1315 | return fAnchoringBounds; |
1316 | } |
1317 | |
1318 | |
1319 | //-------------------------------------------------------------------------------- |
1320 | // |
1321 | // hasTransparentBounds() |
1322 | // |
1323 | //-------------------------------------------------------------------------------- |
1324 | UBool RegexMatcher::hasTransparentBounds() const { |
1325 | return fTransparentBounds; |
1326 | } |
1327 | |
1328 | |
1329 | |
1330 | //-------------------------------------------------------------------------------- |
1331 | // |
1332 | // hitEnd() |
1333 | // |
1334 | //-------------------------------------------------------------------------------- |
1335 | UBool RegexMatcher::hitEnd() const { |
1336 | return fHitEnd; |
1337 | } |
1338 | |
1339 | |
1340 | //-------------------------------------------------------------------------------- |
1341 | // |
1342 | // input() |
1343 | // |
1344 | //-------------------------------------------------------------------------------- |
1345 | const UnicodeString &RegexMatcher::input() const { |
1346 | if (!fInput) { |
1347 | UErrorCode status = U_ZERO_ERROR; |
1348 | int32_t len16; |
1349 | if (UTEXT_USES_U16(fInputText)) { |
1350 | len16 = (int32_t)fInputLength; |
1351 | } else { |
1352 | len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status); |
1353 | status = U_ZERO_ERROR; // overflow, length status |
1354 | } |
1355 | UnicodeString *result = new UnicodeString(len16, 0, 0); |
1356 | |
1357 | UChar *inputChars = result->getBuffer(len16); |
1358 | utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning |
1359 | result->releaseBuffer(len16); |
1360 | |
1361 | (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator= |
1362 | } |
1363 | |
1364 | return *fInput; |
1365 | } |
1366 | |
1367 | //-------------------------------------------------------------------------------- |
1368 | // |
1369 | // inputText() |
1370 | // |
1371 | //-------------------------------------------------------------------------------- |
1372 | UText *RegexMatcher::inputText() const { |
1373 | return fInputText; |
1374 | } |
1375 | |
1376 | |
1377 | //-------------------------------------------------------------------------------- |
1378 | // |
1379 | // getInput() -- like inputText(), but makes a clone or copies into another UText |
1380 | // |
1381 | //-------------------------------------------------------------------------------- |
1382 | UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const { |
1383 | if (U_FAILURE(status)) { |
1384 | return dest; |
1385 | } |
1386 | if (U_FAILURE(fDeferredStatus)) { |
1387 | status = fDeferredStatus; |
1388 | return dest; |
1389 | } |
1390 | |
1391 | if (dest) { |
1392 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
1393 | utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status); |
1394 | } else { |
1395 | int32_t input16Len; |
1396 | if (UTEXT_USES_U16(fInputText)) { |
1397 | input16Len = (int32_t)fInputLength; |
1398 | } else { |
1399 | UErrorCode lengthStatus = U_ZERO_ERROR; |
1400 | input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error |
1401 | } |
1402 | UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len)); |
1403 | if (inputChars == NULL) { |
1404 | return dest; |
1405 | } |
1406 | |
1407 | status = U_ZERO_ERROR; |
1408 | utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning |
1409 | status = U_ZERO_ERROR; |
1410 | utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status); |
1411 | |
1412 | uprv_free(inputChars); |
1413 | } |
1414 | return dest; |
1415 | } else { |
1416 | return utext_clone(NULL, fInputText, FALSE, TRUE, &status); |
1417 | } |
1418 | } |
1419 | |
1420 | |
1421 | static UBool compat_SyncMutableUTextContents(UText *ut); |
1422 | static UBool compat_SyncMutableUTextContents(UText *ut) { |
1423 | UBool retVal = FALSE; |
1424 | |
1425 | // In the following test, we're really only interested in whether the UText should switch |
1426 | // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents |
1427 | // will still point to the correct data. |
1428 | if (utext_nativeLength(ut) != ut->nativeIndexingLimit) { |
1429 | UnicodeString *us=(UnicodeString *)ut->context; |
1430 | |
1431 | // Update to the latest length. |
1432 | // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit). |
1433 | int32_t newLength = us->length(); |
1434 | |
1435 | // Update the chunk description. |
1436 | // The buffer may have switched between stack- and heap-based. |
1437 | ut->chunkContents = us->getBuffer(); |
1438 | ut->chunkLength = newLength; |
1439 | ut->chunkNativeLimit = newLength; |
1440 | ut->nativeIndexingLimit = newLength; |
1441 | retVal = TRUE; |
1442 | } |
1443 | |
1444 | return retVal; |
1445 | } |
1446 | |
1447 | //-------------------------------------------------------------------------------- |
1448 | // |
1449 | // lookingAt() |
1450 | // |
1451 | //-------------------------------------------------------------------------------- |
1452 | UBool RegexMatcher::lookingAt(UErrorCode &status) { |
1453 | if (U_FAILURE(status)) { |
1454 | return FALSE; |
1455 | } |
1456 | if (U_FAILURE(fDeferredStatus)) { |
1457 | status = fDeferredStatus; |
1458 | return FALSE; |
1459 | } |
1460 | |
1461 | if (fInputUniStrMaybeMutable) { |
1462 | if (compat_SyncMutableUTextContents(fInputText)) { |
1463 | fInputLength = utext_nativeLength(fInputText); |
1464 | reset(); |
1465 | } |
1466 | } |
1467 | else { |
1468 | resetPreserveRegion(); |
1469 | } |
1470 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
1471 | MatchChunkAt((int32_t)fActiveStart, FALSE, status); |
1472 | } else { |
1473 | MatchAt(fActiveStart, FALSE, status); |
1474 | } |
1475 | return fMatch; |
1476 | } |
1477 | |
1478 | |
1479 | UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) { |
1480 | if (U_FAILURE(status)) { |
1481 | return FALSE; |
1482 | } |
1483 | if (U_FAILURE(fDeferredStatus)) { |
1484 | status = fDeferredStatus; |
1485 | return FALSE; |
1486 | } |
1487 | reset(); |
1488 | |
1489 | if (start < 0) { |
1490 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1491 | return FALSE; |
1492 | } |
1493 | |
1494 | if (fInputUniStrMaybeMutable) { |
1495 | if (compat_SyncMutableUTextContents(fInputText)) { |
1496 | fInputLength = utext_nativeLength(fInputText); |
1497 | reset(); |
1498 | } |
1499 | } |
1500 | |
1501 | int64_t nativeStart; |
1502 | nativeStart = start; |
1503 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
1504 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1505 | return FALSE; |
1506 | } |
1507 | |
1508 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
1509 | MatchChunkAt((int32_t)nativeStart, FALSE, status); |
1510 | } else { |
1511 | MatchAt(nativeStart, FALSE, status); |
1512 | } |
1513 | return fMatch; |
1514 | } |
1515 | |
1516 | |
1517 | |
1518 | //-------------------------------------------------------------------------------- |
1519 | // |
1520 | // matches() |
1521 | // |
1522 | //-------------------------------------------------------------------------------- |
1523 | UBool RegexMatcher::matches(UErrorCode &status) { |
1524 | if (U_FAILURE(status)) { |
1525 | return FALSE; |
1526 | } |
1527 | if (U_FAILURE(fDeferredStatus)) { |
1528 | status = fDeferredStatus; |
1529 | return FALSE; |
1530 | } |
1531 | |
1532 | if (fInputUniStrMaybeMutable) { |
1533 | if (compat_SyncMutableUTextContents(fInputText)) { |
1534 | fInputLength = utext_nativeLength(fInputText); |
1535 | reset(); |
1536 | } |
1537 | } |
1538 | else { |
1539 | resetPreserveRegion(); |
1540 | } |
1541 | |
1542 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
1543 | MatchChunkAt((int32_t)fActiveStart, TRUE, status); |
1544 | } else { |
1545 | MatchAt(fActiveStart, TRUE, status); |
1546 | } |
1547 | return fMatch; |
1548 | } |
1549 | |
1550 | |
1551 | UBool RegexMatcher::matches(int64_t start, UErrorCode &status) { |
1552 | if (U_FAILURE(status)) { |
1553 | return FALSE; |
1554 | } |
1555 | if (U_FAILURE(fDeferredStatus)) { |
1556 | status = fDeferredStatus; |
1557 | return FALSE; |
1558 | } |
1559 | reset(); |
1560 | |
1561 | if (start < 0) { |
1562 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1563 | return FALSE; |
1564 | } |
1565 | |
1566 | if (fInputUniStrMaybeMutable) { |
1567 | if (compat_SyncMutableUTextContents(fInputText)) { |
1568 | fInputLength = utext_nativeLength(fInputText); |
1569 | reset(); |
1570 | } |
1571 | } |
1572 | |
1573 | int64_t nativeStart; |
1574 | nativeStart = start; |
1575 | if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { |
1576 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1577 | return FALSE; |
1578 | } |
1579 | |
1580 | if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { |
1581 | MatchChunkAt((int32_t)nativeStart, TRUE, status); |
1582 | } else { |
1583 | MatchAt(nativeStart, TRUE, status); |
1584 | } |
1585 | return fMatch; |
1586 | } |
1587 | |
1588 | |
1589 | |
1590 | //-------------------------------------------------------------------------------- |
1591 | // |
1592 | // pattern |
1593 | // |
1594 | //-------------------------------------------------------------------------------- |
1595 | const RegexPattern &RegexMatcher::pattern() const { |
1596 | return *fPattern; |
1597 | } |
1598 | |
1599 | |
1600 | |
1601 | //-------------------------------------------------------------------------------- |
1602 | // |
1603 | // region |
1604 | // |
1605 | //-------------------------------------------------------------------------------- |
1606 | RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) { |
1607 | if (U_FAILURE(status)) { |
1608 | return *this; |
1609 | } |
1610 | |
1611 | if (regionStart>regionLimit || regionStart<0 || regionLimit<0) { |
1612 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1613 | } |
1614 | |
1615 | int64_t nativeStart = regionStart; |
1616 | int64_t nativeLimit = regionLimit; |
1617 | if (nativeStart > fInputLength || nativeLimit > fInputLength) { |
1618 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1619 | } |
1620 | |
1621 | if (startIndex == -1) |
1622 | this->reset(); |
1623 | else |
1624 | resetPreserveRegion(); |
1625 | |
1626 | fRegionStart = nativeStart; |
1627 | fRegionLimit = nativeLimit; |
1628 | fActiveStart = nativeStart; |
1629 | fActiveLimit = nativeLimit; |
1630 | |
1631 | if (startIndex != -1) { |
1632 | if (startIndex < fActiveStart || startIndex > fActiveLimit) { |
1633 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1634 | } |
1635 | fMatchEnd = startIndex; |
1636 | } |
1637 | |
1638 | if (!fTransparentBounds) { |
1639 | fLookStart = nativeStart; |
1640 | fLookLimit = nativeLimit; |
1641 | } |
1642 | if (fAnchoringBounds) { |
1643 | fAnchorStart = nativeStart; |
1644 | fAnchorLimit = nativeLimit; |
1645 | } |
1646 | return *this; |
1647 | } |
1648 | |
1649 | RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) { |
1650 | return region(start, limit, -1, status); |
1651 | } |
1652 | |
1653 | //-------------------------------------------------------------------------------- |
1654 | // |
1655 | // regionEnd |
1656 | // |
1657 | //-------------------------------------------------------------------------------- |
1658 | int32_t RegexMatcher::regionEnd() const { |
1659 | return (int32_t)fRegionLimit; |
1660 | } |
1661 | |
1662 | int64_t RegexMatcher::regionEnd64() const { |
1663 | return fRegionLimit; |
1664 | } |
1665 | |
1666 | //-------------------------------------------------------------------------------- |
1667 | // |
1668 | // regionStart |
1669 | // |
1670 | //-------------------------------------------------------------------------------- |
1671 | int32_t RegexMatcher::regionStart() const { |
1672 | return (int32_t)fRegionStart; |
1673 | } |
1674 | |
1675 | int64_t RegexMatcher::regionStart64() const { |
1676 | return fRegionStart; |
1677 | } |
1678 | |
1679 | |
1680 | //-------------------------------------------------------------------------------- |
1681 | // |
1682 | // replaceAll |
1683 | // |
1684 | //-------------------------------------------------------------------------------- |
1685 | UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { |
1686 | UText replacementText = UTEXT_INITIALIZER; |
1687 | UText resultText = UTEXT_INITIALIZER; |
1688 | UnicodeString resultString; |
1689 | if (U_FAILURE(status)) { |
1690 | return resultString; |
1691 | } |
1692 | |
1693 | utext_openConstUnicodeString(&replacementText, &replacement, &status); |
1694 | utext_openUnicodeString(&resultText, &resultString, &status); |
1695 | |
1696 | replaceAll(&replacementText, &resultText, status); |
1697 | |
1698 | utext_close(&resultText); |
1699 | utext_close(&replacementText); |
1700 | |
1701 | return resultString; |
1702 | } |
1703 | |
1704 | |
1705 | // |
1706 | // replaceAll, UText mode |
1707 | // |
1708 | UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) { |
1709 | if (U_FAILURE(status)) { |
1710 | return dest; |
1711 | } |
1712 | if (U_FAILURE(fDeferredStatus)) { |
1713 | status = fDeferredStatus; |
1714 | return dest; |
1715 | } |
1716 | |
1717 | if (dest == NULL) { |
1718 | UnicodeString emptyString; |
1719 | UText empty = UTEXT_INITIALIZER; |
1720 | |
1721 | utext_openUnicodeString(&empty, &emptyString, &status); |
1722 | dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); |
1723 | utext_close(&empty); |
1724 | } |
1725 | |
1726 | if (U_SUCCESS(status)) { |
1727 | reset(); |
1728 | while (find()) { |
1729 | appendReplacement(dest, replacement, status); |
1730 | if (U_FAILURE(status)) { |
1731 | break; |
1732 | } |
1733 | } |
1734 | appendTail(dest, status); |
1735 | } |
1736 | |
1737 | return dest; |
1738 | } |
1739 | |
1740 | |
1741 | //-------------------------------------------------------------------------------- |
1742 | // |
1743 | // replaceFirst |
1744 | // |
1745 | //-------------------------------------------------------------------------------- |
1746 | UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { |
1747 | UText replacementText = UTEXT_INITIALIZER; |
1748 | UText resultText = UTEXT_INITIALIZER; |
1749 | UnicodeString resultString; |
1750 | |
1751 | utext_openConstUnicodeString(&replacementText, &replacement, &status); |
1752 | utext_openUnicodeString(&resultText, &resultString, &status); |
1753 | |
1754 | replaceFirst(&replacementText, &resultText, status); |
1755 | |
1756 | utext_close(&resultText); |
1757 | utext_close(&replacementText); |
1758 | |
1759 | return resultString; |
1760 | } |
1761 | |
1762 | // |
1763 | // replaceFirst, UText mode |
1764 | // |
1765 | UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) { |
1766 | if (U_FAILURE(status)) { |
1767 | return dest; |
1768 | } |
1769 | if (U_FAILURE(fDeferredStatus)) { |
1770 | status = fDeferredStatus; |
1771 | return dest; |
1772 | } |
1773 | |
1774 | reset(); |
1775 | if (!find()) { |
1776 | return getInput(dest, status); |
1777 | } |
1778 | |
1779 | if (dest == NULL) { |
1780 | UnicodeString emptyString; |
1781 | UText empty = UTEXT_INITIALIZER; |
1782 | |
1783 | utext_openUnicodeString(&empty, &emptyString, &status); |
1784 | dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); |
1785 | utext_close(&empty); |
1786 | } |
1787 | |
1788 | appendReplacement(dest, replacement, status); |
1789 | appendTail(dest, status); |
1790 | |
1791 | return dest; |
1792 | } |
1793 | |
1794 | |
1795 | //-------------------------------------------------------------------------------- |
1796 | // |
1797 | // requireEnd |
1798 | // |
1799 | //-------------------------------------------------------------------------------- |
1800 | UBool RegexMatcher::requireEnd() const { |
1801 | return fRequireEnd; |
1802 | } |
1803 | |
1804 | |
1805 | //-------------------------------------------------------------------------------- |
1806 | // |
1807 | // reset |
1808 | // |
1809 | //-------------------------------------------------------------------------------- |
1810 | RegexMatcher &RegexMatcher::reset() { |
1811 | fRegionStart = 0; |
1812 | fRegionLimit = fInputLength; |
1813 | fActiveStart = 0; |
1814 | fActiveLimit = fInputLength; |
1815 | fAnchorStart = 0; |
1816 | fAnchorLimit = fInputLength; |
1817 | fLookStart = 0; |
1818 | fLookLimit = fInputLength; |
1819 | resetPreserveRegion(); |
1820 | return *this; |
1821 | } |
1822 | |
1823 | |
1824 | |
1825 | void RegexMatcher::resetPreserveRegion() { |
1826 | fMatchStart = 0; |
1827 | fMatchEnd = 0; |
1828 | fLastMatchEnd = -1; |
1829 | fAppendPosition = 0; |
1830 | fMatch = FALSE; |
1831 | fHitEnd = FALSE; |
1832 | fRequireEnd = FALSE; |
1833 | fTime = 0; |
1834 | fTickCounter = TIMER_INITIAL_VALUE; |
1835 | //resetStack(); // more expensive than it looks... |
1836 | } |
1837 | |
1838 | |
1839 | RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { |
1840 | fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus); |
1841 | if (fPattern->fNeedsAltInput) { |
1842 | fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); |
1843 | } |
1844 | if (U_FAILURE(fDeferredStatus)) { |
1845 | return *this; |
1846 | } |
1847 | fInputLength = utext_nativeLength(fInputText); |
1848 | |
1849 | reset(); |
1850 | delete fInput; |
1851 | fInput = NULL; |
1852 | |
1853 | // Do the following for any UnicodeString. |
1854 | // This is for compatibility for those clients who modify the input string "live" during regex operations. |
1855 | fInputUniStrMaybeMutable = TRUE; |
1856 | |
1857 | if (fWordBreakItr != NULL) { |
1858 | #if UCONFIG_NO_BREAK_ITERATION==0 |
1859 | UErrorCode status = U_ZERO_ERROR; |
1860 | fWordBreakItr->setText(fInputText, status); |
1861 | #endif |
1862 | } |
1863 | return *this; |
1864 | } |
1865 | |
1866 | |
1867 | RegexMatcher &RegexMatcher::reset(UText *input) { |
1868 | if (fInputText != input) { |
1869 | fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus); |
1870 | if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); |
1871 | if (U_FAILURE(fDeferredStatus)) { |
1872 | return *this; |
1873 | } |
1874 | fInputLength = utext_nativeLength(fInputText); |
1875 | |
1876 | delete fInput; |
1877 | fInput = NULL; |
1878 | |
1879 | if (fWordBreakItr != NULL) { |
1880 | #if UCONFIG_NO_BREAK_ITERATION==0 |
1881 | UErrorCode status = U_ZERO_ERROR; |
1882 | fWordBreakItr->setText(input, status); |
1883 | #endif |
1884 | } |
1885 | } |
1886 | reset(); |
1887 | fInputUniStrMaybeMutable = FALSE; |
1888 | |
1889 | return *this; |
1890 | } |
1891 | |
1892 | /*RegexMatcher &RegexMatcher::reset(const UChar *) { |
1893 | fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; |
1894 | return *this; |
1895 | }*/ |
1896 | |
1897 | RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) { |
1898 | if (U_FAILURE(status)) { |
1899 | return *this; |
1900 | } |
1901 | reset(); // Reset also resets the region to be the entire string. |
1902 | |
1903 | if (position < 0 || position > fActiveLimit) { |
1904 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
1905 | return *this; |
1906 | } |
1907 | fMatchEnd = position; |
1908 | return *this; |
1909 | } |
1910 | |
1911 | |
1912 | //-------------------------------------------------------------------------------- |
1913 | // |
1914 | // refresh |
1915 | // |
1916 | //-------------------------------------------------------------------------------- |
1917 | RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) { |
1918 | if (U_FAILURE(status)) { |
1919 | return *this; |
1920 | } |
1921 | if (input == NULL) { |
1922 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1923 | return *this; |
1924 | } |
1925 | if (utext_nativeLength(fInputText) != utext_nativeLength(input)) { |
1926 | status = U_ILLEGAL_ARGUMENT_ERROR; |
1927 | return *this; |
1928 | } |
1929 | int64_t pos = utext_getNativeIndex(fInputText); |
1930 | // Shallow read-only clone of the new UText into the existing input UText |
1931 | fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status); |
1932 | if (U_FAILURE(status)) { |
1933 | return *this; |
1934 | } |
1935 | utext_setNativeIndex(fInputText, pos); |
1936 | |
1937 | if (fAltInputText != NULL) { |
1938 | pos = utext_getNativeIndex(fAltInputText); |
1939 | fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status); |
