1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | //***************************************************************************** |
6 | // File: module.cpp |
7 | // |
8 | |
9 | // |
10 | //***************************************************************************** |
11 | #include "stdafx.h" |
12 | #include "winbase.h" |
13 | |
14 | #include "metadataexports.h" |
15 | |
16 | #include "winbase.h" |
17 | #include "corpriv.h" |
18 | #include "corsym.h" |
19 | #include "ildbsymlib.h" |
20 | |
21 | #include "pedecoder.h" |
22 | |
23 | //--------------------------------------------------------------------------------------- |
24 | // Update an existing metadata importer with a buffer |
25 | // |
26 | // Arguments: |
27 | // pUnk - IUnknoown of importer to update. |
28 | // pData - local buffer containing new metadata |
29 | // cbData - size of buffer in bytes. |
30 | // dwReOpenFlags - metadata flags to pass for reopening. |
31 | // |
32 | // Returns: |
33 | // S_OK on success. Else failure. |
34 | // |
35 | // Notes: |
36 | // This will call code:MDReOpenMetaDataWithMemoryEx from the metadata engine. |
37 | STDAPI ReOpenMetaDataWithMemoryEx( |
38 | void *pUnk, |
39 | LPCVOID pData, |
40 | ULONG cbData, |
41 | DWORD dwReOpenFlags) |
42 | { |
43 | HRESULT hr = MDReOpenMetaDataWithMemoryEx(pUnk,pData, cbData, dwReOpenFlags); |
44 | return hr; |
45 | } |
46 | |
47 | //--------------------------------------------------------------------------------------- |
48 | // Initialize a new CordbModule around a Module in the target. |
49 | // |
50 | // Arguments: |
51 | // pProcess - process that this module lives in |
52 | // vmDomainFile - CLR cookie for module. |
53 | CordbModule::CordbModule( |
54 | CordbProcess * pProcess, |
55 | VMPTR_Module vmModule, |
56 | VMPTR_DomainFile vmDomainFile) |
57 | : CordbBase(pProcess, vmDomainFile.IsNull() ? VmPtrToCookie(vmModule) : VmPtrToCookie(vmDomainFile), enumCordbModule), |
58 | m_pAssembly(0), |
59 | m_pAppDomain(0), |
60 | m_classes(11), |
61 | m_functions(101), |
62 | m_vmDomainFile(vmDomainFile), |
63 | m_vmModule(vmModule), |
64 | m_EnCCount(0), |
65 | m_isIlWinMD(Uninitialized), |
66 | m_fForceMetaDataSerialize(FALSE), |
67 | m_nativeCodeTable(101) |
68 | { |
69 | _ASSERTE(pProcess->GetProcessLock()->HasLock()); |
70 | |
71 | _ASSERTE(!vmModule.IsNull()); |
72 | |
73 | m_nLoadEventContinueCounter = 0; |
74 | #ifdef _DEBUG |
75 | m_classes.DebugSetRSLock(pProcess->GetProcessLock()); |
76 | m_functions.DebugSetRSLock(pProcess->GetProcessLock()); |
77 | #endif |
78 | |
79 | // Fill out properties via DAC. |
80 | ModuleInfo modInfo; |
81 | pProcess->GetDAC()->GetModuleData(vmModule, &modInfo); // throws |
82 | |
83 | m_PEBuffer.Init(modInfo.pPEBaseAddress, modInfo.nPESize); |
84 | |
85 | m_fDynamic = modInfo.fIsDynamic; |
86 | m_fInMemory = modInfo.fInMemory; |
87 | m_vmPEFile = modInfo.vmPEFile; |
88 | |
89 | if (!vmDomainFile.IsNull()) |
90 | { |
91 | DomainFileInfo dfInfo; |
92 | |
93 | pProcess->GetDAC()->GetDomainFileData(vmDomainFile, &dfInfo); // throws |
94 | |
95 | m_pAppDomain = pProcess->LookupOrCreateAppDomain(dfInfo.vmAppDomain); |
96 | m_pAssembly = m_pAppDomain->LookupOrCreateAssembly(dfInfo.vmDomainAssembly); |
97 | } |
98 | else |
99 | { |
100 | // Not yet implemented |
101 | m_pAppDomain = pProcess->GetSharedAppDomain(); |
102 | m_pAssembly = m_pAppDomain->LookupOrCreateAssembly(modInfo.vmAssembly); |
103 | } |
104 | #ifdef _DEBUG |
105 | m_nativeCodeTable.DebugSetRSLock(GetProcess()->GetProcessLock()); |
106 | #endif |
107 | |
108 | // MetaData is initialized lazily (via code:CordbModule::GetMetaDataImporter). |
109 | // Getting the metadata may be very expensive (especially if we go through the metadata locator, which |
110 | // invokes back to the data-target), so don't do it until asked. |
111 | // m_pIMImport, m_pInternalMetaDataImport are smart pointers that already initialize to NULL. |
112 | } |
113 | |
114 | |
115 | #ifdef _DEBUG |
116 | //--------------------------------------------------------------------------------------- |
117 | // Callback helper for code:CordbModule::DbgAssertModuleDeleted |
118 | // |
119 | // Arguments |
120 | // vmDomainFile - domain file in the enumeration |
121 | // pUserData - pointer to the CordbModule that we just got an exit event for. |
122 | // |
123 | void DbgAssertModuleDeletedCallback(VMPTR_DomainFile vmDomainFile, void * pUserData) |
124 | { |
125 | CordbModule * pThis = reinterpret_cast<CordbModule *>(pUserData); |
126 | INTERNAL_DAC_CALLBACK(pThis->GetProcess()); |
127 | |
128 | if (!pThis->m_vmDomainFile.IsNull()) |
129 | { |
130 | VMPTR_DomainFile vmDomainFileDeleted = pThis->m_vmDomainFile; |
131 | |
132 | CONSISTENCY_CHECK_MSGF((vmDomainFileDeleted != vmDomainFile), |
133 | ("A Module Unload event was sent for a module, but it still shows up in the enumeration.\n vmDomainFileDeleted=%p\n" , |
134 | VmPtrToCookie(vmDomainFileDeleted))); |
135 | } |
136 | } |
137 | |
138 | //--------------------------------------------------------------------------------------- |
139 | // Assert that a module is no longer discoverable via enumeration. |
140 | // |
141 | // Notes: |
142 | // See code:IDacDbiInterface#Enumeration for rules that we're asserting. |
143 | // This is a debug only method. It's conceptually similar to |
144 | // code:CordbProcess::DbgAssertAppDomainDeleted. |
145 | // |
146 | void CordbModule::DbgAssertModuleDeleted() |
147 | { |
148 | GetProcess()->GetDAC()->EnumerateModulesInAssembly( |
149 | m_pAssembly->GetDomainAssemblyPtr(), |
150 | DbgAssertModuleDeletedCallback, |
151 | this); |
152 | } |
153 | #endif // _DEBUG |
154 | |
155 | CordbModule::~CordbModule() |
156 | { |
157 | // We should have been explicitly neutered before our internal ref went to 0. |
158 | _ASSERTE(IsNeutered()); |
159 | |
160 | _ASSERTE(m_pIMImport == NULL); |
161 | } |
162 | |
163 | // Neutered by CordbAppDomain |
164 | void CordbModule::Neuter() |
165 | { |
166 | // m_pAppDomain, m_pAssembly assigned w/o AddRef() |
167 | m_classes.NeuterAndClear(GetProcess()->GetProcessLock()); |
168 | m_functions.NeuterAndClear(GetProcess()->GetProcessLock()); |
169 | |
170 | m_nativeCodeTable.NeuterAndClear(GetProcess()->GetProcessLock()); |
171 | m_pClass.Clear(); |
172 | |
173 | // This is very important because it also releases the metadata's potential file locks. |
174 | m_pInternalMetaDataImport.Clear(); |
175 | m_pIMImport.Clear(); |
176 | |
177 | CordbBase::Neuter(); |
178 | } |
179 | |
180 | // |
181 | // Creates an IStream based off the memory described by the TargetBuffer. |
182 | // |
183 | // Arguments: |
184 | // pProcess - process that buffer is valid in. |
185 | // buffer - memory range in target |
186 | // ppStream - out parameter to receive the new stream. *ppStream == NULL on input. |
187 | // caller owns the new object and must call Release. |
188 | // |
189 | // Returns: |
190 | // Throws on error. |
191 | // Common errors include if memory is missing in the target. |
192 | // |
193 | // Notes: |
194 | // This will copy the memory over from the TargetBuffer, and then create a new IStream |
195 | // object around it. |
196 | // |
197 | void GetStreamFromTargetBuffer(CordbProcess * pProcess, TargetBuffer buffer, IStream ** ppStream) |
198 | { |
199 | CONTRACTL |
200 | { |
201 | THROWS; |
202 | } |
203 | CONTRACTL_END; |
204 | |
205 | _ASSERTE(ppStream != NULL); |
206 | _ASSERTE(*ppStream == NULL); |
207 | |
208 | int cbSize = buffer.cbSize; |
209 | NewArrayHolder<BYTE> localBuffer(new BYTE[cbSize]); |
210 | |
211 | pProcess->SafeReadBuffer(buffer, localBuffer); |
212 | |
213 | HRESULT hr = E_FAIL; |
214 | hr = CInMemoryStream::CreateStreamOnMemoryCopy(localBuffer, cbSize, ppStream); |
215 | IfFailThrow(hr); |
216 | _ASSERTE(*ppStream != NULL); |
217 | } |
218 | |
219 | // |
220 | // Helper API to get in-memory symbols from the target into a host stream object. |
221 | // |
222 | // Arguments: |
223 | // ppStream - out parameter to receive the new stream. *ppStream == NULL on input. |
224 | // caller owns the new object and must call Release. |
225 | // |
226 | // Returns: |
227 | // kSymbolFormatNone if no PDB stream is present. This is a common case for |
228 | // file-based modules, and also for dynamic modules that just aren't tracking |
229 | // debug information. |
230 | // The format of the symbols stored into ppStream. This is common: |
231 | // - Ref.Emit modules if the debuggee generated debug symbols, |
232 | // - in-memory modules (such as Load(Byte[], Byte[]) |
233 | // - hosted modules. |
234 | // Throws on error |
235 | // |
236 | IDacDbiInterface::SymbolFormat CordbModule::GetInMemorySymbolStream(IStream ** ppStream) |
237 | { |
238 | // @dbgtodo : add a PUBLIC_REENTRANT_API_ENTRY_FOR_SHIM contract |
239 | // This function is mainly called internally in dbi, and also by the shim to emulate the |
240 | // UpdateModuleSymbols callback on attach. |
241 | |
242 | CONTRACTL |
243 | { |
244 | THROWS; |
245 | } |
246 | CONTRACTL_END; |
247 | |
248 | _ASSERTE(ppStream != NULL); |
249 | _ASSERTE(*ppStream == NULL); |
250 | *ppStream = NULL; |
251 | |
252 | TargetBuffer bufferPdb; |
253 | IDacDbiInterface::SymbolFormat symFormat; |
254 | GetProcess()->GetDAC()->GetSymbolsBuffer(m_vmModule, &bufferPdb, &symFormat); |
255 | if (bufferPdb.IsEmpty()) |
256 | { |
257 | // No in-memory PDB. Common case. |
258 | _ASSERTE(symFormat == IDacDbiInterface::kSymbolFormatNone); |
259 | return IDacDbiInterface::kSymbolFormatNone; |
260 | } |
261 | else |
262 | { |
263 | _ASSERTE(symFormat != IDacDbiInterface::kSymbolFormatNone); |
264 | GetStreamFromTargetBuffer(GetProcess(), bufferPdb, ppStream); |
265 | return symFormat; |
266 | } |
267 | } |
268 | |
269 | //--------------------------------------------------------------------------------------- |
270 | // Accessor for PE file. |
271 | // |
272 | // Returns: |
273 | // VMPTR_PEFile for this module. Should always be non-null |
274 | // |
275 | // Notes: |
276 | // A main usage of this is to find the proper internal MetaData importer. |
277 | // DACized code needs to map from PEFile --> IMDInternalImport. |
278 | // |
279 | VMPTR_PEFile CordbModule::GetPEFile() |
280 | { |
281 | return m_vmPEFile; |
282 | } |
283 | |
284 | //--------------------------------------------------------------------------------------- |
285 | // |
286 | // Top-level getter for the public metadata importer for this module |
287 | // |
288 | // Returns: |
289 | // metadata importer. |
290 | // Never returns NULL. Will throw some hr (likely CORDBG_E_MISSING_METADATA) instead. |
291 | // |
292 | // Notes: |
293 | // This will lazily create the metadata, possibly invoking back into the data-target. |
294 | IMetaDataImport * CordbModule::GetMetaDataImporter() |
295 | { |
296 | CONTRACTL |
297 | { |
298 | THROWS; |
299 | } |
300 | CONTRACTL_END; |
301 | |
302 | |
303 | // If we already have it, then we're done. |
304 | // This is critical to do at the top of this function to avoid potential recursion. |
305 | if (m_pIMImport != NULL) |
306 | { |
307 | return m_pIMImport; |
308 | } |
309 | |
310 | // Lazily initialize |
311 | |
312 | |
313 | // Fetch metadata from target |
314 | LOG((LF_CORDB,LL_INFO1000, "CM::GMI Lazy init refreshing metadata\n" )); |
315 | |
316 | ALLOW_DATATARGET_MISSING_MEMORY( |
317 | RefreshMetaData(); |
318 | ); |
319 | |
320 | // If lookup failed from the Module & target memory, try the metadata locator interface |
321 | // from debugger, if we have one. |
322 | if (m_pIMImport == NULL) |
323 | { |
324 | bool isILMetaDataForNGENImage; // Not currently used for anything. |
325 | |
326 | // The process's LookupMetaData will ping the debugger's ICorDebugMetaDataLocator iface. |
327 | CordbProcess * pProcess = GetProcess(); |
328 | RSLockHolder processLockHolder(pProcess->GetProcessLock()); |
329 | m_pInternalMetaDataImport.Clear(); |
330 | |
331 | // Do not call code:CordbProcess::LookupMetaData from this function. It will try to load |
332 | // through the CordbModule again which will end up back here, and on failure you'll fill the stack. |
333 | // Since we've already done everything possible from the Module anyhow, just call the |
334 | // stuff that talks to the debugger. |
335 | // Don't do anything with the ptr returned here, since it's really m_pInternalMetaDataImport. |
336 | pProcess->LookupMetaDataFromDebugger(m_vmPEFile, isILMetaDataForNGENImage, this); |
337 | } |
338 | |
339 | // If we still can't get it, throw. |
340 | if (m_pIMImport == NULL) |
341 | { |
342 | ThrowHR(CORDBG_E_MISSING_METADATA); |
343 | } |
344 | |
345 | return m_pIMImport; |
346 | } |
347 | |
348 | // Refresh the metadata cache if a profiler added new rows. |
349 | // |
350 | // Arguments: |
351 | // token - token that we want to ensure is in the metadata cache. |
352 | // |
353 | // Notes: |
354 | // In profiler case, this may be referred to new rows and we may need to update the metadata |
355 | // This only supports StandAloneSigs. |
356 | // |
357 | void CordbModule::UpdateMetaDataCacheIfNeeded(mdToken token) |
358 | { |
359 | CONTRACTL |
360 | { |
361 | THROWS; |
362 | } |
363 | CONTRACTL_END; |
364 | |
365 | LOG((LF_CORDB,LL_INFO10000, "CM::UMCIN token=0x%x\n" , token)); |
366 | |
367 | // If we aren't trying to keep parity with our legacy profiler metadata update behavior |
368 | // then we should avoid this temporary update mechanism entirely |
369 | if(GetProcess()->GetWriteableMetadataUpdateMode() != LegacyCompatPolicy) |
370 | { |
371 | return; |
372 | } |
373 | |
374 | // the metadata in WinMD is currently static since there's no |
375 | // support for profilers or EnC so we can simply exit early. |
376 | if (IsWinMD()) |
377 | { |
378 | LOG((LF_CORDB,LL_INFO10000, "CM::UMCIN token is in WinMD, exiting\n" )); |
379 | return; |
380 | } |
381 | |
382 | // |
383 | // 1) Check if in-range? Compare against tables, etc. |
384 | // |
385 | if(CheckIfTokenInMetaData(token)) |
386 | { |
387 | LOG((LF_CORDB,LL_INFO10000, "CM::UMCIN token was present\n" )); |
388 | return; |
389 | } |
390 | |
391 | // |
392 | // 2) Copy over new MetaData. From now on we assume that the profiler is |
393 | // modifying module metadata and that we need to serialize in process |
394 | // at each refresh |
395 | // |
396 | LOG((LF_CORDB,LL_INFO10000, "CM::UMCIN token was not present, refreshing\n" )); |
397 | m_fForceMetaDataSerialize = TRUE; |
398 | RefreshMetaData(); |
399 | |
400 | // If we are dump debugging, we may still not have it. Nothing to be done. |
401 | } |
402 | |
403 | // Returns TRUE if the token is present, FALSE if not. |
404 | BOOL CordbModule::CheckIfTokenInMetaData(mdToken token) |
405 | { |
406 | CONTRACTL |
407 | { |
408 | THROWS; |
409 | } |
410 | CONTRACTL_END; |
411 | LOG((LF_CORDB,LL_INFO10000, "CM::CITIM token=0x%x\n" , token)); |
412 | _ASSERTE(TypeFromToken(token) == mdtSignature); |
413 | // we shouldn't be doing this on WinMD modules since they don't implement IID_IMetaDataTables |
414 | _ASSERTE(!IsWinMD()); |
415 | RSExtSmartPtr<IMetaDataTables> pTable; |
416 | |
417 | HRESULT hr = GetMetaDataImporter()->QueryInterface(IID_IMetaDataTables, (void**) &pTable); |
418 | |
419 | _ASSERTE(SUCCEEDED(hr)); |
420 | if (FAILED(hr)) |
421 | { |
422 | ThrowHR(hr); |
423 | } |
424 | |
425 | ULONG cbRowsAvailable; // number of rows in the table |
426 | |
427 | hr = pTable->GetTableInfo( |
428 | mdtSignature >> 24, // [IN] Which table. |
429 | NULL, // [OUT] Size of a row, bytes. |
430 | &cbRowsAvailable, // [OUT] Number of rows. |
431 | NULL, // [OUT] Number of columns in each row. |
432 | NULL, // [OUT] Key column, or -1 if none. |
433 | NULL); // [OUT] Name of the table. |
434 | |
435 | _ASSERTE(SUCCEEDED(hr)); |
436 | if (FAILED(hr)) |
437 | { |
438 | ThrowHR(hr); |
439 | } |
440 | |
441 | |
442 | // Rows start counting with number 1. |
443 | ULONG rowRequested = RidFromToken(token); |
444 | LOG((LF_CORDB,LL_INFO10000, "CM::UMCIN requested=0x%x available=0x%x\n" , rowRequested, cbRowsAvailable)); |
445 | return (rowRequested <= cbRowsAvailable); |
446 | } |
447 | |
448 | // This helper class ensures the remote serailzied buffer gets deleted in the RefreshMetaData |
449 | // function below |
450 | class CleanupRemoteBuffer |
451 | { |
452 | public: |
453 | CordbProcess* pProcess; |
454 | CordbModule* pModule; |
455 | TargetBuffer bufferMetaData; |
456 | BOOL fDoCleanup; |
457 | |
458 | CleanupRemoteBuffer() : |
459 | fDoCleanup(FALSE) { } |
460 | |
461 | ~CleanupRemoteBuffer() |
462 | { |
463 | if(fDoCleanup) |
464 | { |
465 | // |
466 | // Send 2nd event to free buffer. |
467 | // |
468 | DebuggerIPCEvent event; |
469 | pProcess->InitIPCEvent(&event, |
470 | DB_IPCE_RESOLVE_UPDATE_METADATA_2, |
471 | true, |
472 | pModule->GetAppDomain()->GetADToken()); |
473 | |
474 | event.MetadataUpdateRequest.pMetadataStart = CORDB_ADDRESS_TO_PTR(bufferMetaData.pAddress); |
475 | |
476 | // Note: two-way event here... |
477 | IfFailThrow(pProcess->SendIPCEvent(&event, sizeof(DebuggerIPCEvent))); |
478 | _ASSERTE(event.type == DB_IPCE_RESOLVE_UPDATE_METADATA_2_RESULT); |
479 | } |
480 | } |
481 | |
482 | }; |
483 | |
484 | // Called to refetch metadata. This occurs when a dynamic module grows or the profiler |
485 | // has edited the metadata |
486 | void CordbModule::RefreshMetaData() |
487 | { |
488 | CONTRACTL |
489 | { |
490 | THROWS; |
491 | } |
492 | CONTRACTL_END; |
493 | |
494 | LOG((LF_CORDB,LL_INFO1000, "CM::RM\n" )); |
495 | |
496 | // There are several different ways we can get the metadata |
497 | // 1) [Most common] Module is loaded into VM and never changed. The importer |
498 | // will be constructed refering to the file on disk. This is a significant |
499 | // working set win because the VM and debugger share the image. If there is |
500 | // an error reading by file we can fall back to case #2 for these modules |
501 | // 2) Most modules have a buffer in target memory that represents their |
502 | // metadata. We copy that data over the RS and construct an in-memory |
503 | // importer on top of it. |
504 | // 3) The only modules that don't have a suitable buffer (case #2) are those |
505 | // modified in memory via the profiling API (or ENC). A message can be sent from |
506 | // the debugger to the debuggee instructing it to allocate a buffer and |
507 | // serialize the metadata into it. Then we copy that data to the RS and |
508 | // construct an in-memory importer on top of it. |
509 | // We don't need to send this message in the ENC case because the debugger |
510 | // has the same changes applied as the debuggee. |
511 | // 4) Case #3 won't work when dump debugging because we can't send IPC events. |
512 | // Instead we can locate chunks of the metadata pointed to in the implementation |
513 | // details of a remote MDInternalRW object, marshal that memory over to the |
514 | // debugger process, and then put a metadata reader on top of it. |
515 | // In time this DAC'ized metadata could be used in almost any scenario, |
516 | // although its probably worth keeping the file mapping technique in case |
517 | // #1 around for its performance wins. |
518 | |
519 | CordbProcess * pProcess = GetProcess(); |
520 | TargetBuffer bufferMetaData; |
521 | CleanupRemoteBuffer cleanup; // this local has a destructor to do some finally work |
522 | |
523 | |
524 | // check for scenarios we might want to handle with case #4 |
525 | if (GetProcess()->GetShim() == NULL && |
526 | GetProcess()->GetWriteableMetadataUpdateMode() == AlwaysShowUpdates && |
527 | !m_fDynamic) |
528 | { |
529 | //None of the above requirements are particularly hard to change in the future as needed... |
530 | // a) dump-debugging mode - If we do this on a process that can move forward we need a mechanism to determine |
531 | // when to refetch the metadata. |
532 | // b) AlwaysShowUpdates - this is purely a risk mitigation choice, there aren't any known back-compat issues |
533 | // using DAC'ized metadata. If you want back-compat with the in-proc debugging behavior |
534 | // you need to figure out how to ReOpen the same public MD interface with new data. |
535 | // c) !m_fDynamic - A risk mitigation choice. Initial testing suggests it would work fine. |
536 | |
537 | |
538 | // So far we've only got a reader for in-memory-writable metadata (MDInternalRW implementation) |
539 | // We could make a reader for MDInternalRO, but no need yet. This also ensures we don't encroach into common |
540 | // scenario where we can map a file on disk. |
541 | TADDR remoteMDInternalRWAddr = NULL; |
542 | GetProcess()->GetDAC()->GetPEFileMDInternalRW(m_vmPEFile, &remoteMDInternalRWAddr); |
543 | if (remoteMDInternalRWAddr != NULL) |
544 | { |
545 | // we should only be doing this once to initialize, we don't support reopen with this technique |
546 | _ASSERTE(m_pIMImport == NULL); |
547 | ULONG32 mdStructuresVersion; |
548 | HRESULT hr = GetProcess()->GetDAC()->GetMDStructuresVersion(&mdStructuresVersion); |
549 | IfFailThrow(hr); |
550 | ULONG32 mdStructuresDefines; |
551 | hr = GetProcess()->GetDAC()->GetDefinesBitField(&mdStructuresDefines); |
552 | IfFailThrow(hr); |
553 | IMetaDataDispenserCustom* pDispCustom = NULL; |
554 | hr = GetProcess()->GetDispenser()->QueryInterface(IID_IMetaDataDispenserCustom, (void**)&pDispCustom); |
555 | IfFailThrow(hr); |
556 | IMDCustomDataSource* pDataSource = NULL; |
557 | hr = CreateRemoteMDInternalRWSource(remoteMDInternalRWAddr, GetProcess()->GetDataTarget(), mdStructuresDefines, mdStructuresVersion, &pDataSource); |
558 | IfFailThrow(hr); |
559 | IMetaDataImport* pImport = NULL; |
560 | hr = pDispCustom->OpenScopeOnCustomDataSource(pDataSource, 0, IID_IMetaDataImport, (IUnknown**)&m_pIMImport); |
561 | IfFailThrow(hr); |
562 | UpdateInternalMetaData(); |
563 | return; |
564 | } |
565 | } |
566 | |
567 | if(!m_fForceMetaDataSerialize) // case 1 and 2 |
568 | { |
569 | LOG((LF_CORDB,LL_INFO10000, "CM::RM !m_fForceMetaDataSerialize case\n" )); |
570 | GetProcess()->GetDAC()->GetMetadata(m_vmModule, &bufferMetaData); // throws |
571 | } |
572 | else if (GetProcess()->GetShim() == NULL) // case 3 won't work on a dump so don't try |
573 | { |
574 | return; |
575 | } |
576 | else // case 3 on a live process |
577 | { |
578 | LOG((LF_CORDB,LL_INFO10000, "CM::RM m_fForceMetaDataSerialize case\n" )); |
579 | // |
580 | // Send 1 event to get metadata. This allocates a buffer |
581 | // |
582 | DebuggerIPCEvent event; |
583 | pProcess->InitIPCEvent(&event, |
584 | DB_IPCE_RESOLVE_UPDATE_METADATA_1, |
585 | true, |
586 | GetAppDomain()->GetADToken()); |
587 | |
588 | event.MetadataUpdateRequest.vmModule = m_vmModule; |
589 | |
590 | // Note: two-way event here... |
591 | IfFailThrow(pProcess->SendIPCEvent(&event, sizeof(DebuggerIPCEvent))); |
592 | |
593 | _ASSERTE(event.type == DB_IPCE_RESOLVE_UPDATE_METADATA_1_RESULT); |
594 | |
595 | // |
596 | // Update it on the RS |
597 | // |
598 | bufferMetaData.Init(PTR_TO_CORDB_ADDRESS(event.MetadataUpdateRequest.pMetadataStart), (ULONG) event.MetadataUpdateRequest.nMetadataSize); |
599 | |
600 | // init the cleanup object to ensure the buffer gets destroyed later |
601 | cleanup.bufferMetaData = bufferMetaData; |
602 | cleanup.pProcess = pProcess; |
603 | cleanup.pModule = this; |
604 | cleanup.fDoCleanup = TRUE; |
605 | } |
606 | |
607 | InitMetaData(bufferMetaData, IsFileMetaDataValid()); // throws |
608 | } |
609 | |
610 | // Determines whether the on-disk metadata for this module is usable as the |
611 | // current metadata |
612 | BOOL CordbModule::IsFileMetaDataValid() |
613 | { |
614 | bool fOpenFromFile = true; |
615 | |
616 | // Dynamic, In-memory, modules must be OpenScopeOnMemory. |
617 | // For modules that require the metadata to be serialized in memory, we must also OpenScopeOnMemory |
618 | // For Enc, we'll can use OpenScope(onFile) and it will get converted to Memory when we get an emitter. |
619 | // We're called from before the ModuleLoad callback, so EnC status hasn't been set yet, so |
620 | // EnC will be false. |
621 | if (m_fDynamic || m_fInMemory || m_fForceMetaDataSerialize) |
622 | { |
623 | LOG((LF_CORDB,LL_INFO10000, "CM::IFMV: m_fDynamic=0x%x m_fInMemory=0x%x m_fForceMetaDataSerialize=0x%x\n" , |
624 | m_fDynamic, m_fInMemory, m_fForceMetaDataSerialize)); |
625 | fOpenFromFile = false; |
626 | } |
627 | |
628 | #ifdef _DEBUG |
629 | // Reg key override to force us to use Open-by-memory. This can let us run perf tests to |
630 | // compare the Open-by-mem vs. Open-by-file. |
631 | static DWORD openFromFile = 99; |
632 | if (openFromFile == 99) |
633 | openFromFile = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgNoOpenMDByFile); |
634 | |
635 | if (openFromFile) |
636 | { |
637 | LOG((LF_CORDB,LL_INFO10000, "CM::IFMV: INTERNAL_DbgNoOpenMDByFile is set\n" )); |
638 | fOpenFromFile = false; |
639 | } |
640 | #endif |
641 | |
642 | LOG((LF_CORDB,LL_INFO10000, "CM::IFMV: returns 0x%x\n" , fOpenFromFile)); |
643 | return fOpenFromFile; |
644 | } |
645 | |
646 | //--------------------------------------------------------------------------------------- |
647 | // Accessor for Internal MetaData importer. This is lazily initialized. |
648 | // |
649 | // Returns: |
650 | // Internal MetaDataImporter, which can be handed off to DAC. Not AddRef(). |
651 | // Should be non-null. Throws on error. |
652 | // |
653 | // Notes: |
654 | // An internal metadata importer is used extensively by DAC-ized code (And Edit-and-continue). |
655 | // This should not be handed out through ICorDebug. |
656 | IMDInternalImport * CordbModule::GetInternalMD() |
657 | { |
658 | if (m_pInternalMetaDataImport == NULL) |
659 | { |
660 | UpdateInternalMetaData(); // throws |
661 | } |
662 | return m_pInternalMetaDataImport; |
663 | } |
664 | |
665 | //--------------------------------------------------------------------------------------- |
666 | // The one-stop top-level initialization function the metadata (both public and private) for this module. |
667 | // |
668 | // Arguments: |
669 | // buffer - valid buffer into target containing the metadata. |
670 | // useFileMappingOptimization - if true this allows us to attempt just opening the importer |
671 | // by using the metadata in the module on disk. if false or |
672 | // if the attempt fails we open the metadata import on memory in |
673 | // target buffer |
674 | // |
675 | // Notes: |
676 | // This will initialize both the internal and public metadata from the buffer in the target. |
677 | // Only called as a helper from RefreshMetaData() |
678 | // |
679 | // This may throw (eg, target buffer is missing). |
680 | // |
681 | void CordbModule::InitMetaData(TargetBuffer buffer, BOOL allowFileMappingOptimization) |
682 | { |
683 | CONTRACTL |
684 | { |
685 | THROWS; |
686 | } |
687 | CONTRACTL_END; |
688 | |
689 | LOG((LF_CORDB,LL_INFO100000, "CM::IM: initing with remote buffer 0x%p length 0x%x\n" , |
690 | CORDB_ADDRESS_TO_PTR(buffer.pAddress), buffer.cbSize)); |
691 | |
692 | // clear all the metadata |
693 | m_pInternalMetaDataImport.Clear(); |
694 | |
695 | if (m_pIMImport == NULL) |
696 | { |
697 | // The optimization we're going for here is that the OS will use the same physical memory to |
698 | // back multiple ReadOnly opens of the same file. Thus since we expect the target process in |
699 | // live debugging, or the debugger in dump debugging, has already opened the file we would |
700 | // like to not create a local buffer and spend time copying in metadata from the target when |
701 | // the OS will happily do address lookup magic against the same physical memory for everyone. |
702 | |
703 | |
704 | // Try getting the data from the file if allowed, and fall back to using the buffer |
705 | // if required |
706 | HRESULT hr = S_OK; |
707 | if (allowFileMappingOptimization) |
708 | { |
709 | hr = InitPublicMetaDataFromFile(); |
710 | if(FAILED(hr)) |
711 | { |
712 | LOG((LF_CORDB,LL_INFO1000000, "CM::IPM: File mapping failed with hr=0x%x\n" , hr)); |
713 | } |
714 | } |
715 | |
716 | if(!allowFileMappingOptimization || FAILED(hr)) |
717 | { |
718 | // This is where the expensive copy of all metadata content from target memory |
719 | // that we would like to try and avoid happens. |
720 | InitPublicMetaData(buffer); |
721 | } |
722 | } |
723 | else |
724 | { |
725 | // We've already handed out an Import object, and so we can't create a new pointer instance. |
726 | // Instead, we update the existing instance with new data. |
727 | UpdatePublicMetaDataFromRemote(buffer); |
728 | } |
729 | |
730 | // if we haven't set it by this point UpdateInternalMetaData below is going to get us |
731 | // in an infinite loop of refreshing public metadata |
732 | _ASSERTE(m_pIMImport != NULL); |
733 | |
734 | // Now that public metadata has changed, force internal metadata to update too. |
735 | // Public and internal metadata expose different access interfaces to the same underlying storage. |
736 | UpdateInternalMetaData(); |
737 | } |
738 | |
739 | //--------------------------------------------------------------------------------------- |
740 | // Updates the Internal MetaData object from the public importer. Lazily fetch public importer if needed. |
741 | // |
742 | // Assumptions: |
743 | // Caller has cleared Internal metadata before even updating public metadata. |
744 | // This way, if the caller fails halfway through updating the public metadata, we don't have |
745 | // stale internal MetaData. |
746 | void CordbModule::UpdateInternalMetaData() |
747 | { |
748 | CONTRACTL |
749 | { |
750 | THROWS; |
751 | } |
752 | CONTRACTL_END; |
753 | |
754 | // Caller should have already cleared it. |
755 | _ASSERTE(m_pInternalMetaDataImport == NULL); |
756 | |
757 | // Get the importer. If it's currently null, this will go fetch it. |
758 | IMetaDataImport * pImport = GetMetaDataImporter(); // throws |
759 | |
760 | // If both the public and the private interfaces are NULL on entry to this function, the call above will |
761 | // recursively call this function. This can happen if the caller calls GetInternalMD() directly |
762 | // instead of InitMetaData(). In this case, the above function call will have initialized the internal |
763 | // interface as well, so we need to check for it here. |
764 | |
765 | if (m_pInternalMetaDataImport == NULL) |
766 | { |
767 | HRESULT hr = GetMDInternalInterfaceFromPublic( |
768 | pImport, |
769 | IID_IMDInternalImport, |
770 | reinterpret_cast<void**> (&m_pInternalMetaDataImport)); |
771 | |
772 | if (m_pInternalMetaDataImport == NULL) |
773 | { |
774 | ThrowHR(hr); |
775 | } |
776 | } |
777 | |
778 | _ASSERTE(m_pInternalMetaDataImport != NULL); |
779 | } |
780 | |
781 | // Initialize the public metadata. |
782 | // |
783 | // The debuggee already has a copy of the metadata in its process. |
784 | // If we OpenScope on file as read-only, the OS file-system will share our metadata with the |
785 | // copy in the debuggee. This can be a major perf win. FX metadata can be over 8 MB+. |
786 | // OpenScopeOnMemory can't be shared b/c we allocate a buffer. |
787 | HRESULT CordbModule::InitPublicMetaDataFromFile() |
788 | { |
789 | INTERNAL_API_ENTRY(this->GetProcess()); |
790 | |
791 | // @dbgtodo metadata - In v3, we can't assume we have the same path namespace as the target (i.e. it could be |
792 | // a dump or remote), so we can't just try and open the file. Instead we have to rely on interfaces |
793 | // on the datatarget to map the metadata here. Note that this must also work for minidumps where the |
794 | // metadata isn't necessarily in the dump image. |
795 | |
796 | // Get filename. There are 2 filenames to choose from: |
797 | // - ngen (if applicable). |
798 | // - non-ngen (aka "normal"). |
799 | // By loading metadata out of the same OS file as loaded into the debuggee space, the OS can share those pages. |
800 | const WCHAR * szFullPathName = NULL; |
801 | bool fDebuggerLoadingNgen = false; |
802 | bool fDebuggeeLoadedNgen = false; |
803 | szFullPathName = GetNGenImagePath(); |
804 | |
805 | if(szFullPathName != NULL) |
806 | { |
807 | fDebuggeeLoadedNgen = true; |
808 | fDebuggerLoadingNgen = true; |
809 | |
810 | #ifndef FEATURE_PAL |
811 | // NGEN images are large and we shouldn't load them if they won't be shared, therefore fail the NGEN mapping and |
812 | // fallback to IL image if the debugger doesn't have the image loaded already. |
813 | // Its possible that the debugger would still load the NGEN image sometime in the future and we will miss a sharing |
814 | // opportunity. Its an acceptable loss from an imperfect heuristic. |
815 | if (NULL == WszGetModuleHandle(szFullPathName)) |
816 | #endif |
817 | { |
818 | szFullPathName = NULL; |
819 | fDebuggerLoadingNgen = false; |
820 | } |
821 | |
822 | } |
823 | |
824 | // If we don't have or decided not to load the NGEN image, check to see if IL image is available |
825 | if (!fDebuggerLoadingNgen) |
826 | { |
827 | szFullPathName = GetModulePath(); |
828 | } |
829 | |
830 | // If we are doing live debugging we shouldn't use metadata from an IL image because it doesn't match closely enough. |
831 | // In particular the RVAs for IL code headers are different between the two images which will cause all IL code and |
832 | // local var signature lookups to fail. With further work we could compensate for the RVAs by computing |
833 | // the image layout differences and adjusting the returned RVAs, but there may be other differences that need to be accounted |
834 | // for as well. If we did go that route we should do a binary diff across a variety of NGEN/IL image metadata blobs to |
835 | // get a concrete understanding of the format differences. |
836 | // |
837 | // This check should really be 'Are we OK with only getting the functionality level of mini-dump debugging?' but since we |
838 | // don't know the debugger's intent we guess whether or not we are doing dump debugging by checking if we are shimmed. Once |
839 | // the shim supports live debugging we should probably just stop automatically falling back to IL image and let the debugger |
840 | // decide via the ICorDebugMetadataLocator interface. |
841 | if(fDebuggeeLoadedNgen && !fDebuggerLoadingNgen && GetProcess()->GetShim()!=NULL) |
842 | { |
843 | // The IL image might be there, but we shouldn't use it for live debugging |
844 | return CORDBG_E_MISSING_METADATA; |
845 | } |
846 | |
847 | |
848 | // @dbgtodo metadata - This is really a CreateFile() call which we can't do. We must offload this to |
849 | // the data target for the dump-debugging scenarios. |
850 | // |
851 | // We're opening it as "read". If we QI for an IEmit interface (which we need for EnC), |
852 | // then the metadata engine will convert it to a "write" underneath us. |
853 | // We want "read" so that we can let the OS share the pages. |
854 | DWORD dwOpenFlags = 0; |
855 | |
856 | // If we know we're never going to need to write (i.e. never do EnC), then we should indicate |
857 | // that to metadata by telling it this interface will always be read-only. By passing read-only, |
858 | // the metadata library will then also share the VM space for the image when the same image is |
859 | // opened multiple times for multiple AppDomains. |
860 | // We don't currently have a way to tell absolutely whether this module will support EnC, but we |
861 | // know that NGen modules NEVER support EnC, and NGen is the common case that eats up a lot of VM. |
862 | // So we'll use the heuristic of opening the metadata for all ngen images as read-only. Ideally |
863 | // we'd go even further here (perhaps even changing metadata to map only the region of the file it |
864 | // needs). |
865 | if (fDebuggerLoadingNgen) |
866 | { |
867 | dwOpenFlags = ofReadOnly | ofTrustedImage; |
868 | } |
869 | |
870 | // This is the only place we ever validate that the file matches, because we're potentially |
871 | // loading the file from disk ourselves. We're doing this without giving the debugger a chance |
872 | // to do anything. We should never load a file that isn't an exact match. |
873 | return InitPublicMetaDataFromFile(szFullPathName, dwOpenFlags, true); |
874 | } |
875 | |
876 | // We should only ever validate we have the correct file if it's a file we found ourselves. |
877 | // We allow the debugger to choose their own policy with regard to using metadata from the IL image |
878 | // when debugging an NI, or even intentionally using mismatched metadata if they like. |
879 | HRESULT CordbModule::InitPublicMetaDataFromFile(const WCHAR * pszFullPathName, |
880 | DWORD dwOpenFlags, |
881 | bool validateFileInfo) |
882 | { |
883 | #ifdef FEATURE_PAL |
884 | // UNIXTODO: Some intricate details of file mapping don't work on Linux as on Windows. |
885 | // We have to revisit this and try to fix it for POSIX system. |
886 | return E_FAIL; |
887 | #else |
888 | if (validateFileInfo) |
889 | { |
890 | // Check that we've got the right file to target. |
891 | // There's nothing to prevent some other file being copied in for live, and with |
892 | // dump debugging there's nothing to say that we're not on another machine where a different |
893 | // file is at the same path. |
894 | // If we can't validate we have a hold of the correct file, we should not open it. |
895 | // We will fall back on asking the debugger to get us the correct file, or copying |
896 | // target memory back to the debugger. |
897 | DWORD dwImageTimeStamp = 0; |
898 | DWORD dwImageSize = 0; |
899 | bool isNGEN = false; // unused |
900 | StringCopyHolder filePath; |
901 | |
902 | |
903 | _ASSERTE(!m_vmPEFile.IsNull()); |
904 | // MetaData lookup favors the NGEN image, which is what we want here. |
905 | if (!this->GetProcess()->GetDAC()->GetMetaDataFileInfoFromPEFile(m_vmPEFile, |
906 | dwImageTimeStamp, |
907 | dwImageSize, |
908 | isNGEN, |
909 | &filePath)) |
910 | { |
911 | LOG((LF_CORDB,LL_WARNING, "CM::IM: Couldn't get metadata info for file \"%s\"\n" , pszFullPathName)); |
912 | return CORDBG_E_MISSING_METADATA; |
913 | } |
914 | |
915 | // If the timestamp and size don't match, then this is the wrong file! |
916 | // Map the file and check them. |
917 | HandleHolder hMDFile = WszCreateFile(pszFullPathName, |
918 | GENERIC_READ, |
919 | FILE_SHARE_READ, |
920 | NULL, // default security descriptor |
921 | OPEN_EXISTING, |
922 | FILE_ATTRIBUTE_NORMAL, |
923 | NULL); |
924 | |
925 | if (hMDFile == INVALID_HANDLE_VALUE) |
926 | { |
927 | LOG((LF_CORDB,LL_WARNING, "CM::IM: Couldn't open file \"%s\" (GLE=%x)\n" , pszFullPathName, GetLastError())); |
928 | return CORDBG_E_MISSING_METADATA; |
929 | } |
930 | |
931 | DWORD dwFileHigh = 0; |
932 | DWORD dwFileLow = GetFileSize(hMDFile, &dwFileHigh); |
933 | if (dwFileLow == INVALID_FILE_SIZE) |
934 | { |
935 | LOG((LF_CORDB,LL_WARNING, "CM::IM: File \"%s\" had invalid size.\n" , pszFullPathName)); |
936 | return CORDBG_E_MISSING_METADATA; |
937 | } |
938 | |
939 | _ASSERTE(dwFileHigh == 0); |
940 | |
941 | HandleHolder hMap = WszCreateFileMapping(hMDFile, NULL, PAGE_READONLY, dwFileHigh, dwFileLow, NULL); |
942 | if (hMap == NULL) |
943 | { |
944 | LOG((LF_CORDB,LL_WARNING, "CM::IM: Couldn't create mapping of file \"%s\" (GLE=%x)\n" , pszFullPathName, GetLastError())); |
945 | return CORDBG_E_MISSING_METADATA; |
946 | } |
947 | |
948 | MapViewHolder hMapView = MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0); |
949 | if (hMapView == NULL) |
950 | { |
951 | LOG((LF_CORDB,LL_WARNING, "CM::IM: Couldn't map view of file \"%s\" (GLE=%x)\n" , pszFullPathName, GetLastError())); |
952 | return CORDBG_E_MISSING_METADATA; |
953 | } |
954 | |
955 | // Mapped as flat file, have PEDecoder go find what we want. |
956 | PEDecoder pedecoder(hMapView, (COUNT_T)dwFileLow); |
957 | |
958 | if (!pedecoder.HasNTHeaders()) |
959 | { |
960 | LOG((LF_CORDB,LL_WARNING, "CM::IM: \"%s\" did not have PE headers!\n" , pszFullPathName)); |
961 | return CORDBG_E_MISSING_METADATA; |
962 | } |
963 | |
964 | if ((dwImageSize != pedecoder.GetVirtualSize()) || |
965 | (dwImageTimeStamp != pedecoder.GetTimeDateStamp())) |
966 | { |
967 | LOG((LF_CORDB,LL_WARNING, "CM::IM: Validation of \"%s\" failed. " |
968 | "Expected size=%x, Expected timestamp=%x, Actual size=%x, Actual timestamp=%x\n" , |
969 | pszFullPathName, |
970 | pedecoder.GetVirtualSize(), |
971 | pedecoder.GetTimeDateStamp(), |
972 | dwImageSize, |
973 | dwImageTimeStamp)); |
974 | return CORDBG_E_MISSING_METADATA; |
975 | } |
976 | |
977 | // All checks passed, go ahead and load this file for real. |
978 | } |
979 | |
980 | // Get metadata Dispenser. |
981 | IMetaDataDispenserEx * pDisp = GetProcess()->GetDispenser(); |
982 | |
983 | HRESULT hr = pDisp->OpenScope(pszFullPathName, dwOpenFlags, IID_IMetaDataImport, (IUnknown**)&m_pIMImport); |
984 | _ASSERTE(SUCCEEDED(hr) == (m_pIMImport != NULL)); |
985 | |
986 | if (FAILED(hr)) |
987 | { |
988 | // This should never happen in normal scenarios. It could happen if someone has renamed |
989 | // the assembly after it was opened by the debugee process, but this should be rare enough |
990 | // that we don't mind taking the perf. hit and loading from memory. |
991 | // @dbgtodo metadata - would this happen in the shadow-copy scenario? |
992 | LOG((LF_CORDB,LL_WARNING, "CM::IM: Couldn't open metadata in file \"%s\" (hr=%x)\n" , pszFullPathName, hr)); |
993 | } |
994 | |
995 | return hr; |
996 | #endif // FEATURE_PAL |
997 | } |
998 | |
999 | //--------------------------------------------------------------------------------------- |
1000 | // Initialize the public metadata. |
1001 | // |
1002 | // Arguments: |
1003 | // buffer - valid buffer into target containing the metadata. |
1004 | // |
1005 | // Assumptions: |
1006 | // This is an internal function which should only be called once to initialize the |
1007 | // metadata. Future attempts to re-initialize (in dynamic cases) should call code:CordbModule::UpdatePublicMetaDataFromRemote |
1008 | // After the public metadata is initialized, initialize private metadata via code:CordbModule::UpdateInternalMetaData |
1009 | // |
1010 | void CordbModule::InitPublicMetaData(TargetBuffer buffer) |
1011 | { |
1012 | CONTRACTL |
1013 | { |
1014 | THROWS; |
1015 | } |
1016 | CONTRACTL_END; |
1017 | |
1018 | INTERNAL_API_ENTRY(this->GetProcess()); |
1019 | LOG((LF_CORDB,LL_INFO100000, "CM::IPM: initing with remote buffer 0x%p length 0x%x\n" , |
1020 | CORDB_ADDRESS_TO_PTR(buffer.pAddress), buffer.cbSize)); |
1021 | ULONG nMetaDataSize = buffer.cbSize; |
1022 | |
1023 | if (nMetaDataSize == 0) |
1024 | { |
1025 | // We should always have metadata, and if we don't, we want to know. |
1026 | // @dbgtodo metadata - we know metadata from dynamic modules doesn't work in V3 |
1027 | // (non-shim) cases yet. |
1028 | // But our caller should already have handled that case. |
1029 | SIMPLIFYING_ASSUMPTION(!"Error: missing the metadata" ); |
1030 | return; |
1031 | } |
1032 | |
1033 | HRESULT hr = S_OK; |
1034 | |
1035 | // Get metadata Dispenser. |
1036 | IMetaDataDispenserEx * pDisp = GetProcess()->GetDispenser(); |
1037 | |
1038 | // copy it over from the remote process |
1039 | |
1040 | CoTaskMemHolder<VOID> pMetaDataCopy; |
1041 | CopyRemoteMetaData(buffer, pMetaDataCopy.GetAddr()); |
1042 | |
1043 | |
1044 | // |
1045 | // Setup our metadata import object, m_pIMImport |
1046 | // |
1047 | |
1048 | // Save the old mode for restoration |
1049 | VARIANT valueOld; |
1050 | hr = pDisp->GetOption(MetaDataSetUpdate, &valueOld); |
1051 | SIMPLIFYING_ASSUMPTION(!FAILED(hr)); |
1052 | |
1053 | // Set R/W mode so that we can update the metadata when |
1054 | // we do EnC operations. |
1055 | VARIANT valueRW; |
1056 | V_VT(&valueRW) = VT_UI4; |
1057 | V_I4(&valueRW) = MDUpdateFull; |
1058 | hr = pDisp->SetOption(MetaDataSetUpdate, &valueRW); |
1059 | SIMPLIFYING_ASSUMPTION(!FAILED(hr)); |
1060 | |
1061 | hr = pDisp->OpenScopeOnMemory(pMetaDataCopy, |
1062 | nMetaDataSize, |
1063 | ofTakeOwnership, |
1064 | IID_IMetaDataImport, |
1065 | reinterpret_cast<IUnknown**>( &m_pIMImport )); |
1066 | |
1067 | // MetaData has taken ownership -don't free the memory |
1068 | pMetaDataCopy.SuppressRelease(); |
1069 | |
1070 | // Immediately restore the old setting. |
1071 | HRESULT hrRestore = pDisp->SetOption(MetaDataSetUpdate, &valueOld); |
1072 | SIMPLIFYING_ASSUMPTION(!FAILED(hrRestore)); |
1073 | |
1074 | // Throw on errors. |
1075 | IfFailThrow(hr); |
1076 | IfFailThrow(hrRestore); |
1077 | |
1078 | // Done! |
1079 | } |
1080 | |
1081 | //--------------------------------------------------------------------------------------- |
1082 | // Update public MetaData by copying it from the target and updating our IMetaDataImport object. |
1083 | // |
1084 | // Arguments: |
1085 | // buffer - buffer into target space containing metadata blob |
1086 | // |
1087 | // Notes: |
1088 | // Useful for additional class-loads into a dynamic module. A new class means new metadata |
1089 | // and so we need to update the RS metadata to stay in sync with the left-side. |
1090 | // |
1091 | // This will call code:CordbModule::CopyRemoteMetaData to copy the remote buffer locally, and then |
1092 | // it can OpenScopeOnMemory(). |
1093 | // |
1094 | void CordbModule::UpdatePublicMetaDataFromRemote(TargetBuffer bufferRemoteMetaData) |
1095 | { |
1096 | CONTRACTL |
1097 | { |
1098 | // @dbgtodo metadata - think about the error semantics here. These fails during dispatching an event; so |
1099 | // address this during event pipeline. |
1100 | THROWS; |
1101 | } |
1102 | CONTRACTL_END; |
1103 | |
1104 | if (bufferRemoteMetaData.IsEmpty()) |
1105 | { |
1106 | ThrowHR(E_INVALIDARG); |
1107 | } |
1108 | |
1109 | INTERNAL_API_ENTRY(this->GetProcess()); // |
1110 | LOG((LF_CORDB,LL_INFO100000, "CM::UPMFR: updating with remote buffer 0x%p length 0x%x\n" , |
1111 | CORDB_ADDRESS_TO_PTR(bufferRemoteMetaData.pAddress), bufferRemoteMetaData.cbSize)); |
1112 | // We're re-initializing existing metadata. |
1113 | _ASSERTE(m_pIMImport != NULL); |
1114 | |
1115 | |
1116 | HRESULT hr = S_OK; |
1117 | |
1118 | ULONG dwMetaDataSize = bufferRemoteMetaData.cbSize; |
1119 | |
1120 | // First copy it from the remote process |
1121 | CoTaskMemHolder<VOID> pLocalMetaDataPtr; |
1122 | CopyRemoteMetaData(bufferRemoteMetaData, pLocalMetaDataPtr.GetAddr()); |
1123 | |
1124 | IMetaDataDispenserEx * pDisp = GetProcess()->GetDispenser(); |
1125 | _ASSERTE(pDisp != NULL); // throws on error. |
1126 | |
1127 | LOG((LF_CORDB,LL_INFO100000, "CM::RI: converting to new metadata\n" )); |
1128 | |
1129 | // now verify that the metadata is valid by opening a temporary scope on the memory |
1130 | { |
1131 | ReleaseHolder<IMetaDataImport> pIMImport; |
1132 | hr = pDisp->OpenScopeOnMemory(pLocalMetaDataPtr, |
1133 | dwMetaDataSize, |
1134 | 0, |
1135 | IID_IMetaDataImport, |
1136 | (IUnknown**)&pIMImport); |
1137 | IfFailThrow(hr); |
1138 | } |
1139 | |
1140 | // We reopen on an existing instance, not create a new instance. |
1141 | _ASSERTE(m_pIMImport != NULL); // |
1142 | |
1143 | // Now tell our current IMetaDataImport object to re-initialize by swapping in the new memory block. |
1144 | // This allows us to keep manipulating metadata objects on other threads without crashing. |
1145 | // This will also invalidate an existing associated Internal MetaData. |
1146 | hr = ReOpenMetaDataWithMemoryEx(m_pIMImport, pLocalMetaDataPtr, dwMetaDataSize, ofTakeOwnership ); |
1147 | IfFailThrow(hr); |
1148 | |
1149 | // Success. MetaData now owns the metadata memory |
1150 | pLocalMetaDataPtr.SuppressRelease(); |
1151 | } |
1152 | |
1153 | //--------------------------------------------------------------------------------------- |
1154 | // Copy metadata memory from the remote process into a newly allocated local buffer. |
1155 | // |
1156 | // Arguments: |
1157 | // pRemoteMetaDataPtr - pointer to remote buffer |
1158 | // dwMetaDataSize - size of buffer. |
1159 | // pLocalBuffer - holder to get local buffer. |
1160 | // |
1161 | // Returns: |
1162 | // pLocalBuffer may be allocated. |
1163 | // Throws on error (pLocalBuffer may contain garbage). |
1164 | // Else if successful, pLocalBuffer contains local copy of metadata. |
1165 | // |
1166 | // Notes: |
1167 | // This can copy metadata out for the dynamic case or the normal case. |
1168 | // Uses an allocator (CoTaskMemHolder) that lets us hand off the memory to the metadata. |
1169 | void CordbModule::CopyRemoteMetaData( |
1170 | TargetBuffer buffer, |
1171 | CoTaskMemHolder<VOID> * pLocalBuffer) |
1172 | { |
1173 | CONTRACTL |
1174 | { |
1175 | THROWS; |
1176 | } |
1177 | CONTRACTL_END; |
1178 | |
1179 | _ASSERTE(pLocalBuffer != NULL); |
1180 | _ASSERTE(!buffer.IsEmpty()); |
1181 | |
1182 | // Allocate space for the local copy of the metadata |
1183 | // No need to zero out the memory since we'll fill it all here. |
1184 | LPVOID pRawBuffer = CoTaskMemAlloc(buffer.cbSize); |
1185 | if (pRawBuffer == NULL) |
1186 | { |
1187 | ThrowOutOfMemory(); |
1188 | } |
1189 | |
1190 | pLocalBuffer->Assign(pRawBuffer); |
1191 | |
1192 | |
1193 | |
1194 | // Copy the metadata from the left side |
1195 | GetProcess()->SafeReadBuffer(buffer, (BYTE *)pRawBuffer); |
1196 | |
1197 | return; |
1198 | } |
1199 | |
1200 | HRESULT CordbModule::QueryInterface(REFIID id, void **pInterface) |
1201 | { |
1202 | if (id == IID_ICorDebugModule) |
1203 | { |
1204 | *pInterface = static_cast<ICorDebugModule*>(this); |
1205 | } |
1206 | else if (id == IID_ICorDebugModule2) |
1207 | { |
1208 | *pInterface = static_cast<ICorDebugModule2*>(this); |
1209 | } |
1210 | else if (id == IID_ICorDebugModule3) |
1211 | { |
1212 | *pInterface = static_cast<ICorDebugModule3*>(this); |
1213 | } |
1214 | else if (id == IID_IUnknown) |
1215 | { |
1216 | *pInterface = static_cast<IUnknown*>(static_cast<ICorDebugModule*>(this)); |
1217 | } |
1218 | else |
1219 | { |
1220 | *pInterface = NULL; |
1221 | return E_NOINTERFACE; |
1222 | } |
1223 | |
1224 | ExternalAddRef(); |
1225 | return S_OK; |
1226 | } |
1227 | |
1228 | HRESULT CordbModule::GetProcess(ICorDebugProcess **ppProcess) |
1229 | { |
1230 | PUBLIC_API_ENTRY(this); |
1231 | FAIL_IF_NEUTERED(this); |
1232 | VALIDATE_POINTER_TO_OBJECT(ppProcess, ICorDebugProcess **); |
1233 | |
1234 | *ppProcess = static_cast<ICorDebugProcess*> (GetProcess()); |
1235 | GetProcess()->ExternalAddRef(); |
1236 | |
1237 | return S_OK; |
1238 | } |
1239 | |
1240 | HRESULT CordbModule::GetBaseAddress(CORDB_ADDRESS *pAddress) |
1241 | { |
1242 | PUBLIC_API_ENTRY(this); |
1243 | FAIL_IF_NEUTERED(this); |
1244 | VALIDATE_POINTER_TO_OBJECT(pAddress, CORDB_ADDRESS *); |
1245 | |
1246 | *pAddress = m_PEBuffer.pAddress; |
1247 | return S_OK; |
1248 | } |
1249 | |
1250 | HRESULT CordbModule::GetAssembly(ICorDebugAssembly **ppAssembly) |
1251 | { |
1252 | PUBLIC_API_ENTRY(this); |
1253 | FAIL_IF_NEUTERED(this); |
1254 | VALIDATE_POINTER_TO_OBJECT(ppAssembly, ICorDebugAssembly **); |
1255 | |
1256 | *ppAssembly = static_cast<ICorDebugAssembly *> (m_pAssembly); |
1257 | if (m_pAssembly != NULL) |
1258 | { |
1259 | m_pAssembly->ExternalAddRef(); |
1260 | } |
1261 | |
1262 | return S_OK; |