1940 | if (U_FAILURE(status)) { |
1941 | return *this; |
1942 | } |
1943 | utext_setNativeIndex(fAltInputText, pos); |
1944 | } |
1945 | return *this; |
1946 | } |
1947 | |
1948 | |
1949 | |
1950 | //-------------------------------------------------------------------------------- |
1951 | // |
1952 | // setTrace |
1953 | // |
1954 | //-------------------------------------------------------------------------------- |
1955 | void RegexMatcher::setTrace(UBool state) { |
1956 | fTraceDebug = state; |
1957 | } |
1958 | |
1959 | |
1960 | |
1961 | /** |
1962 | * UText, replace entire contents of the destination UText with a substring of the source UText. |
1963 | * |
1964 | * @param src The source UText |
1965 | * @param dest The destination UText. Must be writable. |
1966 | * May be NULL, in which case a new UText will be allocated. |
1967 | * @param start Start index of source substring. |
1968 | * @param limit Limit index of source substring. |
1969 | * @param status An error code. |
1970 | */ |
1971 | static UText *(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) { |
1972 | if (U_FAILURE(*status)) { |
1973 | return dest; |
1974 | } |
1975 | if (start == limit) { |
1976 | if (dest) { |
1977 | utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, status); |
1978 | return dest; |
1979 | } else { |
1980 | return utext_openUChars(NULL, NULL, 0, status); |
1981 | } |
1982 | } |
1983 | int32_t length = utext_extract(src, start, limit, NULL, 0, status); |
1984 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { |
1985 | return dest; |
1986 | } |
1987 | *status = U_ZERO_ERROR; |
1988 | MaybeStackArray<UChar, 40> buffer; |
1989 | if (length >= buffer.getCapacity()) { |
1990 | UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul. |
1991 | if (newBuf == NULL) { |
1992 | *status = U_MEMORY_ALLOCATION_ERROR; |
1993 | } |
1994 | } |
1995 | utext_extract(src, start, limit, buffer.getAlias(), length+1, status); |
1996 | if (dest) { |
1997 | utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status); |
1998 | return dest; |
1999 | } |
2000 | |
2001 | // Caller did not provide a prexisting UText. |
2002 | // Open a new one, and have it adopt the text buffer storage. |
2003 | if (U_FAILURE(*status)) { |
2004 | return NULL; |
2005 | } |
2006 | int32_t ownedLength = 0; |
2007 | UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength); |
2008 | if (ownedBuf == NULL) { |
2009 | *status = U_MEMORY_ALLOCATION_ERROR; |
2010 | return NULL; |
2011 | } |
2012 | UText *result = utext_openUChars(NULL, ownedBuf, length, status); |
2013 | if (U_FAILURE(*status)) { |
2014 | uprv_free(ownedBuf); |
2015 | return NULL; |
2016 | } |
2017 | result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT); |
2018 | return result; |
2019 | } |
2020 | |
2021 | |
2022 | //--------------------------------------------------------------------- |
2023 | // |
2024 | // split |
2025 | // |
2026 | //--------------------------------------------------------------------- |
2027 | int32_t RegexMatcher::split(const UnicodeString &input, |
2028 | UnicodeString dest[], |
2029 | int32_t destCapacity, |
2030 | UErrorCode &status) |
2031 | { |
2032 | UText inputText = UTEXT_INITIALIZER; |
2033 | utext_openConstUnicodeString(&inputText, &input, &status); |
2034 | if (U_FAILURE(status)) { |
2035 | return 0; |
2036 | } |
2037 | |
2038 | UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity); |
2039 | if (destText == NULL) { |
2040 | status = U_MEMORY_ALLOCATION_ERROR; |
2041 | return 0; |
2042 | } |
2043 | int32_t i; |
2044 | for (i = 0; i < destCapacity; i++) { |
2045 | destText[i] = utext_openUnicodeString(NULL, &dest[i], &status); |
2046 | } |
2047 | |
2048 | int32_t fieldCount = split(&inputText, destText, destCapacity, status); |
2049 | |
2050 | for (i = 0; i < destCapacity; i++) { |
2051 | utext_close(destText[i]); |
2052 | } |
2053 | |
2054 | uprv_free(destText); |
2055 | utext_close(&inputText); |
2056 | return fieldCount; |
2057 | } |
2058 | |
2059 | // |
2060 | // split, UText mode |
2061 | // |
2062 | int32_t RegexMatcher::split(UText *input, |
2063 | UText *dest[], |
2064 | int32_t destCapacity, |
2065 | UErrorCode &status) |
2066 | { |
2067 | // |
2068 | // Check arguements for validity |
2069 | // |
2070 | if (U_FAILURE(status)) { |
2071 | return 0; |
2072 | } |
2073 | |
2074 | if (destCapacity < 1) { |
2075 | status = U_ILLEGAL_ARGUMENT_ERROR; |
2076 | return 0; |
2077 | } |
2078 | |
2079 | // |
2080 | // Reset for the input text |
2081 | // |
2082 | reset(input); |
2083 | int64_t nextOutputStringStart = 0; |
2084 | if (fActiveLimit == 0) { |
2085 | return 0; |
2086 | } |
2087 | |
2088 | // |
2089 | // Loop through the input text, searching for the delimiter pattern |
2090 | // |
2091 | int32_t i; |
2092 | int32_t numCaptureGroups = fPattern->fGroupMap->size(); |
2093 | for (i=0; ; i++) { |
2094 | if (i>=destCapacity-1) { |
2095 | // There is one or zero output string left. |
2096 | // Fill the last output string with whatever is left from the input, then exit the loop. |
2097 | // ( i will be == destCapacity if we filled the output array while processing |
2098 | // capture groups of the delimiter expression, in which case we will discard the |
2099 | // last capture group saved in favor of the unprocessed remainder of the |
2100 | // input string.) |
2101 | i = destCapacity-1; |
2102 | if (fActiveLimit > nextOutputStringStart) { |
2103 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { |
2104 | if (dest[i]) { |
2105 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), |
2106 | input->chunkContents+nextOutputStringStart, |
2107 | (int32_t)(fActiveLimit-nextOutputStringStart), &status); |
2108 | } else { |
2109 | UText remainingText = UTEXT_INITIALIZER; |
2110 | utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, |
2111 | fActiveLimit-nextOutputStringStart, &status); |
2112 | dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
2113 | utext_close(&remainingText); |
2114 | } |
2115 | } else { |
2116 | UErrorCode lengthStatus = U_ZERO_ERROR; |
2117 | int32_t remaining16Length = |
2118 | utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); |
2119 | UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); |
2120 | if (remainingChars == NULL) { |
2121 | status = U_MEMORY_ALLOCATION_ERROR; |
2122 | break; |
2123 | } |
2124 | |
2125 | utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); |
2126 | if (dest[i]) { |
2127 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); |
2128 | } else { |
2129 | UText remainingText = UTEXT_INITIALIZER; |
2130 | utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); |
2131 | dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
2132 | utext_close(&remainingText); |
2133 | } |
2134 | |
2135 | uprv_free(remainingChars); |
2136 | } |
2137 | } |
2138 | break; |
2139 | } |
2140 | if (find()) { |
2141 | // We found another delimiter. Move everything from where we started looking |
2142 | // up until the start of the delimiter into the next output string. |
2143 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { |
2144 | if (dest[i]) { |
2145 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), |
2146 | input->chunkContents+nextOutputStringStart, |
2147 | (int32_t)(fMatchStart-nextOutputStringStart), &status); |
2148 | } else { |
2149 | UText remainingText = UTEXT_INITIALIZER; |
2150 | utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, |
2151 | fMatchStart-nextOutputStringStart, &status); |
2152 | dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
2153 | utext_close(&remainingText); |
2154 | } |
2155 | } else { |
2156 | UErrorCode lengthStatus = U_ZERO_ERROR; |
2157 | int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus); |
2158 | UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); |
2159 | if (remainingChars == NULL) { |
2160 | status = U_MEMORY_ALLOCATION_ERROR; |
2161 | break; |
2162 | } |
2163 | utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status); |
2164 | if (dest[i]) { |
2165 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); |
2166 | } else { |
2167 | UText remainingText = UTEXT_INITIALIZER; |
2168 | utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); |
2169 | dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
2170 | utext_close(&remainingText); |
2171 | } |
2172 | |
2173 | uprv_free(remainingChars); |
2174 | } |
2175 | nextOutputStringStart = fMatchEnd; |
2176 | |
2177 | // If the delimiter pattern has capturing parentheses, the captured |
2178 | // text goes out into the next n destination strings. |
2179 | int32_t groupNum; |
2180 | for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { |
2181 | if (i >= destCapacity-2) { |
2182 | // Never fill the last available output string with capture group text. |
2183 | // It will filled with the last field, the remainder of the |
2184 | // unsplit input text. |
2185 | break; |
2186 | } |
2187 | i++; |
2188 | dest[i] = utext_extract_replace(fInputText, dest[i], |
2189 | start64(groupNum, status), end64(groupNum, status), &status); |
2190 | } |
2191 | |
2192 | if (nextOutputStringStart == fActiveLimit) { |
2193 | // The delimiter was at the end of the string. We're done, but first |
2194 | // we output one last empty string, for the empty field following |
2195 | // the delimiter at the end of input. |
2196 | if (i+1 < destCapacity) { |
2197 | ++i; |
2198 | if (dest[i] == NULL) { |
2199 | dest[i] = utext_openUChars(NULL, NULL, 0, &status); |
2200 | } else { |
2201 | static const UChar emptyString[] = {(UChar)0}; |
2202 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status); |
2203 | } |
2204 | } |
2205 | break; |
2206 | |
2207 | } |
2208 | } |
2209 | else |
2210 | { |
2211 | // We ran off the end of the input while looking for the next delimiter. |
2212 | // All the remaining text goes into the current output string. |
2213 | if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { |
2214 | if (dest[i]) { |
2215 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), |
2216 | input->chunkContents+nextOutputStringStart, |
2217 | (int32_t)(fActiveLimit-nextOutputStringStart), &status); |
2218 | } else { |
2219 | UText remainingText = UTEXT_INITIALIZER; |
2220 | utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, |
2221 | fActiveLimit-nextOutputStringStart, &status); |
2222 | dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
2223 | utext_close(&remainingText); |
2224 | } |
2225 | } else { |
2226 | UErrorCode lengthStatus = U_ZERO_ERROR; |
2227 | int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); |
2228 | UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); |
2229 | if (remainingChars == NULL) { |
2230 | status = U_MEMORY_ALLOCATION_ERROR; |
2231 | break; |
2232 | } |
2233 | |
2234 | utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); |
2235 | if (dest[i]) { |
2236 | utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); |
2237 | } else { |
2238 | UText remainingText = UTEXT_INITIALIZER; |
2239 | utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); |
2240 | dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); |
2241 | utext_close(&remainingText); |
2242 | } |
2243 | |
2244 | uprv_free(remainingChars); |
2245 | } |
2246 | break; |
2247 | } |
2248 | if (U_FAILURE(status)) { |
2249 | break; |
2250 | } |
2251 | } // end of for loop |
2252 | return i+1; |
2253 | } |
2254 | |
2255 | |
2256 | //-------------------------------------------------------------------------------- |
2257 | // |
2258 | // start |
2259 | // |
2260 | //-------------------------------------------------------------------------------- |
2261 | int32_t RegexMatcher::start(UErrorCode &status) const { |
2262 | return start(0, status); |
2263 | } |
2264 | |
2265 | int64_t RegexMatcher::start64(UErrorCode &status) const { |
2266 | return start64(0, status); |
2267 | } |
2268 | |
2269 | //-------------------------------------------------------------------------------- |
2270 | // |
2271 | // start(int32_t group, UErrorCode &status) |
2272 | // |
2273 | //-------------------------------------------------------------------------------- |
2274 | |
2275 | int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const { |
2276 | if (U_FAILURE(status)) { |
2277 | return -1; |
2278 | } |
2279 | if (U_FAILURE(fDeferredStatus)) { |
2280 | status = fDeferredStatus; |
2281 | return -1; |
2282 | } |
2283 | if (fMatch == FALSE) { |
2284 | status = U_REGEX_INVALID_STATE; |
2285 | return -1; |
2286 | } |
2287 | if (group < 0 || group > fPattern->fGroupMap->size()) { |
2288 | status = U_INDEX_OUTOFBOUNDS_ERROR; |
2289 | return -1; |
2290 | } |
2291 | int64_t s; |
2292 | if (group == 0) { |
2293 | s = fMatchStart; |
2294 | } else { |
2295 | int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); |
2296 | U_ASSERT(groupOffset < fPattern->fFrameSize); |
2297 | U_ASSERT(groupOffset >= 0); |
2298 | s = fFrame->fExtra[groupOffset]; |
2299 | } |
2300 | |
2301 | return s; |
2302 | } |
2303 | |
2304 | |
2305 | int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { |
2306 | return (int32_t)start64(group, status); |
2307 | } |
2308 | |
2309 | //-------------------------------------------------------------------------------- |
2310 | // |
2311 | // useAnchoringBounds |
2312 | // |
2313 | //-------------------------------------------------------------------------------- |
2314 | RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) { |
2315 | fAnchoringBounds = b; |
2316 | fAnchorStart = (fAnchoringBounds ? fRegionStart : 0); |
2317 | fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength); |
2318 | return *this; |
2319 | } |
2320 | |
2321 | |
2322 | //-------------------------------------------------------------------------------- |
2323 | // |
2324 | // useTransparentBounds |
2325 | // |
2326 | //-------------------------------------------------------------------------------- |
2327 | RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) { |
2328 | fTransparentBounds = b; |
2329 | fLookStart = (fTransparentBounds ? 0 : fRegionStart); |
2330 | fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit); |
2331 | return *this; |
2332 | } |
2333 | |
2334 | //-------------------------------------------------------------------------------- |
2335 | // |
2336 | // setTimeLimit |
2337 | // |
2338 | //-------------------------------------------------------------------------------- |
2339 | void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) { |
2340 | if (U_FAILURE(status)) { |
2341 | return; |
2342 | } |
2343 | if (U_FAILURE(fDeferredStatus)) { |
2344 | status = fDeferredStatus; |
2345 | return; |
2346 | } |
2347 | if (limit < 0) { |
2348 | status = U_ILLEGAL_ARGUMENT_ERROR; |
2349 | return; |
2350 | } |
2351 | fTimeLimit = limit; |
2352 | } |
2353 | |
2354 | |
2355 | //-------------------------------------------------------------------------------- |
2356 | // |
2357 | // getTimeLimit |
2358 | // |
2359 | //-------------------------------------------------------------------------------- |
2360 | int32_t RegexMatcher::getTimeLimit() const { |
2361 | return fTimeLimit; |
2362 | } |
2363 | |
2364 | |
2365 | //-------------------------------------------------------------------------------- |
2366 | // |
2367 | // setStackLimit |
2368 | // |
2369 | //-------------------------------------------------------------------------------- |
2370 | void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) { |
2371 | if (U_FAILURE(status)) { |
2372 | return; |
2373 | } |
2374 | if (U_FAILURE(fDeferredStatus)) { |
2375 | status = fDeferredStatus; |
2376 | return; |
2377 | } |
2378 | if (limit < 0) { |
2379 | status = U_ILLEGAL_ARGUMENT_ERROR; |
2380 | return; |
2381 | } |
2382 | |
2383 | // Reset the matcher. This is needed here in case there is a current match |
2384 | // whose final stack frame (containing the match results, pointed to by fFrame) |
2385 | // would be lost by resizing to a smaller stack size. |
2386 | reset(); |
2387 | |
2388 | if (limit == 0) { |
2389 | // Unlimited stack expansion |
2390 | fStack->setMaxCapacity(0); |
2391 | } else { |
2392 | // Change the units of the limit from bytes to ints, and bump the size up |
2393 | // to be big enough to hold at least one stack frame for the pattern, |
2394 | // if it isn't there already. |
2395 | int32_t adjustedLimit = limit / sizeof(int32_t); |
2396 | if (adjustedLimit < fPattern->fFrameSize) { |
2397 | adjustedLimit = fPattern->fFrameSize; |
2398 | } |
2399 | fStack->setMaxCapacity(adjustedLimit); |
2400 | } |
2401 | fStackLimit = limit; |
2402 | } |
2403 | |
2404 | |
2405 | //-------------------------------------------------------------------------------- |
2406 | // |
2407 | // getStackLimit |
2408 | // |
2409 | //-------------------------------------------------------------------------------- |
2410 | int32_t RegexMatcher::getStackLimit() const { |
2411 | return fStackLimit; |
2412 | } |
2413 | |
2414 | |
2415 | //-------------------------------------------------------------------------------- |
2416 | // |
2417 | // setMatchCallback |
2418 | // |
2419 | //-------------------------------------------------------------------------------- |
2420 | void RegexMatcher::setMatchCallback(URegexMatchCallback *callback, |
2421 | const void *context, |
2422 | UErrorCode &status) { |
2423 | if (U_FAILURE(status)) { |
2424 | return; |
2425 | } |
2426 | fCallbackFn = callback; |
2427 | fCallbackContext = context; |
2428 | } |
2429 | |
2430 | |
2431 | //-------------------------------------------------------------------------------- |
2432 | // |
2433 | // getMatchCallback |
2434 | // |
2435 | //-------------------------------------------------------------------------------- |
2436 | void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback, |
2437 | const void *&context, |
2438 | UErrorCode &status) { |
2439 | if (U_FAILURE(status)) { |
2440 | return; |
2441 | } |
2442 | callback = fCallbackFn; |
2443 | context = fCallbackContext; |
2444 | } |
2445 | |
2446 | |
2447 | //-------------------------------------------------------------------------------- |
2448 | // |
2449 | // setMatchCallback |
2450 | // |
2451 | //-------------------------------------------------------------------------------- |
2452 | void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback, |
2453 | const void *context, |
2454 | UErrorCode &status) { |
2455 | if (U_FAILURE(status)) { |
2456 | return; |
2457 | } |
2458 | fFindProgressCallbackFn = callback; |
2459 | fFindProgressCallbackContext = context; |
2460 | } |
2461 | |
2462 | |
2463 | //-------------------------------------------------------------------------------- |
2464 | // |
2465 | // getMatchCallback |
2466 | // |
2467 | //-------------------------------------------------------------------------------- |
2468 | void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback, |
2469 | const void *&context, |
2470 | UErrorCode &status) { |
2471 | if (U_FAILURE(status)) { |
2472 | return; |
2473 | } |
2474 | callback = fFindProgressCallbackFn; |
2475 | context = fFindProgressCallbackContext; |
2476 | } |
2477 | |
2478 | |
2479 | //================================================================================ |
2480 | // |
2481 | // Code following this point in this file is the internal |
2482 | // Match Engine Implementation. |
2483 | // |
2484 | //================================================================================ |
2485 | |
2486 | |
2487 | //-------------------------------------------------------------------------------- |
2488 | // |
2489 | // resetStack |
2490 | // Discard any previous contents of the state save stack, and initialize a |
2491 | // new stack frame to all -1. The -1s are needed for capture group limits, |
2492 | // where they indicate that a group has not yet matched anything. |
2493 | //-------------------------------------------------------------------------------- |
2494 | REStackFrame *RegexMatcher::resetStack() { |
2495 | // Discard any previous contents of the state save stack, and initialize a |
2496 | // new stack frame with all -1 data. The -1s are needed for capture group limits, |