1263 | } |
1264 | |
1265 | // Public implementation of ICorDebugModule::GetName, |
1266 | // wrapper around code:GetNameWorker (which throws). |
1267 | HRESULT CordbModule::GetName(ULONG32 cchName, ULONG32 *pcchName, __out_ecount_part_opt(cchName, *pcchName) WCHAR szName[]) |
1268 | { |
1269 | HRESULT hr = S_OK; |
1270 | PUBLIC_API_BEGIN(this) |
1271 | { |
1272 | EX_TRY |
1273 | { |
1274 | hr = GetNameWorker(cchName, pcchName, szName); |
1275 | } |
1276 | EX_CATCH_HRESULT(hr); |
1277 | |
1278 | // GetNameWorker can use metadata. If it fails due to missing metadata, or if we fail to find expected |
1279 | // target memory (dump debugging) then we should fall back to getting the file name without metadata. |
1280 | if ((hr == CORDBG_E_MISSING_METADATA) || |
1281 | (hr == CORDBG_E_READVIRTUAL_FAILURE) || |
1282 | (hr == HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY))) |
1283 | { |
1284 | DWORD dwImageTimeStamp = 0; // unused |
1285 | DWORD dwImageSize = 0; // unused |
1286 | bool isNGEN = false; |
1287 | StringCopyHolder filePath; |
1288 | |
1289 | _ASSERTE(!m_vmPEFile.IsNull()); |
1290 | if (this->GetProcess()->GetDAC()->GetMetaDataFileInfoFromPEFile(m_vmPEFile, |
1291 | dwImageTimeStamp, |
1292 | dwImageSize, |
1293 | isNGEN, |
1294 | &filePath)) |
1295 | { |
1296 | _ASSERTE(filePath.IsSet()); |
1297 | |
1298 | // Unfortunately, metadata lookup preferentially takes the ngen image - so in this case, |
1299 | // we need to go back and get the IL image's name instead. |
1300 | if ((isNGEN) && |
1301 | (this->GetProcess()->GetDAC()->GetILImageInfoFromNgenPEFile(m_vmPEFile, |
1302 | dwImageTimeStamp, |
1303 | dwImageSize, |
1304 | &filePath))) |
1305 | { |
1306 | _ASSERTE(filePath.IsSet()); |
1307 | } |
1308 | |
1309 | hr = CopyOutString(filePath, cchName, pcchName, szName); |
1310 | } |
1311 | } |
1312 | } |
1313 | PUBLIC_API_END(hr); |
1314 | |
1315 | return hr; |
1316 | } |
1317 | |
1318 | //--------------------------------------------------------------------------------------- |
1319 | // Gets the module pretty name (may be filename or faked up name) |
1320 | // |
1321 | // Arguments: |
1322 | // cchName - count of characters in the szName buffer on input. |
1323 | // *pcchName - Optional Out parameter, which gets set to the fully requested size |
1324 | // (not just how many characters are written). |
1325 | // szName - buffer to get name. |
1326 | // |
1327 | // Returns: |
1328 | // S_OK on success. |
1329 | // S_FALSE if we fabricate the name. |
1330 | // Return failing HR (on common errors) or Throw on exceptional errors. |
1331 | // |
1332 | // Note: |
1333 | // Filename isn't necessarily the same as the module name in the metadata. |
1334 | // |
1335 | HRESULT CordbModule::GetNameWorker(ULONG32 cchName, ULONG32 *pcchName, __out_ecount_part_opt(cchName, *pcchName) WCHAR szName[]) |
1336 | { |
1337 | CONTRACTL |
1338 | { |
1339 | THROWS; |
1340 | } |
1341 | CONTRACTL_END; |
1342 | HRESULT hr = S_OK; |
1343 | const WCHAR * szTempName = NULL; |
1344 | |
1345 | ALLOW_DATATARGET_MISSING_MEMORY( |
1346 | szTempName = GetModulePath(); |
1347 | ); |
1348 | |
1349 | #if defined(FEATURE_DBGIPC_TRANSPORT_DI) |
1350 | // To support VS when debugging remotely we act like the Compact Framework and return the assembly name |
1351 | // when asked for the name of an in-memory module. |
1352 | if (szTempName == NULL) |
1353 | { |
1354 | IMetaDataAssemblyImport *pAssemblyImport = NULL; |
1355 | if (SUCCEEDED(hr = GetMetaDataImporter()->QueryInterface(IID_IMetaDataAssemblyImport, (void**)&pAssemblyImport))) |
1356 | { |
1357 | mdAssembly mda = TokenFromRid(1, mdtAssembly); |
1358 | hr = pAssemblyImport->GetAssemblyProps(mda, // [IN] The Assembly for which to get the properties. |
1359 | NULL, // [OUT] Pointer to the Originator blob. |
1360 | NULL, // [OUT] Count of bytes in the Originator Blob. |
1361 | NULL, // [OUT] Hash Algorithm. |
1362 | szName, // [OUT] Buffer to fill with name. |
1363 | cchName, // [IN] Size of buffer in wide chars. |
1364 | (ULONG*)pcchName, // [OUT] Actual # of wide chars in name. |
1365 | NULL, // [OUT] Assembly MetaData. |
1366 | NULL); // [OUT] Flags. |
1367 | |
1368 | pAssemblyImport->Release(); |
1369 | |
1370 | return hr; |
1371 | } |
1372 | |
1373 | // reset hr |
1374 | hr = S_OK; |
1375 | } |
1376 | |
1377 | |
1378 | #endif // FEATURE_DBGIPC_TRANSPORT_DI |
1379 | |
1380 | |
1381 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
1382 | { |
1383 | StringCopyHolder buffer; |
1384 | // If the module has no file name, then we'll fabricate a fake name |
1385 | if (!szTempName) |
1386 | { |
1387 | // On MiniDumpNormal, if the debugger can't find the module then there's no way we will |
1388 | // find metadata. |
1389 | hr = HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY); |
1390 | |
1391 | // Tempting to use the metadata-scope name, but that's a regression from Whidbey. For manifest modules, |
1392 | // the metadata scope name is not initialized with the string the user supplied to create the |
1393 | // dynamic assembly. So we call into the runtime to use CLR heuristics to get a more accurate name. |
1394 | m_pProcess->GetDAC()->GetModuleSimpleName(m_vmModule, &buffer); |
1395 | _ASSERTE(buffer.IsSet()); |
1396 | szTempName = buffer; |
1397 | // Note that we considered returning S_FALSE for fabricated names like this, but that's a breaking |
1398 | // change from Whidbey that is known to trigger bugs in vS. If a debugger wants to differentiate |
1399 | // real path names from fake simple names, we'll just have to add a new API with the right semantics. |
1400 | } |
1401 | |
1402 | hr = CopyOutString(szTempName, cchName, pcchName, szName); |
1403 | } |
1404 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY |
1405 | |
1406 | return hr; |
1407 | } |
1408 | |
1409 | //--------------------------------------------------------------------------------------- |
1410 | // Gets actual name of loaded module. (no faked names) |
1411 | // |
1412 | // Returns: |
1413 | // string for full path to module name. This is a file that can be opened. |
1414 | // NULL if name is not available (such as in some dynamic module cases) |
1415 | // Throws if failed accessing target |
1416 | // |
1417 | // Notes: |
1418 | // We avoid using the method name "GetModuleFileName" because winbase.h #defines that |
1419 | // token (along with many others) to have an A or W suffix. |
1420 | const WCHAR * CordbModule::GetModulePath() |
1421 | { |
1422 | // Lazily initialize. Module filenames cannot change, and so once |
1423 | // we've retrieved this successfully, it's stored for good. |
1424 | if (!m_strModulePath.IsSet()) |
1425 | { |
1426 | IDacDbiInterface * pDac = m_pProcess->GetDAC(); // throws |
1427 | pDac->GetModulePath(m_vmModule, &m_strModulePath); // throws |
1428 | _ASSERTE(m_strModulePath.IsSet()); |
1429 | } |
1430 | |
1431 | if (m_strModulePath.IsEmpty()) |
1432 | { |
1433 | return NULL; // module has no filename |
1434 | } |
1435 | return m_strModulePath; |
1436 | } |
1437 | |
1438 | //--------------------------------------------------------------------------------------- |
1439 | // Get and caches ngen image path. |
1440 | // |
1441 | // Returns: |
1442 | // Null-terminated string to ngen image path. |
1443 | // NULL if there is no ngen filename (eg, file is not ngenned). |
1444 | // Throws on error (such as inability to read the path from the target). |
1445 | // |
1446 | // Notes: |
1447 | // This can be used to get the path to find metadata. For ngenned images, |
1448 | // the IL (and associated metadata) may not be loaded, so we may want to get the |
1449 | // metadata out of the ngen image. |
1450 | const WCHAR * CordbModule::GetNGenImagePath() |
1451 | { |
1452 | HRESULT hr = S_OK; |
1453 | EX_TRY |
1454 | { |
1455 | // Lazily initialize. Module filenames cannot change, and so once |
1456 | // we've retrieved this successfully, it's stored for good. |
1457 | if (!m_strNGenImagePath.IsSet()) |
1458 | { |
1459 | IDacDbiInterface * pDac = m_pProcess->GetDAC(); // throws |
1460 | BOOL fNonEmpty = pDac->GetModuleNGenPath(m_vmModule, &m_strNGenImagePath); // throws |
1461 | (void)fNonEmpty; //prevent "unused variable" error from GCC |
1462 | _ASSERTE(m_strNGenImagePath.IsSet() && (m_strNGenImagePath.IsEmpty() == !fNonEmpty)); |
1463 | } |
1464 | } |
1465 | EX_CATCH_HRESULT(hr); |
1466 | |
1467 | if (FAILED(hr) || |
1468 | m_strNGenImagePath == NULL || |
1469 | m_strNGenImagePath.IsEmpty()) |
1470 | { |
1471 | return NULL; // module has no ngen filename |
1472 | } |
1473 | return m_strNGenImagePath; |
1474 | } |
1475 | |
1476 | // Implementation of ICorDebugModule::EnableJITDebugging |
1477 | // See also code:CordbModule::SetJITCompilerFlags |
1478 | HRESULT CordbModule::EnableJITDebugging(BOOL bTrackJITInfo, BOOL bAllowJitOpts) |
1479 | { |
1480 | // Leftside will enforce that this is a valid time to change jit flags. |
1481 | // V1.0 behavior allowed setting these in the middle of a module's lifetime, which meant |
1482 | // that different methods throughout the module may have been jitted differently. |
1483 | // Since V2, this has to be set when the module is first loaded, before anything is jitted. |
1484 | |
1485 | PUBLIC_API_ENTRY(this); |
1486 | FAIL_IF_NEUTERED(this); |
1487 | |
1488 | DWORD dwFlags = CORDEBUG_JIT_DEFAULT; |
1489 | |
1490 | // Since V2, bTrackJITInfo is the default and cannot be turned off. |
1491 | if (!bAllowJitOpts) |
1492 | { |
1493 | dwFlags |= CORDEBUG_JIT_DISABLE_OPTIMIZATION; |
1494 | } |
1495 | return SetJITCompilerFlags(dwFlags); |
1496 | } |
1497 | |
1498 | HRESULT CordbModule::EnableClassLoadCallbacks(BOOL bClassLoadCallbacks) |
1499 | { |
1500 | PUBLIC_API_ENTRY(this); |
1501 | FAIL_IF_NEUTERED(this); |
1502 | ATT_ALLOW_LIVE_DO_STOPGO(GetProcess()); |
1503 | |
1504 | // You must receive ClassLoad callbacks for dynamic modules so that we can keep the metadata up-to-date on the Right |
1505 | // Side. Therefore, we refuse to turn them off for all dynamic modules (they were forced on when the module was |
1506 | // loaded on the Left Side.) |
1507 | if (m_fDynamic && !bClassLoadCallbacks) |
1508 | return E_INVALIDARG; |
1509 | |
1510 | if (m_vmDomainFile.IsNull()) |
1511 | return E_UNEXPECTED; |
1512 | |
1513 | // Send a Set Class Load Flag event to the left side. There is no need to wait for a response, and this can be |
1514 | // called whether or not the process is synchronized. |
1515 | CordbProcess *pProcess = GetProcess(); |
1516 | |
1517 | DebuggerIPCEvent event; |
1518 | pProcess->InitIPCEvent(&event, |
1519 | DB_IPCE_SET_CLASS_LOAD_FLAG, |
1520 | false, |
1521 | (GetAppDomain()->GetADToken())); |
1522 | event.SetClassLoad.vmDomainFile = this->m_vmDomainFile; |
1523 | event.SetClassLoad.flag = (bClassLoadCallbacks == TRUE); |
1524 | |
1525 | HRESULT hr = pProcess->m_cordb->SendIPCEvent(pProcess, &event, |
1526 | sizeof(DebuggerIPCEvent)); |
1527 | hr = WORST_HR(hr, event.hr); |
1528 | return hr; |
1529 | } |
1530 | |
1531 | //----------------------------------------------------------------------------- |
1532 | // Public implementation of ICorDebugModule::GetFunctionFromToken |
1533 | // Get the CordbFunction matches this token / module pair. |
1534 | // Each time a function is Enc-ed, it gets its own CordbFunction object. |
1535 | // This will return the latest EnC version of the function for this Module,Token pair. |
1536 | HRESULT CordbModule::GetFunctionFromToken(mdMethodDef token, |
1537 | ICorDebugFunction **ppFunction) |
1538 | { |
1539 | // This is not reentrant. DBI should call code:CordbModule::LookupOrCreateFunctionLatestVersion instead. |
1540 | PUBLIC_API_ENTRY(this); |
1541 | ATT_ALLOW_LIVE_DO_STOPGO(GetProcess()); // @todo - can this be RequiredStop? |
1542 | |
1543 | |
1544 | FAIL_IF_NEUTERED(this); |
1545 | VALIDATE_POINTER_TO_OBJECT(ppFunction, ICorDebugFunction **); |
1546 | |
1547 | HRESULT hr = S_OK; |
1548 | EX_TRY |
1549 | { |
1550 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); |
1551 | |
1552 | // Check token is valid. |
1553 | if ((token == mdMethodDefNil) || |
1554 | (!GetMetaDataImporter()->IsValidToken(token))) |
1555 | { |
1556 | ThrowHR(E_INVALIDARG); |
1557 | } |
1558 | |
1559 | CordbFunction * pFunction = LookupOrCreateFunctionLatestVersion(token); |
1560 | |
1561 | *ppFunction = static_cast<ICorDebugFunction*> (pFunction); |
1562 | pFunction->ExternalAddRef(); |
1563 | |
1564 | } |
1565 | EX_CATCH_HRESULT(hr); |
1566 | return hr; |
1567 | } |
1568 | |
1569 | HRESULT CordbModule::GetFunctionFromRVA(CORDB_ADDRESS rva, |
1570 | ICorDebugFunction **ppFunction) |
1571 | { |
1572 | PUBLIC_API_ENTRY(this); |
1573 | FAIL_IF_NEUTERED(this); |
1574 | VALIDATE_POINTER_TO_OBJECT(ppFunction, ICorDebugFunction **); |
1575 | |
1576 | return E_NOTIMPL; |
1577 | } |
1578 | |
1579 | HRESULT CordbModule::LookupClassByToken(mdTypeDef token, |
1580 | CordbClass **ppClass) |
1581 | { |
1582 | INTERNAL_API_ENTRY(this->GetProcess()); // |
1583 | FAIL_IF_NEUTERED(this); |
1584 | |
1585 | HRESULT hr = S_OK; |
1586 | EX_TRY // @dbgtodo exceptions - push this up |
1587 | { |
1588 | *ppClass = NULL; |
1589 | |
1590 | if ((token == mdTypeDefNil) || (TypeFromToken(token) != mdtTypeDef)) |
1591 | { |
1592 | ThrowHR(E_INVALIDARG); |
1593 | } |
1594 | |
1595 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); // @dbgtodo synchronization - Push this up |
1596 | |
1597 | CordbClass *pClass = m_classes.GetBase(token); |
1598 | if (pClass == NULL) |
1599 | { |
1600 | // Validate the token. |
1601 | if (!GetMetaDataImporter()->IsValidToken(token)) |
1602 | { |
1603 | ThrowHR(E_INVALIDARG); |
1604 | } |
1605 | |
1606 | RSInitHolder<CordbClass> pClassInit(new CordbClass(this, token)); |
1607 | pClass = pClassInit.TransferOwnershipToHash(&m_classes); |
1608 | } |
1609 | |
1610 | *ppClass = pClass; |
1611 | |
1612 | } |
1613 | EX_CATCH_HRESULT(hr); |
1614 | return hr; |
1615 | } |
1616 | |
1617 | HRESULT CordbModule::GetClassFromToken(mdTypeDef token, |
1618 | ICorDebugClass **ppClass) |
1619 | { |
1620 | PUBLIC_API_ENTRY(this); |
1621 | FAIL_IF_NEUTERED(this); |
1622 | ATT_ALLOW_LIVE_DO_STOPGO(this->GetProcess()); // @todo - could this be RequiredStopped? |
1623 | VALIDATE_POINTER_TO_OBJECT(ppClass, ICorDebugClass **); |
1624 | |
1625 | HRESULT hr = S_OK; |
1626 | EX_TRY |
1627 | { |
1628 | CordbClass *pClass = NULL; |
1629 | *ppClass = NULL; |
1630 | |
1631 | // Validate the token. |
1632 | if (!GetMetaDataImporter()->IsValidToken(token)) |
1633 | { |
1634 | ThrowHR(E_INVALIDARG); |
1635 | } |
1636 | |
1637 | hr = LookupClassByToken(token, &pClass); |
1638 | IfFailThrow(hr); |
1639 | |
1640 | *ppClass = static_cast<ICorDebugClass*> (pClass); |
1641 | pClass->ExternalAddRef(); |
1642 | } |
1643 | EX_CATCH_HRESULT(hr); |
1644 | return hr; |
1645 | } |
1646 | |
1647 | HRESULT CordbModule::CreateBreakpoint(ICorDebugModuleBreakpoint **ppBreakpoint) |
1648 | { |
1649 | PUBLIC_API_ENTRY(this); |
1650 | FAIL_IF_NEUTERED(this); |
1651 | VALIDATE_POINTER_TO_OBJECT(ppBreakpoint, ICorDebugModuleBreakpoint **); |
1652 | |
1653 | return E_NOTIMPL; |
1654 | } |
1655 | |
1656 | // |
1657 | // Return the token for the Module table entry for this object. The token |
1658 | // may then be passed to the meta data import api's. |
1659 | // |
1660 | HRESULT CordbModule::GetToken(mdModule *pToken) |
1661 | { |
1662 | PUBLIC_API_ENTRY(this); |
1663 | FAIL_IF_NEUTERED(this); |
1664 | VALIDATE_POINTER_TO_OBJECT(pToken, mdModule *); |
1665 | |
1666 | HRESULT hr = S_OK; |
1667 | EX_TRY |
1668 | { |
1669 | hr = GetMetaDataImporter()->GetModuleFromScope(pToken); |
1670 | IfFailThrow(hr); |
1671 | } |
1672 | EX_CATCH_HRESULT(hr); |
1673 | return hr; |
1674 | } |
1675 | |
1676 | |
1677 | // public implementation for ICorDebugModule::GetMetaDataInterface |
1678 | // Return a meta data interface pointer that can be used to examine the |
1679 | // meta data for this module. |
1680 | HRESULT CordbModule::GetMetaDataInterface(REFIID riid, IUnknown **ppObj) |
1681 | { |
1682 | PUBLIC_API_ENTRY(this); |
1683 | FAIL_IF_NEUTERED(this); |
1684 | VALIDATE_POINTER_TO_OBJECT(ppObj, IUnknown **); |
1685 | |
1686 | HRESULT hr = S_OK; |
1687 | EX_TRY |
1688 | { |
1689 | // QI the importer that we already have and return the result. |
1690 | hr = GetMetaDataImporter()->QueryInterface(riid, (void**)ppObj); |
1691 | IfFailThrow(hr); |
1692 | } |
1693 | EX_CATCH_HRESULT(hr); |
1694 | |
1695 | return hr; |
1696 | } |
1697 | |
1698 | //----------------------------------------------------------------------------- |
1699 | // LookupFunctionLatestVersion finds the latest cached version of an existing CordbFunction |
1700 | // in the given module. If the function doesn't exist, it returns NULL. |
1701 | // |
1702 | // Arguments: |
1703 | // funcMetaDataToken - methoddef token for function to lookup |
1704 | // |
1705 | // |
1706 | // Notes: |
1707 | // If no CordbFunction instance was cached, then this returns NULL. |
1708 | // use code:CordbModule::LookupOrCreateFunctionLatestVersion to do a lookup that will |
1709 | // populate the cache if needed. |
1710 | CordbFunction* CordbModule::LookupFunctionLatestVersion(mdMethodDef funcMetaDataToken) |
1711 | { |
1712 | INTERNAL_API_ENTRY(this); |
1713 | return m_functions.GetBase(funcMetaDataToken); |
1714 | } |
1715 | |
1716 | |
1717 | //----------------------------------------------------------------------------- |
1718 | // Lookup (or create) the CordbFunction for the latest EnC version. |
1719 | // |
1720 | // Arguments: |
1721 | // funcMetaDataToken - methoddef token for function to lookup |
1722 | // |
1723 | // Returns: |
1724 | // CordbFunction instance for that token. This will create an instance if needed, and so never returns null. |
1725 | // Throws on critical error. |
1726 | // |
1727 | // Notes: |
1728 | // This creates the latest EnC version. Use code:CordbModule::LookupOrCreateFunction to do an |
1729 | // enc-version aware function lookup. |
1730 | // |
1731 | CordbFunction* CordbModule::LookupOrCreateFunctionLatestVersion(mdMethodDef funcMetaDataToken) |
1732 | { |
1733 | INTERNAL_API_ENTRY(this); |
1734 | CordbFunction * pFunction = m_functions.GetBase(funcMetaDataToken); |
1735 | if (pFunction != NULL) |
1736 | { |
1737 | return pFunction; |
1738 | } |
1739 | |
1740 | // EnC adds each version to the hash. So if the hash lookup fails, then it must not be an EnC case, |
1741 | // and so we can use the default version number. |
1742 | return CreateFunction(funcMetaDataToken, CorDB_DEFAULT_ENC_FUNCTION_VERSION); |
1743 | } |
1744 | |
1745 | //----------------------------------------------------------------------------- |
1746 | // LookupOrCreateFunction finds an existing version of CordbFunction in the given module. |
1747 | // If the function doesn't exist, it creates it. |
1748 | // |
1749 | // The outgoing function is not yet fully inititalized. For eg, the Class field is not set. |
1750 | // However, ICorDebugFunction::GetClass() will check that and lazily initialize the field. |
1751 | // |
1752 | // Throws on error. |
1753 | // |
1754 | CordbFunction * CordbModule::LookupOrCreateFunction(mdMethodDef funcMetaDataToken, SIZE_T enCVersion) |
1755 | { |
1756 | INTERNAL_API_ENTRY(this); |
1757 | |
1758 | _ASSERTE(GetProcess()->ThreadHoldsProcessLock()); |
1759 | |
1760 | CordbFunction * pFunction = m_functions.GetBase(funcMetaDataToken); |
1761 | |
1762 | // special case non-existance as need to add to the hash table too |
1763 | if (pFunction == NULL) |
1764 | { |
1765 | // EnC adds each version to the hash. So if the hash lookup fails, |
1766 | // then it must not be an EnC case. |
1767 | return CreateFunction(funcMetaDataToken, enCVersion); |
1768 | } |
1769 | |
1770 | // linked list sorted with most recent version at front. Version numbers correspond |
1771 | // to actual edit count against the module, so version numbers not necessarily contiguous. |
1772 | // Any valid EnC version must already exist as we would have created it on the ApplyChanges |
1773 | for (CordbFunction *pf=pFunction; pf != NULL; pf = pf->GetPrevVersion()) |
1774 | { |
1775 | if (pf->GetEnCVersionNumber() == enCVersion) |
1776 | { |
1777 | return pf; |
1778 | } |
1779 | } |
1780 | |
1781 | _ASSERTE(!"Couldn't find EnC version of function\n" ); |
1782 | ThrowHR(E_FAIL); |
1783 | } |
1784 | |
1785 | HRESULT CordbModule::IsDynamic(BOOL *pDynamic) |
1786 | { |
1787 | PUBLIC_API_ENTRY(this); |
1788 | FAIL_IF_NEUTERED(this); |
1789 | VALIDATE_POINTER_TO_OBJECT(pDynamic, BOOL *); |
1790 | |
1791 | (*pDynamic) = m_fDynamic; |
1792 | |
1793 | return S_OK; |
1794 | } |
1795 | |
1796 | BOOL CordbModule::IsDynamic() |
1797 | { |
1798 | return m_fDynamic; |
1799 | } |
1800 | |
1801 | |
1802 | HRESULT CordbModule::IsInMemory(BOOL *pInMemory) |
1803 | { |
1804 | PUBLIC_API_ENTRY(this); |
1805 | FAIL_IF_NEUTERED(this); |
1806 | VALIDATE_POINTER_TO_OBJECT(pInMemory, BOOL *); |
1807 | |
1808 | (*pInMemory) = m_fInMemory; |
1809 | |
1810 | return S_OK; |
1811 | } |
1812 | |
1813 | HRESULT CordbModule::GetGlobalVariableValue(mdFieldDef fieldDef, |
1814 | ICorDebugValue **ppValue) |
1815 | { |
1816 | PUBLIC_API_ENTRY(this); |
1817 | FAIL_IF_NEUTERED(this); |
1818 | VALIDATE_POINTER_TO_OBJECT(ppValue, ICorDebugValue **); |
1819 | ATT_REQUIRE_STOPPED_MAY_FAIL(this->GetProcess()); |
1820 | |
1821 | HRESULT hr = S_OK; |
1822 | EX_TRY |
1823 | { |
1824 | |
1825 | if (m_pClass == NULL) |
1826 | { |
1827 | CordbClass * pGlobalClass = NULL; |
1828 | hr = LookupClassByToken(COR_GLOBAL_PARENT_TOKEN, &pGlobalClass); |
1829 | IfFailThrow(hr); |
1830 | |
1831 | m_pClass.Assign(pGlobalClass); |
1832 | _ASSERTE(m_pClass != NULL); |
1833 | } |
1834 | |
1835 | hr = m_pClass->GetStaticFieldValue(fieldDef, NULL, ppValue); |
1836 | IfFailThrow(hr); |
1837 | } |
1838 | EX_CATCH_HRESULT(hr); |
1839 | return hr; |
1840 | } |
1841 | |
1842 | |
1843 | |
1844 | // |
1845 | // CreateFunction creates a new function from the given information and |
1846 | // adds it to the module. |
1847 | // |
1848 | CordbFunction * CordbModule::CreateFunction(mdMethodDef funcMetaDataToken, SIZE_T enCVersion) |
1849 | { |
1850 | INTERNAL_API_ENTRY(this); |
1851 | |
1852 | // In EnC cases, the token may not yet be valid. We may be caching the CordbFunction |
1853 | // for a token for an added method before the metadata is updated on the RS. |
1854 | // We rely that our caller has done token validation. |
1855 | |
1856 | // Create a new CordbFunction object or throw. |
1857 | RSInitHolder<CordbFunction> pFunction(new CordbFunction(this, funcMetaDataToken, enCVersion)); // throws |
1858 | CordbFunction * pCopy = pFunction.TransferOwnershipToHash(&m_functions); |
1859 | return pCopy; |
1860 | } |
1861 | |
1862 | #ifdef EnC_SUPPORTED |
1863 | //--------------------------------------------------------------------------------------- |
1864 | // |
1865 | // Creates a new CordbFunction object to represent this new version of a function and |
1866 | // updates the module's function collection to mark this as the latest version. |
1867 | // |
1868 | // Arguments: |
1869 | // funcMetaDataToken - the functions methodDef token in this module |
1870 | // enCVerison - The new version number of this function |
1871 | // ppFunction - Output param for the new instance - optional |
1872 | // |
1873 | // Assumptions: |
1874 | // Assumes the specified version of this function doesn't already exist (i.e. enCVersion |
1875 | // is newer than all existing versions). |
1876 | // |
1877 | HRESULT CordbModule::UpdateFunction(mdMethodDef funcMetaDataToken, |
1878 | SIZE_T enCVersion, |
1879 | CordbFunction** ppFunction) |
1880 | { |
1881 | INTERNAL_API_ENTRY(this); |
1882 | if (ppFunction) |
1883 | *ppFunction = NULL; |
1884 | |
1885 | _ASSERTE(funcMetaDataToken); |
1886 | |
1887 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); |
1888 | |
1889 | // pOldVersion is the 2nd newest version |
1890 | CordbFunction* pOldVersion = LookupFunctionLatestVersion(funcMetaDataToken); |
1891 | |
1892 | // if don't have an old version, then create a default versioned one as will most likely |
1893 | // go looking for it later and easier to put it in now than have code to insert it later. |
1894 | if (!pOldVersion) |
1895 | { |
1896 | LOG((LF_ENC, LL_INFO10000, "CM::UF: adding %8.8x with version %d\n" , funcMetaDataToken, enCVersion)); |
1897 | HRESULT hr = S_OK; |
1898 | EX_TRY |
1899 | { |
1900 | pOldVersion = CreateFunction(funcMetaDataToken, CorDB_DEFAULT_ENC_FUNCTION_VERSION); |
1901 | } |
1902 | EX_CATCH_HRESULT(hr); |
1903 | if (FAILED(hr)) |
1904 | { |
1905 | return hr; |
1906 | } |
1907 | } |
1908 | |
1909 | // This method should not be called for versions that already exist |
1910 | _ASSERTE( enCVersion > pOldVersion->GetEnCVersionNumber()); |
1911 | |
1912 | LOG((LF_ENC, LL_INFO10000, "CM::UF: updating %8.8x with version %d\n" , funcMetaDataToken, enCVersion)); |
1913 | // Create a new function object. |
1914 | CordbFunction * pNewVersion = new (nothrow) CordbFunction(this, funcMetaDataToken, enCVersion); |
1915 | |
1916 | if (pNewVersion == NULL) |
1917 | return E_OUTOFMEMORY; |
1918 | |
1919 | // Chain the 2nd most recent version onto this instance (this will internal addref). |
1920 | pNewVersion->SetPrevVersion(pOldVersion); |
1921 | |
1922 | // Add the function to the Module's hash of all functions. |
1923 | HRESULT hr = m_functions.SwapBase(pOldVersion, pNewVersion); |
1924 | |
1925 | if (FAILED(hr)) |
1926 | { |
1927 | delete pNewVersion; |
1928 | return hr; |
1929 | } |
1930 | |
1931 | // Do cleanup for function which is no longer the latest version |
1932 | pNewVersion->GetPrevVersion()->MakeOld(); |
1933 | |
1934 | if (ppFunction) |
1935 | *ppFunction = pNewVersion; |
1936 | |
1937 | return hr; |
1938 | } |
1939 | #endif // EnC_SUPPORTED |
1940 | |
1941 | |
1942 | HRESULT CordbModule::LookupOrCreateClass(mdTypeDef classMetaDataToken,CordbClass** ppClass) |
1943 | { |
1944 | INTERNAL_API_ENTRY(this); |
1945 | FAIL_IF_NEUTERED(this); |
1946 | |
1947 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); // @dbgtodo exceptions synchronization- |
1948 | // Push this lock up, convert to exceptions. |
1949 | |
1950 | HRESULT hr = S_OK; |
1951 | *ppClass = LookupClass(classMetaDataToken); |
1952 | if (*ppClass == NULL) |
1953 | { |
1954 | hr = CreateClass(classMetaDataToken,ppClass); |
1955 | if (!SUCCEEDED(hr)) |
1956 | { |
1957 | return hr; |
1958 | } |
1959 | _ASSERTE(*ppClass != NULL); |
1960 | } |
1961 | return hr; |
1962 | } |
1963 | |
1964 | // |
1965 | // LookupClass finds an existing CordbClass in the given module. |
1966 | // If the class doesn't exist, it returns NULL. |
1967 | // |
1968 | CordbClass* CordbModule::LookupClass(mdTypeDef classMetaDataToken) |
1969 | { |
1970 | INTERNAL_API_ENTRY(this); |
1971 | _ASSERTE(GetProcess()->ThreadHoldsProcessLock()); |
1972 | return m_classes.GetBase(classMetaDataToken); |
1973 | } |
1974 | |
1975 | // |
1976 | // CreateClass creates a new class from the given information and |
1977 | // adds it to the module. |
1978 | // |
1979 | HRESULT CordbModule::CreateClass(mdTypeDef classMetaDataToken, |
1980 | CordbClass** ppClass) |
1981 | { |
1982 | INTERNAL_API_ENTRY(this); |
1983 | FAIL_IF_NEUTERED(this); |
1984 | |
1985 | _ASSERTE(GetProcess()->ThreadHoldsProcessLock()); |
1986 | |
1987 | CordbClass* pClass = new (nothrow) CordbClass(this, classMetaDataToken); |
1988 | |
1989 | if (pClass == NULL) |
1990 | return E_OUTOFMEMORY; |
1991 | |
1992 | HRESULT hr = m_classes.AddBase(pClass); |
1993 | |
1994 | if (SUCCEEDED(hr)) |
1995 | *ppClass = pClass; |
1996 | else |
1997 | delete pClass; |
1998 | |
1999 | if (classMetaDataToken == COR_GLOBAL_PARENT_TOKEN) |
2000 | { |
2001 | _ASSERTE( m_pClass == NULL ); //redundant create |
2002 | m_pClass.Assign(pClass); |
2003 | } |
2004 | |
2005 | return hr; |
2006 | } |
2007 | |
2008 | |
2009 | // Resolve a type-ref from this module to a CordbClass |
2010 | // |
2011 | // Arguments: |
2012 | // token - a Type Ref in this module's scope. |
2013 | // ppClass - out parameter to get the class we resolve to. |
2014 | // |
2015 | // Returns: |
2016 | // S_OK on success. |
2017 | // CORDBG_E_CLASS_NOT_LOADED is the TypeRef is not yet resolved because the type it will refer |
2018 | // to is not yet loaded. |
2019 | // |
2020 | // Notes: |
2021 | // In general, a TypeRef refers to a type in another module. (Although as a corner case, it could |
2022 | // refer to this module too). This resolves a TypeRef within the current module's scope to a |
2023 | // (TypeDef, metadata scope), which is in turn encapsulated as a CordbClass. |
2024 | // |
2025 | // A TypeRef has a resolution scope (ModuleRef or AssemblyRef) and string name for the type |
2026 | // within that scope. Resolving means: |
2027 | // 1. Determining the actual metadata scope loaded for the resolution scope. |
2028 | // See also code:CordbModule::ResolveAssemblyInternal |
2029 | // If the resolved module hasn't been loaded yet, the resolution will fail. |
2030 | // 2. Doing a string lookup of the TypeRef's name within that resolved scope to find the TypeDef. |
2031 | // 3. Returning the (resolved scope, TypeDef) pair. |
2032 | // |
2033 | HRESULT CordbModule::ResolveTypeRef(mdTypeRef token, CordbClass **ppClass) |
2034 | { |
2035 | FAIL_IF_NEUTERED(this); |
2036 | INTERNAL_SYNC_API_ENTRY(GetProcess()); // |
2037 | |
2038 | CordbProcess * pProcess = GetProcess(); |
2039 | |
2040 | _ASSERTE((pProcess->GetShim() == NULL) || pProcess->GetSynchronized()); |
2041 | |
2042 | |
2043 | if ((token == mdTypeRefNil) || (TypeFromToken(token) != mdtTypeRef)) |
2044 | { |
2045 | return E_INVALIDARG; |
2046 | } |
2047 | |
2048 | if (m_vmDomainFile.IsNull() || m_pAppDomain == NULL) |
2049 | { |
2050 | return E_UNEXPECTED; |
2051 | } |
2052 | |
2053 | HRESULT hr = S_OK; |
2054 | *ppClass = NULL; |
2055 | EX_TRY |
2056 | { |
2057 | TypeRefData inData = {m_vmDomainFile, token}; |
2058 | TypeRefData outData; |
2059 | |
2060 | { |
2061 | RSLockHolder lockHolder(pProcess->GetProcessLock()); |
2062 | pProcess->GetDAC()->ResolveTypeReference(&inData, &outData); |
2063 | } |
2064 | |
2065 | CordbModule * pModule = m_pAppDomain->LookupOrCreateModule(outData.vmDomainFile); |
2066 | IfFailThrow(pModule->LookupClassByToken(outData.typeToken, ppClass)); |
2067 | } |
2068 | EX_CATCH_HRESULT(hr); |
2069 | |
2070 | return hr; |
2071 | |
2072 | } // CordbModule::ResolveTypeRef |
2073 | |
2074 | // Resolve a type ref or def to a CordbClass |
2075 | // |
2076 | // Arguments: |
2077 | // token - a mdTypeDef or mdTypeRef in this module's scope to be resolved |
2078 | // ppClass - out parameter to get the CordbClass for this type |
2079 | // |
2080 | // Notes: |
2081 | // See code:CordbModule::ResolveTypeRef for more details. |
2082 | HRESULT CordbModule::ResolveTypeRefOrDef(mdToken token, CordbClass **ppClass) |
2083 | { |
2084 | FAIL_IF_NEUTERED(this); |
2085 | INTERNAL_SYNC_API_ENTRY(this->GetProcess()); // |
2086 | |
2087 | if ((token == mdTypeRefNil) || |
2088 | (TypeFromToken(token) != mdtTypeRef && TypeFromToken(token) != mdtTypeDef)) |
2089 | return E_INVALIDARG; |
2090 | |
2091 | if (TypeFromToken(token)==mdtTypeRef) |
2092 | { |
2093 | // It's a type-ref. That means the type is defined in another module. |
2094 | // That other module is determined at runtime by Fusion / Loader policy. So we need to |
2095 | // ultimately ask the runtime which module was actually loaded. |
2096 | return ( ResolveTypeRef(token, ppClass) ); |
2097 | } |
2098 | else |
2099 | { |
2100 | // It's a type-def. This is the easy case because the type is defined in this same module. |
2101 | return ( LookupClassByToken(token, ppClass) ); |
2102 | } |
2103 | |
2104 | } |
2105 | |
2106 | // |
2107 | // GetSize returns the size of the module. |
2108 | // |
2109 | HRESULT CordbModule::GetSize(ULONG32 *pcBytes) |
2110 | { |
2111 | PUBLIC_API_ENTRY(this); |
2112 | FAIL_IF_NEUTERED(this); |
2113 | VALIDATE_POINTER_TO_OBJECT(pcBytes, ULONG32 *); |
2114 | |
2115 | *pcBytes = m_PEBuffer.cbSize; |
2116 | |
2117 | return S_OK; |
2118 | } |
2119 | |
2120 | CordbAssembly *CordbModule::GetCordbAssembly() |
2121 | { |
2122 | INTERNAL_API_ENTRY(this); |
2123 | return m_pAssembly; |
2124 | } |
2125 | |
2126 | |
2127 | // This is legacy from the aborted V1 EnC attempt - not used in V2 EnC support |
2128 | HRESULT CordbModule::GetEditAndContinueSnapshot( |
2129 | ICorDebugEditAndContinueSnapshot **ppEditAndContinueSnapshot) |
2130 | { |
2131 | return E_NOTIMPL; |
2132 | } |
2133 | |
2134 | |
2135 | //--------------------------------------------------------------------------------------- |
2136 | // |
2137 | // Requests that an edit be applied to the module for edit and continue and updates |
2138 | // the right-side state and metadata. |
2139 | // |
2140 | // Arguments: |
2141 | // cbMetaData - number of bytes in pbMetaData |
2142 | // pbMetaData - a delta metadata blob describing the metadata edits to be made |
2143 | // cbIL - number of bytes in pbIL |
2144 | // pbIL - a new method body stream containing all of the method body information |
2145 | // (IL, EH info, etc) for edited and added methods. |
2146 | // |
2147 | // Return Value: |
2148 | // S_OK on success, various errors on failure |
2149 | // |
2150 | // Notes: |
2151 | // |
2152 | // |
2153 | // This applies the same changes to the RS's copy of the metadata that the left-side will apply to |
2154 | // it's copy of the metadata. see code:EditAndContinueModule::ApplyEditAndContinue |
2155 | // |
2156 | HRESULT CordbModule::ApplyChanges(ULONG cbMetaData, |
2157 | BYTE pbMetaData[], |
2158 | ULONG cbIL, |
2159 | BYTE pbIL[]) |
2160 | { |
2161 | PUBLIC_API_ENTRY(this); |
2162 | FAIL_IF_NEUTERED(this); |
2163 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
2164 | |
2165 | #ifdef EnC_SUPPORTED |
2166 | // We enable EnC back in code:CordbModule::SetJITCompilerFlags. |
2167 | // If EnC isn't enabled, then we'll fail in the LS when we try to ApplyChanges. |
2168 | // We'd expect a well-behaved debugger to never actually land here. |
2169 | |
2170 | |
2171 | LOG((LF_CORDB,LL_INFO10000, "CP::AC: applying changes" )); |
2172 | |
2173 | VALIDATE_POINTER_TO_OBJECT_ARRAY(pbMetaData, |
2174 | BYTE, |
2175 | cbMetaData, |
2176 | true, |
2177 | true); |
2178 | VALIDATE_POINTER_TO_OBJECT_ARRAY(pbIL, |
2179 | BYTE, |
2180 | cbIL, |
2181 | true, |
2182 | true); |
2183 | |
2184 | HRESULT hr; |
2185 | RSExtSmartPtr<IUnknown> pUnk; |
2186 | RSExtSmartPtr<IMDInternalImport> pMDImport; |
2187 | RSExtSmartPtr<IMDInternalImport> pMDImport2; |
2188 | |
2189 | // |
2190 | // Edit was successful - update the right-side state to reflect the edit |
2191 | // |
2192 | |
2193 | ++m_EnCCount; |
2194 | |
2195 | // apply the changes to our copy of the metadata |
2196 | |
2197 | _ASSERTE(m_pIMImport != NULL); // must have metadata at this point in EnC |
2198 | IfFailGo(m_pIMImport->QueryInterface(IID_IUnknown, (void**)&pUnk)); |
2199 | |
2200 | IfFailGo(GetMDInternalInterfaceFromPublic(pUnk, IID_IMDInternalImport, |
2201 | (void **)&pMDImport)); |
2202 | |
2203 | // The left-side will call this same method on its copy of the metadata. |
2204 | hr = pMDImport->ApplyEditAndContinue(pbMetaData, cbMetaData, &pMDImport2); |
2205 | if (pMDImport2 != NULL) |
2206 | { |
2207 | // ApplyEditAndContinue() expects IMDInternalImport**, but we give it RSExtSmartPtr<IMDInternalImport> |
2208 | // Silent cast of RSExtSmartPtr to IMDInternalImport* leads to assignment of a raw pointer |
2209 | // without calling AddRef(), thus we need to do it manually. |
2210 | |
2211 | // @todo - ApplyEditAndContinue should probably AddRef the out parameter. |
2212 | pMDImport2->AddRef(); |
2213 | } |
2214 | IfFailGo(hr); |
2215 | |
2216 | |
2217 | // We're about to get a new importer object, so release the old one. |
2218 | m_pIMImport.Clear(); |
2219 | IfFailGo(GetMDPublicInterfaceFromInternal(pMDImport2, IID_IMetaDataImport, (void **)&m_pIMImport)); |
2220 | // set the new RVA value |
2221 | |
2222 | // Send the delta over to the debugee and request that it apply the edit |
2223 | IfFailGo( ApplyChangesInternal(cbMetaData, pbMetaData, cbIL, pbIL) ); |
2224 | |
2225 | EX_TRY |
2226 | { |
2227 | |
2228 | m_pInternalMetaDataImport.Clear(); |
2229 | UpdateInternalMetaData(); |
2230 | } |
2231 | EX_CATCH_HRESULT(hr); |
2232 | _ASSERTE(SUCCEEDED(hr)); |
2233 | |
2234 | ErrExit: |
2235 | // MetaData interface pointers will be automatically released via SmartPtr dtors. |
2236 | |
2237 | // @todo : prevent further execution of program |
2238 | return hr; |
2239 | #else |
2240 | return E_NOTIMPL; |
2241 | #endif |
2242 | } |
2243 | |
2244 | |
2245 | |
2246 | |
2247 | //--------------------------------------------------------------------------------------- |
2248 | // |
2249 | // Requests that an edit be applied to the module for edit and continue and updates |
2250 | // some right-side state, but does not update our copy of the metadata. |
2251 | // |
2252 | // Arguments: |
2253 | // cbMetaData - number of bytes in pbMetaData |
2254 | // pbMetaData - a delta metadata blob describing the metadata edits to be made |
2255 | // cbIL - number of bytes in pbIL |
2256 | // pbIL - a new method body stream containing all of the method body information |
2257 | // (IL, EH info, etc) for edited and added methods. |
2258 | // |
2259 | // Return Value: |
2260 | // S_OK on success, various errors on failure |
2261 | // |
2262 | HRESULT CordbModule::ApplyChangesInternal(ULONG cbMetaData, |
2263 | BYTE pbMetaData[], |
2264 | ULONG cbIL, |
2265 | BYTE pbIL[]) |
2266 | { |
2267 | CONTRACTL |
2268 | { |
2269 | NOTHROW; |
2270 | } |
2271 | CONTRACTL_END; |
2272 | |
2273 | LOG((LF_ENC,LL_INFO100, "CordbProcess::ApplyChangesInternal\n" )); |
2274 | |
2275 | FAIL_IF_NEUTERED(this); |
2276 | INTERNAL_SYNC_API_ENTRY(this->GetProcess()); // |
2277 | |
2278 | if (m_vmDomainFile.IsNull()) |
2279 | return E_UNEXPECTED; |
2280 | |
2281 | #ifdef EnC_SUPPORTED |
2282 | HRESULT hr; |
2283 | |
2284 | void * pRemoteBuf = NULL; |
2285 | |
2286 | EX_TRY |
2287 | { |
2288 | |
2289 | // Create and initialize the event as synchronous |
2290 | // We'll be sending a NULL appdomain pointer since the individual modules |
2291 | // will contains pointers to their respective A.D.s |
2292 | DebuggerIPCEvent event; |
2293 | GetProcess()->InitIPCEvent(&event, DB_IPCE_APPLY_CHANGES, false, VMPTR_AppDomain::NullPtr()); |
2294 | |
2295 | event.ApplyChanges.vmDomainFile = this->m_vmDomainFile; |
2296 | |
2297 | // Have the left-side create a buffer for us to store the delta into |
2298 | ULONG cbSize = cbMetaData+cbIL; |
2299 | TargetBuffer tbFull = GetProcess()->GetRemoteBuffer(cbSize); |
2300 | pRemoteBuf = CORDB_ADDRESS_TO_PTR(tbFull.pAddress); |
2301 | |
2302 | TargetBuffer tbMetaData = tbFull.SubBuffer(0, cbMetaData); // 1st half |
2303 | TargetBuffer tbIL = tbFull.SubBuffer(cbMetaData); // 2nd half |
2304 | |
2305 | // Copy the delta metadata over to the debugee |
2306 | |
2307 | GetProcess()->SafeWriteBuffer(tbMetaData, pbMetaData); // throws |
2308 | GetProcess()->SafeWriteBuffer(tbIL, pbIL); // throws |
2309 | |
2310 | // Send a synchronous event requesting the debugee apply the edit |
2311 | event.ApplyChanges.pDeltaMetadata = tbMetaData.pAddress; |
2312 | event.ApplyChanges.cbDeltaMetadata = tbMetaData.cbSize; |
2313 | event.ApplyChanges.pDeltaIL = tbIL.pAddress; |
2314 | event.ApplyChanges.cbDeltaIL = tbIL.cbSize; |
2315 | |
2316 | LOG((LF_ENC,LL_INFO100, "CordbProcess::ApplyChangesInternal sending event\n" )); |
2317 | hr = GetProcess()->SendIPCEvent(&event, sizeof(event)); |
2318 | hr = WORST_HR(hr, event.hr); |
2319 | IfFailThrow(hr); |
2320 | |
2321 | // Allocate space for the return event. |
2322 | // We always copy over the whole buffer size which is bigger than sizeof(DebuggerIPCEvent) |
2323 | // This seems ugly, in this case we know the exact size of the event we want to read |
2324 | // why copy over all the extra data? |
2325 | DebuggerIPCEvent *retEvent = (DebuggerIPCEvent *) _alloca(CorDBIPC_BUFFER_SIZE); |
2326 | |
2327 | { |
2328 | // |
2329 | // Wait for events to return from the RC. We expect zero or more add field, |
2330 | // add function or update function events and one completion event. |
2331 | // |
2332 | while (TRUE) |
2333 | { |
2334 | hr = GetProcess()->m_cordb->WaitForIPCEventFromProcess(GetProcess(), |
2335 | GetAppDomain(), |
2336 | retEvent); |
2337 | IfFailThrow(hr); |
2338 | |
2339 | if (retEvent->type == DB_IPCE_APPLY_CHANGES_RESULT) |
2340 | { |
2341 | // Done receiving update events |
2342 | hr = retEvent->ApplyChangesResult.hr; |
2343 | LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: EnC apply changes result %8.8x.\n" , hr)); |
2344 | break; |
2345 | } |
2346 | |
2347 | _ASSERTE(retEvent->type == DB_IPCE_ENC_UPDATE_FUNCTION || |
2348 | retEvent->type == DB_IPCE_ENC_ADD_FUNCTION || |
2349 | retEvent->type == DB_IPCE_ENC_ADD_FIELD); |
2350 | LOG((LF_CORDB, LL_INFO1000, "[%x] RCET::DRCE: EnC %s %8.8x to version %d.\n" , |
2351 | GetCurrentThreadId(), |
2352 | retEvent->type == DB_IPCE_ENC_UPDATE_FUNCTION ? "Update function" : |
2353 | retEvent->type == DB_IPCE_ENC_ADD_FUNCTION ? "Add function" : "Add field" , |
2354 | retEvent->EnCUpdate.memberMetadataToken, retEvent->EnCUpdate.newVersionNumber)); |
2355 | |
2356 | CordbAppDomain *pAppDomain = GetAppDomain(); |
2357 | _ASSERTE(NULL != pAppDomain); |
2358 | CordbModule* pModule = NULL; |
2359 | |
2360 | |
2361 | pModule = pAppDomain->LookupOrCreateModule(retEvent->EnCUpdate.vmDomainFile); // throws |
2362 | _ASSERTE(pModule != NULL); |
2363 | |
2364 | // update to the newest version |
2365 | |
2366 | if (retEvent->type == DB_IPCE_ENC_UPDATE_FUNCTION || |
2367 | retEvent->type == DB_IPCE_ENC_ADD_FUNCTION) |
2368 | { |
2369 | // Update the function collection to reflect this edit |
2370 | hr = pModule->UpdateFunction(retEvent->EnCUpdate.memberMetadataToken, retEvent->EnCUpdate.newVersionNumber, NULL); |
2371 | |
2372 | } |
2373 | // mark the class and relevant type as old so we update it next time we try to query it |
2374 | if (retEvent->type == DB_IPCE_ENC_ADD_FUNCTION || |
2375 | retEvent->type == DB_IPCE_ENC_ADD_FIELD) |
2376 | { |
2377 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); // @dbgtodo synchronization - push this up |
2378 | CordbClass* pClass = pModule->LookupClass(retEvent->EnCUpdate.classMetadataToken); |
2379 | // if don't find class, that is fine because it hasn't been loaded yet so doesn't |
2380 | // need to be updated |
2381 | if (pClass) |
2382 | { |
2383 | pClass->MakeOld(); |
2384 | } |
2385 | } |
2386 | } |
2387 | } |
2388 | |
2389 | LOG((LF_ENC,LL_INFO100, "CordbProcess::ApplyChangesInternal complete.\n" )); |
2390 | } |
2391 | EX_CATCH_HRESULT(hr); |
2392 | |
2393 | // process may have gone away by the time we get here so don't assume is there. |
2394 | CordbProcess *pProcess = GetProcess(); |
2395 | if (pProcess) |
2396 | { |
2397 | HRESULT hr2 = pProcess->ReleaseRemoteBuffer(&pRemoteBuf); |
2398 | TESTANDRETURNHR(hr2); |
2399 | } |
2400 | return hr; |
2401 | #else // EnC_SUPPORTED |
2402 | return E_NOTIMPL; |
2403 | #endif // EnC_SUPPORTED |
2404 | |
2405 | } |
2406 | |
2407 | // Set the JMC status for the entire module. |
2408 | // All methods specified in others[] will have jmc status !fIsUserCode |
2409 | // All other methods will have jmc status fIsUserCode. |
2410 | HRESULT CordbModule::SetJMCStatus( |
2411 | BOOL fIsUserCode, |
2412 | ULONG32 cOthers, |
2413 | mdToken others[]) |
2414 | { |
2415 | PUBLIC_API_ENTRY(this); |
2416 | FAIL_IF_NEUTERED(this); |
2417 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
2418 | |
2419 | if (m_vmDomainFile.IsNull()) |
2420 | return E_UNEXPECTED; |
2421 | |
2422 | // @todo -allow the other parameters. These are functions that have default status |
2423 | // opposite of fIsUserCode. |
2424 | if (cOthers != 0) |
2425 | { |
2426 | _ASSERTE(!"not yet impl for cOthers != 0" ); |
2427 | return E_NOTIMPL; |
2428 | } |
2429 | |
2430 | // Send event to the LS. |
2431 | CordbProcess* pProcess = this->GetProcess(); |
2432 | _ASSERTE(pProcess != NULL); |
2433 | |
2434 | |
2435 | // Tell the LS that this module is/is not user code |
2436 | DebuggerIPCEvent event; |
2437 | pProcess->InitIPCEvent(&event, DB_IPCE_SET_MODULE_JMC_STATUS, true, this->GetAppDomain()->GetADToken()); |
2438 | event.SetJMCFunctionStatus.vmDomainFile = m_vmDomainFile; |
2439 | event.SetJMCFunctionStatus.dwStatus = fIsUserCode; |
2440 | |
2441 | |
2442 | // Note: two-way event here... |
2443 | HRESULT hr = pProcess->m_cordb->SendIPCEvent(pProcess, &event, sizeof(DebuggerIPCEvent)); |
2444 | |
2445 | // Stop now if we can't even send the event. |
2446 | if (!SUCCEEDED(hr)) |
2447 | { |
2448 | LOG((LF_CORDB, LL_INFO10, "CordbModule::SetJMCStatus failed 0x%08x...\n" , hr)); |
2449 | |
2450 | return hr; |
2451 | } |
2452 | |
2453 | _ASSERTE(event.type == DB_IPCE_SET_MODULE_JMC_STATUS_RESULT); |
2454 | |
2455 | LOG((LF_CORDB, LL_INFO10, "returning from CordbModule::SetJMCStatus 0x%08x...\n" , hr)); |
2456 | |
2457 | return event.hr; |
2458 | } |
2459 | |
2460 | |
2461 | // |
2462 | // Resolve an assembly given an AssemblyRef token. Note that |
2463 | // this will not trigger the loading of assembly. If assembly is not yet loaded, |
2464 | // this will return an CORDBG_E_CANNOT_RESOLVE_ASSEMBLY error |
2465 | // |
2466 | HRESULT CordbModule::ResolveAssembly(mdToken tkAssemblyRef, |
2467 | ICorDebugAssembly **ppAssembly) |
2468 | { |
2469 | PUBLIC_API_ENTRY(this); |
2470 | FAIL_IF_NEUTERED(this); |
2471 | ATT_REQUIRE_STOPPED_MAY_FAIL(this->GetProcess()); |
2472 | |
2473 | if(ppAssembly) |
2474 | { |
2475 | *ppAssembly = NULL; |
2476 | } |
2477 | |
2478 | HRESULT hr = S_OK; |
2479 | EX_TRY |
2480 | { |
2481 | CordbAssembly *pCordbAsm = ResolveAssemblyInternal(tkAssemblyRef); |
2482 | if (pCordbAsm == NULL) |
2483 | { |
2484 | // Don't throw here. It's a common-case failure path and not exceptional. |
2485 | hr = CORDBG_E_CANNOT_RESOLVE_ASSEMBLY; |
2486 | } |
2487 | else if(ppAssembly) |
2488 | { |
2489 | _ASSERTE(pCordbAsm != NULL); |
2490 | *ppAssembly = pCordbAsm; |
2491 | pCordbAsm->ExternalAddRef(); |
2492 | } |
2493 | } |
2494 | EX_CATCH_HRESULT(hr); |
2495 | return hr; |
2496 | } |
2497 | |
2498 | //--------------------------------------------------------------------------------------- |
2499 | // Worker to resolve an assembly ref. |
2500 | // |
2501 | // Arguments: |
2502 | // tkAssemblyRef - token of assembly ref to resolve |
2503 | // |
2504 | // Returns: |
2505 | // Assembly that this token resolves to. |
2506 | // NULL if it's a valid token but the assembly has not yet been resolved. |
2507 | // (This is a non-exceptional error case). |
2508 | // |
2509 | // Notes: |
2510 | // MetaData has tokens to represent a reference to another assembly. |
2511 | // But Loader/Fusion policy ultimately decides which specific assembly is actually loaded |
2512 | // for that token. |
2513 | // This does the lookup of actual assembly and reports back to the debugger. |
2514 | |
2515 | CordbAssembly * CordbModule::ResolveAssemblyInternal(mdToken tkAssemblyRef) |
2516 | { |
2517 | INTERNAL_SYNC_API_ENTRY(GetProcess()); // |
2518 | |
2519 | if (TypeFromToken(tkAssemblyRef) != mdtAssemblyRef || tkAssemblyRef == mdAssemblyRefNil) |
2520 | { |
2521 | // Not a valid token |
2522 | ThrowHR(E_INVALIDARG); |
2523 | } |
2524 | |
2525 | CordbAssembly * pAssembly = NULL; |
2526 | |
2527 | if (!m_vmDomainFile.IsNull()) |
2528 | { |
2529 | // Get DAC to do the real work to resolve the assembly |
2530 | VMPTR_DomainAssembly vmDomainAssembly = GetProcess()->GetDAC()->ResolveAssembly(m_vmDomainFile, tkAssemblyRef); |
2531 | |
2532 | // now find the ICorDebugAssembly corresponding to it |
2533 | if (!vmDomainAssembly.IsNull() && m_pAppDomain != NULL) |
2534 | { |
2535 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); |
2536 | // Don't throw here because if the lookup fails, we want to throw CORDBG_E_CANNOT_RESOLVE_ASSEMBLY. |
2537 | pAssembly = m_pAppDomain->LookupOrCreateAssembly(vmDomainAssembly); |
2538 | } |
2539 | } |
2540 | |
2541 | return pAssembly; |
2542 | } |
2543 | |
2544 | // |
2545 | // CreateReaderForInMemorySymbols - create an ISymUnmanagedReader object for symbols |
2546 | // which are loaded into memory in the CLR. See interface definition in cordebug.idl for |
2547 | // details. |
2548 | // |
2549 | HRESULT CordbModule::CreateReaderForInMemorySymbols(REFIID riid, void** ppObj) |
2550 | { |
2551 | PUBLIC_API_ENTRY(this); |
2552 | FAIL_IF_NEUTERED(this); |
2553 | |
2554 | CordbProcess *pProcess = GetProcess(); |
2555 | ATT_REQUIRE_STOPPED_MAY_FAIL(pProcess); |
2556 | |
2557 | HRESULT hr = S_OK; |
2558 | EX_TRY |
2559 | { |
2560 | // Get the symbol memory in a stream to give to the reader. |
2561 | ReleaseHolder<IStream> pStream; |
2562 | IDacDbiInterface::SymbolFormat symFormat = GetInMemorySymbolStream(&pStream); |
2563 | |
2564 | // First create the symbol binder corresponding to the format of the stream |
2565 | ReleaseHolder<ISymUnmanagedBinder> pBinder; |
2566 | if (symFormat == IDacDbiInterface::kSymbolFormatPDB) |
2567 | { |
2568 | #ifndef FEATURE_PAL |
2569 | // PDB format - use diasymreader.dll with COM activation |
2570 | InlineSString<_MAX_PATH> ssBuf; |
2571 | IfFailThrow(GetHModuleDirectory(GetModuleInst(), ssBuf)); |
2572 | IfFailThrow(FakeCoCreateInstanceEx(CLSID_CorSymBinder_SxS, |
2573 | ssBuf.GetUnicode(), |
2574 | IID_ISymUnmanagedBinder, |
2575 | (void**)&pBinder, |
2576 | NULL)); |
2577 | #else |
2578 | IfFailThrow(FakeCoCreateInstance(CLSID_CorSymBinder_SxS, |
2579 | IID_ISymUnmanagedBinder, |
2580 | (void**)&pBinder)); |
2581 | #endif |
2582 | } |
2583 | else if (symFormat == IDacDbiInterface::kSymbolFormatILDB) |
2584 | { |
2585 | // ILDB format - use statically linked-in ildbsymlib |
2586 | IfFailThrow(IldbSymbolsCreateInstance(CLSID_CorSymBinder_SxS, |
2587 | IID_ISymUnmanagedBinder, |
2588 | (void**)&pBinder)); |
2589 | } |
2590 | else |
2591 | { |
2592 | // No in-memory symbols, return the appropriate error |
2593 | _ASSERTE(symFormat == IDacDbiInterface::kSymbolFormatNone); |
2594 | if (m_fDynamic || m_fInMemory) |
2595 | { |
2596 | // This is indeed an in-memory or dynamic module, we just don't have any symbols for it. |
2597 | // This means the application didn't supply any, or they are not yet available. Symbols |
2598 | // first become available at LoadClass time for dynamic modules and UpdateModuleSymbols |
2599 | // time for non-dynamic in-memory modules. |
2600 | ThrowHR(CORDBG_E_SYMBOLS_NOT_AVAILABLE); |
2601 | } |
2602 | |
2603 | // This module is on disk - the debugger should use it's normal symbol-loading logic. |
2604 | ThrowHR(CORDBG_E_MODULE_LOADED_FROM_DISK); |
2605 | } |
2606 | |
2607 | // In the attach or dump case, if we attach or take the dump after we have defined a dynamic module, we may |
2608 | // have already set the symbol format to "PDB" by the time we call CreateReaderForInMemorySymbols during initialization |
2609 | // for loaded modules. (In the launch case, we do this initialization when the module is actually loaded, and before we |