2497 | // where they indicate that a group has not yet matched anything. |
2498 | fStack->removeAllElements(); |
2499 | |
2500 | REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); |
2501 | if(U_FAILURE(fDeferredStatus)) { |
2502 | return NULL; |
2503 | } |
2504 | |
2505 | int32_t i; |
2506 | for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) { |
2507 | iFrame->fExtra[i] = -1; |
2508 | } |
2509 | return iFrame; |
2510 | } |
2511 | |
2512 | |
2513 | |
2514 | //-------------------------------------------------------------------------------- |
2515 | // |
2516 | // isWordBoundary |
2517 | // in perl, "xab..cd..", \b is true at positions 0,3,5,7 |
2518 | // For us, |
2519 | // If the current char is a combining mark, |
2520 | // \b is FALSE. |
2521 | // Else Scan backwards to the first non-combining char. |
2522 | // We are at a boundary if the this char and the original chars are |
2523 | // opposite in membership in \w set |
2524 | // |
2525 | // parameters: pos - the current position in the input buffer |
2526 | // |
2527 | // TODO: double-check edge cases at region boundaries. |
2528 | // |
2529 | //-------------------------------------------------------------------------------- |
2530 | UBool RegexMatcher::isWordBoundary(int64_t pos) { |
2531 | UBool isBoundary = FALSE; |
2532 | UBool cIsWord = FALSE; |
2533 | |
2534 | if (pos >= fLookLimit) { |
2535 | fHitEnd = TRUE; |
2536 | } else { |
2537 | // Determine whether char c at current position is a member of the word set of chars. |
2538 | // If we're off the end of the string, behave as though we're not at a word char. |
2539 | UTEXT_SETNATIVEINDEX(fInputText, pos); |
2540 | UChar32 c = UTEXT_CURRENT32(fInputText); |
2541 | if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { |
2542 | // Current char is a combining one. Not a boundary. |
2543 | return FALSE; |
2544 | } |
2545 | cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); |
2546 | } |
2547 | |
2548 | // Back up until we come to a non-combining char, determine whether |
2549 | // that char is a word char. |
2550 | UBool prevCIsWord = FALSE; |
2551 | for (;;) { |
2552 | if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) { |
2553 | break; |
2554 | } |
2555 | UChar32 prevChar = UTEXT_PREVIOUS32(fInputText); |
2556 | if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) |
2557 | || u_charType(prevChar) == U_FORMAT_CHAR)) { |
2558 | prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); |
2559 | break; |
2560 | } |
2561 | } |
2562 | isBoundary = cIsWord ^ prevCIsWord; |
2563 | return isBoundary; |
2564 | } |
2565 | |
2566 | UBool RegexMatcher::isChunkWordBoundary(int32_t pos) { |
2567 | UBool isBoundary = FALSE; |
2568 | UBool cIsWord = FALSE; |
2569 | |
2570 | const UChar *inputBuf = fInputText->chunkContents; |
2571 | |
2572 | if (pos >= fLookLimit) { |
2573 | fHitEnd = TRUE; |
2574 | } else { |
2575 | // Determine whether char c at current position is a member of the word set of chars. |
2576 | // If we're off the end of the string, behave as though we're not at a word char. |
2577 | UChar32 c; |
2578 | U16_GET(inputBuf, fLookStart, pos, fLookLimit, c); |
2579 | if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { |
2580 | // Current char is a combining one. Not a boundary. |
2581 | return FALSE; |
2582 | } |
2583 | cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); |
2584 | } |
2585 | |
2586 | // Back up until we come to a non-combining char, determine whether |
2587 | // that char is a word char. |
2588 | UBool prevCIsWord = FALSE; |
2589 | for (;;) { |
2590 | if (pos <= fLookStart) { |
2591 | break; |
2592 | } |
2593 | UChar32 prevChar; |
2594 | U16_PREV(inputBuf, fLookStart, pos, prevChar); |
2595 | if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) |
2596 | || u_charType(prevChar) == U_FORMAT_CHAR)) { |
2597 | prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); |
2598 | break; |
2599 | } |
2600 | } |
2601 | isBoundary = cIsWord ^ prevCIsWord; |
2602 | return isBoundary; |
2603 | } |
2604 | |
2605 | //-------------------------------------------------------------------------------- |
2606 | // |
2607 | // isUWordBoundary |
2608 | // |
2609 | // Test for a word boundary using RBBI word break. |
2610 | // |
2611 | // parameters: pos - the current position in the input buffer |
2612 | // |
2613 | //-------------------------------------------------------------------------------- |
2614 | UBool RegexMatcher::isUWordBoundary(int64_t pos) { |
2615 | UBool returnVal = FALSE; |
2616 | #if UCONFIG_NO_BREAK_ITERATION==0 |
2617 | |
2618 | // If we haven't yet created a break iterator for this matcher, do it now. |
2619 | if (fWordBreakItr == NULL) { |
2620 | fWordBreakItr = |
2621 | (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus); |
2622 | if (U_FAILURE(fDeferredStatus)) { |
2623 | return FALSE; |
2624 | } |
2625 | fWordBreakItr->setText(fInputText, fDeferredStatus); |
2626 | } |
2627 | |
2628 | if (pos >= fLookLimit) { |
2629 | fHitEnd = TRUE; |
2630 | returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real" |
2631 | // words are not boundaries. All non-word chars stand by themselves, |
2632 | // with word boundaries on both sides. |
2633 | } else { |
2634 | if (!UTEXT_USES_U16(fInputText)) { |
2635 | // !!!: Would like a better way to do this! |
2636 | UErrorCode status = U_ZERO_ERROR; |
2637 | pos = utext_extract(fInputText, 0, pos, NULL, 0, &status); |
2638 | } |
2639 | returnVal = fWordBreakItr->isBoundary((int32_t)pos); |
2640 | } |
2641 | #endif |
2642 | return returnVal; |
2643 | } |
2644 | |
2645 | //-------------------------------------------------------------------------------- |
2646 | // |
2647 | // IncrementTime This function is called once each TIMER_INITIAL_VALUE state |
2648 | // saves. Increment the "time" counter, and call the |
2649 | // user callback function if there is one installed. |
2650 | // |
2651 | // If the match operation needs to be aborted, either for a time-out |
2652 | // or because the user callback asked for it, just set an error status. |
2653 | // The engine will pick that up and stop in its outer loop. |
2654 | // |
2655 | //-------------------------------------------------------------------------------- |
2656 | void RegexMatcher::IncrementTime(UErrorCode &status) { |
2657 | fTickCounter = TIMER_INITIAL_VALUE; |
2658 | fTime++; |
2659 | if (fCallbackFn != NULL) { |
2660 | if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) { |
2661 | status = U_REGEX_STOPPED_BY_CALLER; |
2662 | return; |
2663 | } |
2664 | } |
2665 | if (fTimeLimit > 0 && fTime >= fTimeLimit) { |
2666 | status = U_REGEX_TIME_OUT; |
2667 | } |
2668 | } |
2669 | |
2670 | //-------------------------------------------------------------------------------- |
2671 | // |
2672 | // StateSave |
2673 | // Make a new stack frame, initialized as a copy of the current stack frame. |
2674 | // Set the pattern index in the original stack frame from the operand value |
2675 | // in the opcode. Execution of the engine continues with the state in |
2676 | // the newly created stack frame |
2677 | // |
2678 | // Note that reserveBlock() may grow the stack, resulting in the |
2679 | // whole thing being relocated in memory. |
2680 | // |
2681 | // Parameters: |
2682 | // fp The top frame pointer when called. At return, a new |
2683 | // fame will be present |
2684 | // savePatIdx An index into the compiled pattern. Goes into the original |
2685 | // (not new) frame. If execution ever back-tracks out of the |
2686 | // new frame, this will be where we continue from in the pattern. |
2687 | // Return |
2688 | // The new frame pointer. |
2689 | // |
2690 | //-------------------------------------------------------------------------------- |
2691 | inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) { |
2692 | if (U_FAILURE(status)) { |
2693 | return fp; |
2694 | } |
2695 | // push storage for a new frame. |
2696 | int64_t *newFP = fStack->reserveBlock(fFrameSize, status); |
2697 | if (U_FAILURE(status)) { |
2698 | // Failure on attempted stack expansion. |
2699 | // Stack function set some other error code, change it to a more |
2700 | // specific one for regular expressions. |
2701 | status = U_REGEX_STACK_OVERFLOW; |
2702 | // We need to return a writable stack frame, so just return the |
2703 | // previous frame. The match operation will stop quickly |
2704 | // because of the error status, after which the frame will never |
2705 | // be looked at again. |
2706 | return fp; |
2707 | } |
2708 | fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack. |
2709 | |
2710 | // New stack frame = copy of old top frame. |
2711 | int64_t *source = (int64_t *)fp; |
2712 | int64_t *dest = newFP; |
2713 | for (;;) { |
2714 | *dest++ = *source++; |
2715 | if (source == newFP) { |
2716 | break; |
2717 | } |
2718 | } |
2719 | |
2720 | fTickCounter--; |
2721 | if (fTickCounter <= 0) { |
2722 | IncrementTime(status); // Re-initializes fTickCounter |
2723 | } |
2724 | fp->fPatIdx = savePatIdx; |
2725 | return (REStackFrame *)newFP; |
2726 | } |
2727 | |
2728 | #if defined(REGEX_DEBUG) |
2729 | namespace { |
2730 | UnicodeString StringFromUText(UText *ut) { |
2731 | UnicodeString result; |
2732 | for (UChar32 c = utext_next32From(ut, 0); c != U_SENTINEL; c = UTEXT_NEXT32(ut)) { |
2733 | result.append(c); |
2734 | } |
2735 | return result; |
2736 | } |
2737 | } |
2738 | #endif // REGEX_DEBUG |
2739 | |
2740 | |
2741 | //-------------------------------------------------------------------------------- |
2742 | // |
2743 | // MatchAt This is the actual matching engine. |
2744 | // |
2745 | // startIdx: begin matching a this index. |
2746 | // toEnd: if true, match must extend to end of the input region |
2747 | // |
2748 | //-------------------------------------------------------------------------------- |
2749 | void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) { |
2750 | UBool isMatch = FALSE; // True if the we have a match. |
2751 | |
2752 | int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards |
2753 | |
2754 | int32_t op; // Operation from the compiled pattern, split into |
2755 | int32_t opType; // the opcode |
2756 | int32_t opValue; // and the operand value. |
2757 | |
2758 | #ifdef REGEX_RUN_DEBUG |
2759 | if (fTraceDebug) { |
2760 | printf("MatchAt(startIdx=%ld)\n" , startIdx); |
2761 | printf("Original Pattern: \"%s\"\n" , CStr(StringFromUText(fPattern->fPattern))()); |
2762 | printf("Input String: \"%s\"\n\n" , CStr(StringFromUText(fInputText))()); |
2763 | } |
2764 | #endif |
2765 | |
2766 | if (U_FAILURE(status)) { |
2767 | return; |
2768 | } |
2769 | |
2770 | // Cache frequently referenced items from the compiled pattern |
2771 | // |
2772 | int64_t *pat = fPattern->fCompiledPat->getBuffer(); |
2773 | |
2774 | const UChar *litText = fPattern->fLiteralText.getBuffer(); |
2775 | UVector *fSets = fPattern->fSets; |
2776 | |
2777 | fFrameSize = fPattern->fFrameSize; |
2778 | REStackFrame *fp = resetStack(); |
2779 | if (U_FAILURE(fDeferredStatus)) { |
2780 | status = fDeferredStatus; |
2781 | return; |
2782 | } |
2783 | |
2784 | fp->fPatIdx = 0; |
2785 | fp->fInputIdx = startIdx; |
2786 | |
2787 | // Zero out the pattern's static data |
2788 | int32_t i; |
2789 | for (i = 0; i<fPattern->fDataSize; i++) { |
2790 | fData[i] = 0; |
2791 | } |
2792 | |
2793 | // |
2794 | // Main loop for interpreting the compiled pattern. |
2795 | // One iteration of the loop per pattern operation performed. |
2796 | // |
2797 | for (;;) { |
2798 | op = (int32_t)pat[fp->fPatIdx]; |
2799 | opType = URX_TYPE(op); |
2800 | opValue = URX_VAL(op); |
2801 | #ifdef REGEX_RUN_DEBUG |
2802 | if (fTraceDebug) { |
2803 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
2804 | printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld " , fp->fInputIdx, |
2805 | UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); |
2806 | fPattern->dumpOp(fp->fPatIdx); |
2807 | } |
2808 | #endif |
2809 | fp->fPatIdx++; |
2810 | |
2811 | switch (opType) { |
2812 | |
2813 | |
2814 | case URX_NOP: |
2815 | break; |
2816 | |
2817 | |
2818 | case URX_BACKTRACK: |
2819 | // Force a backtrack. In some circumstances, the pattern compiler |
2820 | // will notice that the pattern can't possibly match anything, and will |
2821 | // emit one of these at that point. |
2822 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2823 | break; |
2824 | |
2825 | |
2826 | case URX_ONECHAR: |
2827 | if (fp->fInputIdx < fActiveLimit) { |
2828 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
2829 | UChar32 c = UTEXT_NEXT32(fInputText); |
2830 | if (c == opValue) { |
2831 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
2832 | break; |
2833 | } |
2834 | } else { |
2835 | fHitEnd = TRUE; |
2836 | } |
2837 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2838 | break; |
2839 | |
2840 | |
2841 | case URX_STRING: |
2842 | { |
2843 | // Test input against a literal string. |
2844 | // Strings require two slots in the compiled pattern, one for the |
2845 | // offset to the string text, and one for the length. |
2846 | |
2847 | int32_t stringStartIdx = opValue; |
2848 | op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand |
2849 | fp->fPatIdx++; |
2850 | opType = URX_TYPE(op); |
2851 | int32_t stringLen = URX_VAL(op); |
2852 | U_ASSERT(opType == URX_STRING_LEN); |
2853 | U_ASSERT(stringLen >= 2); |
2854 | |
2855 | const UChar *patternString = litText+stringStartIdx; |
2856 | int32_t patternStringIndex = 0; |
2857 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
2858 | UChar32 inputChar; |
2859 | UChar32 patternChar; |
2860 | UBool success = TRUE; |
2861 | while (patternStringIndex < stringLen) { |
2862 | if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { |
2863 | success = FALSE; |
2864 | fHitEnd = TRUE; |
2865 | break; |
2866 | } |
2867 | inputChar = UTEXT_NEXT32(fInputText); |
2868 | U16_NEXT(patternString, patternStringIndex, stringLen, patternChar); |
2869 | if (patternChar != inputChar) { |
2870 | success = FALSE; |
2871 | break; |
2872 | } |
2873 | } |
2874 | |
2875 | if (success) { |
2876 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
2877 | } else { |
2878 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2879 | } |
2880 | } |
2881 | break; |
2882 | |
2883 | |
2884 | case URX_STATE_SAVE: |
2885 | fp = StateSave(fp, opValue, status); |
2886 | break; |
2887 | |
2888 | |
2889 | case URX_END: |
2890 | // The match loop will exit via this path on a successful match, |
2891 | // when we reach the end of the pattern. |
2892 | if (toEnd && fp->fInputIdx != fActiveLimit) { |
2893 | // The pattern matched, but not to the end of input. Try some more. |
2894 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2895 | break; |
2896 | } |
2897 | isMatch = TRUE; |
2898 | goto breakFromLoop; |
2899 | |
2900 | // Start and End Capture stack frame variables are laid out out like this: |
2901 | // fp->fExtra[opValue] - The start of a completed capture group |
2902 | // opValue+1 - The end of a completed capture group |
2903 | // opValue+2 - the start of a capture group whose end |
2904 | // has not yet been reached (and might not ever be). |
2905 | case URX_START_CAPTURE: |
2906 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
2907 | fp->fExtra[opValue+2] = fp->fInputIdx; |
2908 | break; |
2909 | |
2910 | |
2911 | case URX_END_CAPTURE: |
2912 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
2913 | U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. |
2914 | fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. |
2915 | fp->fExtra[opValue+1] = fp->fInputIdx; // End position |
2916 | U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); |
2917 | break; |
2918 | |
2919 | |
2920 | case URX_DOLLAR: // $, test for End of line |
2921 | // or for position before new line at end of input |
2922 | { |
2923 | if (fp->fInputIdx >= fAnchorLimit) { |
2924 | // We really are at the end of input. Success. |
2925 | fHitEnd = TRUE; |
2926 | fRequireEnd = TRUE; |
2927 | break; |
2928 | } |
2929 | |
2930 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
2931 | |
2932 | // If we are positioned just before a new-line that is located at the |
2933 | // end of input, succeed. |
2934 | UChar32 c = UTEXT_NEXT32(fInputText); |
2935 | if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { |
2936 | if (isLineTerminator(c)) { |
2937 | // If not in the middle of a CR/LF sequence |
2938 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) { |
2939 | // At new-line at end of input. Success |
2940 | fHitEnd = TRUE; |
2941 | fRequireEnd = TRUE; |
2942 | |
2943 | break; |
2944 | } |
2945 | } |
2946 | } else { |
2947 | UChar32 nextC = UTEXT_NEXT32(fInputText); |
2948 | if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { |
2949 | fHitEnd = TRUE; |
2950 | fRequireEnd = TRUE; |
2951 | break; // At CR/LF at end of input. Success |
2952 | } |
2953 | } |
2954 | |
2955 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2956 | } |
2957 | break; |
2958 | |
2959 | |
2960 | case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. |
2961 | if (fp->fInputIdx >= fAnchorLimit) { |
2962 | // Off the end of input. Success. |
2963 | fHitEnd = TRUE; |
2964 | fRequireEnd = TRUE; |
2965 | break; |
2966 | } else { |
2967 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
2968 | UChar32 c = UTEXT_NEXT32(fInputText); |
2969 | // Either at the last character of input, or off the end. |
2970 | if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) { |
2971 | fHitEnd = TRUE; |
2972 | fRequireEnd = TRUE; |
2973 | break; |
2974 | } |
2975 | } |
2976 | |
2977 | // Not at end of input. Back-track out. |
2978 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
2979 | break; |
2980 | |
2981 | |
2982 | case URX_DOLLAR_M: // $, test for End of line in multi-line mode |
2983 | { |
2984 | if (fp->fInputIdx >= fAnchorLimit) { |
2985 | // We really are at the end of input. Success. |
2986 | fHitEnd = TRUE; |
2987 | fRequireEnd = TRUE; |
2988 | break; |
2989 | } |
2990 | // If we are positioned just before a new-line, succeed. |
2991 | // It makes no difference where the new-line is within the input. |
2992 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
2993 | UChar32 c = UTEXT_CURRENT32(fInputText); |
2994 | if (isLineTerminator(c)) { |
2995 | // At a line end, except for the odd chance of being in the middle of a CR/LF sequence |
2996 | // In multi-line mode, hitting a new-line just before the end of input does not |
2997 | // set the hitEnd or requireEnd flags |
2998 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) { |
2999 | break; |
3000 | } |
3001 | } |
3002 | // not at a new line. Fail. |
3003 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3004 | } |
3005 | break; |
3006 | |
3007 | |
3008 | case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode |
3009 | { |
3010 | if (fp->fInputIdx >= fAnchorLimit) { |
3011 | // We really are at the end of input. Success. |
3012 | fHitEnd = TRUE; |
3013 | fRequireEnd = TRUE; // Java set requireEnd in this case, even though |
3014 | break; // adding a new-line would not lose the match. |
3015 | } |
3016 | // If we are not positioned just before a new-line, the test fails; backtrack out. |
3017 | // It makes no difference where the new-line is within the input. |
3018 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3019 | if (UTEXT_CURRENT32(fInputText) != 0x0a) { |
3020 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3021 | } |
3022 | } |
3023 | break; |
3024 | |
3025 | |
3026 | case URX_CARET: // ^, test for start of line |
3027 | if (fp->fInputIdx != fAnchorStart) { |
3028 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3029 | } |
3030 | break; |
3031 | |
3032 | |
3033 | case URX_CARET_M: // ^, test for start of line in mulit-line mode |
3034 | { |
3035 | if (fp->fInputIdx == fAnchorStart) { |
3036 | // We are at the start input. Success. |
3037 | break; |
3038 | } |
3039 | // Check whether character just before the current pos is a new-line |
3040 | // unless we are at the end of input |
3041 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3042 | UChar32 c = UTEXT_PREVIOUS32(fInputText); |