2610 | // set the symbol format.) When we call CreateReaderForInMemorySymbols, we can't assume the initialization was already |
2611 | // performed or specifically, that we already have m_pIMImport initialized. We can't call into diasymreader with a NULL |
2612 | // pointer as the value for m_pIMImport, so we need to check that here. |
2613 | if (m_pIMImport == NULL) |
2614 | { |
2615 | ThrowHR(CORDBG_E_SYMBOLS_NOT_AVAILABLE); |
2616 | } |
2617 | |
2618 | // Now create the symbol reader from the data |
2619 | ReleaseHolder<ISymUnmanagedReader> pReader; |
2620 | IfFailThrow(pBinder->GetReaderFromStream(m_pIMImport, pStream, &pReader)); |
2621 | |
2622 | // Attempt to return the interface requested |
2623 | // Note that this does an AddRef for our return value ppObj, so we don't suppress the release |
2624 | // of the pReader holder. |
2625 | IfFailThrow(pReader->QueryInterface(riid, ppObj)); |
2626 | } |
2627 | EX_CATCH_HRESULT(hr); |
2628 | return hr; |
2629 | } |
2630 | |
2631 | /* ------------------------------------------------------------------------- * |
2632 | * Class class |
2633 | * ------------------------------------------------------------------------- */ |
2634 | |
2635 | //--------------------------------------------------------------------------------------- |
2636 | // Set the continue counter that marks when the module is in its Load event |
2637 | // |
2638 | // Notes: |
2639 | // Jit flags can only be changed in the real module Load event. We may |
2640 | // have multiple module load events on different threads coming at the |
2641 | // same time. So each module load tracks its continue counter. |
2642 | // |
2643 | // This can be used by code:CordbModule::EnsureModuleIsInLoadCallback to |
2644 | // properly return CORDBG_E_MUST_BE_IN_LOAD_MODULE |
2645 | void CordbModule::SetLoadEventContinueMarker() |
2646 | { |
2647 | // Well behaved targets should only set this once. |
2648 | GetProcess()->TargetConsistencyCheck(m_nLoadEventContinueCounter == 0); |
2649 | |
2650 | m_nLoadEventContinueCounter = GetProcess()->m_continueCounter; |
2651 | } |
2652 | |
2653 | //--------------------------------------------------------------------------------------- |
2654 | // Return CORDBG_E_MUST_BE_IN_LOAD_MODULE if the module is not in the load module callback. |
2655 | // |
2656 | // Notes: |
2657 | // The comparison is done via continue counters. The counter of the load |
2658 | // event is cached via code:CordbModule::SetLoadEventContinueMarker. |
2659 | // |
2660 | // This state is currently stored on the RS. Alternatively, it could likely be retreived from the LS state as |
2661 | // well. One disadvantage of the current model is that if we detach during the load-module callback and |
2662 | // then reattach, the RS state is flushed and we lose the fact that we can toggle the jit flags. |
2663 | HRESULT CordbModule::EnsureModuleIsInLoadCallback() |
2664 | { |
2665 | if (this->m_nLoadEventContinueCounter < GetProcess()->m_continueCounter) |
2666 | { |
2667 | return CORDBG_E_MUST_BE_IN_LOAD_MODULE; |
2668 | } |
2669 | else |
2670 | { |
2671 | return S_OK; |
2672 | } |
2673 | } |
2674 | |
2675 | // Implementation of ICorDebugModule2::SetJITCompilerFlags |
2676 | // See also code:CordbModule::EnableJITDebugging |
2677 | HRESULT CordbModule::SetJITCompilerFlags(DWORD dwFlags) |
2678 | { |
2679 | PUBLIC_REENTRANT_API_ENTRY(this); |
2680 | FAIL_IF_NEUTERED(this); |
2681 | |
2682 | CordbProcess *pProcess = GetProcess(); |
2683 | |
2684 | ATT_REQUIRE_STOPPED_MAY_FAIL(pProcess); |
2685 | HRESULT hr = S_OK; |
2686 | |
2687 | EX_TRY |
2688 | { |
2689 | // can't have a subset of these, eg 0x101, so make sure we have an exact match |
2690 | if ((dwFlags != CORDEBUG_JIT_DEFAULT) && |
2691 | (dwFlags != CORDEBUG_JIT_DISABLE_OPTIMIZATION) && |
2692 | (dwFlags != CORDEBUG_JIT_ENABLE_ENC)) |
2693 | { |
2694 | hr = E_INVALIDARG; |
2695 | } |
2696 | else |
2697 | { |
2698 | BOOL fAllowJitOpts = ((dwFlags & CORDEBUG_JIT_DISABLE_OPTIMIZATION) != CORDEBUG_JIT_DISABLE_OPTIMIZATION); |
2699 | BOOL fEnableEnC = ((dwFlags & CORDEBUG_JIT_ENABLE_ENC) == CORDEBUG_JIT_ENABLE_ENC); |
2700 | |
2701 | // Can only change jit flags when module is first loaded and before there's any jitted code. |
2702 | // This ensures all code in the module is jitted the same way. |
2703 | hr = EnsureModuleIsInLoadCallback(); |
2704 | |
2705 | if (SUCCEEDED(hr)) |
2706 | { |
2707 | // DD interface will check if it's a valid time to change the flags. |
2708 | hr = pProcess->GetDAC()->SetCompilerFlags(GetRuntimeDomainFile(), fAllowJitOpts, fEnableEnC); |
2709 | } |
2710 | } |
2711 | } |
2712 | EX_CATCH_HRESULT(hr); |
2713 | |
2714 | // emulate v2 hresults |
2715 | if (GetProcess()->GetShim() != NULL) |
2716 | { |
2717 | // Emulate Whidbey error hresults |
2718 | hr = GetProcess()->GetShim()->FilterSetJitFlagsHresult(hr); |
2719 | } |
2720 | return hr; |
2721 | |
2722 | } |
2723 | |
2724 | // Implementation of ICorDebugModule2::GetJitCompilerFlags |
2725 | HRESULT CordbModule::GetJITCompilerFlags(DWORD *pdwFlags ) |
2726 | { |
2727 | PUBLIC_REENTRANT_API_ENTRY(this); |
2728 | FAIL_IF_NEUTERED(this); |
2729 | VALIDATE_POINTER_TO_OBJECT(pdwFlags, DWORD*); |
2730 | *pdwFlags = CORDEBUG_JIT_DEFAULT;; |
2731 | |
2732 | CordbProcess *pProcess = GetProcess(); |
2733 | |
2734 | |
2735 | ATT_REQUIRE_STOPPED_MAY_FAIL(pProcess); |
2736 | HRESULT hr = S_OK; |
2737 | |
2738 | EX_TRY |
2739 | { |
2740 | BOOL fAllowJitOpts; |
2741 | BOOL fEnableEnC; |
2742 | |
2743 | pProcess->GetDAC()->GetCompilerFlags ( |
2744 | GetRuntimeDomainFile(), |
2745 | &fAllowJitOpts, |
2746 | &fEnableEnC); |
2747 | |
2748 | if (fEnableEnC) |
2749 | { |
2750 | *pdwFlags = CORDEBUG_JIT_ENABLE_ENC; |
2751 | } |
2752 | else if (! fAllowJitOpts) |
2753 | { |
2754 | *pdwFlags = CORDEBUG_JIT_DISABLE_OPTIMIZATION; |
2755 | } |
2756 | |
2757 | } |
2758 | EX_CATCH_HRESULT(hr); |
2759 | return hr; |
2760 | } |
2761 | |
2762 | BOOL CordbModule::IsWinMD() |
2763 | { |
2764 | CONTRACTL |
2765 | { |
2766 | THROWS; |
2767 | } |
2768 | CONTRACTL_END; |
2769 | |
2770 | if (m_isIlWinMD == Uninitialized) |
2771 | { |
2772 | BOOL isWinRT; |
2773 | HRESULT hr = E_FAIL; |
2774 | |
2775 | { |
2776 | RSLockHolder processLockHolder(GetProcess()->GetProcessLock()); |
2777 | hr = GetProcess()->GetDAC()->IsWinRTModule(m_vmModule, isWinRT); |
2778 | } |
2779 | |
2780 | _ASSERTE(SUCCEEDED(hr)); |
2781 | if (FAILED(hr)) |
2782 | ThrowHR(hr); |
2783 | |
2784 | if (isWinRT) |
2785 | m_isIlWinMD = True; |
2786 | else |
2787 | m_isIlWinMD = False; |
2788 | } |
2789 | |
2790 | return m_isIlWinMD == True; |
2791 | } |
2792 | |
2793 | /* ------------------------------------------------------------------------- * |
2794 | * CordbCode class |
2795 | * ------------------------------------------------------------------------- */ |
2796 | //----------------------------------------------------------------------------- |
2797 | // CordbCode constructor |
2798 | // Arguments: |
2799 | // Input: |
2800 | // pFunction - CordbFunction instance for this function |
2801 | // encVersion - Edit and Continue version number for this code chunk |
2802 | // fIsIL - indicates whether the instance is a CordbILCode (as |
2803 | // opposed to a CordbNativeCode) |
2804 | // id - This is the hashtable key for CordbCode objects |
2805 | // - for native code, the code start address |
2806 | // - for IL code, 0 |
2807 | // - for ReJit IL code, the remote pointer to the ReJitSharedInfo |
2808 | // Output: |
2809 | // fields of the CordbCode instance have been initialized |
2810 | //----------------------------------------------------------------------------- |
2811 | |
2812 | CordbCode::CordbCode(CordbFunction * pFunction, UINT_PTR id, SIZE_T encVersion, BOOL fIsIL) |
2813 | : CordbBase(pFunction->GetProcess(), id, enumCordbCode), |
2814 | m_fIsIL(fIsIL), |
2815 | m_nVersion(encVersion), |
2816 | m_rgbCode(NULL), |
2817 | m_continueCounterLastSync(0), |
2818 | m_pFunction(pFunction) |
2819 | { |
2820 | _ASSERTE(pFunction != NULL); |
2821 | _ASSERTE(m_nVersion >= CorDB_DEFAULT_ENC_FUNCTION_VERSION); |
2822 | } // CordbCode::CordbCode |
2823 | |
2824 | //----------------------------------------------------------------------------- |
2825 | // Destructor for CordbCode object |
2826 | //----------------------------------------------------------------------------- |
2827 | CordbCode::~CordbCode() |
2828 | { |
2829 | _ASSERTE(IsNeutered()); |
2830 | } |
2831 | |
2832 | //----------------------------------------------------------------------------- |
2833 | // Neutered by CordbFunction |
2834 | // See CordbBase::Neuter for neuter semantics. |
2835 | //----------------------------------------------------------------------------- |
2836 | void CordbCode::Neuter() |
2837 | { |
2838 | m_pFunction = NULL; |
2839 | |
2840 | delete [] m_rgbCode; |
2841 | m_rgbCode = NULL; |
2842 | |
2843 | CordbBase::Neuter(); |
2844 | } |
2845 | |
2846 | //----------------------------------------------------------------------------- |
2847 | // Public method for IUnknown::QueryInterface. |
2848 | // Has standard QI semantics. |
2849 | //----------------------------------------------------------------------------- |
2850 | HRESULT CordbCode::QueryInterface(REFIID id, void ** pInterface) |
2851 | { |
2852 | if (id == IID_ICorDebugCode) |
2853 | { |
2854 | *pInterface = static_cast<ICorDebugCode*>(this); |
2855 | } |
2856 | else if (id == IID_IUnknown) |
2857 | { |
2858 | *pInterface = static_cast<IUnknown *>(static_cast<ICorDebugCode *>(this)); |
2859 | } |
2860 | else |
2861 | { |
2862 | *pInterface = NULL; |
2863 | return E_NOINTERFACE; |
2864 | } |
2865 | |
2866 | ExternalAddRef(); |
2867 | return S_OK; |
2868 | } |
2869 | |
2870 | //----------------------------------------------------------------------------- |
2871 | // NOT IMPLEMENTED. Remap sequence points are entirely private to the LS, |
2872 | // and ICorDebug will dispatch a RemapOpportunity callback to notify the |
2873 | // debugger instead of letting the debugger query for the points. |
2874 | // |
2875 | // Returns: E_NOTIMPL |
2876 | //----------------------------------------------------------------------------- |
2877 | HRESULT CordbCode::GetEnCRemapSequencePoints(ULONG32 cMap, ULONG32 * pcMap, ULONG32 offsets[]) |
2878 | { |
2879 | FAIL_IF_NEUTERED(this); |
2880 | VALIDATE_POINTER_TO_OBJECT_OR_NULL(pcMap, ULONG32*); |
2881 | VALIDATE_POINTER_TO_OBJECT_ARRAY_OR_NULL(offsets, ULONG32*, cMap, true, true); |
2882 | |
2883 | // |
2884 | // Old EnC interface - deprecated |
2885 | // |
2886 | return E_NOTIMPL; |
2887 | } // CordbCode::GetEnCRemapSequencePoints |
2888 | |
2889 | |
2890 | //----------------------------------------------------------------------------- |
2891 | // CordbCode::IsIL |
2892 | // Public method to determine if this Code object represents IL or native code. |
2893 | // |
2894 | // Parameters: |
2895 | // pbIL - OUT: on return, set to True if IL code, else False. |
2896 | // |
2897 | // Returns: |
2898 | // S_OK on success. |
2899 | //----------------------------------------------------------------------------- |
2900 | HRESULT CordbCode::IsIL(BOOL *pbIL) |
2901 | { |
2902 | PUBLIC_API_ENTRY(this); |
2903 | FAIL_IF_NEUTERED(this); |
2904 | VALIDATE_POINTER_TO_OBJECT(pbIL, BOOL *); |
2905 | |
2906 | *pbIL = IsIL(); |
2907 | |
2908 | return S_OK; |
2909 | } |
2910 | |
2911 | //----------------------------------------------------------------------------- |
2912 | // CordbCode::GetFunction |
2913 | // Public method to get the Function object associated with this Code object. |
2914 | // Function:Code = 1:1 for IL, and 1:n for Native. So there is always a single |
2915 | // unique Function object to return. |
2916 | // |
2917 | // Parameters: |
2918 | // ppFunction - OUT: returns the Function object for this Code. |
2919 | // |
2920 | // Returns: |
2921 | // S_OK - on success. |
2922 | //----------------------------------------------------------------------------- |
2923 | HRESULT CordbCode::GetFunction(ICorDebugFunction **ppFunction) |
2924 | { |
2925 | PUBLIC_API_ENTRY(this); |
2926 | FAIL_IF_NEUTERED(this); |
2927 | VALIDATE_POINTER_TO_OBJECT(ppFunction, ICorDebugFunction **); |
2928 | |
2929 | *ppFunction = static_cast<ICorDebugFunction*> (m_pFunction); |
2930 | m_pFunction->ExternalAddRef(); |
2931 | |
2932 | return S_OK; |
2933 | } |
2934 | |
2935 | //----------------------------------------------------------------------------- |
2936 | // CordbCode::GetSize |
2937 | // Get the size of the code in bytes. If this is IL code, it will be bytes of IL. |
2938 | // If this is native code, it will be bytes of native code. |
2939 | // |
2940 | // Parameters: |
2941 | // pcBytes - OUT: on return, set to the size of the code in bytes. |
2942 | // |
2943 | // Returns: |
2944 | // S_OK on success. |
2945 | //----------------------------------------------------------------------------- |
2946 | HRESULT CordbCode::GetSize(ULONG32 *pcBytes) |
2947 | { |
2948 | PUBLIC_REENTRANT_API_ENTRY(this); |
2949 | FAIL_IF_NEUTERED(this); |
2950 | VALIDATE_POINTER_TO_OBJECT(pcBytes, ULONG32 *); |
2951 | |
2952 | *pcBytes = GetSize(); |
2953 | return S_OK; |
2954 | } |
2955 | |
2956 | //----------------------------------------------------------------------------- |
2957 | // CordbCode::CreateBreakpoint |
2958 | // public method to create a breakpoint in the code. |
2959 | // |
2960 | // Parameters: |
2961 | // offset - offset in bytes to set the breakpoint at. If this is a Native |
2962 | // code object (IsIl == false), then units are bytes of native code. If |
2963 | // this is an IL code object, then units are bytes of IL code. |
2964 | // ppBreakpoint- out-parameter to hold newly created breakpoint object. |
2965 | // |
2966 | // Return value: |
2967 | // S_OK iff *ppBreakpoint is set. Else some error. |
2968 | //----------------------------------------------------------------------------- |
2969 | HRESULT CordbCode::CreateBreakpoint(ULONG32 offset, |
2970 | ICorDebugFunctionBreakpoint **ppBreakpoint) |
2971 | { |
2972 | PUBLIC_REENTRANT_API_ENTRY(this); |
2973 | FAIL_IF_NEUTERED(this); |
2974 | VALIDATE_POINTER_TO_OBJECT(ppBreakpoint, ICorDebugFunctionBreakpoint **); |
2975 | |
2976 | HRESULT hr; |
2977 | ULONG32 size = GetSize(); |
2978 | BOOL offsetIsIl = IsIL(); |
2979 | LOG((LF_CORDB, LL_INFO10000, "CCode::CreateBreakpoint, offset=%d, size=%d, IsIl=%d, this=0x%p\n" , |
2980 | offset, size, offsetIsIl, this)); |
2981 | |
2982 | // Make sure the offset is within range of the method. |
2983 | // If we're native code, then both offset & total code size are bytes of native code, |
2984 | // else they're both bytes of IL. |
2985 | if (offset >= size) |
2986 | { |
2987 | return CORDBG_E_UNABLE_TO_SET_BREAKPOINT; |
2988 | } |
2989 | |
2990 | CordbFunctionBreakpoint *bp = new (nothrow) CordbFunctionBreakpoint(this, offset, offsetIsIl); |
2991 | |
2992 | if (bp == NULL) |
2993 | return E_OUTOFMEMORY; |
2994 | |
2995 | hr = bp->Activate(TRUE); |
2996 | if (SUCCEEDED(hr)) |
2997 | { |
2998 | *ppBreakpoint = static_cast<ICorDebugFunctionBreakpoint*> (bp); |
2999 | bp->ExternalAddRef(); |
3000 | return S_OK; |
3001 | } |
3002 | else |
3003 | { |
3004 | delete bp; |
3005 | return hr; |
3006 | } |
3007 | } |
3008 | |
3009 | //----------------------------------------------------------------------------- |
3010 | // CordbCode::GetCode |
3011 | // Public method to get the code-bytes for this Code object. For an IL-code |
3012 | // object, this will be bytes of IL. For a native-code object, this will be |
3013 | // bytes of native opcodes. |
3014 | // The units of the offsets are the same as the units on the CordbCode object. |
3015 | // (eg, IL offsets for an IL code object, and native offsets for a native code object) |
3016 | // This will glue together hot + cold regions into a single blob. |
3017 | // |
3018 | // Units are also logical (aka linear) values, which |
3019 | // Parameters: |
3020 | // startOffset - linear offset in Code to start copying from. |
3021 | // endOffset - linear offset in Code to end copying from. Total bytes copied would be (endOffset - startOffset) |
3022 | // cBufferAlloc - number of bytes in the buffer supplied by the buffer[] parameter. |
3023 | // buffer - caller allocated storage to copy bytes into. |
3024 | // pcBufferSize - required out-parameter, holds number of bytes copied into buffer. |
3025 | // |
3026 | // Returns: |
3027 | // S_OK if copy successful. Else error. |
3028 | //----------------------------------------------------------------------------- |
3029 | HRESULT CordbCode::GetCode(ULONG32 startOffset, |
3030 | ULONG32 endOffset, |
3031 | ULONG32 cBufferAlloc, |
3032 | BYTE buffer[], |
3033 | ULONG32 *pcBufferSize) |
3034 | { |
3035 | PUBLIC_REENTRANT_API_ENTRY(this); |
3036 | FAIL_IF_NEUTERED(this); |
3037 | VALIDATE_POINTER_TO_OBJECT_ARRAY(buffer, BYTE, cBufferAlloc, true, true); |
3038 | VALIDATE_POINTER_TO_OBJECT(pcBufferSize, ULONG32 *); |
3039 | |
3040 | LOG((LF_CORDB,LL_EVERYTHING, "CC::GC: for token:0x%x\n" , m_pFunction->GetMetadataToken())); |
3041 | |
3042 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
3043 | |
3044 | HRESULT hr = S_OK; |
3045 | *pcBufferSize = 0; |
3046 | |
3047 | // Check ranges. |
3048 | ULONG32 totalSize = GetSize(); |
3049 | |
3050 | if (cBufferAlloc < endOffset - startOffset) |
3051 | endOffset = startOffset + cBufferAlloc; |
3052 | |
3053 | if (endOffset > totalSize) |
3054 | endOffset = totalSize; |
3055 | |
3056 | if (startOffset > totalSize) |
3057 | startOffset = totalSize; |
3058 | |
3059 | // Check the continue counter since WriteMemory bumps it up. |
3060 | if ((m_rgbCode == NULL) || |
3061 | (m_continueCounterLastSync < GetProcess()->m_continueCounter)) |
3062 | { |
3063 | ReadCodeBytes(); |
3064 | m_continueCounterLastSync = GetProcess()->m_continueCounter; |
3065 | } |
3066 | |
3067 | // if we just got the code, we'll have to copy it over |
3068 | if (*pcBufferSize == 0 && m_rgbCode != NULL) |
3069 | { |
3070 | memcpy(buffer, |
3071 | m_rgbCode+startOffset, |
3072 | endOffset - startOffset); |
3073 | *pcBufferSize = endOffset - startOffset; |
3074 | } |
3075 | return hr; |
3076 | |
3077 | } // CordbCode::GetCode |
3078 | |
3079 | #include "dbgipcevents.h" |
3080 | |
3081 | //----------------------------------------------------------------------------- |
3082 | // CordbCode::GetVersionNumber |
3083 | // Public method to get the EnC version number of the code. |
3084 | // |
3085 | // Parameters: |
3086 | // nVersion - OUT: on return, set to the version number. |
3087 | // |
3088 | // Returns: |
3089 | // S_OK on success. |
3090 | //----------------------------------------------------------------------------- |
3091 | HRESULT CordbCode::GetVersionNumber( ULONG32 *nVersion) |
3092 | { |
3093 | PUBLIC_API_ENTRY(this); |
3094 | FAIL_IF_NEUTERED(this); |
3095 | VALIDATE_POINTER_TO_OBJECT(nVersion, ULONG32 *); |
3096 | |
3097 | LOG((LF_CORDB,LL_INFO10000,"R:CC:GVN:Returning 0x%x " |
3098 | "as version\n" ,m_nVersion)); |
3099 | |
3100 | *nVersion = (ULONG32)m_nVersion; |
3101 | |
3102 | #ifndef EnC_SUPPORTED |
3103 | _ASSERTE(*nVersion == 1); |
3104 | #endif // EnC_SUPPORTED |
3105 | |
3106 | return S_OK; |
3107 | } |
3108 | |
3109 | // get the CordbFunction instance for this code object |
3110 | CordbFunction * CordbCode::GetFunction() |
3111 | { |
3112 | _ASSERTE(m_pFunction != NULL); |
3113 | return m_pFunction; |
3114 | } |
3115 | |
3116 | /* ------------------------------------------------------------------------- * |
3117 | * CordbILCode class |
3118 | * ------------------------------------------------------------------------- */ |
3119 | |
3120 | //----------------------------------------------------------------------------- |
3121 | // CordbILCode ctor to make IL code. |
3122 | // Arguments: |
3123 | // Input: |
3124 | // pFunction - pointer to the CordbFunction instance for this function |
3125 | // codeRegionInfo - starting address and size in bytes of IL code blob |
3126 | // nVersion - EnC version number for this IL code blob |
3127 | // localVarSigToken - LocalVarSig for this IL blob |
3128 | // id - the key when using ILCode in a CordbHashTable |
3129 | // Output: |
3130 | // fields of this instance of CordbILCode have been initialized |
3131 | //----------------------------------------------------------------------------- |
3132 | CordbILCode::CordbILCode(CordbFunction * pFunction, |
3133 | TargetBuffer codeRegionInfo, |
3134 | SIZE_T nVersion, |
3135 | mdSignature localVarSigToken, |
3136 | UINT_PTR id) |
3137 | : CordbCode(pFunction, id, nVersion, TRUE), |
3138 | #ifdef EnC_SUPPORTED |
3139 | m_fIsOld(FALSE), |
3140 | #endif |
3141 | m_codeRegionInfo(codeRegionInfo), |
3142 | m_localVarSigToken(localVarSigToken) |
3143 | { |
3144 | } // CordbILCode::CordbILCode |
3145 | |
3146 | |
3147 | #ifdef EnC_SUPPORTED |
3148 | //----------------------------------------------------------------------------- |
3149 | // CordbILCode::MakeOld |
3150 | // Internal method to perform any cleanup necessary when a code blob is no longer |
3151 | // the most current. |
3152 | //----------------------------------------------------------------------------- |
3153 | void CordbILCode::MakeOld() |
3154 | { |
3155 | m_fIsOld = TRUE; |
3156 | } |
3157 | #endif |
3158 | |
3159 | //----------------------------------------------------------------------------- |
3160 | // CordbILCode::GetAddress |
3161 | // Public method to get the Entry address for the code. This is the address |
3162 | // where the method first starts executing. |
3163 | // |
3164 | // Parameters: |
3165 | // pStart - out-parameter to hold start address. |
3166 | // |
3167 | // Returns: |
3168 | // S_OK if *pStart is properly updated. |
3169 | //----------------------------------------------------------------------------- |
3170 | HRESULT CordbILCode::GetAddress(CORDB_ADDRESS * pStart) |
3171 | { |
3172 | PUBLIC_REENTRANT_API_ENTRY(this); |
3173 | FAIL_IF_NEUTERED(this); |
3174 | VALIDATE_POINTER_TO_OBJECT(pStart, CORDB_ADDRESS *); |
3175 | |
3176 | |
3177 | _ASSERTE(this != NULL); |
3178 | _ASSERTE(this->GetFunction() != NULL); |
3179 | _ASSERTE(this->GetFunction()->GetModule() != NULL); |
3180 | _ASSERTE(this->GetFunction()->GetModule()->GetProcess() == GetProcess()); |
3181 | |
3182 | *pStart = (m_codeRegionInfo.pAddress); |
3183 | |
3184 | return S_OK; |
3185 | } // CordbILCode::GetAddress |
3186 | |
3187 | //----------------------------------------------------------------------------- |
3188 | // CordbILCode::ReadCodeBytes |
3189 | // Reads the actual bytes of IL code into the data member m_rgbCode |
3190 | // Arguments: |
3191 | // none (uses data members) |
3192 | // Return value: |
3193 | // standard HRESULT values |
3194 | // also allocates and initializes m_rgbCode |
3195 | // Notes: assumes that the caller has checked to ensure that m_rgbCode doesn't |
3196 | // hold valid data |
3197 | //----------------------------------------------------------------------------- |
3198 | HRESULT CordbILCode::ReadCodeBytes() |
3199 | { |
3200 | HRESULT hr = S_OK; |
3201 | EX_TRY |
3202 | { |
3203 | // We have an address & size, so we'll just call ReadMemory. |
3204 | // This will conveniently strip out any patches too. |
3205 | CORDB_ADDRESS pStart = m_codeRegionInfo.pAddress; |
3206 | ULONG32 cbSize = (ULONG32) m_codeRegionInfo.cbSize; |
3207 | |
3208 | delete [] m_rgbCode; |
3209 | m_rgbCode = new BYTE[cbSize]; // throws |
3210 | |
3211 | SIZE_T cbRead; |
3212 | hr = GetProcess()->ReadMemory(pStart, cbSize, m_rgbCode, &cbRead); |
3213 | IfFailThrow(hr); |
3214 | |
3215 | SIMPLIFYING_ASSUMPTION(cbRead == cbSize); |
3216 | } |
3217 | EX_CATCH_HRESULT(hr); |
3218 | return hr; |
3219 | } // CordbILCode::ReadCodeBytes |
3220 | |
3221 | //----------------------------------------------------------------------------- |
3222 | // CordbILCode::GetILToNativeMapping |
3223 | // Public method (implements ICorDebugCode) to get the IL-->{ Native Start, Native End} mapping. |
3224 | // Since 1 CordbILCode can map to multiple CordbNativeCode due to generics, we cannot reliably return the |
3225 | // mapping information in all cases. So we always fail with CORDBG_E_NON_NATIVE_FRAME. The caller should |
3226 | // call code:CordbNativeCode::GetILToNativeMapping instead. |
3227 | // |
3228 | // Parameters: |
3229 | // cMap - size of incoming map[] array (in elements). |
3230 | // pcMap - OUT: full size of IL-->Native map (in elements). |
3231 | // map - caller allocated array to be filled in. |
3232 | // |
3233 | // Returns: |
3234 | // CORDBG_E_NON_NATIVE_FRAME in all cases |
3235 | //----------------------------------------------------------------------------- |
3236 | HRESULT CordbILCode::GetILToNativeMapping(ULONG32 cMap, |
3237 | ULONG32 * pcMap, |
3238 | COR_DEBUG_IL_TO_NATIVE_MAP map[]) |
3239 | { |
3240 | PUBLIC_API_ENTRY(this); |
3241 | FAIL_IF_NEUTERED(this); |
3242 | VALIDATE_POINTER_TO_OBJECT_OR_NULL(pcMap, ULONG32 *); |
3243 | VALIDATE_POINTER_TO_OBJECT_ARRAY_OR_NULL(map, COR_DEBUG_IL_TO_NATIVE_MAP *, cMap, true, true); |
3244 | |
3245 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
3246 | |
3247 | return CORDBG_E_NON_NATIVE_FRAME; |
3248 | } // CordbILCode::GetILToNativeMapping |
3249 | |
3250 | |
3251 | /* |
3252 | * CordbILCode::GetLocalVarSig |
3253 | * |
3254 | * Get the method's local variable metadata signature. This may be cached, but for dynamic modules we'll always |
3255 | * read it from the metadata. This function also returns the count of local variables in the method. |
3256 | * |
3257 | * Parameters: |
3258 | * pLocalSigParser - OUT: the local variable signature for the method. |
3259 | * pLocalCount - OUT: the number of locals the method has. |
3260 | * |
3261 | * Returns: |
3262 | * HRESULT for success or failure. |
3263 | * |
3264 | */ |
3265 | HRESULT CordbILCode::GetLocalVarSig(SigParser *pLocalSigParser, |
3266 | ULONG *pLocalVarCount) |
3267 | { |
3268 | INTERNAL_SYNC_API_ENTRY(GetProcess()); |
3269 | |
3270 | CONTRACTL // @dbgtodo exceptions - convert to throws... |
3271 | { |
3272 | NOTHROW; |
3273 | } |
3274 | CONTRACTL_END; |
3275 | |
3276 | FAIL_IF_NEUTERED(this); |
3277 | HRESULT hr = S_OK; |
3278 | |
3279 | // A function will not have a local var sig if it has no locals! |
3280 | if (m_localVarSigToken != mdSignatureNil) |
3281 | { |
3282 | PCCOR_SIGNATURE localSignature; |
3283 | ULONG size; |
3284 | ULONG localCount; |
3285 | |
3286 | EX_TRY // // @dbgtodo exceptions - push this up |
3287 | { |
3288 | GetFunction()->GetModule()->UpdateMetaDataCacheIfNeeded(m_localVarSigToken); |
3289 | hr = GetFunction()->GetModule()->GetMetaDataImporter()->GetSigFromToken(m_localVarSigToken, |
3290 | &localSignature, |
3291 | &size); |
3292 | } |
3293 | EX_CATCH_HRESULT(hr); |
3294 | if (FAILED(hr)) |
3295 | { |
3296 | LOG((LF_CORDB, LL_WARNING, "CICF::GLVS caught hr=0x%x\n" , hr)); |
3297 | } |
3298 | IfFailRet(hr); |
3299 | |
3300 | LOG((LF_CORDB, LL_INFO100000, "CIC::GLVS creating sig parser sig=0x%x size=0x%x\n" , localSignature, size)); |
3301 | SigParser sigParser = SigParser(localSignature, size); |
3302 | |
3303 | ULONG data; |
3304 | |
3305 | IfFailRet(sigParser.GetCallingConvInfo(&data)); |
3306 | |
3307 | _ASSERTE(data == IMAGE_CEE_CS_CALLCONV_LOCAL_SIG); |
3308 | |
3309 | // Snagg the count of locals in the sig. |
3310 | IfFailRet(sigParser.GetData(&localCount)); |
3311 | LOG((LF_CORDB, LL_INFO100000, "CIC::GLVS localCount=0x%x\n" , localCount)); |
3312 | if (pLocalSigParser != NULL) |
3313 | { |
3314 | *pLocalSigParser = sigParser; |
3315 | } |
3316 | if (pLocalVarCount != NULL) |
3317 | { |
3318 | *pLocalVarCount = localCount; |
3319 | } |
3320 | } |
3321 | else |
3322 | { |
3323 | // |
3324 | // Signature is Nil, so fill in everything with NULLs and zeros |
3325 | // |
3326 | if (pLocalSigParser != NULL) |
3327 | { |
3328 | *pLocalSigParser = SigParser(NULL, 0); |
3329 | } |
3330 | |
3331 | if (pLocalVarCount != NULL) |
3332 | { |
3333 | *pLocalVarCount = 0; |
3334 | } |
3335 | } |
3336 | LOG((LF_CORDB, LL_INFO100000, "CIC::GLVS returning hr=0x%x\n" , hr)); |
3337 | return hr; |
3338 | } |
3339 | |
3340 | //----------------------------------------------------------------------------- |
3341 | // CordbILCode::GetLocalVariableType |
3342 | // Internal method. Return the type of an IL local, specified by 0-based index. |
3343 | // |
3344 | // Parameters: |
3345 | // dwIndex - 0-based index for IL local number. |
3346 | // inst - instantiation information if this is a generic function. Eg, |
3347 | // if function is List<T>, inst describes T. |
3348 | // res - out parameter, yields to CordbType of the local. |
3349 | // |
3350 | // Return: |
3351 | // S_OK on success. |
3352 | // |
3353 | HRESULT CordbILCode::GetLocalVariableType(DWORD dwIndex, |
3354 | const Instantiation * pInst, |
3355 | CordbType ** ppResultType) |
3356 | { |
3357 | ATT_ALLOW_LIVE_DO_STOPGO(GetProcess()); |
3358 | LOG((LF_CORDB, LL_INFO10000, "CIC::GLVT dwIndex=0x%x pInst=0x%p\n" , dwIndex, pInst)); |
3359 | HRESULT hr = S_OK; |
3360 | |
3361 | EX_TRY |
3362 | { |
3363 | // Get the local variable signature. |
3364 | SigParser sigParser; |
3365 | ULONG cLocals; |
3366 | |
3367 | IfFailThrow(GetLocalVarSig(&sigParser, &cLocals)); |
3368 | |
3369 | // Check the index. |
3370 | if (dwIndex >= cLocals) |
3371 | { |
3372 | ThrowHR(E_INVALIDARG); |
3373 | } |
3374 | |
3375 | // Run the signature and find the required argument. |
3376 | for (unsigned int i = 0; i < dwIndex; i++) |
3377 | { |
3378 | LOG((LF_CORDB, LL_INFO10000, "CIC::GLVT scanning index 0x%x\n" , dwIndex)); |
3379 | IfFailThrow(sigParser.SkipExactlyOne()); |
3380 | } |
3381 | |
3382 | hr = CordbType::SigToType(GetFunction()->GetModule(), &sigParser, pInst, ppResultType); |
3383 | LOG((LF_CORDB, LL_INFO10000, "CIC::GLVT CT::SigToType returned hr=0x%x\n" , hr)); |
3384 | IfFailThrow(hr); |
3385 | |
3386 | } EX_CATCH_HRESULT(hr); |
3387 | return hr; |
3388 | } |
3389 | |
3390 | mdSignature CordbILCode::GetLocalVarSigToken() |
3391 | { |
3392 | return m_localVarSigToken; |
3393 | } |
3394 | |
3395 | HRESULT CordbILCode::CreateNativeBreakpoint(ICorDebugFunctionBreakpoint **ppBreakpoint) |
3396 | { |
3397 | FAIL_IF_NEUTERED(this); |
3398 | VALIDATE_POINTER_TO_OBJECT(ppBreakpoint, ICorDebugFunctionBreakpoint **); |
3399 | |
3400 | HRESULT hr; |
3401 | ULONG32 size = GetSize(); |
3402 | LOG((LF_CORDB, LL_INFO10000, "CordbILCode::CreateNativeBreakpoint, size=%d, this=0x%p\n" , |
3403 | size, this)); |
3404 | |
3405 | ULONG32 offset = 0; |
3406 | CordbFunctionBreakpoint *bp = new (nothrow) CordbFunctionBreakpoint(this, offset, FALSE); |
3407 | |
3408 | if (bp == NULL) |
3409 | { |
3410 | return E_OUTOFMEMORY; |
3411 | } |
3412 | |
3413 | hr = bp->Activate(TRUE); |
3414 | if (SUCCEEDED(hr)) |
3415 | { |
3416 | *ppBreakpoint = static_cast<ICorDebugFunctionBreakpoint*> (bp); |
3417 | bp->ExternalAddRef(); |
3418 | return S_OK; |
3419 | } |
3420 | else |
3421 | { |
3422 | delete bp; |
3423 | return hr; |
3424 | } |
3425 | } |
3426 | |
3427 | |
3428 | |
3429 | CordbReJitILCode::CordbReJitILCode(CordbFunction *pFunction, SIZE_T encVersion, VMPTR_ILCodeVersionNode vmILCodeVersionNode) : |
3430 | CordbILCode(pFunction, TargetBuffer(), encVersion, mdSignatureNil, VmPtrToCookie(vmILCodeVersionNode)), |
3431 | m_cClauses(0), |
3432 | m_cbLocalIL(0), |
3433 | m_cILMap(0) |
3434 | { |
3435 | _ASSERTE(!vmILCodeVersionNode.IsNull()); |
3436 | DacSharedReJitInfo data = { 0 }; |
3437 | IfFailThrow(GetProcess()->GetDAC()->GetILCodeVersionNodeData(vmILCodeVersionNode, &data)); |
3438 | IfFailThrow(Init(&data)); |
3439 | } |
3440 | |
3441 | //----------------------------------------------------------------------------- |
3442 | // CordbReJitILCode::Init |
3443 | // |
3444 | // Returns: |
3445 | // S_OK if all fields are inited. Else error. |
3446 | HRESULT CordbReJitILCode::Init(DacSharedReJitInfo* pSharedReJitInfo) |
3447 | { |
3448 | HRESULT hr = S_OK; |
3449 | |
3450 | // Instrumented IL map |
3451 | if (pSharedReJitInfo->m_cInstrumentedMapEntries) |
3452 | { |
3453 | if (pSharedReJitInfo->m_cInstrumentedMapEntries > 100000) |
3454 | return CORDBG_E_TARGET_INCONSISTENT; |
3455 | m_cILMap = pSharedReJitInfo->m_cInstrumentedMapEntries; |
3456 | m_pILMap = new (nothrow)COR_IL_MAP[m_cILMap]; |
3457 | TargetBuffer mapBuffer(pSharedReJitInfo->m_rgInstrumentedMapEntries, m_cILMap*sizeof(COR_IL_MAP)); |
3458 | IfFailRet(GetProcess()->SafeReadBuffer(mapBuffer, (BYTE*)m_pILMap.GetValue(), FALSE /* bThrowOnError */)); |
3459 | } |
3460 | |
3461 | // Read the method's IL header |
3462 | CORDB_ADDRESS = pSharedReJitInfo->m_pbIL; |
3463 | IMAGE_COR_ILMETHOD_FAT = { 0 }; |
3464 | bool = false; |
3465 | ULONG32 = 0; |
3466 | hr = GetProcess()->SafeReadStruct(pIlHeader, &header); |
3467 | if (hr != S_OK) |
3468 | { |
3469 | // Its possible the header is tiny and there isn't enough memory to read a complete |
3470 | // FAT header |
3471 | headerMustBeTiny = true; |
3472 | IfFailRet(GetProcess()->SafeReadStruct(pIlHeader, (IMAGE_COR_ILMETHOD_TINY *)&header)); |
3473 | } |
3474 | |
3475 | // Read the ILCodeSize and LocalVarSigTok from header |
3476 | ULONG32 ilCodeSize = 0; |
3477 | IMAGE_COR_ILMETHOD_TINY * = (IMAGE_COR_ILMETHOD_TINY *)&header; |
3478 | bool = ((pMethodTinyHeader->Flags_CodeSize & (CorILMethod_FormatMask >> 1)) == CorILMethod_TinyFormat); |
3479 | if (isTinyHeader) |
3480 | { |
3481 | ilCodeSize = (((unsigned)pMethodTinyHeader->Flags_CodeSize) >> (CorILMethod_FormatShift - 1)); |
3482 | headerSize = sizeof(IMAGE_COR_ILMETHOD_TINY); |
3483 | m_localVarSigToken = mdSignatureNil; |
3484 | } |
3485 | else if (headerMustBeTiny) |
3486 | { |
3487 | // header was not CorILMethod_TinyFormat |
3488 | // this is not possible, must be an error when reading from data target |
3489 | return CORDBG_E_READVIRTUAL_FAILURE; |
3490 | } |
3491 | else |
3492 | { |
3493 | ilCodeSize = header.CodeSize; |
3494 | headerSize = header.Size * 4; |
3495 | m_localVarSigToken = header.LocalVarSigTok; |
3496 | } |
3497 | if (ilCodeSize == 0 || ilCodeSize > 100000) |
3498 | { |
3499 | return CORDBG_E_TARGET_INCONSISTENT; |
3500 | } |
3501 | |
3502 | m_codeRegionInfo.Init(pIlHeader + headerSize, ilCodeSize); |
3503 | m_pLocalIL = new (nothrow) BYTE[ilCodeSize]; |
3504 | if (m_pLocalIL == NULL) |
3505 | return E_OUTOFMEMORY; |
3506 | m_cbLocalIL = ilCodeSize; |
3507 | IfFailRet(GetProcess()->SafeReadBuffer(m_codeRegionInfo, m_pLocalIL, FALSE /*throwOnError*/)); |
3508 | |
3509 | // Check if this il code has exception clauses |
3510 | if ((pMethodTinyHeader->Flags_CodeSize & CorILMethod_MoreSects) == 0) |
3511 | { |
3512 | return S_OK; // no EH, done initing |
3513 | } |
3514 | |
3515 | // EH section starts at the 4 byte aligned address after the code |
3516 | CORDB_ADDRESS = ((pIlHeader + headerSize + ilCodeSize - 1) & ~3) + 4; |
3517 | BYTE kind = 0; |
3518 | IfFailRet(GetProcess()->SafeReadStruct(ehClauseHeader, &kind)); |
3519 | if ((kind & CorILMethod_Sect_KindMask) != CorILMethod_Sect_EHTable) |
3520 | { |
3521 | return S_OK; |
3522 | } |
3523 | if (kind & CorILMethod_Sect_FatFormat) |
3524 | { |
3525 | // Read the section header to see how many clauses there are |
3526 | IMAGE_COR_ILMETHOD_SECT_FAT = { 0 }; |
3527 | IfFailRet(GetProcess()->SafeReadStruct(ehClauseHeader, §ionHeader)); |
3528 | m_cClauses = (sectionHeader.DataSize - 4) / sizeof(IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT); |
3529 | if (m_cClauses > 10000) // sanity check the data before allocating |
3530 | { |
3531 | return CORDBG_E_TARGET_INCONSISTENT; |
3532 | } |
3533 | |
3534 | // Read in the clauses |
3535 | TargetBuffer buffer(ehClauseHeader + sizeof(IMAGE_COR_ILMETHOD_SECT_FAT), m_cClauses*sizeof(IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT)); |
3536 | NewArrayHolder<IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT> pClauses = new (nothrow)IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT[m_cClauses]; |
3537 | if (pClauses == NULL) |
3538 | return E_OUTOFMEMORY; |
3539 | IfFailRet(GetProcess()->SafeReadBuffer(buffer, (BYTE*)pClauses.GetValue(), FALSE /*throwOnError*/)); |
3540 | |
3541 | // convert clauses |
3542 | m_pClauses = new (nothrow)CorDebugEHClause[m_cClauses]; |
3543 | if (m_pClauses == NULL) |
3544 | return E_OUTOFMEMORY; |
3545 | for (ULONG32 i = 0; i < m_cClauses; i++) |
3546 | { |
3547 | BOOL isFilter = ((pClauses[i].Flags & COR_ILEXCEPTION_CLAUSE_FILTER) != 0); |
3548 | m_pClauses[i].Flags = pClauses[i].Flags; |
3549 | m_pClauses[i].TryOffset = pClauses[i].TryOffset; |
3550 | m_pClauses[i].TryLength = pClauses[i].TryLength; |
3551 | m_pClauses[i].HandlerOffset = pClauses[i].HandlerOffset; |
3552 | m_pClauses[i].HandlerLength = pClauses[i].HandlerLength; |
3553 | // these two fields are a union in the image, but are seperate in the struct ICorDebug returns |
3554 | m_pClauses[i].ClassToken = isFilter ? 0 : pClauses[i].ClassToken; |
3555 | m_pClauses[i].FilterOffset = isFilter ? pClauses[i].FilterOffset : 0; |
3556 | } |
3557 | } |
3558 | else |
3559 | { |
3560 | // Read in the section header to see how many small clauses there are |
3561 | IMAGE_COR_ILMETHOD_SECT_SMALL = { 0 }; |
3562 | IfFailRet(GetProcess()->SafeReadStruct(ehClauseHeader, §ionHeader)); |
3563 | ULONG32 m_cClauses = (sectionHeader.DataSize - 4) / sizeof(IMAGE_COR_ILMETHOD_SECT_SMALL); |
3564 | if (m_cClauses > 10000) // sanity check the data before allocating |
3565 | { |
3566 | return CORDBG_E_TARGET_INCONSISTENT; |
3567 | } |
3568 | |
3569 | // Read in the clauses |
3570 | TargetBuffer buffer(ehClauseHeader + sizeof(IMAGE_COR_ILMETHOD_SECT_SMALL), m_cClauses*sizeof(IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL)); |
3571 | NewArrayHolder<IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL> pClauses = new (nothrow)IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL[m_cClauses]; |
3572 | if (pClauses == NULL) |
3573 | return E_OUTOFMEMORY; |
3574 | IfFailRet(GetProcess()->SafeReadBuffer(buffer, (BYTE*)pClauses.GetValue(), FALSE /*throwOnError*/)); |
3575 | |
3576 | // convert clauses |
3577 | m_pClauses = new (nothrow)CorDebugEHClause[m_cClauses]; |
3578 | if (m_pClauses == NULL) |
3579 | return E_OUTOFMEMORY; |
3580 | for (ULONG32 i = 0; i < m_cClauses; i++) |
3581 | { |
3582 | BOOL isFilter = ((pClauses[i].Flags & COR_ILEXCEPTION_CLAUSE_FILTER) != 0); |
3583 | m_pClauses[i].Flags = pClauses[i].Flags; |
3584 | m_pClauses[i].TryOffset = pClauses[i].TryOffset; |
3585 | m_pClauses[i].TryLength = pClauses[i].TryLength; |
3586 | m_pClauses[i].HandlerOffset = pClauses[i].HandlerOffset; |
3587 | m_pClauses[i].HandlerLength = pClauses[i].HandlerLength; |
3588 | // these two fields are a union in the image, but are seperate in the struct ICorDebug returns |
3589 | m_pClauses[i].ClassToken = isFilter ? 0 : pClauses[i].ClassToken; |
3590 | m_pClauses[i].FilterOffset = isFilter ? pClauses[i].FilterOffset : 0; |
3591 | } |
3592 | } |
3593 | return S_OK; |
3594 | } |
3595 | |
3596 | #ifndef MIN |
3597 | #define MIN(a,b) ((a) < (b) ? (a) : (b)) |
3598 | #endif |
3599 | |
3600 | //----------------------------------------------------------------------------- |
3601 | // CordbReJitILCode::GetEHClauses |
3602 | // Public method to get the EH clauses for IL code |
3603 | // |
3604 | // Parameters: |
3605 | // cClauses - size of incoming clauses array (in elements). |
3606 | // pcClauses - OUT param: cClauses>0 -> the number of elements written to in the clauses array. |
3607 | // cClauses=0 -> the number of EH clauses this IL code has |
3608 | // clauses - caller allocated storage to hold the EH clauses. |
3609 | // |
3610 | // Returns: |
3611 | // S_OK if successfully copied elements to clauses array. |
3612 | HRESULT CordbReJitILCode::GetEHClauses(ULONG32 cClauses, ULONG32 * pcClauses, CorDebugEHClause clauses[]) |
3613 | { |
3614 | PUBLIC_API_ENTRY(this); |
3615 | FAIL_IF_NEUTERED(this); |
3616 | VALIDATE_POINTER_TO_OBJECT_OR_NULL(pcClauses, ULONG32 *); |
3617 | VALIDATE_POINTER_TO_OBJECT_ARRAY_OR_NULL(clauses, CorDebugEHClause *, cClauses, true, true); |
3618 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
3619 | |
3620 | if (cClauses != 0 && clauses == NULL) |
3621 | { |
3622 | return E_INVALIDARG; |
3623 | } |
3624 | |
3625 | if (pcClauses != NULL) |
3626 | { |
3627 | if (cClauses == 0) |
3628 | { |
3629 | *pcClauses = m_cClauses; |
3630 | } |
3631 | else |
3632 | { |
3633 | *pcClauses = MIN(cClauses, m_cClauses); |
3634 | } |
3635 | } |
3636 | |
3637 | if (clauses != NULL) |
3638 | { |
3639 | memcpy_s(clauses, sizeof(CorDebugEHClause)*cClauses, m_pClauses, sizeof(CorDebugEHClause)*MIN(cClauses, m_cClauses)); |
3640 | } |
3641 | return S_OK; |
3642 | } |
3643 | |
3644 | ULONG CordbReJitILCode::AddRef() |
3645 | { |
3646 | return CordbCode::AddRef(); |
3647 | } |
3648 | ULONG CordbReJitILCode::Release() |
3649 | { |
3650 | return CordbCode::Release(); |
3651 | } |
3652 | |
3653 | HRESULT CordbReJitILCode::QueryInterface(REFIID riid, void** ppInterface) |
3654 | { |
3655 | if (riid == IID_ICorDebugILCode) |
3656 | { |
3657 | *ppInterface = static_cast<ICorDebugILCode*>(this); |
3658 | } |
3659 | else if (riid == IID_ICorDebugILCode2) |
3660 | { |
3661 | *ppInterface = static_cast<ICorDebugILCode2*>(this); |
3662 | } |
3663 | else |
3664 | { |
3665 | return CordbILCode::QueryInterface(riid, ppInterface); |
3666 | } |
3667 | |
3668 | AddRef(); |
3669 | return S_OK; |
3670 | } |
3671 | |
3672 | HRESULT CordbReJitILCode::GetLocalVarSigToken(mdSignature *pmdSig) |
3673 | { |
3674 | PUBLIC_API_ENTRY(this); |
3675 | FAIL_IF_NEUTERED(this); |
3676 | VALIDATE_POINTER_TO_OBJECT(pmdSig, mdSignature *); |
3677 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
3678 | |
3679 | *pmdSig = m_localVarSigToken; |
3680 | return S_OK; |
3681 | } |
3682 | |
3683 | HRESULT CordbReJitILCode::GetInstrumentedILMap(ULONG32 cMap, ULONG32 *pcMap, COR_IL_MAP map[]) |
3684 | { |
3685 | PUBLIC_API_ENTRY(this); |
3686 | FAIL_IF_NEUTERED(this); |
3687 | VALIDATE_POINTER_TO_OBJECT_OR_NULL(pcClauses, ULONG32 *); |
3688 | VALIDATE_POINTER_TO_OBJECT_ARRAY_OR_NULL(map, COR_IL_MAP *, cMap, true, true); |
3689 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
3690 | |
3691 | if (cMap != 0 && map == NULL) |
3692 | { |
3693 | return E_INVALIDARG; |
3694 | } |
3695 | |
3696 | if (pcMap != NULL) |
3697 | { |
3698 | if (cMap == 0) |
3699 | { |
3700 | *pcMap = m_cILMap; |
3701 | } |
3702 | else |
3703 | { |
3704 | *pcMap = MIN(cMap, m_cILMap); |
3705 | } |
3706 | } |
3707 | |
3708 | if (map != NULL) |
3709 | { |
3710 | memcpy_s(map, sizeof(COR_IL_MAP)*cMap, m_pILMap, sizeof(COR_IL_MAP)*MIN(cMap, m_cILMap)); |
3711 | } |
3712 | return S_OK; |
3713 | } |
3714 | |
3715 | // FindNativeInfoInILVariableArray |
3716 | // Linear search through an array of NativeVarInfos, to find the variable of index dwIndex, valid |
3717 | // at the given ip. Returns CORDBG_E_IL_VAR_NOT_AVAILABLE if the variable isn't valid at the given ip. |
3718 | // Arguments: |
3719 | // input: dwIndex - variable number |
3720 | // ip - IP |
3721 | // nativeInfoList - list of instances of NativeVarInfo |
3722 | // output: ppNativeInfo - the element of nativeInfoList that corresponds to the IP and variable number |
3723 | // if we find such an element or NULL otherwise |
3724 | // Return value: HRESULT: returns S_OK or CORDBG_E_IL_VAR_NOT_AVAILABLE if the variable isn't found |
3725 | // |
3726 | HRESULT FindNativeInfoInILVariableArray(DWORD dwIndex, |
3727 | SIZE_T ip, |
3728 | const DacDbiArrayList<ICorDebugInfo::NativeVarInfo> * nativeInfoList, |
3729 | const ICorDebugInfo::NativeVarInfo ** ppNativeInfo) |
3730 | { |
3731 | _ASSERTE(ppNativeInfo != NULL); |
3732 | *ppNativeInfo = NULL; |
3733 | |
3734 | // A few words about this search: it must be linear, and the |
3735 | // comparison of startOffset and endOffset to ip must be |
3736 | // <=/>. startOffset points to the first instruction that will |
3737 | // make the variable's home valid. endOffset points to the first |
3738 | // instruction at which the variable's home invalid. |
3739 | int lastGoodOne = -1; |
3740 | for (unsigned int i = 0; i < (unsigned)nativeInfoList->Count(); i++) |
3741 | { |
3742 | if ((*nativeInfoList)[i].varNumber == dwIndex) |
3743 | { |
3744 | if ( (lastGoodOne == -1) || |
3745 | ((*nativeInfoList)[lastGoodOne].startOffset < (*nativeInfoList)[i].startOffset) ) |
3746 | { |
3747 | lastGoodOne = i; |
3748 | } |
3749 | |
3750 | if (((*nativeInfoList)[i].startOffset <= ip) && |
3751 | ((*nativeInfoList)[i].endOffset > ip)) |
3752 | { |
3753 | *ppNativeInfo = &((*nativeInfoList)[i]); |
3754 | |
3755 | return S_OK; |
3756 | } |
3757 | } |
3758 | } |
3759 | |
3760 | // workaround: |
3761 | // |
3762 | // We didn't find the variable. Was the endOffset of the last range for this variable |
3763 | // equal to the current IP? If so, go ahead and "lie" and report that as the |
3764 | // variable's home for now. |
3765 | // |
3766 | // Rationale: |
3767 | // |
3768 | // * See TODO comment in code:Compiler::siUpdate (jit\scopeinfo.cpp). In optimized |
3769 | // code, the JIT can report var lifetimes as being one instruction too short. |
3770 | // This workaround makes up for that. Example code: |
3771 | // |
3772 | // static void foo(int x) |
3773 | // { |
3774 | // int b = x; // Value of "x" would not be reported in optimized code without the workaround |
3775 | // bar(ref b); |
3776 | // } |
3777 | // |
3778 | // * Since this is the first instruction after the last range a variable was alive, |
3779 | // we're essentially assuming that since that instruction hasn't been executed |
3780 | // yet, and since there isn't a new home for the variable, that the last home is |
3781 | // still good. This actually turns out to be true 99.9% of the time, so we'll go |
3782 | // with it for now. |
3783 | // * We've been lying like this since 1999, so surely it's safe. |
3784 | if ((lastGoodOne > -1) && ((*nativeInfoList)[lastGoodOne].endOffset == ip)) |
3785 | { |
3786 | *ppNativeInfo = &((*nativeInfoList)[lastGoodOne]); |
3787 | return S_OK; |
3788 | } |
3789 | |
3790 | return CORDBG_E_IL_VAR_NOT_AVAILABLE; |
3791 | } // FindNativeInfoInILVariableArray |
3792 | |
3793 | |
3794 | // * ------------------------------------------------------------------------- * |
3795 | // * Variable Enum class |
3796 | // * ------------------------------------------------------------------------- * |
3797 | //----------------------------------------------------------------------------- |
3798 | // CordbVariableHome constructor |
3799 | // Arguments: |
3800 | // Input: |
3801 | // pCode - CordbNativeCode instance containing this variable home |
3802 | // pNativeVarInfo - native location, lifetime, and index information for |
3803 | // this variable |
3804 | // isLocal - indicates whether the instance is a local variable, |
3805 | // as opposed to an argument |
3806 | // index - the argument or slot index |
3807 | // Output: |
3808 | // fields of the CordbVariableHome instance have been initialized |
3809 | //----------------------------------------------------------------------------- |
3810 | CordbVariableHome::CordbVariableHome(CordbNativeCode *pCode, |
3811 | const ICorDebugInfo::NativeVarInfo nativeVarInfo, |
3812 | BOOL isLocal, |
3813 | ULONG index) : |
3814 | CordbBase(pCode->GetModule()->GetProcess(), 0) |
3815 | { |
3816 | _ASSERTE(pCode != NULL); |
3817 | |
3818 | m_pCode.Assign(pCode); |
3819 | m_nativeVarInfo = nativeVarInfo; |
3820 | m_isLocal = isLocal; |
3821 | m_index = index; |
3822 | } |
3823 | |
3824 | CordbVariableHome::~CordbVariableHome() |
3825 | { |
3826 | _ASSERTE(this->IsNeutered()); |
3827 | } |
3828 | |
3829 | void CordbVariableHome::Neuter() |
3830 | { |
3831 | m_pCode.Clear(); |
3832 | CordbBase::Neuter(); |
3833 | } |
3834 | |
3835 | //----------------------------------------------------------------------------- |
3836 | // Public method for IUnknown::QueryInterface. |
3837 | // Has standard QI semantics. |
3838 | //----------------------------------------------------------------------------- |
3839 | HRESULT CordbVariableHome::QueryInterface(REFIID id, void **pInterface) |
3840 | { |
3841 | if (id == IID_ICorDebugVariableHome) |
3842 | { |
3843 | *pInterface = static_cast<ICorDebugVariableHome *>(this); |
3844 | } |
3845 | else if (id == IID_IUnknown) |
3846 | { |
3847 | *pInterface = static_cast<IUnknown *>(static_cast<ICorDebugVariableHome *>(this)); |
3848 | } |
3849 | else |
3850 | { |
3851 | *pInterface = NULL; |
3852 | return E_NOINTERFACE; |
3853 | } |
3854 | |
3855 | ExternalAddRef(); |
3856 | return S_OK; |
3857 | } |
3858 | |
3859 | //----------------------------------------------------------------------------- |
3860 | // CordbVariableHome::GetCode |
3861 | // Public method to get the Code object containing this variable home. |
3862 | // |
3863 | // Parameters: |
3864 | // ppCode - OUT: returns the Code object for this variable home. |
3865 | // |
3866 | // Returns: |
3867 | // S_OK - on success. |
3868 | //----------------------------------------------------------------------------- |
3869 | HRESULT CordbVariableHome::GetCode(ICorDebugCode **ppCode) |
3870 | { |
3871 | PUBLIC_REENTRANT_API_ENTRY(this); |
3872 | FAIL_IF_NEUTERED(this); |
3873 | VALIDATE_POINTER_TO_OBJECT(ppCode, ICorDebugCode **); |
3874 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
3875 | |
3876 | HRESULT hr = m_pCode->QueryInterface(IID_ICorDebugCode, (LPVOID*)ppCode); |
3877 | |
3878 | return hr; |
3879 | } |
3880 | |
3881 | //----------------------------------------------------------------------------- |
3882 | // CordbVariableHome::GetSlotIndex |
3883 | // Public method to get the slot index for this variable home. |
3884 | // |
3885 | // Parameters: |
3886 | // pSlotIndex - OUT: returns the managed slot-index of this variable home. |
3887 | // |
3888 | // Returns: |
3889 | // S_OK - on success |
3890 | // E_FAIL - if the variable is not a local variable, but an argument |
3891 | //----------------------------------------------------------------------------- |
3892 | HRESULT CordbVariableHome::GetSlotIndex(ULONG32 *pSlotIndex) |
3893 | { |
3894 | PUBLIC_REENTRANT_API_ENTRY(this); |
3895 | FAIL_IF_NEUTERED(this); |
3896 | VALIDATE_POINTER_TO_OBJECT(pSlotIndex, ULONG32 *); |
3897 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
3898 | |
3899 | if (!m_isLocal) |
3900 | { |
3901 | return E_FAIL; |
3902 | } |
3903 | *pSlotIndex = m_index; |
3904 | return S_OK; |
3905 | } |
3906 | |
3907 | //----------------------------------------------------------------------------- |
3908 | // CordbVariableHome::GetArgumentIndex |
3909 | // Public method to get the slot index for this variable home. |
3910 | // |
3911 | // Parameters: |
3912 | // pSlotIndex - OUT: returns the managed argument-index of this variable home. |
3913 | // |
3914 | // Returns: |
3915 | // S_OK - on success |
3916 | // E_FAIL - if the variable is not an argument, but a local variable |
3917 | //----------------------------------------------------------------------------- |