3043 | if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) { |
3044 | // It's a new-line. ^ is true. Success. |
3045 | // TODO: what should be done with positions between a CR and LF? |
3046 | break; |
3047 | } |
3048 | // Not at the start of a line. Fail. |
3049 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3050 | } |
3051 | break; |
3052 | |
3053 | |
3054 | case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode |
3055 | { |
3056 | U_ASSERT(fp->fInputIdx >= fAnchorStart); |
3057 | if (fp->fInputIdx <= fAnchorStart) { |
3058 | // We are at the start input. Success. |
3059 | break; |
3060 | } |
3061 | // Check whether character just before the current pos is a new-line |
3062 | U_ASSERT(fp->fInputIdx <= fAnchorLimit); |
3063 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3064 | UChar32 c = UTEXT_PREVIOUS32(fInputText); |
3065 | if (c != 0x0a) { |
3066 | // Not at the start of a line. Back-track out. |
3067 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3068 | } |
3069 | } |
3070 | break; |
3071 | |
3072 | case URX_BACKSLASH_B: // Test for word boundaries |
3073 | { |
3074 | UBool success = isWordBoundary(fp->fInputIdx); |
3075 | success ^= (UBool)(opValue != 0); // flip sense for \B |
3076 | if (!success) { |
3077 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3078 | } |
3079 | } |
3080 | break; |
3081 | |
3082 | |
3083 | case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style |
3084 | { |
3085 | UBool success = isUWordBoundary(fp->fInputIdx); |
3086 | success ^= (UBool)(opValue != 0); // flip sense for \B |
3087 | if (!success) { |
3088 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3089 | } |
3090 | } |
3091 | break; |
3092 | |
3093 | |
3094 | case URX_BACKSLASH_D: // Test for decimal digit |
3095 | { |
3096 | if (fp->fInputIdx >= fActiveLimit) { |
3097 | fHitEnd = TRUE; |
3098 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3099 | break; |
3100 | } |
3101 | |
3102 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3103 | |
3104 | UChar32 c = UTEXT_NEXT32(fInputText); |
3105 | int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. |
3106 | UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); |
3107 | success ^= (UBool)(opValue != 0); // flip sense for \D |
3108 | if (success) { |
3109 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3110 | } else { |
3111 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3112 | } |
3113 | } |
3114 | break; |
3115 | |
3116 | |
3117 | case URX_BACKSLASH_G: // Test for position at end of previous match |
3118 | if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { |
3119 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3120 | } |
3121 | break; |
3122 | |
3123 | |
3124 | case URX_BACKSLASH_H: // Test for \h, horizontal white space. |
3125 | { |
3126 | if (fp->fInputIdx >= fActiveLimit) { |
3127 | fHitEnd = TRUE; |
3128 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3129 | break; |
3130 | } |
3131 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3132 | UChar32 c = UTEXT_NEXT32(fInputText); |
3133 | int8_t ctype = u_charType(c); |
3134 | UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB |
3135 | success ^= (UBool)(opValue != 0); // flip sense for \H |
3136 | if (success) { |
3137 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3138 | } else { |
3139 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3140 | } |
3141 | } |
3142 | break; |
3143 | |
3144 | |
3145 | case URX_BACKSLASH_R: // Test for \R, any line break sequence. |
3146 | { |
3147 | if (fp->fInputIdx >= fActiveLimit) { |
3148 | fHitEnd = TRUE; |
3149 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3150 | break; |
3151 | } |
3152 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3153 | UChar32 c = UTEXT_NEXT32(fInputText); |
3154 | if (isLineTerminator(c)) { |
3155 | if (c == 0x0d && utext_current32(fInputText) == 0x0a) { |
3156 | utext_next32(fInputText); |
3157 | } |
3158 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3159 | } else { |
3160 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3161 | } |
3162 | } |
3163 | break; |
3164 | |
3165 | |
3166 | case URX_BACKSLASH_V: // \v, any single line ending character. |
3167 | { |
3168 | if (fp->fInputIdx >= fActiveLimit) { |
3169 | fHitEnd = TRUE; |
3170 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3171 | break; |
3172 | } |
3173 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3174 | UChar32 c = UTEXT_NEXT32(fInputText); |
3175 | UBool success = isLineTerminator(c); |
3176 | success ^= (UBool)(opValue != 0); // flip sense for \V |
3177 | if (success) { |
3178 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3179 | } else { |
3180 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3181 | } |
3182 | } |
3183 | break; |
3184 | |
3185 | |
3186 | case URX_BACKSLASH_X: |
3187 | // Match a Grapheme, as defined by Unicode TR 29. |
3188 | // Differs slightly from Perl, which consumes combining marks independently |
3189 | // of context. |
3190 | { |
3191 | |
3192 | // Fail if at end of input |
3193 | if (fp->fInputIdx >= fActiveLimit) { |
3194 | fHitEnd = TRUE; |
3195 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3196 | break; |
3197 | } |
3198 | |
3199 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3200 | |
3201 | // Examine (and consume) the current char. |
3202 | // Dispatch into a little state machine, based on the char. |
3203 | UChar32 c; |
3204 | c = UTEXT_NEXT32(fInputText); |
3205 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3206 | UnicodeSet **sets = fPattern->fStaticSets; |
3207 | if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; |
3208 | if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; |
3209 | if (sets[URX_GC_L]->contains(c)) goto GC_L; |
3210 | if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
3211 | if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
3212 | if (sets[URX_GC_V]->contains(c)) goto GC_V; |
3213 | if (sets[URX_GC_T]->contains(c)) goto GC_T; |
3214 | goto GC_Extend; |
3215 | |
3216 | |
3217 | |
3218 | GC_L: |
3219 | if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
3220 | c = UTEXT_NEXT32(fInputText); |
3221 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3222 | if (sets[URX_GC_L]->contains(c)) goto GC_L; |
3223 | if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
3224 | if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
3225 | if (sets[URX_GC_V]->contains(c)) goto GC_V; |
3226 | (void)UTEXT_PREVIOUS32(fInputText); |
3227 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3228 | goto GC_Extend; |
3229 | |
3230 | GC_V: |
3231 | if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
3232 | c = UTEXT_NEXT32(fInputText); |
3233 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3234 | if (sets[URX_GC_V]->contains(c)) goto GC_V; |
3235 | if (sets[URX_GC_T]->contains(c)) goto GC_T; |
3236 | (void)UTEXT_PREVIOUS32(fInputText); |
3237 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3238 | goto GC_Extend; |
3239 | |
3240 | GC_T: |
3241 | if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
3242 | c = UTEXT_NEXT32(fInputText); |
3243 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3244 | if (sets[URX_GC_T]->contains(c)) goto GC_T; |
3245 | (void)UTEXT_PREVIOUS32(fInputText); |
3246 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3247 | goto GC_Extend; |
3248 | |
3249 | GC_Extend: |
3250 | // Combining characters are consumed here |
3251 | for (;;) { |
3252 | if (fp->fInputIdx >= fActiveLimit) { |
3253 | break; |
3254 | } |
3255 | c = UTEXT_CURRENT32(fInputText); |
3256 | if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { |
3257 | break; |
3258 | } |
3259 | (void)UTEXT_NEXT32(fInputText); |
3260 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3261 | } |
3262 | goto GC_Done; |
3263 | |
3264 | GC_Control: |
3265 | // Most control chars stand alone (don't combine with combining chars), |
3266 | // except for that CR/LF sequence is a single grapheme cluster. |
3267 | if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { |
3268 | c = UTEXT_NEXT32(fInputText); |
3269 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3270 | } |
3271 | |
3272 | GC_Done: |
3273 | if (fp->fInputIdx >= fActiveLimit) { |
3274 | fHitEnd = TRUE; |
3275 | } |
3276 | break; |
3277 | } |
3278 | |
3279 | |
3280 | |
3281 | |
3282 | case URX_BACKSLASH_Z: // Test for end of Input |
3283 | if (fp->fInputIdx < fAnchorLimit) { |
3284 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3285 | } else { |
3286 | fHitEnd = TRUE; |
3287 | fRequireEnd = TRUE; |
3288 | } |
3289 | break; |
3290 | |
3291 | |
3292 | |
3293 | case URX_STATIC_SETREF: |
3294 | { |
3295 | // Test input character against one of the predefined sets |
3296 | // (Word Characters, for example) |
3297 | // The high bit of the op value is a flag for the match polarity. |
3298 | // 0: success if input char is in set. |
3299 | // 1: success if input char is not in set. |
3300 | if (fp->fInputIdx >= fActiveLimit) { |
3301 | fHitEnd = TRUE; |
3302 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3303 | break; |
3304 | } |
3305 | |
3306 | UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); |
3307 | opValue &= ~URX_NEG_SET; |
3308 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
3309 | |
3310 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3311 | UChar32 c = UTEXT_NEXT32(fInputText); |
3312 | if (c < 256) { |
3313 | Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
3314 | if (s8->contains(c)) { |
3315 | success = !success; |
3316 | } |
3317 | } else { |
3318 | const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
3319 | if (s->contains(c)) { |
3320 | success = !success; |
3321 | } |
3322 | } |
3323 | if (success) { |
3324 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3325 | } else { |
3326 | // the character wasn't in the set. |
3327 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3328 | } |
3329 | } |
3330 | break; |
3331 | |
3332 | |
3333 | case URX_STAT_SETREF_N: |
3334 | { |
3335 | // Test input character for NOT being a member of one of |
3336 | // the predefined sets (Word Characters, for example) |
3337 | if (fp->fInputIdx >= fActiveLimit) { |
3338 | fHitEnd = TRUE; |
3339 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3340 | break; |
3341 | } |
3342 | |
3343 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
3344 | |
3345 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3346 | |
3347 | UChar32 c = UTEXT_NEXT32(fInputText); |
3348 | if (c < 256) { |
3349 | Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
3350 | if (s8->contains(c) == FALSE) { |
3351 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3352 | break; |
3353 | } |
3354 | } else { |
3355 | const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
3356 | if (s->contains(c) == FALSE) { |
3357 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3358 | break; |
3359 | } |
3360 | } |
3361 | // the character wasn't in the set. |
3362 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3363 | } |
3364 | break; |
3365 | |
3366 | |
3367 | case URX_SETREF: |
3368 | if (fp->fInputIdx >= fActiveLimit) { |
3369 | fHitEnd = TRUE; |
3370 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3371 | break; |
3372 | } else { |
3373 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3374 | |
3375 | // There is input left. Pick up one char and test it for set membership. |
3376 | UChar32 c = UTEXT_NEXT32(fInputText); |
3377 | U_ASSERT(opValue > 0 && opValue < fSets->size()); |
3378 | if (c<256) { |
3379 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
3380 | if (s8->contains(c)) { |
3381 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3382 | break; |
3383 | } |
3384 | } else { |
3385 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
3386 | if (s->contains(c)) { |
3387 | // The character is in the set. A Match. |
3388 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3389 | break; |
3390 | } |
3391 | } |
3392 | |
3393 | // the character wasn't in the set. |
3394 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3395 | } |
3396 | break; |
3397 | |
3398 | |
3399 | case URX_DOTANY: |
3400 | { |
3401 | // . matches anything, but stops at end-of-line. |
3402 | if (fp->fInputIdx >= fActiveLimit) { |
3403 | // At end of input. Match failed. Backtrack out. |
3404 | fHitEnd = TRUE; |
3405 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3406 | break; |
3407 | } |
3408 | |
3409 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3410 | |
3411 | // There is input left. Advance over one char, unless we've hit end-of-line |
3412 | UChar32 c = UTEXT_NEXT32(fInputText); |
3413 | if (isLineTerminator(c)) { |
3414 | // End of line in normal mode. . does not match. |
3415 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3416 | break; |
3417 | } |
3418 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3419 | } |
3420 | break; |
3421 | |
3422 | |
3423 | case URX_DOTANY_ALL: |
3424 | { |
3425 | // ., in dot-matches-all (including new lines) mode |
3426 | if (fp->fInputIdx >= fActiveLimit) { |
3427 | // At end of input. Match failed. Backtrack out. |
3428 | fHitEnd = TRUE; |
3429 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3430 | break; |
3431 | } |
3432 | |
3433 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3434 | |
3435 | // There is input left. Advance over one char, except if we are |
3436 | // at a cr/lf, advance over both of them. |
3437 | UChar32 c; |
3438 | c = UTEXT_NEXT32(fInputText); |
3439 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3440 | if (c==0x0d && fp->fInputIdx < fActiveLimit) { |
3441 | // In the case of a CR/LF, we need to advance over both. |
3442 | UChar32 nextc = UTEXT_CURRENT32(fInputText); |
3443 | if (nextc == 0x0a) { |
3444 | (void)UTEXT_NEXT32(fInputText); |
3445 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3446 | } |
3447 | } |
3448 | } |
3449 | break; |
3450 | |
3451 | |
3452 | case URX_DOTANY_UNIX: |
3453 | { |
3454 | // '.' operator, matches all, but stops at end-of-line. |
3455 | // UNIX_LINES mode, so 0x0a is the only recognized line ending. |
3456 | if (fp->fInputIdx >= fActiveLimit) { |
3457 | // At end of input. Match failed. Backtrack out. |
3458 | fHitEnd = TRUE; |
3459 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3460 | break; |
3461 | } |
3462 | |
3463 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3464 | |
3465 | // There is input left. Advance over one char, unless we've hit end-of-line |
3466 | UChar32 c = UTEXT_NEXT32(fInputText); |
3467 | if (c == 0x0a) { |
3468 | // End of line in normal mode. '.' does not match the \n |
3469 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3470 | } else { |
3471 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3472 | } |
3473 | } |
3474 | break; |
3475 | |
3476 | |
3477 | case URX_JMP: |
3478 | fp->fPatIdx = opValue; |
3479 | break; |
3480 | |
3481 | case URX_FAIL: |
3482 | isMatch = FALSE; |
3483 | goto breakFromLoop; |
3484 | |
3485 | case URX_JMP_SAV: |
3486 | U_ASSERT(opValue < fPattern->fCompiledPat->size()); |
3487 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
3488 | fp->fPatIdx = opValue; // Then JMP. |
3489 | break; |
3490 | |
3491 | case URX_JMP_SAV_X: |
3492 | // This opcode is used with (x)+, when x can match a zero length string. |
3493 | // Same as JMP_SAV, except conditional on the match having made forward progress. |
3494 | // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the |
3495 | // data address of the input position at the start of the loop. |
3496 | { |
3497 | U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); |
3498 | int32_t stoOp = (int32_t)pat[opValue-1]; |
3499 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); |
3500 | int32_t frameLoc = URX_VAL(stoOp); |
3501 | U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); |
3502 | int64_t prevInputIdx = fp->fExtra[frameLoc]; |
3503 | U_ASSERT(prevInputIdx <= fp->fInputIdx); |
3504 | if (prevInputIdx < fp->fInputIdx) { |
3505 | // The match did make progress. Repeat the loop. |
3506 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
3507 | fp->fPatIdx = opValue; |
3508 | fp->fExtra[frameLoc] = fp->fInputIdx; |
3509 | } |
3510 | // If the input position did not advance, we do nothing here, |
3511 | // execution will fall out of the loop. |
3512 | } |
3513 | break; |
3514 | |
3515 | case URX_CTR_INIT: |
3516 | { |
3517 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
3518 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
3519 | |
3520 | // Pick up the three extra operands that CTR_INIT has, and |
3521 | // skip the pattern location counter past |
3522 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
3523 | fp->fPatIdx += 3; |
3524 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
3525 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
3526 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
3527 | U_ASSERT(minCount>=0); |
3528 | U_ASSERT(maxCount>=minCount || maxCount==-1); |
3529 | U_ASSERT(loopLoc>=fp->fPatIdx); |
3530 | |
3531 | if (minCount == 0) { |
3532 | fp = StateSave(fp, loopLoc+1, status); |
3533 | } |
3534 | if (maxCount == -1) { |
3535 | fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. |
3536 | } else if (maxCount == 0) { |
3537 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3538 | } |
3539 | } |
3540 | break; |
3541 | |
3542 | case URX_CTR_LOOP: |
3543 | { |
3544 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
3545 | int32_t initOp = (int32_t)pat[opValue]; |
3546 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); |
3547 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
3548 | int32_t minCount = (int32_t)pat[opValue+2]; |
3549 | int32_t maxCount = (int32_t)pat[opValue+3]; |
3550 | (*pCounter)++; |
3551 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
3552 | U_ASSERT(*pCounter == maxCount); |
3553 | break; |
3554 | } |
3555 | if (*pCounter >= minCount) { |
3556 | if (maxCount == -1) { |
3557 | // Loop has no hard upper bound. |
3558 | // Check that it is progressing through the input, break if it is not. |
3559 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
3560 | if (fp->fInputIdx == *pLastInputIdx) { |
3561 | break; |
3562 | } else { |
3563 | *pLastInputIdx = fp->fInputIdx; |
3564 | } |
3565 | } |
3566 | fp = StateSave(fp, fp->fPatIdx, status); |
3567 | } else { |
3568 | // Increment time-out counter. (StateSave() does it if count >= minCount) |
3569 | fTickCounter--; |
3570 | if (fTickCounter <= 0) { |
3571 | IncrementTime(status); // Re-initializes fTickCounter |
3572 | } |
3573 | } |
3574 | |
3575 | fp->fPatIdx = opValue + 4; // Loop back. |
3576 | } |
3577 | break; |
3578 | |
3579 | case URX_CTR_INIT_NG: |
3580 | { |
3581 | // Initialize a non-greedy loop |
3582 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
3583 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
3584 | |
3585 | // Pick up the three extra operands that CTR_INIT_NG has, and |
3586 | // skip the pattern location counter past |
3587 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
3588 | fp->fPatIdx += 3; |
3589 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
3590 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
3591 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
3592 | U_ASSERT(minCount>=0); |
3593 | U_ASSERT(maxCount>=minCount || maxCount==-1); |
3594 | U_ASSERT(loopLoc>fp->fPatIdx); |
3595 | if (maxCount == -1) { |
3596 | fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. |
3597 | } |
3598 | |
3599 | if (minCount == 0) { |
3600 | if (maxCount != 0) { |
3601 | fp = StateSave(fp, fp->fPatIdx, status); |
3602 | } |
3603 | fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block |
3604 | } |
3605 | } |
3606 | break; |
3607 | |
3608 | case URX_CTR_LOOP_NG: |
3609 | { |
3610 | // Non-greedy {min, max} loops |
3611 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
3612 | int32_t initOp = (int32_t)pat[opValue]; |
3613 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); |
3614 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
3615 | int32_t minCount = (int32_t)pat[opValue+2]; |
3616 | int32_t maxCount = (int32_t)pat[opValue+3]; |
3617 | |
3618 | (*pCounter)++; |
3619 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
3620 | // The loop has matched the maximum permitted number of times. |
3621 | // Break out of here with no action. Matching will |
3622 | // continue with the following pattern. |
3623 | U_ASSERT(*pCounter == maxCount); |
3624 | break; |
3625 | } |
3626 | |
3627 | if (*pCounter < minCount) { |
3628 | // We haven't met the minimum number of matches yet. |
3629 | // Loop back for another one. |
3630 | fp->fPatIdx = opValue + 4; // Loop back. |
3631 | // Increment time-out counter. (StateSave() does it if count >= minCount) |
3632 | fTickCounter--; |
3633 | if (fTickCounter <= 0) { |
3634 | IncrementTime(status); // Re-initializes fTickCounter |
3635 | } |
3636 | } else { |
3637 | // We do have the minimum number of matches. |
3638 | |
3639 | // If there is no upper bound on the loop iterations, check that the input index |
3640 | // is progressing, and stop the loop if it is not. |
3641 | if (maxCount == -1) { |
3642 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
3643 | if (fp->fInputIdx == *pLastInputIdx) { |
3644 | break; |
3645 | } |
3646 | *pLastInputIdx = fp->fInputIdx; |
3647 | } |
3648 | |
3649 | // Loop Continuation: we will fall into the pattern following the loop |
3650 | // (non-greedy, don't execute loop body first), but first do |
3651 | // a state save to the top of the loop, so that a match failure |
3652 | // in the following pattern will try another iteration of the loop. |
3653 | fp = StateSave(fp, opValue + 4, status); |
3654 | } |
3655 | } |
3656 | break; |
3657 | |
3658 | case URX_STO_SP: |
3659 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
3660 | fData[opValue] = fStack->size(); |
3661 | break; |
3662 | |
3663 | case URX_LD_SP: |
3664 | { |
3665 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
3666 | int32_t newStackSize = (int32_t)fData[opValue]; |
3667 | U_ASSERT(newStackSize <= fStack->size()); |
3668 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
3669 | if (newFP == (int64_t *)fp) { |
3670 | break; |
3671 | } |
3672 | int32_t j; |
3673 | for (j=0; j<fFrameSize; j++) { |
3674 | newFP[j] = ((int64_t *)fp)[j]; |
3675 | } |
3676 | fp = (REStackFrame *)newFP; |
3677 | fStack->setSize(newStackSize); |
3678 | } |
3679 | break; |
3680 | |
3681 | case URX_BACKREF: |
3682 | { |
3683 | U_ASSERT(opValue < fFrameSize); |
3684 | int64_t groupStartIdx = fp->fExtra[opValue]; |
3685 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
3686 | U_ASSERT(groupStartIdx <= groupEndIdx); |
3687 | if (groupStartIdx < 0) { |
3688 | // This capture group has not participated in the match thus far, |
3689 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
3690 | break; |
3691 | } |
3692 | UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx); |
3693 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3694 | |
3695 | // Note: if the capture group match was of an empty string the backref |
3696 | // match succeeds. Verified by testing: Perl matches succeed |
3697 | // in this case, so we do too. |
3698 | |
3699 | UBool success = TRUE; |
3700 | for (;;) { |
3701 | if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) { |
3702 | success = TRUE; |
3703 | break; |
3704 | } |
3705 | if (utext_getNativeIndex(fInputText) >= fActiveLimit) { |
3706 | success = FALSE; |
3707 | fHitEnd = TRUE; |
3708 | break; |
3709 | } |
3710 | UChar32 captureGroupChar = utext_next32(fAltInputText); |
3711 | UChar32 inputChar = utext_next32(fInputText); |
3712 | if (inputChar != captureGroupChar) { |
3713 | success = FALSE; |
3714 | break; |
3715 | } |
3716 | } |
3717 | |
3718 | if (success) { |
3719 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3720 | } else { |
3721 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3722 | } |
3723 | } |
3724 | break; |
3725 | |
3726 | |
3727 | |
3728 | case URX_BACKREF_I: |
3729 | { |
3730 | U_ASSERT(opValue < fFrameSize); |
3731 | int64_t groupStartIdx = fp->fExtra[opValue]; |
3732 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
3733 | U_ASSERT(groupStartIdx <= groupEndIdx); |
3734 | if (groupStartIdx < 0) { |
3735 | // This capture group has not participated in the match thus far, |
3736 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
3737 | break; |
3738 | } |
3739 | utext_setNativeIndex(fAltInputText, groupStartIdx); |
3740 | utext_setNativeIndex(fInputText, fp->fInputIdx); |
3741 | CaseFoldingUTextIterator captureGroupItr(*fAltInputText); |
3742 | CaseFoldingUTextIterator inputItr(*fInputText); |
3743 | |
3744 | // Note: if the capture group match was of an empty string the backref |
3745 | // match succeeds. Verified by testing: Perl matches succeed |
3746 | // in this case, so we do too. |
3747 | |
3748 | UBool success = TRUE; |
3749 | for (;;) { |
3750 | if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) { |
3751 | success = TRUE; |
3752 | break; |
3753 | } |
3754 | if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) { |
3755 | success = FALSE; |
3756 | fHitEnd = TRUE; |
3757 | break; |
3758 | } |
3759 | UChar32 captureGroupChar = captureGroupItr.next(); |
3760 | UChar32 inputChar = inputItr.next(); |
3761 | if (inputChar != captureGroupChar) { |
3762 | success = FALSE; |
3763 | break; |
3764 | } |
3765 | } |
3766 | |
3767 | if (success && inputItr.inExpansion()) { |
3768 | // We otained a match by consuming part of a string obtained from |
3769 | // case-folding a single code point of the input text. |
3770 | // This does not count as an overall match. |
3771 | success = FALSE; |
3772 | } |
3773 | |
3774 | if (success) { |
3775 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3776 | } else { |
3777 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3778 | } |
3779 | |
3780 | } |
3781 | break; |
3782 | |
3783 | case URX_STO_INP_LOC: |
3784 | { |
3785 | U_ASSERT(opValue >= 0 && opValue < fFrameSize); |
3786 | fp->fExtra[opValue] = fp->fInputIdx; |
3787 | } |
3788 | break; |
3789 | |
3790 | case URX_JMPX: |
3791 | { |
3792 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
3793 | fp->fPatIdx += 1; |
3794 | int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); |
3795 | U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); |
3796 | int64_t savedInputIdx = fp->fExtra[dataLoc]; |
3797 | U_ASSERT(savedInputIdx <= fp->fInputIdx); |
3798 | if (savedInputIdx < fp->fInputIdx) { |
3799 | fp->fPatIdx = opValue; // JMP |
3800 | } else { |
3801 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. |
3802 | } |
3803 | } |
3804 | break; |
3805 | |
3806 | case URX_LA_START: |
3807 | { |
3808 | // Entering a look around block. |
3809 | // Save Stack Ptr, Input Pos. |
3810 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize); |
3811 | fData[opValue] = fStack->size(); |
3812 | fData[opValue+1] = fp->fInputIdx; |
3813 | fData[opValue+2] = fActiveStart; |
3814 | fData[opValue+3] = fActiveLimit; |
3815 | fActiveStart = fLookStart; // Set the match region change for |
3816 | fActiveLimit = fLookLimit; // transparent bounds. |
3817 | } |
3818 | break; |
3819 | |
3820 | case URX_LA_END: |
3821 | { |
3822 | // Leaving a look-ahead block. |
3823 | // restore Stack Ptr, Input Pos to positions they had on entry to block. |
3824 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize); |
3825 | int32_t stackSize = fStack->size(); |
3826 | int32_t newStackSize =(int32_t)fData[opValue]; |
3827 | U_ASSERT(stackSize >= newStackSize); |
3828 | if (stackSize > newStackSize) { |
3829 | // Copy the current top frame back to the new (cut back) top frame. |
3830 | // This makes the capture groups from within the look-ahead |
3831 | // expression available. |
3832 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
3833 | int32_t j; |
3834 | for (j=0; j<fFrameSize; j++) { |
3835 | newFP[j] = ((int64_t *)fp)[j]; |
3836 | } |
3837 | fp = (REStackFrame *)newFP; |
3838 | fStack->setSize(newStackSize); |
3839 | } |
3840 | fp->fInputIdx = fData[opValue+1]; |
3841 | |
3842 | // Restore the active region bounds in the input string; they may have |
3843 | // been changed because of transparent bounds on a Region. |
3844 | fActiveStart = fData[opValue+2]; |
3845 | fActiveLimit = fData[opValue+3]; |
3846 | U_ASSERT(fActiveStart >= 0); |
3847 | U_ASSERT(fActiveLimit <= fInputLength); |
3848 | } |
3849 | break; |
3850 | |
3851 | case URX_ONECHAR_I: |
3852 | // Case insensitive one char. The char from the pattern is already case folded. |
3853 | // Input text is not, but case folding the input can not reduce two or more code |
3854 | // points to one. |
3855 | if (fp->fInputIdx < fActiveLimit) { |
3856 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3857 | |
3858 | UChar32 c = UTEXT_NEXT32(fInputText); |
3859 | if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { |
3860 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3861 | break; |
3862 | } |
3863 | } else { |
3864 | fHitEnd = TRUE; |
3865 | } |
3866 | |
3867 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3868 | break; |
3869 | |
3870 | case URX_STRING_I: |
3871 | { |
3872 | // Case-insensitive test input against a literal string. |
3873 | // Strings require two slots in the compiled pattern, one for the |
3874 | // offset to the string text, and one for the length. |
3875 | // The compiled string has already been case folded. |
3876 | { |
3877 | const UChar *patternString = litText + opValue; |
3878 | int32_t patternStringIdx = 0; |
3879 | |
3880 | op = (int32_t)pat[fp->fPatIdx]; |
3881 | fp->fPatIdx++; |
3882 | opType = URX_TYPE(op); |
3883 | opValue = URX_VAL(op); |
3884 | U_ASSERT(opType == URX_STRING_LEN); |
3885 | int32_t patternStringLen = opValue; // Length of the string from the pattern. |
3886 | |
3887 | |
3888 | UChar32 cPattern; |
3889 | UChar32 cText; |
3890 | UBool success = TRUE; |
3891 | |
3892 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
3893 | CaseFoldingUTextIterator inputIterator(*fInputText); |
3894 | while (patternStringIdx < patternStringLen) { |
3895 | if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { |
3896 | success = FALSE; |
3897 | fHitEnd = TRUE; |
3898 | break; |
3899 | } |
3900 | U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); |
3901 | cText = inputIterator.next(); |
3902 | if (cText != cPattern) { |
3903 | success = FALSE; |
3904 | break; |
3905 | } |
3906 | } |
3907 | if (inputIterator.inExpansion()) { |
3908 | success = FALSE; |
3909 | } |
3910 | |
3911 | if (success) { |
3912 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3913 | } else { |
3914 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3915 | } |
3916 | } |
3917 | } |
3918 | break; |
3919 | |
3920 | case URX_LB_START: |
3921 | { |
3922 | // Entering a look-behind block. |
3923 | // Save Stack Ptr, Input Pos and active input region. |
3924 | // TODO: implement transparent bounds. Ticket #6067 |
3925 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
3926 | fData[opValue] = fStack->size(); |
3927 | fData[opValue+1] = fp->fInputIdx; |
3928 | // Save input string length, then reset to pin any matches to end at |
3929 | // the current position. |
3930 | fData[opValue+2] = fActiveStart; |
3931 | fData[opValue+3] = fActiveLimit; |
3932 | fActiveStart = fRegionStart; |
3933 | fActiveLimit = fp->fInputIdx; |
3934 | // Init the variable containing the start index for attempted matches. |
3935 | fData[opValue+4] = -1; |
3936 | } |
3937 | break; |
3938 | |
3939 | |
3940 | case URX_LB_CONT: |
3941 | { |
3942 | // Positive Look-Behind, at top of loop checking for matches of LB expression |
3943 | // at all possible input starting positions. |
3944 | |
3945 | // Fetch the min and max possible match lengths. They are the operands |
3946 | // of this op in the pattern. |
3947 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
3948 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
3949 | if (!UTEXT_USES_U16(fInputText)) { |
3950 | // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. |
3951 | // The max length need not be exact; it just needs to be >= actual maximum. |
3952 | maxML *= 3; |
3953 | } |
3954 | U_ASSERT(minML <= maxML); |
3955 | U_ASSERT(minML >= 0); |
3956 | |
3957 | // Fetch (from data) the last input index where a match was attempted. |
3958 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
3959 | int64_t &lbStartIdx = fData[opValue+4]; |
3960 | if (lbStartIdx < 0) { |
3961 | // First time through loop. |
3962 | lbStartIdx = fp->fInputIdx - minML; |
3963 | if (lbStartIdx > 0) { |
3964 | // move index to a code point boudary, if it's not on one already. |
3965 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); |
3966 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3967 | } |
3968 | } else { |
3969 | // 2nd through nth time through the loop. |
3970 | // Back up start position for match by one. |
3971 | if (lbStartIdx == 0) { |
3972 | (lbStartIdx)--; |
3973 | } else { |
3974 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); |
3975 | (void)UTEXT_PREVIOUS32(fInputText); |
3976 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); |
3977 | } |
3978 | } |
3979 | |
3980 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
3981 | // We have tried all potential match starting points without |
3982 | // getting a match. Backtrack out, and out of the |
3983 | // Look Behind altogether. |
3984 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
3985 | fActiveStart = fData[opValue+2]; |
3986 | fActiveLimit = fData[opValue+3]; |
3987 | U_ASSERT(fActiveStart >= 0); |
3988 | U_ASSERT(fActiveLimit <= fInputLength); |
3989 | break; |
3990 | } |
3991 | |
3992 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
3993 | // (successful match will fall off the end of the loop.) |
3994 | fp = StateSave(fp, fp->fPatIdx-3, status); |
3995 | fp->fInputIdx = lbStartIdx; |
3996 | } |
3997 | break; |
3998 | |
3999 | case URX_LB_END: |
4000 | // End of a look-behind block, after a successful match. |
4001 | { |
4002 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
4003 | if (fp->fInputIdx != fActiveLimit) { |
4004 | // The look-behind expression matched, but the match did not |
4005 | // extend all the way to the point that we are looking behind from. |
4006 | // FAIL out of here, which will take us back to the LB_CONT, which |
4007 | // will retry the match starting at another position or fail |
4008 | // the look-behind altogether, whichever is appropriate. |
4009 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4010 | break; |
4011 | } |
4012 | |
4013 | // Look-behind match is good. Restore the orignal input string region, |
4014 | // which had been truncated to pin the end of the lookbehind match to the |
4015 | // position being looked-behind. |
4016 | fActiveStart = fData[opValue+2]; |
4017 | fActiveLimit = fData[opValue+3]; |
4018 | U_ASSERT(fActiveStart >= 0); |
4019 | U_ASSERT(fActiveLimit <= fInputLength); |
4020 | } |
4021 | break; |
4022 | |
4023 | |
4024 | case URX_LBN_CONT: |
4025 | { |
4026 | // Negative Look-Behind, at top of loop checking for matches of LB expression |
4027 | // at all possible input starting positions. |
4028 | |
4029 | // Fetch the extra parameters of this op. |
4030 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
4031 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
4032 | if (!UTEXT_USES_U16(fInputText)) { |
4033 | // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. |
4034 | // The max length need not be exact; it just needs to be >= actual maximum. |
4035 | maxML *= 3; |
4036 | } |
4037 | int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; |
4038 | continueLoc = URX_VAL(continueLoc); |
4039 | U_ASSERT(minML <= maxML); |
4040 | U_ASSERT(minML >= 0); |
4041 | U_ASSERT(continueLoc > fp->fPatIdx); |
4042 | |
4043 | // Fetch (from data) the last input index where a match was attempted. |
4044 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
4045 | int64_t &lbStartIdx = fData[opValue+4]; |
4046 | if (lbStartIdx < 0) { |
4047 | // First time through loop. |
4048 | lbStartIdx = fp->fInputIdx - minML; |
4049 | if (lbStartIdx > 0) { |
4050 | // move index to a code point boudary, if it's not on one already. |
4051 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); |
4052 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); |
4053 | } |
4054 | } else { |
4055 | // 2nd through nth time through the loop. |
4056 | // Back up start position for match by one. |
4057 | if (lbStartIdx == 0) { |
4058 | (lbStartIdx)--; |
4059 | } else { |
4060 | UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); |
4061 | (void)UTEXT_PREVIOUS32(fInputText); |
4062 | lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); |
4063 | } |
4064 | } |
4065 | |
4066 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
4067 | // We have tried all potential match starting points without |
4068 | // getting a match, which means that the negative lookbehind as |
4069 | // a whole has succeeded. Jump forward to the continue location |
4070 | fActiveStart = fData[opValue+2]; |
4071 | fActiveLimit = fData[opValue+3]; |
4072 | U_ASSERT(fActiveStart >= 0); |
4073 | U_ASSERT(fActiveLimit <= fInputLength); |
4074 | fp->fPatIdx = continueLoc; |
4075 | break; |
4076 | } |
4077 | |
4078 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
4079 | // (successful match will cause a FAIL out of the loop altogether.) |
4080 | fp = StateSave(fp, fp->fPatIdx-4, status); |
4081 | fp->fInputIdx = lbStartIdx; |
4082 | } |
4083 | break; |
4084 | |
4085 | case URX_LBN_END: |
4086 | // End of a negative look-behind block, after a successful match. |
4087 | { |
4088 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
4089 | if (fp->fInputIdx != fActiveLimit) { |
4090 | // The look-behind expression matched, but the match did not |
4091 | // extend all the way to the point that we are looking behind from. |
4092 | // FAIL out of here, which will take us back to the LB_CONT, which |
4093 | // will retry the match starting at another position or succeed |
4094 | // the look-behind altogether, whichever is appropriate. |
4095 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4096 | break; |
4097 | } |
4098 | |
4099 | // Look-behind expression matched, which means look-behind test as |
4100 | // a whole Fails |
4101 | |
4102 | // Restore the orignal input string length, which had been truncated |
4103 | // inorder to pin the end of the lookbehind match |
4104 | // to the position being looked-behind. |
4105 | fActiveStart = fData[opValue+2]; |
4106 | fActiveLimit = fData[opValue+3]; |
4107 | U_ASSERT(fActiveStart >= 0); |
4108 | U_ASSERT(fActiveLimit <= fInputLength); |
4109 | |
4110 | // Restore original stack position, discarding any state saved |
4111 | // by the successful pattern match. |
4112 | U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
4113 | int32_t newStackSize = (int32_t)fData[opValue]; |
4114 | U_ASSERT(fStack->size() > newStackSize); |
4115 | fStack->setSize(newStackSize); |
4116 | |
4117 | // FAIL, which will take control back to someplace |
4118 | // prior to entering the look-behind test. |
4119 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4120 | } |
4121 | break; |
4122 | |
4123 | |
4124 | case URX_LOOP_SR_I: |
4125 | // Loop Initialization for the optimized implementation of |
4126 | // [some character set]* |
4127 | // This op scans through all matching input. |
4128 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
4129 | { |
4130 | U_ASSERT(opValue > 0 && opValue < fSets->size()); |
4131 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
4132 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
4133 | |
4134 | // Loop through input, until either the input is exhausted or |
4135 | // we reach a character that is not a member of the set. |
4136 | int64_t ix = fp->fInputIdx; |
4137 | UTEXT_SETNATIVEINDEX(fInputText, ix); |
4138 | for (;;) { |
4139 | if (ix >= fActiveLimit) { |
4140 | fHitEnd = TRUE; |
4141 | break; |
4142 | } |
4143 | UChar32 c = UTEXT_NEXT32(fInputText); |
4144 | if (c<256) { |
4145 | if (s8->contains(c) == FALSE) { |
4146 | break; |
4147 | } |