3918 | HRESULT CordbVariableHome::GetArgumentIndex(ULONG32 *pArgumentIndex) |
3919 | { |
3920 | PUBLIC_REENTRANT_API_ENTRY(this); |
3921 | FAIL_IF_NEUTERED(this); |
3922 | VALIDATE_POINTER_TO_OBJECT(pArgumentIndex, ULONG32 *); |
3923 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
3924 | |
3925 | if (m_isLocal) |
3926 | { |
3927 | return E_FAIL; |
3928 | } |
3929 | *pArgumentIndex = m_index; |
3930 | return S_OK; |
3931 | } |
3932 | |
3933 | //----------------------------------------------------------------------------- |
3934 | // CordbVariableHome::GetLiveRange |
3935 | // Public method to get the native range over which this variable is live. |
3936 | // |
3937 | // Parameters: |
3938 | // pStartOffset - OUT: returns the logical offset at which the variable is |
3939 | // first live |
3940 | // pEndOffset - OUT: returns the logical offset immediately after that at |
3941 | // which the variable is last live |
3942 | // |
3943 | // Returns: |
3944 | // S_OK - on success |
3945 | //----------------------------------------------------------------------------- |
3946 | HRESULT CordbVariableHome::GetLiveRange(ULONG32 *pStartOffset, |
3947 | ULONG32 *pEndOffset) |
3948 | { |
3949 | PUBLIC_REENTRANT_API_ENTRY(this); |
3950 | FAIL_IF_NEUTERED(this); |
3951 | VALIDATE_POINTER_TO_OBJECT(pStartOffset, ULONG32 *); |
3952 | VALIDATE_POINTER_TO_OBJECT(pEndOffset, ULONG32 *); |
3953 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
3954 | |
3955 | *pStartOffset = m_nativeVarInfo.startOffset; |
3956 | *pEndOffset = m_nativeVarInfo.endOffset; |
3957 | return S_OK; |
3958 | } |
3959 | |
3960 | //----------------------------------------------------------------------------- |
3961 | // CordbVariableHome::GetLocationType |
3962 | // Public method to get the type of native location for this variable home. |
3963 | // |
3964 | // Parameters: |
3965 | // pLocationType - OUT: the type of native location |
3966 | // |
3967 | // Returns: |
3968 | // S_OK - on success |
3969 | //----------------------------------------------------------------------------- |
3970 | HRESULT CordbVariableHome::GetLocationType(VariableLocationType *pLocationType) |
3971 | { |
3972 | PUBLIC_REENTRANT_API_ENTRY(this); |
3973 | FAIL_IF_NEUTERED(this); |
3974 | VALIDATE_POINTER_TO_OBJECT(pLocationType, VariableLocationType *); |
3975 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
3976 | |
3977 | switch (m_nativeVarInfo.loc.vlType) |
3978 | { |
3979 | case ICorDebugInfo::VLT_REG: |
3980 | *pLocationType = VLT_REGISTER; |
3981 | break; |
3982 | case ICorDebugInfo::VLT_STK: |
3983 | *pLocationType = VLT_REGISTER_RELATIVE; |
3984 | break; |
3985 | default: |
3986 | *pLocationType = VLT_INVALID; |
3987 | } |
3988 | return S_OK; |
3989 | } |
3990 | |
3991 | //----------------------------------------------------------------------------- |
3992 | // CordbVariableHome::GetRegister |
3993 | // Public method to get the register or base register for this variable hom. |
3994 | // |
3995 | // Parameters: |
3996 | // pRegister - OUT: for VLT_REGISTER location types, gives the register. |
3997 | // for VLT_REGISTER_RELATIVE location types, gives the base |
3998 | // register. |
3999 | // |
4000 | // Returns: |
4001 | // S_OK - on success |
4002 | // E_FAIL - for VLT_INVALID location types |
4003 | //----------------------------------------------------------------------------- |
4004 | HRESULT CordbVariableHome::GetRegister(CorDebugRegister *pRegister) |
4005 | { |
4006 | PUBLIC_REENTRANT_API_ENTRY(this); |
4007 | FAIL_IF_NEUTERED(this); |
4008 | VALIDATE_POINTER_TO_OBJECT(pRegister, CorDebugRegister *); |
4009 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
4010 | |
4011 | switch (m_nativeVarInfo.loc.vlType) |
4012 | { |
4013 | case ICorDebugInfo::VLT_REG: |
4014 | *pRegister = ConvertRegNumToCorDebugRegister(m_nativeVarInfo.loc.vlReg.vlrReg); |
4015 | break; |
4016 | case ICorDebugInfo::VLT_STK: |
4017 | *pRegister = ConvertRegNumToCorDebugRegister(m_nativeVarInfo.loc.vlStk.vlsBaseReg); |
4018 | break; |
4019 | default: |
4020 | return E_FAIL; |
4021 | } |
4022 | return S_OK; |
4023 | } |
4024 | |
4025 | //----------------------------------------------------------------------------- |
4026 | // CordbVariableHome::GetOffset |
4027 | // Public method to get the offset from the base register for this variable home. |
4028 | // |
4029 | // Parameters: |
4030 | // pOffset - OUT: gives the offset from the base register |
4031 | // |
4032 | // Returns: |
4033 | // S_OK - on success |
4034 | // E_FAIL - for location types other than VLT_REGISTER_RELATIVE |
4035 | //----------------------------------------------------------------------------- |
4036 | HRESULT CordbVariableHome::GetOffset(LONG *pOffset) |
4037 | { |
4038 | PUBLIC_REENTRANT_API_ENTRY(this); |
4039 | FAIL_IF_NEUTERED(this); |
4040 | VALIDATE_POINTER_TO_OBJECT(pOffset, LONG *); |
4041 | ATT_REQUIRE_STOPPED_MAY_FAIL(m_pCode->GetProcess()); |
4042 | |
4043 | switch (m_nativeVarInfo.loc.vlType) |
4044 | { |
4045 | case ICorDebugInfo::VLT_STK: |
4046 | *pOffset = m_nativeVarInfo.loc.vlStk.vlsOffset; |
4047 | break; |
4048 | default: |
4049 | return E_FAIL; |
4050 | } |
4051 | return S_OK; |
4052 | } |
4053 | |
4054 | |
4055 | // * ------------------------------------------------------------------------- * |
4056 | // * Native Code class |
4057 | // * ------------------------------------------------------------------------- */ |
4058 | |
4059 | |
4060 | //----------------------------------------------------------------------------- |
4061 | // CordbNativeCode ctor to make Native code. |
4062 | // Arguments: |
4063 | // Input: |
4064 | // pFunction - the function for which this is the native code object |
4065 | // pJitData - the information about this code object retrieved from the DAC |
4066 | // fIsInstantiatedGeneric - indicates whether this code object is an instantiated |
4067 | // generic |
4068 | // Output: |
4069 | // fields of this instance of CordbNativeCode have been initialized |
4070 | //----------------------------------------------------------------------------- |
4071 | CordbNativeCode::CordbNativeCode(CordbFunction * pFunction, |
4072 | const NativeCodeFunctionData * pJitData, |
4073 | BOOL fIsInstantiatedGeneric) |
4074 | : CordbCode(pFunction, (UINT_PTR)pJitData->m_rgCodeRegions[kHot].pAddress, pJitData->encVersion, FALSE), |
4075 | m_vmNativeCodeMethodDescToken(pJitData->vmNativeCodeMethodDescToken), |
4076 | m_fCodeAvailable(TRUE), |
4077 | m_fIsInstantiatedGeneric(fIsInstantiatedGeneric != FALSE) |
4078 | { |
4079 | _ASSERTE(GetVersion() >= CorDB_DEFAULT_ENC_FUNCTION_VERSION); |
4080 | |
4081 | for (CodeBlobRegion region = kHot; region < MAX_REGIONS; ++region) |
4082 | { |
4083 | m_rgCodeRegions[region] = pJitData->m_rgCodeRegions[region]; |
4084 | } |
4085 | } //CordbNativeCode::CordbNativeCode |
4086 | |
4087 | //----------------------------------------------------------------------------- |
4088 | // Public method for IUnknown::QueryInterface. |
4089 | // Has standard QI semantics. |
4090 | //----------------------------------------------------------------------------- |
4091 | HRESULT CordbNativeCode::QueryInterface(REFIID id, void ** pInterface) |
4092 | { |
4093 | if (id == IID_ICorDebugCode) |
4094 | { |
4095 | *pInterface = static_cast<ICorDebugCode *>(this); |
4096 | } |
4097 | else if (id == IID_ICorDebugCode2) |
4098 | { |
4099 | *pInterface = static_cast<ICorDebugCode2 *>(this); |
4100 | } |
4101 | else if (id == IID_ICorDebugCode3) |
4102 | { |
4103 | *pInterface = static_cast<ICorDebugCode3 *>(this); |
4104 | } |
4105 | else if (id == IID_ICorDebugCode4) |
4106 | { |
4107 | *pInterface = static_cast<ICorDebugCode4 *>(this); |
4108 | } |
4109 | else if (id == IID_IUnknown) |
4110 | { |
4111 | *pInterface = static_cast<IUnknown *>(static_cast<ICorDebugCode *>(this)); |
4112 | } |
4113 | else |
4114 | { |
4115 | *pInterface = NULL; |
4116 | return E_NOINTERFACE; |
4117 | } |
4118 | |
4119 | ExternalAddRef(); |
4120 | return S_OK; |
4121 | } |
4122 | |
4123 | //----------------------------------------------------------------------------- |
4124 | // CordbNativeCode::GetAddress |
4125 | // Public method to get the Entry address for the code. This is the address |
4126 | // where the method first starts executing. |
4127 | // |
4128 | // Parameters: |
4129 | // pStart - out-parameter to hold start address. |
4130 | // |
4131 | // Returns: |
4132 | // S_OK if *pStart is properly updated. |
4133 | //----------------------------------------------------------------------------- |
4134 | HRESULT CordbNativeCode::GetAddress(CORDB_ADDRESS * pStart) |
4135 | { |
4136 | PUBLIC_REENTRANT_API_ENTRY(this); |
4137 | FAIL_IF_NEUTERED(this); |
4138 | VALIDATE_POINTER_TO_OBJECT(pStart, CORDB_ADDRESS *); |
4139 | |
4140 | |
4141 | _ASSERTE(this != NULL); |
4142 | _ASSERTE(this->GetFunction() != NULL); |
4143 | _ASSERTE(this->GetFunction()->GetModule() != NULL); |
4144 | _ASSERTE(this->GetFunction()->GetModule()->GetProcess() == GetProcess()); |
4145 | |
4146 | // Since we don't do code-pitching, the address points directly to the code. |
4147 | *pStart = (m_rgCodeRegions[kHot].pAddress); |
4148 | |
4149 | if (*pStart == NULL) |
4150 | { |
4151 | return CORDBG_E_CODE_NOT_AVAILABLE; |
4152 | } |
4153 | return S_OK; |
4154 | } // CordbNativeCode::GetAddress |
4155 | |
4156 | //----------------------------------------------------------------------------- |
4157 | // CordbNativeCode::ReadCodeBytes |
4158 | // Reads the actual bytes of native code from both the hot and cold regions |
4159 | // into the data member m_rgbCode |
4160 | // Arguments: |
4161 | // none (uses data members) |
4162 | // Return value: |
4163 | // standard HRESULT values |
4164 | // also allocates and initializes m_rgbCode |
4165 | // Notes: assumes that the caller has checked to ensure that m_rgbCode doesn't |
4166 | // hold valid data |
4167 | //----------------------------------------------------------------------------- |
4168 | HRESULT CordbNativeCode::ReadCodeBytes() |
4169 | { |
4170 | HRESULT hr = S_OK; |
4171 | |
4172 | EX_TRY |
4173 | { |
4174 | // We have an address & size, so we'll just call ReadMemory. |
4175 | // This will conveniently strip out any patches too. |
4176 | CORDB_ADDRESS pHotStart = m_rgCodeRegions[kHot].pAddress; |
4177 | CORDB_ADDRESS pColdStart = m_rgCodeRegions[kCold].pAddress; |
4178 | ULONG32 cbHotSize = (ULONG32) m_rgCodeRegions[kHot].cbSize; |
4179 | ULONG32 cbColdSize = GetColdSize(); |
4180 | |
4181 | delete [] m_rgbCode; |
4182 | m_rgbCode = new BYTE[cbHotSize + cbColdSize]; |
4183 | |
4184 | SIZE_T cbRead; |
4185 | hr = GetProcess()->ReadMemory(pHotStart, cbHotSize, m_rgbCode, &cbRead); |
4186 | IfFailThrow(hr); |
4187 | |
4188 | SIMPLIFYING_ASSUMPTION(cbRead == cbHotSize); |
4189 | |
4190 | if (HasColdRegion()) |
4191 | { |
4192 | hr = GetProcess()->ReadMemory(pColdStart, cbColdSize, (BYTE *) m_rgbCode + cbHotSize, &cbRead); |
4193 | IfFailThrow(hr); |
4194 | |
4195 | SIMPLIFYING_ASSUMPTION(cbRead == cbColdSize); |
4196 | } |
4197 | } |
4198 | EX_CATCH_HRESULT(hr); |
4199 | return hr; |
4200 | |
4201 | } // CordbNativeCode::ReadCodeBytes |
4202 | |
4203 | //----------------------------------------------------------------------------- |
4204 | // CordbNativeCode::GetColdSize |
4205 | // Get the size of the cold regions in bytes. |
4206 | // |
4207 | // Parameters: |
4208 | // none--uses data member m_rgCodeRegions to compute total size. |
4209 | // |
4210 | // Returns: |
4211 | // the size of the code in bytes. |
4212 | //----------------------------------------------------------------------------- |
4213 | ULONG32 CordbNativeCode::GetColdSize() |
4214 | { |
4215 | ULONG32 pcBytes = 0; |
4216 | for (CodeBlobRegion index = kCold; index < MAX_REGIONS; ++index) |
4217 | { |
4218 | pcBytes += m_rgCodeRegions[index].cbSize; |
4219 | } |
4220 | return pcBytes; |
4221 | } // CordbNativeCode::GetColdSize |
4222 | |
4223 | //----------------------------------------------------------------------------- |
4224 | // CordbNativeCode::GetSize |
4225 | // Get the size of the code in bytes. |
4226 | // |
4227 | // Parameters: |
4228 | // none--uses data member m_rgCodeRegions to compute total size. |
4229 | // |
4230 | // Returns: |
4231 | // the size of the code in bytes. |
4232 | //----------------------------------------------------------------------------- |
4233 | ULONG32 CordbNativeCode::GetSize() |
4234 | { |
4235 | ULONG32 pcBytes = 0; |
4236 | for (CodeBlobRegion index = kHot; index < MAX_REGIONS; ++index) |
4237 | { |
4238 | pcBytes += m_rgCodeRegions[index].cbSize; |
4239 | } |
4240 | return pcBytes; |
4241 | } // CordbNativeCode::GetSize |
4242 | |
4243 | //----------------------------------------------------------------------------- |
4244 | // CordbNativeCode::GetILToNativeMapping |
4245 | // Public method (implements ICorDebugCode) to get the IL-->{ Native Start, Native End} mapping. |
4246 | // This can only be retrieved for native code. |
4247 | // This will copy as much of the map as can fit in the incoming buffer. |
4248 | // |
4249 | // Parameters: |
4250 | // cMap - size of incoming map[] array (in elements). |
4251 | // pcMap - OUT: full size of IL-->Native map (in elements). |
4252 | // map - caller allocated array to be filled in. |
4253 | // |
4254 | // Returns: |
4255 | // S_OK on successful copying. |
4256 | //----------------------------------------------------------------------------- |
4257 | HRESULT CordbNativeCode::GetILToNativeMapping(ULONG32 cMap, |
4258 | ULONG32 * pcMap, |
4259 | COR_DEBUG_IL_TO_NATIVE_MAP map[]) |
4260 | { |
4261 | PUBLIC_REENTRANT_API_ENTRY(this); |
4262 | FAIL_IF_NEUTERED(this); |
4263 | VALIDATE_POINTER_TO_OBJECT_OR_NULL(pcMap, ULONG32 *); |
4264 | VALIDATE_POINTER_TO_OBJECT_ARRAY_OR_NULL(map, COR_DEBUG_IL_TO_NATIVE_MAP *,cMap,true,true); |
4265 | |
4266 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
4267 | |
4268 | HRESULT hr = S_OK; |
4269 | EX_TRY |
4270 | { |
4271 | LoadNativeInfo(); |
4272 | |
4273 | SequencePoints * pSeqPts = GetSequencePoints(); |
4274 | DebuggerILToNativeMap * rgMapInt = pSeqPts->GetMapAddr(); |
4275 | ULONG32 cMapIntCount = pSeqPts->GetEntryCount(); |
4276 | |
4277 | // If they gave us space to copy into... |
4278 | if (map != NULL) |
4279 | { |
4280 | // Only copy as much as either they gave us or we have to copy. |
4281 | ULONG32 cMapToCopy = min(cMap, cMapIntCount); |
4282 | |
4283 | // Remember that we need to translate between our internal DebuggerILToNativeMap and the external |
4284 | // COR_DEBUG_IL_TO_NATIVE_MAP! |
4285 | ULONG32 size = GetSize(); |
4286 | ExportILToNativeMap(cMapToCopy, map, rgMapInt, size); |
4287 | } |
4288 | |
4289 | // return the full count of map entries |
4290 | if (pcMap) |
4291 | { |
4292 | *pcMap = cMapIntCount; |
4293 | } |
4294 | } |
4295 | EX_CATCH_HRESULT(hr); |
4296 | return hr; |
4297 | } // CordbNativeCode::GetILToNativeMapping |
4298 | |
4299 | //----------------------------------------------------------------------------- |
4300 | // CordbNativeCode::GetCodeChunks |
4301 | // Public method to get the code regions of code. If the code |
4302 | // is broken into discontinuous regions (hot + cold), this lets a debugger |
4303 | // find the number of regions, and (start,size) of each. |
4304 | // |
4305 | // Parameters: |
4306 | // cbufSize - size of incoming chunks array (in elements). |
4307 | // pcnumChunks - OUT param: the number of elements written to in the chunk array.// |
4308 | // chunks - caller allocated storage to hold the code chunks. |
4309 | // |
4310 | // Returns: |
4311 | // S_OK if successfully copied elements to Chunk array. |
4312 | //----------------------------------------------------------------------------- |
4313 | HRESULT CordbNativeCode::GetCodeChunks( |
4314 | ULONG32 cbufSize, |
4315 | ULONG32 * pcnumChunks, |
4316 | CodeChunkInfo chunks[] |
4317 | ) |
4318 | { |
4319 | PUBLIC_API_ENTRY(this); |
4320 | |
4321 | if (pcnumChunks == NULL) |
4322 | { |
4323 | return E_INVALIDARG; |
4324 | } |
4325 | if ((chunks == NULL) != (cbufSize == 0)) |
4326 | { |
4327 | return E_INVALIDARG; |
4328 | } |
4329 | |
4330 | // Current V2.0 implementation has at most 2 possible chunks right now (1 hot, and 1 cold). |
4331 | ULONG32 cActualChunks = HasColdRegion() ? 2 : 1; |
4332 | |
4333 | // If no buf size, then we're querying the total number of chunks. |
4334 | if (cbufSize == 0) |
4335 | { |
4336 | *pcnumChunks = cActualChunks; |
4337 | return S_OK; |
4338 | } |
4339 | |
4340 | // Else give them as many as they asked for. |
4341 | for (CodeBlobRegion index = kHot; (index < MAX_REGIONS) && ((int)cbufSize > index); ++index) |
4342 | { |
4343 | // Fill in the region information |
4344 | chunks[index].startAddr = m_rgCodeRegions[index].pAddress; |
4345 | chunks[index].length = (ULONG32) (m_rgCodeRegions[index].cbSize); |
4346 | *pcnumChunks = cbufSize; |
4347 | } |
4348 | |
4349 | return S_OK; |
4350 | } // CordbNativeCode::GetCodeChunks |
4351 | |
4352 | //----------------------------------------------------------------------------- |
4353 | // CordbNativeCode::GetCompilerFlags |
4354 | // Public entry point to get code flags for this Code object. |
4355 | // Originally, ICDCode had this method implemented independently from the |
4356 | // ICDModule method GetJitCompilerFlags. This was because it was considered that |
4357 | // the flags would be per function, rather than per module. |
4358 | // In addition, GetCompilerFlags did two different things depending on whether |
4359 | // the code had a native image. It turned out that was the wrong thing to do |
4360 | // . |
4361 | // |
4362 | // Parameters: |
4363 | // pdwFlags - OUT: code gen flags (see CorDebugJITCompilerFlags) |
4364 | // |
4365 | // Return value: |
4366 | // S_OK if pdwFlags is set properly. |
4367 | //----------------------------------------------------------------------------- |
4368 | HRESULT CordbNativeCode::GetCompilerFlags(DWORD * pdwFlags) |
4369 | { |
4370 | PUBLIC_API_ENTRY(this); |
4371 | FAIL_IF_NEUTERED(this); |
4372 | VALIDATE_POINTER_TO_OBJECT(pdwFlags, DWORD *); |
4373 | *pdwFlags = 0; |
4374 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
4375 | |
4376 | return GetFunction()->GetModule()->GetJITCompilerFlags(pdwFlags); |
4377 | |
4378 | } // CordbNativeCode::GetCompilerFlags |
4379 | |
4380 | //----------------------------------------------------------------------------- |
4381 | // Given an IL local variable number and a native IP offset, return the |
4382 | // location of the variable in jitted code. |
4383 | //----------------------------------------------------------------------------- |
4384 | HRESULT CordbNativeCode::ILVariableToNative(DWORD dwIndex, |
4385 | SIZE_T ip, |
4386 | const ICorDebugInfo::NativeVarInfo ** ppNativeInfo) |
4387 | { |
4388 | _ASSERTE(m_nativeVarData.IsInitialized()); |
4389 | |
4390 | return FindNativeInfoInILVariableArray(dwIndex, |
4391 | ip, |
4392 | m_nativeVarData.GetOffsetInfoList(), |
4393 | ppNativeInfo); |
4394 | } // CordbNativeCode::ILVariableToNative |
4395 | |
4396 | |
4397 | HRESULT CordbNativeCode::GetReturnValueLiveOffset(ULONG32 ILoffset, ULONG32 bufferSize, ULONG32 *pFetched, ULONG32 *pOffsets) |
4398 | { |
4399 | HRESULT hr = S_OK; |
4400 | |
4401 | PUBLIC_API_ENTRY(this); |
4402 | FAIL_IF_NEUTERED(this); |
4403 | |
4404 | VALIDATE_POINTER_TO_OBJECT(pFetched, ULONG32 *); |
4405 | |
4406 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
4407 | EX_TRY |
4408 | { |
4409 | hr = GetReturnValueLiveOffsetImpl(NULL, ILoffset, bufferSize, pFetched, pOffsets); |
4410 | } |
4411 | EX_CATCH_HRESULT(hr); |
4412 | return hr; |
4413 | } |
4414 | |
4415 | //----------------------------------------------------------------------------- |
4416 | // CordbNativeCode::EnumerateVariableHomes |
4417 | // Public method to get an enumeration of native variable homes. This may |
4418 | // include multiple ICorDebugVariableHomes for the same slot or argument index |
4419 | // if they have different homes at different points in the function. |
4420 | // |
4421 | // Parameters: |
4422 | // ppEnum - OUT: returns the enum of variable homes. |
4423 | // |
4424 | // Returns: |
4425 | // HRESULT for success or failure. |
4426 | //----------------------------------------------------------------------------- |
4427 | HRESULT CordbNativeCode::EnumerateVariableHomes(ICorDebugVariableHomeEnum **ppEnum) |
4428 | { |
4429 | PUBLIC_REENTRANT_API_ENTRY(this); |
4430 | FAIL_IF_NEUTERED(this); |
4431 | VALIDATE_POINTER_TO_OBJECT(ppEnum, ICorDebugVariableHomeEnum **); |
4432 | ATT_REQUIRE_STOPPED_MAY_FAIL(GetProcess()); |
4433 | |
4434 | HRESULT hr = S_OK; |
4435 | |
4436 | // Get the argument count |
4437 | ULONG argCount = 0; |
4438 | CordbFunction *func = GetFunction(); |
4439 | _ASSERTE(func != NULL); |
4440 | IfFailRet(func->GetSig(NULL, &argCount, NULL)); |
4441 | |
4442 | #ifdef _DEBUG |
4443 | // Get the number of locals |
4444 | ULONG localCount = 0; |
4445 | EX_TRY |
4446 | { |
4447 | GetFunction()->GetILCode()->GetLocalVarSig(NULL, &localCount); |
4448 | } |
4449 | EX_CATCH_HRESULT(hr); |
4450 | IfFailRet(hr); |
4451 | #endif |
4452 | |
4453 | RSSmartPtr<CordbVariableHome> *rsHomes = NULL; |
4454 | |
4455 | EX_TRY |
4456 | { |
4457 | CordbProcess *pProcess = GetProcess(); |
4458 | _ASSERTE(pProcess != NULL); |
4459 | |
4460 | const DacDbiArrayList<ICorDebugInfo::NativeVarInfo> *pOffsetInfoList = m_nativeVarData.GetOffsetInfoList(); |
4461 | _ASSERTE(pOffsetInfoList != NULL); |
4462 | DWORD countHomes = 0; |
4463 | for (int i = 0; i < pOffsetInfoList->Count(); i++) |
4464 | { |
4465 | const ICorDebugInfo::NativeVarInfo *pNativeVarInfo = &((*pOffsetInfoList)[i]); |
4466 | _ASSERTE(pNativeVarInfo != NULL); |
4467 | |
4468 | // The variable information list can include variables |
4469 | // with special varNumbers representing, for instance, the |
4470 | // parameter types for generic methods. Here we are only |
4471 | // interested in local variables and arguments. |
4472 | if (pNativeVarInfo->varNumber < (DWORD)ICorDebugInfo::MAX_ILNUM) |
4473 | { |
4474 | countHomes++; |
4475 | } |
4476 | } |
4477 | rsHomes = new RSSmartPtr<CordbVariableHome>[countHomes]; |
4478 | |
4479 | DWORD varHomeInd = 0; |
4480 | for (int i = 0; i < pOffsetInfoList->Count(); i++) |
4481 | { |
4482 | const ICorDebugInfo::NativeVarInfo *pNativeVarInfo = &((*pOffsetInfoList)[i]); |
4483 | |
4484 | // Again, only look for native var info representing local |
4485 | // variables and arguments. |
4486 | if (pNativeVarInfo->varNumber < (DWORD)ICorDebugInfo::MAX_ILNUM) |
4487 | { |
4488 | // determine whether this variable home represents and argument or local variable |
4489 | BOOL isLocal = ((ULONG)pNativeVarInfo->varNumber >= argCount); |
4490 | |
4491 | // determine the argument-index or slot-index of this variable home |
4492 | ULONG argOrSlotIndex; |
4493 | if (isLocal) { |
4494 | argOrSlotIndex = pNativeVarInfo->varNumber - argCount; |
4495 | _ASSERTE(argOrSlotIndex < localCount); |
4496 | } else { |
4497 | argOrSlotIndex = pNativeVarInfo->varNumber; |
4498 | } |
4499 | |
4500 | RSInitHolder<CordbVariableHome> pCVH(new CordbVariableHome(this, |
4501 | (*pOffsetInfoList)[i], |
4502 | isLocal, |
4503 | argOrSlotIndex)); |
4504 | pProcess->GetContinueNeuterList()->Add(pProcess, pCVH); |
4505 | _ASSERTE(varHomeInd < countHomes); |
4506 | rsHomes[varHomeInd].Assign(pCVH); |
4507 | pCVH.ClearAndMarkDontNeuter(); |
4508 | varHomeInd++; |
4509 | } |
4510 | } |
4511 | |
4512 | RSInitHolder<CordbVariableHomeEnumerator> pCDVHE( |
4513 | new CordbVariableHomeEnumerator(GetProcess(), &rsHomes, countHomes)); |
4514 | pProcess->GetContinueNeuterList()->Add(pProcess, pCDVHE); |
4515 | pCDVHE.TransferOwnershipExternal(ppEnum); |
4516 | } |
4517 | EX_CATCH_HRESULT(hr); |
4518 | |
4519 | return hr; |
4520 | } |
4521 | |
4522 | int CordbNativeCode::GetCallInstructionLength(BYTE *ip, ULONG32 count) |
4523 | { |
4524 | #if defined(DBG_TARGET_ARM) |
4525 | if (Is32BitInstruction(*(WORD*)ip)) |
4526 | return 4; |
4527 | else |
4528 | return 2; |
4529 | #elif defined(DBG_TARGET_ARM64) |
4530 | return MAX_INSTRUCTION_LENGTH; |
4531 | #elif defined(DBG_TARGET_X86) |
4532 | if (count < 2) |
4533 | return -1; |
4534 | |
4535 | // Skip instruction prefixes |
4536 | do |
4537 | { |
4538 | switch (*ip) |
4539 | { |
4540 | // Segment overrides |
4541 | case 0x26: // ES |
4542 | case 0x2E: // CS |
4543 | case 0x36: // SS |
4544 | case 0x3E: // DS |
4545 | case 0x64: // FS |
4546 | case 0x65: // GS |
4547 | |
4548 | // Size overrides |
4549 | case 0x66: // Operand-Size |
4550 | case 0x67: // Address-Size |
4551 | |
4552 | // Lock |
4553 | case 0xf0: |
4554 | |
4555 | // String REP prefixes |
4556 | case 0xf1: |
4557 | case 0xf2: // REPNE/REPNZ |
4558 | case 0xf3: |
4559 | ip++; |
4560 | count--; |
4561 | continue; |
4562 | |
4563 | default: |
4564 | break; |
4565 | } |
4566 | } while (0); |
4567 | |
4568 | // Read the opcode |
4569 | BYTE opcode = *ip++; |
4570 | if (opcode == 0xcc) |
4571 | { |
4572 | // todo: Can we actually get this result? Doesn't ICorDebug hand out un-patched assembly? |
4573 | _ASSERTE(!"Hit break opcode!" ); |
4574 | return -1; |
4575 | } |
4576 | |
4577 | // Analyze what we can of the opcode |
4578 | switch (opcode) |
4579 | { |
4580 | case 0xff: |
4581 | { |
4582 | // Count may have been decremented by prefixes. |
4583 | if (count < 2) |
4584 | return -1; |
4585 | |
4586 | BYTE modrm = *ip++; |
4587 | BYTE mod = (modrm & 0xC0) >> 6; |