4148 | } else { |
4149 | if (s->contains(c) == FALSE) { |
4150 | break; |
4151 | } |
4152 | } |
4153 | ix = UTEXT_GETNATIVEINDEX(fInputText); |
4154 | } |
4155 | |
4156 | // If there were no matching characters, skip over the loop altogether. |
4157 | // The loop doesn't run at all, a * op always succeeds. |
4158 | if (ix == fp->fInputIdx) { |
4159 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
4160 | break; |
4161 | } |
4162 | |
4163 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
4164 | // must follow. It's operand is the stack location |
4165 | // that holds the starting input index for the match of this [set]* |
4166 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
4167 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
4168 | int32_t stackLoc = URX_VAL(loopcOp); |
4169 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
4170 | fp->fExtra[stackLoc] = fp->fInputIdx; |
4171 | fp->fInputIdx = ix; |
4172 | |
4173 | // Save State to the URX_LOOP_C op that follows this one, |
4174 | // so that match failures in the following code will return to there. |
4175 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
4176 | fp = StateSave(fp, fp->fPatIdx, status); |
4177 | fp->fPatIdx++; |
4178 | } |
4179 | break; |
4180 | |
4181 | |
4182 | case URX_LOOP_DOT_I: |
4183 | // Loop Initialization for the optimized implementation of .* |
4184 | // This op scans through all remaining input. |
4185 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
4186 | { |
4187 | // Loop through input until the input is exhausted (we reach an end-of-line) |
4188 | // In DOTALL mode, we can just go straight to the end of the input. |
4189 | int64_t ix; |
4190 | if ((opValue & 1) == 1) { |
4191 | // Dot-matches-All mode. Jump straight to the end of the string. |
4192 | ix = fActiveLimit; |
4193 | fHitEnd = TRUE; |
4194 | } else { |
4195 | // NOT DOT ALL mode. Line endings do not match '.' |
4196 | // Scan forward until a line ending or end of input. |
4197 | ix = fp->fInputIdx; |
4198 | UTEXT_SETNATIVEINDEX(fInputText, ix); |
4199 | for (;;) { |
4200 | if (ix >= fActiveLimit) { |
4201 | fHitEnd = TRUE; |
4202 | break; |
4203 | } |
4204 | UChar32 c = UTEXT_NEXT32(fInputText); |
4205 | if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s |
4206 | if ((c == 0x0a) || // 0x0a is newline in both modes. |
4207 | (((opValue & 2) == 0) && // IF not UNIX_LINES mode |
4208 | isLineTerminator(c))) { |
4209 | // char is a line ending. Exit the scanning loop. |
4210 | break; |
4211 | } |
4212 | } |
4213 | ix = UTEXT_GETNATIVEINDEX(fInputText); |
4214 | } |
4215 | } |
4216 | |
4217 | // If there were no matching characters, skip over the loop altogether. |
4218 | // The loop doesn't run at all, a * op always succeeds. |
4219 | if (ix == fp->fInputIdx) { |
4220 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
4221 | break; |
4222 | } |
4223 | |
4224 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
4225 | // must follow. It's operand is the stack location |
4226 | // that holds the starting input index for the match of this .* |
4227 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
4228 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
4229 | int32_t stackLoc = URX_VAL(loopcOp); |
4230 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
4231 | fp->fExtra[stackLoc] = fp->fInputIdx; |
4232 | fp->fInputIdx = ix; |
4233 | |
4234 | // Save State to the URX_LOOP_C op that follows this one, |
4235 | // so that match failures in the following code will return to there. |
4236 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
4237 | fp = StateSave(fp, fp->fPatIdx, status); |
4238 | fp->fPatIdx++; |
4239 | } |
4240 | break; |
4241 | |
4242 | |
4243 | case URX_LOOP_C: |
4244 | { |
4245 | U_ASSERT(opValue>=0 && opValue<fFrameSize); |
4246 | backSearchIndex = fp->fExtra[opValue]; |
4247 | U_ASSERT(backSearchIndex <= fp->fInputIdx); |
4248 | if (backSearchIndex == fp->fInputIdx) { |
4249 | // We've backed up the input idx to the point that the loop started. |
4250 | // The loop is done. Leave here without saving state. |
4251 | // Subsequent failures won't come back here. |
4252 | break; |
4253 | } |
4254 | // Set up for the next iteration of the loop, with input index |
4255 | // backed up by one from the last time through, |
4256 | // and a state save to this instruction in case the following code fails again. |
4257 | // (We're going backwards because this loop emulates stack unwinding, not |
4258 | // the initial scan forward.) |
4259 | U_ASSERT(fp->fInputIdx > 0); |
4260 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
4261 | UChar32 prevC = UTEXT_PREVIOUS32(fInputText); |
4262 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
4263 | |
4264 | UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText); |
4265 | if (prevC == 0x0a && |
4266 | fp->fInputIdx > backSearchIndex && |
4267 | twoPrevC == 0x0d) { |
4268 | int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; |
4269 | if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { |
4270 | // .*, stepping back over CRLF pair. |
4271 | fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); |
4272 | } |
4273 | } |
4274 | |
4275 | |
4276 | fp = StateSave(fp, fp->fPatIdx-1, status); |
4277 | } |
4278 | break; |
4279 | |
4280 | |
4281 | |
4282 | default: |
4283 | // Trouble. The compiled pattern contains an entry with an |
4284 | // unrecognized type tag. |
4285 | UPRV_UNREACHABLE; |
4286 | } |
4287 | |
4288 | if (U_FAILURE(status)) { |
4289 | isMatch = FALSE; |
4290 | break; |
4291 | } |
4292 | } |
4293 | |
4294 | breakFromLoop: |
4295 | fMatch = isMatch; |
4296 | if (isMatch) { |
4297 | fLastMatchEnd = fMatchEnd; |
4298 | fMatchStart = startIdx; |
4299 | fMatchEnd = fp->fInputIdx; |
4300 | } |
4301 | |
4302 | #ifdef REGEX_RUN_DEBUG |
4303 | if (fTraceDebug) { |
4304 | if (isMatch) { |
4305 | printf("Match. start=%ld end=%ld\n\n" , fMatchStart, fMatchEnd); |
4306 | } else { |
4307 | printf("No match\n\n" ); |
4308 | } |
4309 | } |
4310 | #endif |
4311 | |
4312 | fFrame = fp; // The active stack frame when the engine stopped. |
4313 | // Contains the capture group results that we need to |
4314 | // access later. |
4315 | return; |
4316 | } |
4317 | |
4318 | |
4319 | //-------------------------------------------------------------------------------- |
4320 | // |
4321 | // MatchChunkAt This is the actual matching engine. Like MatchAt, but with the |
4322 | // assumption that the entire string is available in the UText's |
4323 | // chunk buffer. For now, that means we can use int32_t indexes, |
4324 | // except for anything that needs to be saved (like group starts |
4325 | // and ends). |
4326 | // |
4327 | // startIdx: begin matching a this index. |
4328 | // toEnd: if true, match must extend to end of the input region |
4329 | // |
4330 | //-------------------------------------------------------------------------------- |
4331 | void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) { |
4332 | UBool isMatch = FALSE; // True if the we have a match. |
4333 | |
4334 | int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards |
4335 | |
4336 | int32_t op; // Operation from the compiled pattern, split into |
4337 | int32_t opType; // the opcode |
4338 | int32_t opValue; // and the operand value. |
4339 | |
4340 | #ifdef REGEX_RUN_DEBUG |
4341 | if (fTraceDebug) { |
4342 | printf("MatchAt(startIdx=%d)\n" , startIdx); |
4343 | printf("Original Pattern: \"%s\"\n" , CStr(StringFromUText(fPattern->fPattern))()); |
4344 | printf("Input String: \"%s\"\n\n" , CStr(StringFromUText(fInputText))()); |
4345 | } |
4346 | #endif |
4347 | |
4348 | if (U_FAILURE(status)) { |
4349 | return; |
4350 | } |
4351 | |
4352 | // Cache frequently referenced items from the compiled pattern |
4353 | // |
4354 | int64_t *pat = fPattern->fCompiledPat->getBuffer(); |
4355 | |
4356 | const UChar *litText = fPattern->fLiteralText.getBuffer(); |
4357 | UVector *fSets = fPattern->fSets; |
4358 | |
4359 | const UChar *inputBuf = fInputText->chunkContents; |
4360 | |
4361 | fFrameSize = fPattern->fFrameSize; |
4362 | REStackFrame *fp = resetStack(); |
4363 | if (U_FAILURE(fDeferredStatus)) { |
4364 | status = fDeferredStatus; |
4365 | return; |
4366 | } |
4367 | |
4368 | fp->fPatIdx = 0; |
4369 | fp->fInputIdx = startIdx; |
4370 | |
4371 | // Zero out the pattern's static data |
4372 | int32_t i; |
4373 | for (i = 0; i<fPattern->fDataSize; i++) { |
4374 | fData[i] = 0; |
4375 | } |
4376 | |
4377 | // |
4378 | // Main loop for interpreting the compiled pattern. |
4379 | // One iteration of the loop per pattern operation performed. |
4380 | // |
4381 | for (;;) { |
4382 | op = (int32_t)pat[fp->fPatIdx]; |
4383 | opType = URX_TYPE(op); |
4384 | opValue = URX_VAL(op); |
4385 | #ifdef REGEX_RUN_DEBUG |
4386 | if (fTraceDebug) { |
4387 | UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); |
4388 | printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld " , fp->fInputIdx, |
4389 | UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); |
4390 | fPattern->dumpOp(fp->fPatIdx); |
4391 | } |
4392 | #endif |
4393 | fp->fPatIdx++; |
4394 | |
4395 | switch (opType) { |
4396 | |
4397 | |
4398 | case URX_NOP: |
4399 | break; |
4400 | |
4401 | |
4402 | case URX_BACKTRACK: |
4403 | // Force a backtrack. In some circumstances, the pattern compiler |
4404 | // will notice that the pattern can't possibly match anything, and will |
4405 | // emit one of these at that point. |
4406 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4407 | break; |
4408 | |
4409 | |
4410 | case URX_ONECHAR: |
4411 | if (fp->fInputIdx < fActiveLimit) { |
4412 | UChar32 c; |
4413 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4414 | if (c == opValue) { |
4415 | break; |
4416 | } |
4417 | } else { |
4418 | fHitEnd = TRUE; |
4419 | } |
4420 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4421 | break; |
4422 | |
4423 | |
4424 | case URX_STRING: |
4425 | { |
4426 | // Test input against a literal string. |
4427 | // Strings require two slots in the compiled pattern, one for the |
4428 | // offset to the string text, and one for the length. |
4429 | int32_t stringStartIdx = opValue; |
4430 | int32_t stringLen; |
4431 | |
4432 | op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand |
4433 | fp->fPatIdx++; |
4434 | opType = URX_TYPE(op); |
4435 | stringLen = URX_VAL(op); |
4436 | U_ASSERT(opType == URX_STRING_LEN); |
4437 | U_ASSERT(stringLen >= 2); |
4438 | |
4439 | const UChar * pInp = inputBuf + fp->fInputIdx; |
4440 | const UChar * pInpLimit = inputBuf + fActiveLimit; |
4441 | const UChar * pPat = litText+stringStartIdx; |
4442 | const UChar * pEnd = pInp + stringLen; |
4443 | UBool success = TRUE; |
4444 | while (pInp < pEnd) { |
4445 | if (pInp >= pInpLimit) { |
4446 | fHitEnd = TRUE; |
4447 | success = FALSE; |
4448 | break; |
4449 | } |
4450 | if (*pInp++ != *pPat++) { |
4451 | success = FALSE; |
4452 | break; |
4453 | } |
4454 | } |
4455 | |
4456 | if (success) { |
4457 | fp->fInputIdx += stringLen; |
4458 | } else { |
4459 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4460 | } |
4461 | } |
4462 | break; |
4463 | |
4464 | |
4465 | case URX_STATE_SAVE: |
4466 | fp = StateSave(fp, opValue, status); |
4467 | break; |
4468 | |
4469 | |
4470 | case URX_END: |
4471 | // The match loop will exit via this path on a successful match, |
4472 | // when we reach the end of the pattern. |
4473 | if (toEnd && fp->fInputIdx != fActiveLimit) { |
4474 | // The pattern matched, but not to the end of input. Try some more. |
4475 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4476 | break; |
4477 | } |
4478 | isMatch = TRUE; |
4479 | goto breakFromLoop; |
4480 | |
4481 | // Start and End Capture stack frame variables are laid out out like this: |
4482 | // fp->fExtra[opValue] - The start of a completed capture group |
4483 | // opValue+1 - The end of a completed capture group |
4484 | // opValue+2 - the start of a capture group whose end |
4485 | // has not yet been reached (and might not ever be). |
4486 | case URX_START_CAPTURE: |
4487 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
4488 | fp->fExtra[opValue+2] = fp->fInputIdx; |
4489 | break; |
4490 | |
4491 | |
4492 | case URX_END_CAPTURE: |
4493 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); |
4494 | U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. |
4495 | fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. |
4496 | fp->fExtra[opValue+1] = fp->fInputIdx; // End position |
4497 | U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); |
4498 | break; |
4499 | |
4500 | |
4501 | case URX_DOLLAR: // $, test for End of line |
4502 | // or for position before new line at end of input |
4503 | if (fp->fInputIdx < fAnchorLimit-2) { |
4504 | // We are no where near the end of input. Fail. |
4505 | // This is the common case. Keep it first. |
4506 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4507 | break; |
4508 | } |
4509 | if (fp->fInputIdx >= fAnchorLimit) { |
4510 | // We really are at the end of input. Success. |
4511 | fHitEnd = TRUE; |
4512 | fRequireEnd = TRUE; |
4513 | break; |
4514 | } |
4515 | |
4516 | // If we are positioned just before a new-line that is located at the |
4517 | // end of input, succeed. |
4518 | if (fp->fInputIdx == fAnchorLimit-1) { |
4519 | UChar32 c; |
4520 | U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c); |
4521 | |
4522 | if (isLineTerminator(c)) { |
4523 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { |
4524 | // At new-line at end of input. Success |
4525 | fHitEnd = TRUE; |
4526 | fRequireEnd = TRUE; |
4527 | break; |
4528 | } |
4529 | } |
4530 | } else if (fp->fInputIdx == fAnchorLimit-2 && |
4531 | inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) { |
4532 | fHitEnd = TRUE; |
4533 | fRequireEnd = TRUE; |
4534 | break; // At CR/LF at end of input. Success |
4535 | } |
4536 | |
4537 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4538 | |
4539 | break; |
4540 | |
4541 | |
4542 | case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. |
4543 | if (fp->fInputIdx >= fAnchorLimit-1) { |
4544 | // Either at the last character of input, or off the end. |
4545 | if (fp->fInputIdx == fAnchorLimit-1) { |
4546 | // At last char of input. Success if it's a new line. |
4547 | if (inputBuf[fp->fInputIdx] == 0x0a) { |
4548 | fHitEnd = TRUE; |
4549 | fRequireEnd = TRUE; |
4550 | break; |
4551 | } |
4552 | } else { |
4553 | // Off the end of input. Success. |
4554 | fHitEnd = TRUE; |
4555 | fRequireEnd = TRUE; |
4556 | break; |
4557 | } |
4558 | } |
4559 | |
4560 | // Not at end of input. Back-track out. |
4561 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4562 | break; |
4563 | |
4564 | |
4565 | case URX_DOLLAR_M: // $, test for End of line in multi-line mode |
4566 | { |
4567 | if (fp->fInputIdx >= fAnchorLimit) { |
4568 | // We really are at the end of input. Success. |
4569 | fHitEnd = TRUE; |
4570 | fRequireEnd = TRUE; |
4571 | break; |
4572 | } |
4573 | // If we are positioned just before a new-line, succeed. |
4574 | // It makes no difference where the new-line is within the input. |
4575 | UChar32 c = inputBuf[fp->fInputIdx]; |
4576 | if (isLineTerminator(c)) { |
4577 | // At a line end, except for the odd chance of being in the middle of a CR/LF sequence |
4578 | // In multi-line mode, hitting a new-line just before the end of input does not |
4579 | // set the hitEnd or requireEnd flags |
4580 | if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { |
4581 | break; |
4582 | } |
4583 | } |
4584 | // not at a new line. Fail. |
4585 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4586 | } |
4587 | break; |
4588 | |
4589 | |
4590 | case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode |
4591 | { |
4592 | if (fp->fInputIdx >= fAnchorLimit) { |
4593 | // We really are at the end of input. Success. |
4594 | fHitEnd = TRUE; |
4595 | fRequireEnd = TRUE; // Java set requireEnd in this case, even though |
4596 | break; // adding a new-line would not lose the match. |
4597 | } |
4598 | // If we are not positioned just before a new-line, the test fails; backtrack out. |
4599 | // It makes no difference where the new-line is within the input. |
4600 | if (inputBuf[fp->fInputIdx] != 0x0a) { |
4601 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4602 | } |
4603 | } |
4604 | break; |
4605 | |
4606 | |
4607 | case URX_CARET: // ^, test for start of line |
4608 | if (fp->fInputIdx != fAnchorStart) { |
4609 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4610 | } |
4611 | break; |
4612 | |
4613 | |
4614 | case URX_CARET_M: // ^, test for start of line in mulit-line mode |
4615 | { |
4616 | if (fp->fInputIdx == fAnchorStart) { |
4617 | // We are at the start input. Success. |
4618 | break; |
4619 | } |
4620 | // Check whether character just before the current pos is a new-line |
4621 | // unless we are at the end of input |
4622 | UChar c = inputBuf[fp->fInputIdx - 1]; |
4623 | if ((fp->fInputIdx < fAnchorLimit) && |
4624 | isLineTerminator(c)) { |
4625 | // It's a new-line. ^ is true. Success. |
4626 | // TODO: what should be done with positions between a CR and LF? |
4627 | break; |
4628 | } |
4629 | // Not at the start of a line. Fail. |
4630 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4631 | } |
4632 | break; |
4633 | |
4634 | |
4635 | case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode |
4636 | { |
4637 | U_ASSERT(fp->fInputIdx >= fAnchorStart); |
4638 | if (fp->fInputIdx <= fAnchorStart) { |
4639 | // We are at the start input. Success. |
4640 | break; |
4641 | } |
4642 | // Check whether character just before the current pos is a new-line |
4643 | U_ASSERT(fp->fInputIdx <= fAnchorLimit); |
4644 | UChar c = inputBuf[fp->fInputIdx - 1]; |
4645 | if (c != 0x0a) { |
4646 | // Not at the start of a line. Back-track out. |
4647 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4648 | } |
4649 | } |
4650 | break; |
4651 | |
4652 | case URX_BACKSLASH_B: // Test for word boundaries |
4653 | { |
4654 | UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx); |
4655 | success ^= (UBool)(opValue != 0); // flip sense for \B |
4656 | if (!success) { |
4657 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4658 | } |
4659 | } |
4660 | break; |
4661 | |
4662 | |
4663 | case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style |
4664 | { |
4665 | UBool success = isUWordBoundary(fp->fInputIdx); |
4666 | success ^= (UBool)(opValue != 0); // flip sense for \B |
4667 | if (!success) { |
4668 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4669 | } |
4670 | } |
4671 | break; |
4672 | |
4673 | |
4674 | case URX_BACKSLASH_D: // Test for decimal digit |
4675 | { |
4676 | if (fp->fInputIdx >= fActiveLimit) { |
4677 | fHitEnd = TRUE; |
4678 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4679 | break; |
4680 | } |
4681 | |
4682 | UChar32 c; |
4683 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4684 | int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. |
4685 | UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); |
4686 | success ^= (UBool)(opValue != 0); // flip sense for \D |
4687 | if (!success) { |
4688 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4689 | } |
4690 | } |
4691 | break; |
4692 | |
4693 | |
4694 | case URX_BACKSLASH_G: // Test for position at end of previous match |
4695 | if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { |
4696 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4697 | } |
4698 | break; |
4699 | |
4700 | |
4701 | case URX_BACKSLASH_H: // Test for \h, horizontal white space. |
4702 | { |
4703 | if (fp->fInputIdx >= fActiveLimit) { |
4704 | fHitEnd = TRUE; |
4705 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4706 | break; |
4707 | } |
4708 | UChar32 c; |
4709 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4710 | int8_t ctype = u_charType(c); |
4711 | UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB |
4712 | success ^= (UBool)(opValue != 0); // flip sense for \H |
4713 | if (!success) { |
4714 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4715 | } |
4716 | } |
4717 | break; |
4718 | |
4719 | |
4720 | case URX_BACKSLASH_R: // Test for \R, any line break sequence. |
4721 | { |
4722 | if (fp->fInputIdx >= fActiveLimit) { |
4723 | fHitEnd = TRUE; |
4724 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4725 | break; |
4726 | } |
4727 | UChar32 c; |
4728 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4729 | if (isLineTerminator(c)) { |
4730 | if (c == 0x0d && fp->fInputIdx < fActiveLimit) { |
4731 | // Check for CR/LF sequence. Consume both together when found. |
4732 | UChar c2; |
4733 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2); |
4734 | if (c2 != 0x0a) { |
4735 | U16_PREV(inputBuf, 0, fp->fInputIdx, c2); |
4736 | } |
4737 | } |
4738 | } else { |
4739 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4740 | } |
4741 | } |
4742 | break; |
4743 | |
4744 | |
4745 | case URX_BACKSLASH_V: // Any single code point line ending. |
4746 | { |
4747 | if (fp->fInputIdx >= fActiveLimit) { |
4748 | fHitEnd = TRUE; |
4749 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4750 | break; |
4751 | } |
4752 | UChar32 c; |
4753 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4754 | UBool success = isLineTerminator(c); |
4755 | success ^= (UBool)(opValue != 0); // flip sense for \V |
4756 | if (!success) { |
4757 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4758 | } |
4759 | } |
4760 | break; |
4761 | |
4762 | |
4763 | |
4764 | case URX_BACKSLASH_X: |
4765 | // Match a Grapheme, as defined by Unicode TR 29. |
4766 | // Differs slightly from Perl, which consumes combining marks independently |
4767 | // of context. |
4768 | { |
4769 | |
4770 | // Fail if at end of input |
4771 | if (fp->fInputIdx >= fActiveLimit) { |
4772 | fHitEnd = TRUE; |
4773 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4774 | break; |
4775 | } |
4776 | |
4777 | // Examine (and consume) the current char. |
4778 | // Dispatch into a little state machine, based on the char. |
4779 | UChar32 c; |
4780 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4781 | UnicodeSet **sets = fPattern->fStaticSets; |
4782 | if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; |
4783 | if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; |
4784 | if (sets[URX_GC_L]->contains(c)) goto GC_L; |
4785 | if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
4786 | if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
4787 | if (sets[URX_GC_V]->contains(c)) goto GC_V; |
4788 | if (sets[URX_GC_T]->contains(c)) goto GC_T; |
4789 | goto GC_Extend; |
4790 | |
4791 | |
4792 | |
4793 | GC_L: |
4794 | if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
4795 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4796 | if (sets[URX_GC_L]->contains(c)) goto GC_L; |
4797 | if (sets[URX_GC_LV]->contains(c)) goto GC_V; |
4798 | if (sets[URX_GC_LVT]->contains(c)) goto GC_T; |
4799 | if (sets[URX_GC_V]->contains(c)) goto GC_V; |
4800 | U16_PREV(inputBuf, 0, fp->fInputIdx, c); |
4801 | goto GC_Extend; |
4802 | |
4803 | GC_V: |
4804 | if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
4805 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4806 | if (sets[URX_GC_V]->contains(c)) goto GC_V; |
4807 | if (sets[URX_GC_T]->contains(c)) goto GC_T; |
4808 | U16_PREV(inputBuf, 0, fp->fInputIdx, c); |
4809 | goto GC_Extend; |
4810 | |
4811 | GC_T: |
4812 | if (fp->fInputIdx >= fActiveLimit) goto GC_Done; |
4813 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4814 | if (sets[URX_GC_T]->contains(c)) goto GC_T; |
4815 | U16_PREV(inputBuf, 0, fp->fInputIdx, c); |
4816 | goto GC_Extend; |
4817 | |
4818 | GC_Extend: |
4819 | // Combining characters are consumed here |
4820 | for (;;) { |
4821 | if (fp->fInputIdx >= fActiveLimit) { |
4822 | break; |
4823 | } |
4824 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4825 | if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { |
4826 | U16_BACK_1(inputBuf, 0, fp->fInputIdx); |
4827 | break; |
4828 | } |
4829 | } |
4830 | goto GC_Done; |
4831 | |
4832 | GC_Control: |
4833 | // Most control chars stand alone (don't combine with combining chars), |
4834 | // except for that CR/LF sequence is a single grapheme cluster. |
4835 | if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) { |
4836 | fp->fInputIdx++; |
4837 | } |
4838 | |
4839 | GC_Done: |
4840 | if (fp->fInputIdx >= fActiveLimit) { |
4841 | fHitEnd = TRUE; |
4842 | } |
4843 | break; |
4844 | } |
4845 | |
4846 | |
4847 | |
4848 | |
4849 | case URX_BACKSLASH_Z: // Test for end of Input |
4850 | if (fp->fInputIdx < fAnchorLimit) { |
4851 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4852 | } else { |
4853 | fHitEnd = TRUE; |
4854 | fRequireEnd = TRUE; |
4855 | } |
4856 | break; |
4857 | |
4858 | |
4859 | |
4860 | case URX_STATIC_SETREF: |
4861 | { |
4862 | // Test input character against one of the predefined sets |
4863 | // (Word Characters, for example) |
4864 | // The high bit of the op value is a flag for the match polarity. |
4865 | // 0: success if input char is in set. |
4866 | // 1: success if input char is not in set. |
4867 | if (fp->fInputIdx >= fActiveLimit) { |
4868 | fHitEnd = TRUE; |
4869 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4870 | break; |
4871 | } |
4872 | |
4873 | UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); |
4874 | opValue &= ~URX_NEG_SET; |
4875 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
4876 | |
4877 | UChar32 c; |
4878 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4879 | if (c < 256) { |
4880 | Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
4881 | if (s8->contains(c)) { |
4882 | success = !success; |
4883 | } |
4884 | } else { |
4885 | const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
4886 | if (s->contains(c)) { |
4887 | success = !success; |
4888 | } |
4889 | } |
4890 | if (!success) { |
4891 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4892 | } |
4893 | } |
4894 | break; |
4895 | |
4896 | |
4897 | case URX_STAT_SETREF_N: |
4898 | { |
4899 | // Test input character for NOT being a member of one of |
4900 | // the predefined sets (Word Characters, for example) |
4901 | if (fp->fInputIdx >= fActiveLimit) { |
4902 | fHitEnd = TRUE; |
4903 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4904 | break; |
4905 | } |
4906 | |
4907 | U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); |
4908 | |
4909 | UChar32 c; |
4910 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4911 | if (c < 256) { |
4912 | Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; |
4913 | if (s8->contains(c) == FALSE) { |
4914 | break; |
4915 | } |
4916 | } else { |
4917 | const UnicodeSet *s = fPattern->fStaticSets[opValue]; |
4918 | if (s->contains(c) == FALSE) { |
4919 | break; |
4920 | } |
4921 | } |
4922 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4923 | } |
4924 | break; |
4925 | |
4926 | |
4927 | case URX_SETREF: |
4928 | { |
4929 | if (fp->fInputIdx >= fActiveLimit) { |
4930 | fHitEnd = TRUE; |
4931 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4932 | break; |
4933 | } |
4934 | |
4935 | U_ASSERT(opValue > 0 && opValue < fSets->size()); |
4936 | |
4937 | // There is input left. Pick up one char and test it for set membership. |
4938 | UChar32 c; |
4939 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4940 | if (c<256) { |
4941 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
4942 | if (s8->contains(c)) { |
4943 | // The character is in the set. A Match. |
4944 | break; |
4945 | } |
4946 | } else { |
4947 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
4948 | if (s->contains(c)) { |
4949 | // The character is in the set. A Match. |
4950 | break; |
4951 | } |
4952 | } |
4953 | |
4954 | // the character wasn't in the set. |
4955 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4956 | } |
4957 | break; |
4958 | |
4959 | |
4960 | case URX_DOTANY: |
4961 | { |
4962 | // . matches anything, but stops at end-of-line. |
4963 | if (fp->fInputIdx >= fActiveLimit) { |
4964 | // At end of input. Match failed. Backtrack out. |
4965 | fHitEnd = TRUE; |
4966 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4967 | break; |
4968 | } |
4969 | |
4970 | // There is input left. Advance over one char, unless we've hit end-of-line |
4971 | UChar32 c; |
4972 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4973 | if (isLineTerminator(c)) { |
4974 | // End of line in normal mode. . does not match. |
4975 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4976 | break; |
4977 | } |
4978 | } |
4979 | break; |
4980 | |
4981 | |
4982 | case URX_DOTANY_ALL: |
4983 | { |
4984 | // . in dot-matches-all (including new lines) mode |
4985 | if (fp->fInputIdx >= fActiveLimit) { |
4986 | // At end of input. Match failed. Backtrack out. |
4987 | fHitEnd = TRUE; |
4988 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
4989 | break; |
4990 | } |
4991 | |
4992 | // There is input left. Advance over one char, except if we are |
4993 | // at a cr/lf, advance over both of them. |
4994 | UChar32 c; |
4995 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
4996 | if (c==0x0d && fp->fInputIdx < fActiveLimit) { |
4997 | // In the case of a CR/LF, we need to advance over both. |
4998 | if (inputBuf[fp->fInputIdx] == 0x0a) { |
4999 | U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit); |
5000 | } |
5001 | } |
5002 | } |
5003 | break; |
5004 | |
5005 | |
5006 | case URX_DOTANY_UNIX: |
5007 | { |
5008 | // '.' operator, matches all, but stops at end-of-line. |
5009 | // UNIX_LINES mode, so 0x0a is the only recognized line ending. |
5010 | if (fp->fInputIdx >= fActiveLimit) { |
5011 | // At end of input. Match failed. Backtrack out. |
5012 | fHitEnd = TRUE; |
5013 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5014 | break; |
5015 | } |
5016 | |
5017 | // There is input left. Advance over one char, unless we've hit end-of-line |
5018 | UChar32 c; |
5019 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
5020 | if (c == 0x0a) { |
5021 | // End of line in normal mode. '.' does not match the \n |
5022 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5023 | } |
5024 | } |
5025 | break; |
5026 | |
5027 | |
5028 | case URX_JMP: |
5029 | fp->fPatIdx = opValue; |
5030 | break; |
5031 | |
5032 | case URX_FAIL: |
5033 | isMatch = FALSE; |
5034 | goto breakFromLoop; |
5035 | |
5036 | case URX_JMP_SAV: |
5037 | U_ASSERT(opValue < fPattern->fCompiledPat->size()); |
5038 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
5039 | fp->fPatIdx = opValue; // Then JMP. |
5040 | break; |
5041 | |
5042 | case URX_JMP_SAV_X: |
5043 | // This opcode is used with (x)+, when x can match a zero length string. |
5044 | // Same as JMP_SAV, except conditional on the match having made forward progress. |
5045 | // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the |
5046 | // data address of the input position at the start of the loop. |
5047 | { |
5048 | U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); |
5049 | int32_t stoOp = (int32_t)pat[opValue-1]; |
5050 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); |
5051 | int32_t frameLoc = URX_VAL(stoOp); |
5052 | U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); |
5053 | int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc]; |
5054 | U_ASSERT(prevInputIdx <= fp->fInputIdx); |
5055 | if (prevInputIdx < fp->fInputIdx) { |
5056 | // The match did make progress. Repeat the loop. |
5057 | fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current |
5058 | fp->fPatIdx = opValue; |
5059 | fp->fExtra[frameLoc] = fp->fInputIdx; |
5060 | } |
5061 | // If the input position did not advance, we do nothing here, |
5062 | // execution will fall out of the loop. |
5063 | } |
5064 | break; |
5065 | |
5066 | case URX_CTR_INIT: |
5067 | { |
5068 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
5069 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
5070 | |
5071 | // Pick up the three extra operands that CTR_INIT has, and |
5072 | // skip the pattern location counter past |
5073 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
5074 | fp->fPatIdx += 3; |
5075 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
5076 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
5077 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
5078 | U_ASSERT(minCount>=0); |
5079 | U_ASSERT(maxCount>=minCount || maxCount==-1); |
5080 | U_ASSERT(loopLoc>=fp->fPatIdx); |
5081 | |
5082 | if (minCount == 0) { |
5083 | fp = StateSave(fp, loopLoc+1, status); |
5084 | } |
5085 | if (maxCount == -1) { |
5086 | fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. |
5087 | } else if (maxCount == 0) { |
5088 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5089 | } |
5090 | } |
5091 | break; |
5092 | |
5093 | case URX_CTR_LOOP: |
5094 | { |
5095 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
5096 | int32_t initOp = (int32_t)pat[opValue]; |
5097 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); |
5098 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
5099 | int32_t minCount = (int32_t)pat[opValue+2]; |
5100 | int32_t maxCount = (int32_t)pat[opValue+3]; |
5101 | (*pCounter)++; |
5102 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
5103 | U_ASSERT(*pCounter == maxCount); |
5104 | break; |
5105 | } |
5106 | if (*pCounter >= minCount) { |
5107 | if (maxCount == -1) { |
5108 | // Loop has no hard upper bound. |
5109 | // Check that it is progressing through the input, break if it is not. |
5110 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
5111 | if (fp->fInputIdx == *pLastInputIdx) { |
5112 | break; |
5113 | } else { |
5114 | *pLastInputIdx = fp->fInputIdx; |
5115 | } |
5116 | } |
5117 | fp = StateSave(fp, fp->fPatIdx, status); |
5118 | } else { |
5119 | // Increment time-out counter. (StateSave() does it if count >= minCount) |
5120 | fTickCounter--; |
5121 | if (fTickCounter <= 0) { |
5122 | IncrementTime(status); // Re-initializes fTickCounter |
5123 | } |
5124 | } |
5125 | fp->fPatIdx = opValue + 4; // Loop back. |
5126 | } |
5127 | break; |
5128 | |
5129 | case URX_CTR_INIT_NG: |
5130 | { |
5131 | // Initialize a non-greedy loop |
5132 | U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); |
5133 | fp->fExtra[opValue] = 0; // Set the loop counter variable to zero |
5134 | |
5135 | // Pick up the three extra operands that CTR_INIT_NG has, and |
5136 | // skip the pattern location counter past |
5137 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
5138 | fp->fPatIdx += 3; |
5139 | int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); |
5140 | int32_t minCount = (int32_t)pat[instrOperandLoc+1]; |
5141 | int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; |
5142 | U_ASSERT(minCount>=0); |
5143 | U_ASSERT(maxCount>=minCount || maxCount==-1); |
5144 | U_ASSERT(loopLoc>fp->fPatIdx); |
5145 | if (maxCount == -1) { |
5146 | fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. |
5147 | } |
5148 | |
5149 | if (minCount == 0) { |
5150 | if (maxCount != 0) { |
5151 | fp = StateSave(fp, fp->fPatIdx, status); |
5152 | } |
5153 | fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block |
5154 | } |
5155 | } |
5156 | break; |
5157 | |
5158 | case URX_CTR_LOOP_NG: |
5159 | { |
5160 | // Non-greedy {min, max} loops |
5161 | U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); |
5162 | int32_t initOp = (int32_t)pat[opValue]; |
5163 | U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); |
5164 | int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; |
5165 | int32_t minCount = (int32_t)pat[opValue+2]; |
5166 | int32_t maxCount = (int32_t)pat[opValue+3]; |
5167 | |
5168 | (*pCounter)++; |
5169 | if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { |
5170 | // The loop has matched the maximum permitted number of times. |
5171 | // Break out of here with no action. Matching will |
5172 | // continue with the following pattern. |
5173 | U_ASSERT(*pCounter == maxCount); |
5174 | break; |
5175 | } |
5176 | |
5177 | if (*pCounter < minCount) { |
5178 | // We haven't met the minimum number of matches yet. |
5179 | // Loop back for another one. |
5180 | fp->fPatIdx = opValue + 4; // Loop back. |
5181 | fTickCounter--; |
5182 | if (fTickCounter <= 0) { |
5183 | IncrementTime(status); // Re-initializes fTickCounter |
5184 | } |
5185 | } else { |
5186 | // We do have the minimum number of matches. |
5187 | |
5188 | // If there is no upper bound on the loop iterations, check that the input index |
5189 | // is progressing, and stop the loop if it is not. |
5190 | if (maxCount == -1) { |
5191 | int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; |
5192 | if (fp->fInputIdx == *pLastInputIdx) { |
5193 | break; |
5194 | } |
5195 | *pLastInputIdx = fp->fInputIdx; |
5196 | } |
5197 | |
5198 | // Loop Continuation: we will fall into the pattern following the loop |
5199 | // (non-greedy, don't execute loop body first), but first do |
5200 | // a state save to the top of the loop, so that a match failure |
5201 | // in the following pattern will try another iteration of the loop. |
5202 | fp = StateSave(fp, opValue + 4, status); |
5203 | } |
5204 | } |
5205 | break; |
5206 | |
5207 | case URX_STO_SP: |
5208 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
5209 | fData[opValue] = fStack->size(); |
5210 | break; |
5211 | |
5212 | case URX_LD_SP: |
5213 | { |
5214 | U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); |
5215 | int32_t newStackSize = (int32_t)fData[opValue]; |
5216 | U_ASSERT(newStackSize <= fStack->size()); |
5217 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
5218 | if (newFP == (int64_t *)fp) { |
5219 | break; |
5220 | } |
5221 | int32_t j; |
5222 | for (j=0; j<fFrameSize; j++) { |
5223 | newFP[j] = ((int64_t *)fp)[j]; |
5224 | } |
5225 | fp = (REStackFrame *)newFP; |
5226 | fStack->setSize(newStackSize); |
5227 | } |
5228 | break; |
5229 | |
5230 | case URX_BACKREF: |
5231 | { |
5232 | U_ASSERT(opValue < fFrameSize); |
5233 | int64_t groupStartIdx = fp->fExtra[opValue]; |
5234 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
5235 | U_ASSERT(groupStartIdx <= groupEndIdx); |
5236 | int64_t inputIndex = fp->fInputIdx; |
5237 | if (groupStartIdx < 0) { |
5238 | // This capture group has not participated in the match thus far, |
5239 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
5240 | break; |
5241 | } |
5242 | UBool success = TRUE; |
5243 | for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) { |
5244 | if (inputIndex >= fActiveLimit) { |
5245 | success = FALSE; |
5246 | fHitEnd = TRUE; |
5247 | break; |
5248 | } |
5249 | if (inputBuf[groupIndex] != inputBuf[inputIndex]) { |
5250 | success = FALSE; |
5251 | break; |
5252 | } |
5253 | } |
5254 | if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) && |
5255 | inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) { |
5256 | // Capture group ended with an unpaired lead surrogate. |
5257 | // Back reference is not permitted to match lead only of a surrogatge pair. |
5258 | success = FALSE; |
5259 | } |
5260 | if (success) { |
5261 | fp->fInputIdx = inputIndex; |
5262 | } else { |
5263 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5264 | } |
5265 | } |
5266 | break; |
5267 | |
5268 | case URX_BACKREF_I: |
5269 | { |
5270 | U_ASSERT(opValue < fFrameSize); |
5271 | int64_t groupStartIdx = fp->fExtra[opValue]; |
5272 | int64_t groupEndIdx = fp->fExtra[opValue+1]; |
5273 | U_ASSERT(groupStartIdx <= groupEndIdx); |
5274 | if (groupStartIdx < 0) { |
5275 | // This capture group has not participated in the match thus far, |
5276 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. |
5277 | break; |
5278 | } |
5279 | CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx); |
5280 | CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit); |
5281 | |
5282 | // Note: if the capture group match was of an empty string the backref |
5283 | // match succeeds. Verified by testing: Perl matches succeed |
5284 | // in this case, so we do too. |
5285 | |
5286 | UBool success = TRUE; |
5287 | for (;;) { |
5288 | UChar32 captureGroupChar = captureGroupItr.next(); |
5289 | if (captureGroupChar == U_SENTINEL) { |
5290 | success = TRUE; |
5291 | break; |
5292 | } |