4588 | BYTE reg = (modrm & 0x38) >> 3; |
4589 | BYTE rm = (modrm & 0x07); |
4590 | |
4591 | int displace = -1; |
4592 | |
4593 | if ((reg != 2) && (reg != 3) && (reg != 4) && (reg != 5)) |
4594 | { |
4595 | // |
4596 | // This is not a CALL or JMP instruction, return, unknown. |
4597 | // |
4598 | _ASSERTE(!"Unhandled opcode!" ); |
4599 | return -1; |
4600 | } |
4601 | |
4602 | |
4603 | // Only try to decode registers if we actually have reg sets. |
4604 | switch (mod) |
4605 | { |
4606 | case 0: |
4607 | case 1: |
4608 | case 2: |
4609 | |
4610 | if (rm == 4) |
4611 | { |
4612 | if (count < 3) |
4613 | return -1; |
4614 | |
4615 | // |
4616 | // Get values from the SIB byte |
4617 | // |
4618 | BYTE ss = (*ip & 0xC0) >> 6; |
4619 | BYTE index = (*ip & 0x38) >> 3; |
4620 | BYTE base = (*ip & 0x7); |
4621 | |
4622 | // |
4623 | // Finally add in the offset |
4624 | // |
4625 | if (mod == 0) |
4626 | { |
4627 | if (base == 5) |
4628 | displace = 7; |
4629 | else |
4630 | displace = 3; |
4631 | } |
4632 | else if (mod == 1) |
4633 | { |
4634 | displace = 4; |
4635 | } |
4636 | else |
4637 | { |
4638 | displace = 7; |
4639 | } |
4640 | } |
4641 | else |
4642 | { |
4643 | if (mod == 0) |
4644 | { |
4645 | if (rm == 5) |
4646 | displace = 6; |
4647 | else |
4648 | displace = 2; |
4649 | } |
4650 | else if (mod == 1) |
4651 | { |
4652 | displace = 3; |
4653 | } |
4654 | else |
4655 | { |
4656 | displace = 6; |
4657 | } |
4658 | } |
4659 | break; |
4660 | |
4661 | case 3: |
4662 | default: |
4663 | displace = 2; |
4664 | break; |
4665 | } |
4666 | |
4667 | return displace; |
4668 | } // end of 0xFF case |
4669 | |
4670 | case 0xe8: |
4671 | return 5; |
4672 | |
4673 | |
4674 | default: |
4675 | break; |
4676 | } |
4677 | |
4678 | |
4679 | _ASSERTE(!"Unhandled opcode!" ); |
4680 | return -1; |
4681 | |
4682 | #elif defined(DBG_TARGET_AMD64) |
4683 | BYTE rex = NULL; |
4684 | BYTE prefix = *ip; |
4685 | BOOL fContainsPrefix = FALSE; |
4686 | |
4687 | // Should not happen. |
4688 | if (prefix == 0xcc) |
4689 | return -1; |
4690 | |
4691 | // Skip instruction prefixes |
4692 | //@TODO by euzem: |
4693 | //This "loop" can't be really executed more than once so if CALL can really have more than one prefix we'll crash. |
4694 | //Some of these prefixes are not allowed for CALL instruction and we should treat them as invalid code. |
4695 | //It appears that this code was mostly copy/pasted from \NDP\clr\src\Debug\EE\amd64\amd64walker.cpp |
4696 | //with very minimum fixes. |
4697 | do |
4698 | { |
4699 | switch (prefix) |
4700 | { |
4701 | // Segment overrides |
4702 | case 0x26: // ES |
4703 | case 0x2E: // CS |
4704 | case 0x36: // SS |
4705 | case 0x3E: // DS |
4706 | case 0x64: // FS |
4707 | case 0x65: // GS |
4708 | |
4709 | // Size overrides |
4710 | case 0x66: // Operand-Size |
4711 | case 0x67: // Address-Size |
4712 | |
4713 | // Lock |
4714 | case 0xf0: |
4715 | |
4716 | // String REP prefixes |
4717 | case 0xf2: // REPNE/REPNZ |
4718 | case 0xf3: |
4719 | ip++; |
4720 | fContainsPrefix = TRUE; |
4721 | continue; |
4722 | |
4723 | // REX register extension prefixes |
4724 | case 0x40: |
4725 | case 0x41: |
4726 | case 0x42: |
4727 | case 0x43: |
4728 | case 0x44: |
4729 | case 0x45: |
4730 | case 0x46: |
4731 | case 0x47: |
4732 | case 0x48: |
4733 | case 0x49: |
4734 | case 0x4a: |
4735 | case 0x4b: |
4736 | case 0x4c: |
4737 | case 0x4d: |
4738 | case 0x4e: |
4739 | case 0x4f: |
4740 | // make sure to set rex to prefix, not *ip because *ip still represents the |
4741 | // codestream which has a 0xcc in it. |
4742 | rex = prefix; |
4743 | ip++; |
4744 | fContainsPrefix = TRUE; |
4745 | continue; |
4746 | |
4747 | default: |
4748 | break; |
4749 | } |
4750 | } while (0); |
4751 | |
4752 | // Read the opcode |
4753 | BYTE opcode = *ip++; |
4754 | |
4755 | // Should not happen. |
4756 | if (opcode == 0xcc) |
4757 | return -1; |
4758 | |
4759 | |
4760 | // Setup rex bits if needed |
4761 | BYTE rex_b = 0; |
4762 | BYTE rex_x = 0; |
4763 | BYTE rex_r = 0; |
4764 | |
4765 | if (rex != NULL) |
4766 | { |
4767 | rex_b = (rex & 0x1); // high bit to modrm r/m field or SIB base field or OPCODE reg field -- Hmm, when which? |
4768 | rex_x = (rex & 0x2) >> 1; // high bit to sib index field |
4769 | rex_r = (rex & 0x4) >> 2; // high bit to modrm reg field |
4770 | } |
4771 | |
4772 | // Analyze what we can of the opcode |
4773 | switch (opcode) |
4774 | { |
4775 | case 0xff: |
4776 | { |
4777 | BYTE modrm = *ip++; |
4778 | |
4779 | _ASSERT(modrm != NULL); |
4780 | |
4781 | BYTE mod = (modrm & 0xC0) >> 6; |
4782 | BYTE reg = (modrm & 0x38) >> 3; |
4783 | BYTE rm = (modrm & 0x07); |
4784 | |
4785 | reg |= (rex_r << 3); |
4786 | rm |= (rex_b << 3); |
4787 | |
4788 | if ((reg < 2) || (reg > 5 && reg < 8) || (reg > 15)) { |
4789 | // not a valid register for a CALL or BRANCH |
4790 | _ASSERTE(!"Invalid opcode!" ); |
4791 | return -1; |
4792 | } |
4793 | |
4794 | WORD displace = -1; |
4795 | |
4796 | // See: Tables A-15,16,17 in AMD Dev Manual 3 for information |
4797 | // about how the ModRM/SIB/REX bytes interact. |
4798 | |
4799 | switch (mod) |
4800 | { |
4801 | case 0: |
4802 | case 1: |
4803 | case 2: |
4804 | if ((rm & 0x07) == 4) // we have an SIB byte following |
4805 | { |
4806 | // |
4807 | // Get values from the SIB byte |
4808 | // |
4809 | BYTE sib = *ip; |
4810 | _ASSERT(sib != NULL); |
4811 | |
4812 | BYTE base = (sib & 0x07); |
4813 | base |= (rex_b << 3); |
4814 | |
4815 | ip++; |
4816 | |
4817 | // |
4818 | // Finally add in the offset |
4819 | // |
4820 | if (mod == 0) |
4821 | { |
4822 | if ((base & 0x07) == 5) |
4823 | displace = 7; |
4824 | else |
4825 | displace = 3; |
4826 | } |
4827 | else if (mod == 1) |
4828 | { |
4829 | displace = 4; |
4830 | } |
4831 | else // mod == 2 |
4832 | { |
4833 | displace = 7; |
4834 | } |
4835 | } |
4836 | else |
4837 | { |
4838 | // |
4839 | // Get the value we need from the register. |
4840 | // |
4841 | |
4842 | // Check for RIP-relative addressing mode. |
4843 | if ((mod == 0) && ((rm & 0x07) == 5)) |
4844 | { |
4845 | displace = 6; // 1 byte opcode + 1 byte modrm + 4 byte displacement (signed) |
4846 | } |
4847 | else |
4848 | { |
4849 | if (mod == 0) |
4850 | displace = 2; |
4851 | else if (mod == 1) |
4852 | displace = 3; |
4853 | else // mod == 2 |
4854 | displace = 6; |
4855 | } |
4856 | } |
4857 | |
4858 | break; |
4859 | |
4860 | case 3: |
4861 | default: |
4862 | displace = 2; |
4863 | } |
4864 | |
4865 | // Displace should be set by one of the cases above |
4866 | if (displace == -1) |
4867 | { |
4868 | _ASSERTE(!"GetCallInstructionLength() encountered unexpected call instruction" ); |
4869 | return -1; |
4870 | } |
4871 | |
4872 | // Account for the 1 byte prefix (REX or otherwise) |
4873 | if (fContainsPrefix) |
4874 | displace++; |
4875 | |
4876 | // reg == 4 or 5 means that it is not a CALL, but JMP instruction |
4877 | // so we will fall back to ASSERT after break |
4878 | if ((reg != 4) && (reg != 5)) |
4879 | return displace; |
4880 | break; |
4881 | } |
4882 | case 0xe8: |
4883 | { |
4884 | //Near call with the target specified by a 32-bit relative displacement. |
4885 | //[maybe 1 byte prefix] + [1 byte opcode E8h] + [4 bytes offset] |
4886 | return 5 + (fContainsPrefix ? 1 : 0); |
4887 | } |
4888 | default: |
4889 | break; |
4890 | } |
4891 | |
4892 | _ASSERTE(!"Invalid opcode!" ); |
4893 | return -1; |
4894 | #else |
4895 | #error Platform not implemented |
4896 | #endif |
4897 | } |
4898 | |
4899 | HRESULT CordbNativeCode::GetSigParserFromFunction(mdToken mdFunction, mdToken *pClass, SigParser &parser, SigParser &methodGenerics) |
4900 | { |
4901 | // mdFunction may be a MemberRef, a MethodDef, or a MethodSpec. We must handle all three cases. |
4902 | HRESULT hr = S_OK; |
4903 | IMetaDataImport* pImport = m_pFunction->GetModule()->GetMetaDataImporter(); |
4904 | RSExtSmartPtr<IMetaDataImport2> pImport2; |
4905 | IfFailRet(pImport->QueryInterface(IID_IMetaDataImport2, (void**)&pImport2)); |
4906 | |
4907 | if (TypeFromToken(mdFunction) == mdtMemberRef) |
4908 | { |
4909 | PCCOR_SIGNATURE sig = 0; |
4910 | ULONG sigSize = 0; |
4911 | IfFailRet(pImport->GetMemberRefProps(mdFunction, pClass, NULL, 0, 0, &sig, &sigSize)); |
4912 | parser = SigParser(sig, sigSize); |
4913 | } |
4914 | else if (TypeFromToken(mdFunction) == mdtMethodDef) |
4915 | { |
4916 | PCCOR_SIGNATURE sig = 0; |
4917 | ULONG sigSize = 0; |
4918 | IfFailRet(pImport->GetMethodProps(mdFunction, pClass, NULL, 0, NULL, NULL, &sig, &sigSize, NULL, NULL)); |
4919 | parser = SigParser(sig, sigSize); |
4920 | } |
4921 | else if (TypeFromToken(mdFunction) == mdtMethodSpec) |
4922 | { |
4923 | // For a method spec, we use GetMethodSpecProps to get the generic singature and the parent token |
4924 | // (which is a MethodDef token). We'll recurse to get the other properties from the parent token. |
4925 | |
4926 | PCCOR_SIGNATURE sig = 0; |
4927 | ULONG sigSize = 0; |
4928 | mdToken parentToken = 0; |
4929 | IfFailRet(pImport2->GetMethodSpecProps(mdFunction, &parentToken, &sig, &sigSize)); |
4930 | methodGenerics = SigParser(sig, sigSize); |
4931 | |
4932 | if (pClass) |
4933 | *pClass = parentToken; |
4934 | |
4935 | return GetSigParserFromFunction(parentToken, pClass, parser, methodGenerics); |
4936 | } |
4937 | else |
4938 | { |
4939 | // According to ECMA III.3.19, this can never happen. |
4940 | return E_UNEXPECTED; |
4941 | } |
4942 | |
4943 | return S_OK; |
4944 | } |
4945 | |
4946 | HRESULT CordbNativeCode::EnsureReturnValueAllowed(Instantiation *currentInstantiation, mdToken targetClass, SigParser &parser, SigParser &methodGenerics) |
4947 | { |
4948 | HRESULT hr = S_OK; |
4949 | ULONG genCount = 0; |
4950 | IfFailRet(SkipToReturn(parser, &genCount)); |
4951 | |
4952 | return EnsureReturnValueAllowedWorker(currentInstantiation, targetClass, parser, methodGenerics, genCount); |
4953 | } |
4954 | |
4955 | HRESULT CordbNativeCode::EnsureReturnValueAllowedWorker(Instantiation *currentInstantiation, mdToken targetClass, SigParser &parser, SigParser &methodGenerics, ULONG genCount) |
4956 | { |
4957 | // There are a few considerations here: |
4958 | // 1. Generic instantiations. This is a "Foo<T>", and we need to check if that "Foo" |
4959 | // fits one of the categories we disallow (such as a struct). |
4960 | // 2. Void return. |
4961 | // 3. ValueType - Unsupported this release. |
4962 | // 4. MVAR - Method generics. We need to get the actual generic type and recursively |
4963 | // check if we allow that. |
4964 | // 5. VAR - Class generics. We need to get the actual generic type and recurse. |
4965 | |
4966 | SigParser original(parser); |
4967 | HRESULT hr = S_OK; |
4968 | CorElementType returnType; |
4969 | IfFailRet(parser.GetElemType(&returnType)); |
4970 | if (returnType == ELEMENT_TYPE_GENERICINST) |
4971 | { |
4972 | IfFailRet(parser.GetElemType(&returnType)); |
4973 | |
4974 | if (returnType == ELEMENT_TYPE_CLASS) |
4975 | return S_OK; |
4976 | |
4977 | if (returnType != ELEMENT_TYPE_VALUETYPE) |
4978 | return META_E_BAD_SIGNATURE; |
4979 | |
4980 | if (currentInstantiation == NULL) |
4981 | return S_OK; // We will check again when we have the instantiation. |
4982 | |
4983 | NewArrayHolder<CordbType*> types; |
4984 | Instantiation inst; |
4985 | IfFailRet(CordbJITILFrame::BuildInstantiationForCallsite(GetModule(), types, inst, currentInstantiation, targetClass, SigParser(methodGenerics))); |
4986 | |
4987 | CordbType *pType = 0; |
4988 | IfFailRet(CordbType::SigToType(GetModule(), &original, &inst, &pType)); |
4989 | |
4990 | |
4991 | IfFailRet(hr = pType->ReturnedByValue()); |
4992 | if (hr == S_OK) // not S_FALSE |
4993 | return S_OK; |
4994 | |
4995 | return CORDBG_E_UNSUPPORTED; |
4996 | } |
4997 | |
4998 | if (returnType == ELEMENT_TYPE_VALUETYPE) |
4999 | { |
5000 | Instantiation inst; |
5001 | CordbType *pType = 0; |
5002 | IfFailRet(CordbType::SigToType(GetModule(), &original, &inst, &pType)); |
5003 | |
5004 | IfFailRet(hr = pType->ReturnedByValue()); |
5005 | if (hr == S_OK) // not S_FALSE |
5006 | return S_OK; |
5007 | |
5008 | return CORDBG_E_UNSUPPORTED; |
5009 | } |
5010 | |
5011 | if (returnType == ELEMENT_TYPE_TYPEDBYREF) |
5012 | return CORDBG_E_UNSUPPORTED; |
5013 | |
5014 | if (returnType == ELEMENT_TYPE_VOID) |
5015 | return E_UNEXPECTED; |
5016 | |
5017 | if (returnType == ELEMENT_TYPE_MVAR) |
5018 | { |
5019 | // Get which generic parameter is referenced. |
5020 | ULONG genParam = 0; |
5021 | IfFailRet(parser.GetData(&genParam)); |
5022 | |
5023 | // Grab the calling convention of the method, ensure it's GENERICINST. |
5024 | ULONG callingConv = 0; |
5025 | IfFailRet(methodGenerics.GetCallingConvInfo(&callingConv)); |
5026 | if (callingConv != IMAGE_CEE_CS_CALLCONV_GENERICINST) |
5027 | return META_E_BAD_SIGNATURE; |
5028 | |
5029 | // Ensure sensible bounds. |
5030 | SigParser generics(methodGenerics); // Make a copy since operations are destructive. |
5031 | ULONG maxCount = 0; |
5032 | IfFailRet(generics.GetData(&maxCount)); |
5033 | if (maxCount <= genParam || genParam > 1024) |
5034 | return META_E_BAD_SIGNATURE; |
5035 | |
5036 | // Walk to the parameter referenced. |
5037 | while (genParam--) |
5038 | IfFailRet(generics.SkipExactlyOne()); |
5039 | |
5040 | // Now recurse with "generics" at the location to continue parsing. |
5041 | return EnsureReturnValueAllowedWorker(currentInstantiation, targetClass, generics, methodGenerics, genCount); |
5042 | } |
5043 | |
5044 | |
5045 | if (returnType == ELEMENT_TYPE_VAR) |
5046 | { |
5047 | // Get which type parameter is reference. |
5048 | ULONG typeParam = 0; |
5049 | parser.GetData(&typeParam); |
5050 | |
5051 | // Ensure something reasonable. |
5052 | if (typeParam > 1024) |
5053 | return META_E_BAD_SIGNATURE; |
5054 | |
5055 | // Lookup the containing class's signature so we can get the referenced generic parameter. |
5056 | IMetaDataImport *pImport = m_pFunction->GetModule()->GetMetaDataImporter(); |
5057 | PCCOR_SIGNATURE sig; |
5058 | ULONG countSig; |
5059 | IfFailRet(pImport->GetTypeSpecFromToken(targetClass, &sig, &countSig)); |
5060 | |
5061 | // Enusre the type's typespec is GENERICINST. |
5062 | SigParser typeParser(sig, countSig); |
5063 | CorElementType et; |
5064 | IfFailRet(typeParser.GetElemType(&et)); |
5065 | if (et != ELEMENT_TYPE_GENERICINST) |
5066 | return META_E_BAD_SIGNATURE; |
5067 | |
5068 | // Move to the correct location. |
5069 | IfFailRet(typeParser.GetElemType(&et)); |
5070 | if (et != ELEMENT_TYPE_VALUETYPE && et != ELEMENT_TYPE_CLASS) |
5071 | return META_E_BAD_SIGNATURE; |
5072 | |
5073 | IfFailRet(typeParser.GetToken(NULL)); |
5074 | |
5075 | ULONG totalTypeCount = 0; |
5076 | IfFailRet(typeParser.GetData(&totalTypeCount)); |
5077 | if (totalTypeCount < typeParam) |
5078 | return META_E_BAD_SIGNATURE; |
5079 | |
5080 | while (typeParam--) |
5081 | IfFailRet(typeParser.SkipExactlyOne()); |
5082 | |
5083 | // This is a temporary workaround for an infinite recursion here. ALL of this code will |
5084 | // go away when we allow struct return values, but in the mean time this avoids a corner |
5085 | // case in the type system we haven't solved yet. |
5086 | IfFailRet(typeParser.PeekElemType(&et)); |
5087 | if (et == ELEMENT_TYPE_VAR) |
5088 | return E_FAIL; |
5089 | |
5090 | // Now that typeParser is at the location of the correct generic parameter, recurse. |
5091 | return EnsureReturnValueAllowedWorker(currentInstantiation, targetClass, typeParser, methodGenerics, genCount); |
5092 | } |
5093 | |
5094 | // Everything else supported |
5095 | return S_OK; |
5096 | } |
5097 | |
5098 | HRESULT CordbNativeCode::SkipToReturn(SigParser &parser, ULONG *genCount) |
5099 | { |
5100 | // Takes a method signature parser (at the beginning of a signature) and skips to the |
5101 | // return value. |
5102 | HRESULT hr = S_OK; |
5103 | |
5104 | // Skip calling convention |
5105 | ULONG uCallConv; |
5106 | IfFailRet(parser.GetCallingConvInfo(&uCallConv)); |
5107 | if ((uCallConv == IMAGE_CEE_CS_CALLCONV_FIELD) || (uCallConv == IMAGE_CEE_CS_CALLCONV_LOCAL_SIG)) |
5108 | return META_E_BAD_SIGNATURE; |
5109 | |
5110 | // Skip type parameter count if function is generic |
5111 | if (uCallConv & IMAGE_CEE_CS_CALLCONV_GENERIC) |
5112 | IfFailRet(parser.GetData(genCount)); |
5113 | |
5114 | // Skip argument count |
5115 | IfFailRet(parser.GetData(NULL)); |
5116 | |
5117 | return S_OK; |
5118 | } |
5119 | |
5120 | HRESULT CordbNativeCode::GetCallSignature(ULONG32 ILoffset, mdToken *pClass, mdToken *pFunction, SigParser &parser, SigParser &generics) |
5121 | { |
5122 | // check if specified IL offset is at a call instruction |
5123 | CordbILCode *pCode = this->m_pFunction->GetILCode(); |
5124 | BYTE buffer[3]; |
5125 | ULONG32 fetched = 0; |
5126 | HRESULT hr = pCode->GetCode(ILoffset, ILoffset+_countof(buffer), _countof(buffer), buffer, &fetched); |
5127 | |
5128 | if (FAILED(hr)) |
5129 | return hr; |
5130 | else if (fetched != _countof(buffer)) |
5131 | return CORDBG_E_INVALID_OPCODE; |
5132 | |
5133 | // tail. - fe 14 (ECMA III.2.4) |
5134 | BYTE instruction = buffer[0]; |
5135 | if (buffer[0] == 0xfe && buffer[1] == 0x14) |
5136 | { |
5137 | // tail call case. We don't allow managed return values for tailcalls. |
5138 | return CORDBG_E_INVALID_OPCODE; |
5139 | } |
5140 | |
5141 | // call - 28 (ECMA III.3.19) |
5142 | // callvirt - 6f (ECMA III.4.2) |
5143 | if (instruction != 0x28 && instruction != 0x6f) |
5144 | return CORDBG_E_INVALID_OPCODE; |
5145 | |
5146 | // Now grab the MD token of the call |
5147 | mdToken mdFunction = 0; |
5148 | const ULONG32 offset = ILoffset + 1; |
5149 | hr = pCode->GetCode(offset, offset+sizeof(mdToken), sizeof(mdToken), (BYTE*)&mdFunction, &fetched); |
5150 | if (FAILED(hr) || fetched != sizeof(mdToken)) |
5151 | return CORDBG_E_INVALID_OPCODE; |
5152 | |
5153 | if (pFunction) |
5154 | *pFunction = mdFunction; |
5155 | |
5156 | // Convert to a signature parser |
5157 | return GetSigParserFromFunction(mdFunction, pClass, parser, generics); |
5158 | } |
5159 | |
5160 | HRESULT CordbNativeCode::GetReturnValueLiveOffsetImpl(Instantiation *currentInstantiation, ULONG32 ILoffset, ULONG32 bufferSize, ULONG32 *pFetched, ULONG32 *pOffsets) |
5161 | { |
5162 | if (pFetched == NULL) |
5163 | return E_INVALIDARG; |
5164 | |
5165 | HRESULT hr = S_OK; |
5166 | ULONG32 found = 0; |
5167 | |
5168 | // verify that the call target actually returns something we allow |
5169 | SigParser signature, generics; |
5170 | mdToken mdClass = 0; |
5171 | IfFailRet(GetCallSignature(ILoffset, &mdClass, NULL, signature, generics)); |
5172 | IfFailRet(EnsureReturnValueAllowed(currentInstantiation, mdClass, signature, generics)); |
5173 | |
5174 | // now find the native offset |
5175 | SequencePoints *pSP = GetSequencePoints(); |
5176 | DebuggerILToNativeMap *pMap = pSP->GetCallsiteMapAddr(); |
5177 | |
5178 | for (ULONG32 i = 0; i < pSP->GetCallsiteEntryCount() && pMap; ++i, pMap++) |
5179 | { |
5180 | if (pMap->ilOffset == ILoffset && (pMap->source & ICorDebugInfo::CALL_INSTRUCTION) == ICorDebugInfo::CALL_INSTRUCTION) |
5181 | { |
5182 | // if we have a buffer, fill it in. |
5183 | if (pOffsets && found < bufferSize) |
5184 | { |
5185 | // Fetch the actual assembly instructions |
5186 | BYTE nativeBuffer[8]; |
5187 | |
5188 | ULONG32 fetched = 0; |
5189 | IfFailRet(GetCode(pMap->nativeStartOffset, pMap->nativeStartOffset+_countof(nativeBuffer), _countof(nativeBuffer), nativeBuffer, &fetched)); |
5190 | |
5191 | int skipBytes = 0; |
5192 | |
5193 | #if defined(DBG_TARGET_X86) && defined(FEATURE_CORESYSTEM) |
5194 | // Skip nop sleds on x86 coresystem. The JIT adds these instructions as a security measure, |
5195 | // and incorrectly reports to us the wrong offset of the call instruction. |
5196 | const BYTE nop_opcode = 0x90; |
5197 | while (fetched && nativeBuffer[0] == nop_opcode) |
5198 | { |
5199 | skipBytes++; |
5200 | |
5201 | for (int j = 1; j < _countof(nativeBuffer) && nativeBuffer[j] == nop_opcode; ++j) |
5202 | skipBytes++; |
5203 | |
5204 | // We must have at least one skip byte since the outer while ensures it. Thus we always need to reread |
5205 | // the buffer at the end of this loop. |
5206 | IfFailRet(GetCode(pMap->nativeStartOffset+skipBytes, pMap->nativeStartOffset+skipBytes+_countof(nativeBuffer), _countof(nativeBuffer), nativeBuffer, &fetched)); |
5207 | } |
5208 | #endif |
5209 | |
5210 | // Get the length of the call instruction. |
5211 | int offset = GetCallInstructionLength(nativeBuffer, fetched); |
5212 | if (offset == -1) |
5213 | return E_UNEXPECTED; // Could not decode instruction, this should never happen. |
5214 | |
5215 | pOffsets[found] = pMap->nativeStartOffset + offset + skipBytes; |
5216 | } |
5217 | |
5218 | found++; |
5219 | } |
5220 | } |
5221 | |
5222 | if (pOffsets) |
5223 | *pFetched = found < bufferSize ? found : bufferSize; |
5224 | else |
5225 | *pFetched = found; |
5226 | |
5227 | if (found == 0) |
5228 | return E_FAIL; |
5229 | |
5230 | if (pOffsets && found > bufferSize) |
5231 | return S_FALSE; |
5232 | |
5233 | return S_OK; |
5234 | } |
5235 | |
5236 | //----------------------------------------------------------------------------- |
5237 | // Creates a CordbNativeCode (if it's not already created) and adds it to the |
5238 | // hash table of CordbNativeCode instances belonging to this module. |
5239 | // Used by CordbFunction::InitNativeCodeInfo. |
5240 | // |
5241 | // Arguments: |
5242 | // Input: |
5243 | // methodToken - the methodDef token of the function this native code belongs to |
5244 | // methodDesc - the methodDesc for the jitted method |
5245 | // startAddress - the hot code startAddress for this method |
5246 | |
5247 | // Return value: |
5248 | // found or created CordbNativeCode pointer |
5249 | // Assumptions: methodToken is in the metadata for this module |
5250 | // methodDesc and startAddress should be consistent for |
5251 | // a jitted instance of methodToken's method |
5252 | //----------------------------------------------------------------------------- |
5253 | CordbNativeCode * CordbModule::LookupOrCreateNativeCode(mdMethodDef methodToken, |
5254 | VMPTR_MethodDesc methodDesc, |
5255 | CORDB_ADDRESS startAddress) |
5256 | { |
5257 | INTERNAL_SYNC_API_ENTRY(GetProcess()); |
5258 | _ASSERTE(startAddress != NULL); |
5259 | _ASSERTE(methodDesc != VMPTR_MethodDesc::NullPtr()); |
5260 | |
5261 | CordbNativeCode * pNativeCode = NULL; |
5262 | NativeCodeFunctionData codeInfo; |
5263 | RSLockHolder lockHolder(GetProcess()->GetProcessLock()); |
5264 | |
5265 | // see if we already have this--if not, we'll make an instance, otherwise we'll just return the one we have. |
5266 | pNativeCode = m_nativeCodeTable.GetBase((UINT_PTR) startAddress); |
5267 | |
5268 | if (pNativeCode == NULL) |
5269 | { |
5270 | GetProcess()->GetDAC()->GetNativeCodeInfoForAddr(methodDesc, startAddress, &codeInfo); |
5271 | |
5272 | // We didn't have an instance, so we'll build one and add it to the hash table |
5273 | LOG((LF_CORDB, |
5274 | LL_INFO10000, |
5275 | "R:CT::RSCreating code w/ ver:0x%x, md:0x%x, nativeStart=0x%08x, nativeSize=0x%08x\n" , |
5276 | codeInfo.encVersion, |
5277 | VmPtrToCookie(codeInfo.vmNativeCodeMethodDescToken), |
5278 | codeInfo.m_rgCodeRegions[kHot].pAddress, |
5279 | codeInfo.m_rgCodeRegions[kHot].cbSize)); |
5280 | |
5281 | // Lookup the function object that this code should be bound to |
5282 | CordbFunction* pFunction = CordbModule::LookupOrCreateFunction(methodToken, codeInfo.encVersion); |
5283 | _ASSERTE(pFunction != NULL); |
5284 | |
5285 | // There are bugs with the on-demand class load performed by CordbFunction in some cases. The old stack |
5286 | // tracing code avoided them by eagerly loading the parent class so I am following suit |
5287 | pFunction->InitParentClassOfFunction(); |
5288 | |
5289 | // First, create a new CordbNativeCode instance--we'll need this to make the CordbJITInfo instance |
5290 | pNativeCode = new (nothrow)CordbNativeCode(pFunction, &codeInfo, codeInfo.isInstantiatedGeneric != 0); |
5291 | _ASSERTE(pNativeCode != NULL); |
5292 | |
5293 | m_nativeCodeTable.AddBaseOrThrow(pNativeCode); |
5294 | } |
5295 | |
5296 | return pNativeCode; |
5297 | } // CordbNativeCode::LookupOrCreateFromJITData |
5298 | |
5299 | // LoadNativeInfo loads from the left side any native variable info |
5300 | // from the JIT. |
5301 | // |
5302 | void CordbNativeCode::LoadNativeInfo() |
5303 | { |
5304 | THROW_IF_NEUTERED(this); |
5305 | INTERNAL_API_ENTRY(this->GetProcess()); |
5306 | |
5307 | |
5308 | // If we've either never done this before (no info), or we have, but the version number has increased, we |
5309 | // should try and get a newer version of our JIT info. |
5310 | if(m_nativeVarData.IsInitialized()) |
5311 | { |
5312 | return; |
5313 | } |
5314 | |
5315 | // You can't do this if the function is implemented as part of the Runtime. |
5316 | if (GetFunction()->IsNativeImpl() == CordbFunction::kNativeOnly) |
5317 | { |
5318 | ThrowHR(CORDBG_E_FUNCTION_NOT_IL); |
5319 | } |
5320 | CordbProcess *pProcess = GetProcess(); |
5321 | // Get everything via the DAC |
5322 | if (m_fCodeAvailable) |
5323 | { |
5324 | RSLockHolder lockHolder(pProcess->GetProcessLock()); |
5325 | pProcess->GetDAC()->GetNativeCodeSequencePointsAndVarInfo(GetVMNativeCodeMethodDescToken(), |
5326 | GetAddress(), |
5327 | m_fCodeAvailable, |
5328 | &m_nativeVarData, |
5329 | &m_sequencePoints); |
5330 | } |
5331 | |
5332 | } // CordbNativeCode::LoadNativeInfo |
5333 | |
5334 | |
5335 | |
5336 | |