5293 | UChar32 inputChar = inputItr.next(); |
5294 | if (inputChar == U_SENTINEL) { |
5295 | success = FALSE; |
5296 | fHitEnd = TRUE; |
5297 | break; |
5298 | } |
5299 | if (inputChar != captureGroupChar) { |
5300 | success = FALSE; |
5301 | break; |
5302 | } |
5303 | } |
5304 | |
5305 | if (success && inputItr.inExpansion()) { |
5306 | // We otained a match by consuming part of a string obtained from |
5307 | // case-folding a single code point of the input text. |
5308 | // This does not count as an overall match. |
5309 | success = FALSE; |
5310 | } |
5311 | |
5312 | if (success) { |
5313 | fp->fInputIdx = inputItr.getIndex(); |
5314 | } else { |
5315 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5316 | } |
5317 | } |
5318 | break; |
5319 | |
5320 | case URX_STO_INP_LOC: |
5321 | { |
5322 | U_ASSERT(opValue >= 0 && opValue < fFrameSize); |
5323 | fp->fExtra[opValue] = fp->fInputIdx; |
5324 | } |
5325 | break; |
5326 | |
5327 | case URX_JMPX: |
5328 | { |
5329 | int32_t instrOperandLoc = (int32_t)fp->fPatIdx; |
5330 | fp->fPatIdx += 1; |
5331 | int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); |
5332 | U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); |
5333 | int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc]; |
5334 | U_ASSERT(savedInputIdx <= fp->fInputIdx); |
5335 | if (savedInputIdx < fp->fInputIdx) { |
5336 | fp->fPatIdx = opValue; // JMP |
5337 | } else { |
5338 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. |
5339 | } |
5340 | } |
5341 | break; |
5342 | |
5343 | case URX_LA_START: |
5344 | { |
5345 | // Entering a look around block. |
5346 | // Save Stack Ptr, Input Pos. |
5347 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize); |
5348 | fData[opValue] = fStack->size(); |
5349 | fData[opValue+1] = fp->fInputIdx; |
5350 | fData[opValue+2] = fActiveStart; |
5351 | fData[opValue+3] = fActiveLimit; |
5352 | fActiveStart = fLookStart; // Set the match region change for |
5353 | fActiveLimit = fLookLimit; // transparent bounds. |
5354 | } |
5355 | break; |
5356 | |
5357 | case URX_LA_END: |
5358 | { |
5359 | // Leaving a look around block. |
5360 | // restore Stack Ptr, Input Pos to positions they had on entry to block. |
5361 | U_ASSERT(opValue>=0 && opValue+3<fPattern->fDataSize); |
5362 | int32_t stackSize = fStack->size(); |
5363 | int32_t newStackSize = (int32_t)fData[opValue]; |
5364 | U_ASSERT(stackSize >= newStackSize); |
5365 | if (stackSize > newStackSize) { |
5366 | // Copy the current top frame back to the new (cut back) top frame. |
5367 | // This makes the capture groups from within the look-ahead |
5368 | // expression available. |
5369 | int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; |
5370 | int32_t j; |
5371 | for (j=0; j<fFrameSize; j++) { |
5372 | newFP[j] = ((int64_t *)fp)[j]; |
5373 | } |
5374 | fp = (REStackFrame *)newFP; |
5375 | fStack->setSize(newStackSize); |
5376 | } |
5377 | fp->fInputIdx = fData[opValue+1]; |
5378 | |
5379 | // Restore the active region bounds in the input string; they may have |
5380 | // been changed because of transparent bounds on a Region. |
5381 | fActiveStart = fData[opValue+2]; |
5382 | fActiveLimit = fData[opValue+3]; |
5383 | U_ASSERT(fActiveStart >= 0); |
5384 | U_ASSERT(fActiveLimit <= fInputLength); |
5385 | } |
5386 | break; |
5387 | |
5388 | case URX_ONECHAR_I: |
5389 | if (fp->fInputIdx < fActiveLimit) { |
5390 | UChar32 c; |
5391 | U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); |
5392 | if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { |
5393 | break; |
5394 | } |
5395 | } else { |
5396 | fHitEnd = TRUE; |
5397 | } |
5398 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5399 | break; |
5400 | |
5401 | case URX_STRING_I: |
5402 | // Case-insensitive test input against a literal string. |
5403 | // Strings require two slots in the compiled pattern, one for the |
5404 | // offset to the string text, and one for the length. |
5405 | // The compiled string has already been case folded. |
5406 | { |
5407 | const UChar *patternString = litText + opValue; |
5408 | |
5409 | op = (int32_t)pat[fp->fPatIdx]; |
5410 | fp->fPatIdx++; |
5411 | opType = URX_TYPE(op); |
5412 | opValue = URX_VAL(op); |
5413 | U_ASSERT(opType == URX_STRING_LEN); |
5414 | int32_t patternStringLen = opValue; // Length of the string from the pattern. |
5415 | |
5416 | UChar32 cText; |
5417 | UChar32 cPattern; |
5418 | UBool success = TRUE; |
5419 | int32_t patternStringIdx = 0; |
5420 | CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit); |
5421 | while (patternStringIdx < patternStringLen) { |
5422 | U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); |
5423 | cText = inputIterator.next(); |
5424 | if (cText != cPattern) { |
5425 | success = FALSE; |
5426 | if (cText == U_SENTINEL) { |
5427 | fHitEnd = TRUE; |
5428 | } |
5429 | break; |
5430 | } |
5431 | } |
5432 | if (inputIterator.inExpansion()) { |
5433 | success = FALSE; |
5434 | } |
5435 | |
5436 | if (success) { |
5437 | fp->fInputIdx = inputIterator.getIndex(); |
5438 | } else { |
5439 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5440 | } |
5441 | } |
5442 | break; |
5443 | |
5444 | case URX_LB_START: |
5445 | { |
5446 | // Entering a look-behind block. |
5447 | // Save Stack Ptr, Input Pos and active input region. |
5448 | // TODO: implement transparent bounds. Ticket #6067 |
5449 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
5450 | fData[opValue] = fStack->size(); |
5451 | fData[opValue+1] = fp->fInputIdx; |
5452 | // Save input string length, then reset to pin any matches to end at |
5453 | // the current position. |
5454 | fData[opValue+2] = fActiveStart; |
5455 | fData[opValue+3] = fActiveLimit; |
5456 | fActiveStart = fRegionStart; |
5457 | fActiveLimit = fp->fInputIdx; |
5458 | // Init the variable containing the start index for attempted matches. |
5459 | fData[opValue+4] = -1; |
5460 | } |
5461 | break; |
5462 | |
5463 | |
5464 | case URX_LB_CONT: |
5465 | { |
5466 | // Positive Look-Behind, at top of loop checking for matches of LB expression |
5467 | // at all possible input starting positions. |
5468 | |
5469 | // Fetch the min and max possible match lengths. They are the operands |
5470 | // of this op in the pattern. |
5471 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
5472 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
5473 | U_ASSERT(minML <= maxML); |
5474 | U_ASSERT(minML >= 0); |
5475 | |
5476 | // Fetch (from data) the last input index where a match was attempted. |
5477 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
5478 | int64_t &lbStartIdx = fData[opValue+4]; |
5479 | if (lbStartIdx < 0) { |
5480 | // First time through loop. |
5481 | lbStartIdx = fp->fInputIdx - minML; |
5482 | if (lbStartIdx > 0 && lbStartIdx < fInputLength) { |
5483 | U16_SET_CP_START(inputBuf, 0, lbStartIdx); |
5484 | } |
5485 | } else { |
5486 | // 2nd through nth time through the loop. |
5487 | // Back up start position for match by one. |
5488 | if (lbStartIdx == 0) { |
5489 | lbStartIdx--; |
5490 | } else { |
5491 | U16_BACK_1(inputBuf, 0, lbStartIdx); |
5492 | } |
5493 | } |
5494 | |
5495 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
5496 | // We have tried all potential match starting points without |
5497 | // getting a match. Backtrack out, and out of the |
5498 | // Look Behind altogether. |
5499 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5500 | fActiveStart = fData[opValue+2]; |
5501 | fActiveLimit = fData[opValue+3]; |
5502 | U_ASSERT(fActiveStart >= 0); |
5503 | U_ASSERT(fActiveLimit <= fInputLength); |
5504 | break; |
5505 | } |
5506 | |
5507 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
5508 | // (successful match will fall off the end of the loop.) |
5509 | fp = StateSave(fp, fp->fPatIdx-3, status); |
5510 | fp->fInputIdx = lbStartIdx; |
5511 | } |
5512 | break; |
5513 | |
5514 | case URX_LB_END: |
5515 | // End of a look-behind block, after a successful match. |
5516 | { |
5517 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
5518 | if (fp->fInputIdx != fActiveLimit) { |
5519 | // The look-behind expression matched, but the match did not |
5520 | // extend all the way to the point that we are looking behind from. |
5521 | // FAIL out of here, which will take us back to the LB_CONT, which |
5522 | // will retry the match starting at another position or fail |
5523 | // the look-behind altogether, whichever is appropriate. |
5524 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5525 | break; |
5526 | } |
5527 | |
5528 | // Look-behind match is good. Restore the orignal input string region, |
5529 | // which had been truncated to pin the end of the lookbehind match to the |
5530 | // position being looked-behind. |
5531 | fActiveStart = fData[opValue+2]; |
5532 | fActiveLimit = fData[opValue+3]; |
5533 | U_ASSERT(fActiveStart >= 0); |
5534 | U_ASSERT(fActiveLimit <= fInputLength); |
5535 | } |
5536 | break; |
5537 | |
5538 | |
5539 | case URX_LBN_CONT: |
5540 | { |
5541 | // Negative Look-Behind, at top of loop checking for matches of LB expression |
5542 | // at all possible input starting positions. |
5543 | |
5544 | // Fetch the extra parameters of this op. |
5545 | int32_t minML = (int32_t)pat[fp->fPatIdx++]; |
5546 | int32_t maxML = (int32_t)pat[fp->fPatIdx++]; |
5547 | int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; |
5548 | continueLoc = URX_VAL(continueLoc); |
5549 | U_ASSERT(minML <= maxML); |
5550 | U_ASSERT(minML >= 0); |
5551 | U_ASSERT(continueLoc > fp->fPatIdx); |
5552 | |
5553 | // Fetch (from data) the last input index where a match was attempted. |
5554 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
5555 | int64_t &lbStartIdx = fData[opValue+4]; |
5556 | if (lbStartIdx < 0) { |
5557 | // First time through loop. |
5558 | lbStartIdx = fp->fInputIdx - minML; |
5559 | if (lbStartIdx > 0 && lbStartIdx < fInputLength) { |
5560 | U16_SET_CP_START(inputBuf, 0, lbStartIdx); |
5561 | } |
5562 | } else { |
5563 | // 2nd through nth time through the loop. |
5564 | // Back up start position for match by one. |
5565 | if (lbStartIdx == 0) { |
5566 | lbStartIdx--; // Because U16_BACK is unsafe starting at 0. |
5567 | } else { |
5568 | U16_BACK_1(inputBuf, 0, lbStartIdx); |
5569 | } |
5570 | } |
5571 | |
5572 | if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { |
5573 | // We have tried all potential match starting points without |
5574 | // getting a match, which means that the negative lookbehind as |
5575 | // a whole has succeeded. Jump forward to the continue location |
5576 | fActiveStart = fData[opValue+2]; |
5577 | fActiveLimit = fData[opValue+3]; |
5578 | U_ASSERT(fActiveStart >= 0); |
5579 | U_ASSERT(fActiveLimit <= fInputLength); |
5580 | fp->fPatIdx = continueLoc; |
5581 | break; |
5582 | } |
5583 | |
5584 | // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. |
5585 | // (successful match will cause a FAIL out of the loop altogether.) |
5586 | fp = StateSave(fp, fp->fPatIdx-4, status); |
5587 | fp->fInputIdx = lbStartIdx; |
5588 | } |
5589 | break; |
5590 | |
5591 | case URX_LBN_END: |
5592 | // End of a negative look-behind block, after a successful match. |
5593 | { |
5594 | U_ASSERT(opValue>=0 && opValue+4<fPattern->fDataSize); |
5595 | if (fp->fInputIdx != fActiveLimit) { |
5596 | // The look-behind expression matched, but the match did not |
5597 | // extend all the way to the point that we are looking behind from. |
5598 | // FAIL out of here, which will take us back to the LB_CONT, which |
5599 | // will retry the match starting at another position or succeed |
5600 | // the look-behind altogether, whichever is appropriate. |
5601 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5602 | break; |
5603 | } |
5604 | |
5605 | // Look-behind expression matched, which means look-behind test as |
5606 | // a whole Fails |
5607 | |
5608 | // Restore the orignal input string length, which had been truncated |
5609 | // inorder to pin the end of the lookbehind match |
5610 | // to the position being looked-behind. |
5611 | fActiveStart = fData[opValue+2]; |
5612 | fActiveLimit = fData[opValue+3]; |
5613 | U_ASSERT(fActiveStart >= 0); |
5614 | U_ASSERT(fActiveLimit <= fInputLength); |
5615 | |
5616 | // Restore original stack position, discarding any state saved |
5617 | // by the successful pattern match. |
5618 | U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); |
5619 | int32_t newStackSize = (int32_t)fData[opValue]; |
5620 | U_ASSERT(fStack->size() > newStackSize); |
5621 | fStack->setSize(newStackSize); |
5622 | |
5623 | // FAIL, which will take control back to someplace |
5624 | // prior to entering the look-behind test. |
5625 | fp = (REStackFrame *)fStack->popFrame(fFrameSize); |
5626 | } |
5627 | break; |
5628 | |
5629 | |
5630 | case URX_LOOP_SR_I: |
5631 | // Loop Initialization for the optimized implementation of |
5632 | // [some character set]* |
5633 | // This op scans through all matching input. |
5634 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
5635 | { |
5636 | U_ASSERT(opValue > 0 && opValue < fSets->size()); |
5637 | Regex8BitSet *s8 = &fPattern->fSets8[opValue]; |
5638 | UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); |
5639 | |
5640 | // Loop through input, until either the input is exhausted or |
5641 | // we reach a character that is not a member of the set. |
5642 | int32_t ix = (int32_t)fp->fInputIdx; |
5643 | for (;;) { |
5644 | if (ix >= fActiveLimit) { |
5645 | fHitEnd = TRUE; |
5646 | break; |
5647 | } |
5648 | UChar32 c; |
5649 | U16_NEXT(inputBuf, ix, fActiveLimit, c); |
5650 | if (c<256) { |
5651 | if (s8->contains(c) == FALSE) { |
5652 | U16_BACK_1(inputBuf, 0, ix); |
5653 | break; |
5654 | } |
5655 | } else { |
5656 | if (s->contains(c) == FALSE) { |
5657 | U16_BACK_1(inputBuf, 0, ix); |
5658 | break; |
5659 | } |
5660 | } |
5661 | } |
5662 | |
5663 | // If there were no matching characters, skip over the loop altogether. |
5664 | // The loop doesn't run at all, a * op always succeeds. |
5665 | if (ix == fp->fInputIdx) { |
5666 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
5667 | break; |
5668 | } |
5669 | |
5670 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
5671 | // must follow. It's operand is the stack location |
5672 | // that holds the starting input index for the match of this [set]* |
5673 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
5674 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
5675 | int32_t stackLoc = URX_VAL(loopcOp); |
5676 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
5677 | fp->fExtra[stackLoc] = fp->fInputIdx; |
5678 | fp->fInputIdx = ix; |
5679 | |
5680 | // Save State to the URX_LOOP_C op that follows this one, |
5681 | // so that match failures in the following code will return to there. |
5682 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
5683 | fp = StateSave(fp, fp->fPatIdx, status); |
5684 | fp->fPatIdx++; |
5685 | } |
5686 | break; |
5687 | |
5688 | |
5689 | case URX_LOOP_DOT_I: |
5690 | // Loop Initialization for the optimized implementation of .* |
5691 | // This op scans through all remaining input. |
5692 | // The following LOOP_C op emulates stack unwinding if the following pattern fails. |
5693 | { |
5694 | // Loop through input until the input is exhausted (we reach an end-of-line) |
5695 | // In DOTALL mode, we can just go straight to the end of the input. |
5696 | int32_t ix; |
5697 | if ((opValue & 1) == 1) { |
5698 | // Dot-matches-All mode. Jump straight to the end of the string. |
5699 | ix = (int32_t)fActiveLimit; |
5700 | fHitEnd = TRUE; |
5701 | } else { |
5702 | // NOT DOT ALL mode. Line endings do not match '.' |
5703 | // Scan forward until a line ending or end of input. |
5704 | ix = (int32_t)fp->fInputIdx; |
5705 | for (;;) { |
5706 | if (ix >= fActiveLimit) { |
5707 | fHitEnd = TRUE; |
5708 | break; |
5709 | } |
5710 | UChar32 c; |
5711 | U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++] |
5712 | if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s |
5713 | if ((c == 0x0a) || // 0x0a is newline in both modes. |
5714 | (((opValue & 2) == 0) && // IF not UNIX_LINES mode |
5715 | isLineTerminator(c))) { |
5716 | // char is a line ending. Put the input pos back to the |
5717 | // line ending char, and exit the scanning loop. |
5718 | U16_BACK_1(inputBuf, 0, ix); |
5719 | break; |
5720 | } |
5721 | } |
5722 | } |
5723 | } |
5724 | |
5725 | // If there were no matching characters, skip over the loop altogether. |
5726 | // The loop doesn't run at all, a * op always succeeds. |
5727 | if (ix == fp->fInputIdx) { |
5728 | fp->fPatIdx++; // skip the URX_LOOP_C op. |
5729 | break; |
5730 | } |
5731 | |
5732 | // Peek ahead in the compiled pattern, to the URX_LOOP_C that |
5733 | // must follow. It's operand is the stack location |
5734 | // that holds the starting input index for the match of this .* |
5735 | int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; |
5736 | U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); |
5737 | int32_t stackLoc = URX_VAL(loopcOp); |
5738 | U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); |
5739 | fp->fExtra[stackLoc] = fp->fInputIdx; |
5740 | fp->fInputIdx = ix; |
5741 | |
5742 | // Save State to the URX_LOOP_C op that follows this one, |
5743 | // so that match failures in the following code will return to there. |
5744 | // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. |
5745 | fp = StateSave(fp, fp->fPatIdx, status); |
5746 | fp->fPatIdx++; |
5747 | } |
5748 | break; |
5749 | |
5750 | |
5751 | case URX_LOOP_C: |
5752 | { |
5753 | U_ASSERT(opValue>=0 && opValue<fFrameSize); |
5754 | backSearchIndex = (int32_t)fp->fExtra[opValue]; |
5755 | U_ASSERT(backSearchIndex <= fp->fInputIdx); |
5756 | if (backSearchIndex == fp->fInputIdx) { |
5757 | // We've backed up the input idx to the point that the loop started. |
5758 | // The loop is done. Leave here without saving state. |
5759 | // Subsequent failures won't come back here. |
5760 | break; |
5761 | } |
5762 | // Set up for the next iteration of the loop, with input index |
5763 | // backed up by one from the last time through, |
5764 | // and a state save to this instruction in case the following code fails again. |
5765 | // (We're going backwards because this loop emulates stack unwinding, not |
5766 | // the initial scan forward.) |
5767 | U_ASSERT(fp->fInputIdx > 0); |
5768 | UChar32 prevC; |
5769 | U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit? |
5770 | |
5771 | if (prevC == 0x0a && |
5772 | fp->fInputIdx > backSearchIndex && |
5773 | inputBuf[fp->fInputIdx-1] == 0x0d) { |
5774 | int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; |
5775 | if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { |
5776 | // .*, stepping back over CRLF pair. |
5777 | U16_BACK_1(inputBuf, 0, fp->fInputIdx); |
5778 | } |
5779 | } |
5780 | |
5781 | |
5782 | fp = StateSave(fp, fp->fPatIdx-1, status); |
5783 | } |
5784 | break; |
5785 | |
5786 | |
5787 | |
5788 | default: |
5789 | // Trouble. The compiled pattern contains an entry with an |
5790 | // unrecognized type tag. |
5791 | UPRV_UNREACHABLE; |
5792 | } |
5793 | |
5794 | if (U_FAILURE(status)) { |
5795 | isMatch = FALSE; |
5796 | break; |
5797 | } |
5798 | } |
5799 | |
5800 | breakFromLoop: |
5801 | fMatch = isMatch; |
5802 | if (isMatch) { |
5803 | fLastMatchEnd = fMatchEnd; |
5804 | fMatchStart = startIdx; |
5805 | fMatchEnd = fp->fInputIdx; |
5806 | } |
5807 | |
5808 | #ifdef REGEX_RUN_DEBUG |
5809 | if (fTraceDebug) { |
5810 | if (isMatch) { |
5811 | printf("Match. start=%ld end=%ld\n\n" , fMatchStart, fMatchEnd); |
5812 | } else { |
5813 | printf("No match\n\n" ); |
5814 | } |
5815 | } |
5816 | #endif |
5817 | |
5818 | fFrame = fp; // The active stack frame when the engine stopped. |
5819 | // Contains the capture group results that we need to |
5820 | // access later. |
5821 | |
5822 | return; |
5823 | } |
5824 | |
5825 | |
5826 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher) |
5827 | |
5828 | U_NAMESPACE_END |
5829 | |
5830 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
5831 | |
5832 | |