1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // **************************************************************************** |
5 | // File: funceval.cpp |
6 | // |
7 | |
8 | // |
9 | // funceval.cpp - Debugger func-eval routines. |
10 | // |
11 | // **************************************************************************** |
12 | // Putting code & #includes, #defines, etc, before the stdafx.h will |
13 | // cause the code,etc, to be silently ignored |
14 | |
15 | |
16 | #include "stdafx.h" |
17 | #include "debugdebugger.h" |
18 | #include "../inc/common.h" |
19 | #include "perflog.h" |
20 | #include "eeconfig.h" // This is here even for retail & free builds... |
21 | #include "../../dlls/mscorrc/resource.h" |
22 | |
23 | #include "vars.hpp" |
24 | #include "threads.h" |
25 | #include "appdomain.inl" |
26 | #include <limits.h> |
27 | #include "ilformatter.h" |
28 | |
29 | #ifndef DACCESS_COMPILE |
30 | |
31 | // |
32 | // This is the main file for processing func-evals. Nestle in |
33 | // with a cup o' tea and read on. |
34 | // |
35 | // The most common case is handled in GCProtectArgsAndDoNormalFuncEval(), which follows |
36 | // all the comments below. The two other corner cases are handled in |
37 | // FuncEvalHijackWorker(), and are extremely straight-forward. |
38 | // |
39 | // There are several steps to successfully processing a func-eval. At a |
40 | // very high level, the first step is to gather all the information necessary |
41 | // to make the call (specifically, gather arg info and method info); the second |
42 | // step is to actually make the call to managed code; finally, the third step |
43 | // is to take all results and unpackage them. |
44 | // |
45 | // The first step (gathering arg and method info) has several critical passes that |
46 | // must be made. |
47 | // a) Protect all passed in args from a GC. |
48 | // b) Transition into the appropriate AppDomain if necessary |
49 | // c) Pre-allocate object for 'new' calls and, if necessary, box the 'this' argument. (May cause a GC) |
50 | // d) Gather method info (May cause GC) |
51 | // e) Gather info from runtime about args. (May cause a GC) |
52 | // f) Box args that need to be, GC-protecting the newly boxed items. (May cause a GC) |
53 | // g) Pre-allocate object for return values. (May cause a GC) |
54 | // h) Copy to pBufferForArgsArray all the args. This array is used to hold values that |
55 | // may need writable memory for ByRef args. |
56 | // i) Create and load pArgumentArray to be passed as the stack for the managed call. |
57 | // NOTE: From the time we load the first argument into the stack we cannot cause a GC |
58 | // as the argument array cannot be GC-protected. |
59 | // |
60 | // The second step (Making the managed call), is relatively easy, and is a single call. |
61 | // |
62 | // The third step (unpacking all results), has a couple of passes as well. |
63 | // a) Copy back all resulting values. |
64 | // b) Free all temporary work memory. |
65 | // |
66 | // |
67 | // The most difficult part of doing a func-eval is the first step, since once you |
68 | // have everything set up, unpacking and calling are reverse, gc-safe, operations. Thus, |
69 | // elaboration is needed on the first step. |
70 | // |
71 | // a) Protect all passed in args from a GC. This must be done in a gc-forbid region, |
72 | // and the code path to this function must not trigger a gc either. In this function five |
73 | // parallel arrays are used: pObjectRefArray, pMaybeInteriorPtrArray, pByRefMaybeInteriorPtrArray, |
74 | // pBufferForArgsArray, and pArguments. |
75 | // pObjectRefArray is used to gc-protect all arguments and results that are objects. |
76 | // pMaybeInteriorPtrArray is used to gc-protect all arguments that might be pointers |
77 | // to an interior of a managed object. |
78 | // pByRefMaybeInteriorPtrArray is similar to pMaybeInteriorPtrArray, except that it protects the |
79 | // address of the arguments instead of the arguments themselves. This is needed because we may have |
80 | // by ref arguments whose address is an interior pointer into the GC heap. |
81 | // pBufferForArgsArray is used strictly as a buffer for copying primitives |
82 | // that need to be passed as ByRef, or may be enregistered. This array also holds |
83 | // handles. |
84 | // These first two arrays are mutually exclusive, that is, if there is an entry |
85 | // in one array at index i, there should be no entry in either of the other arrays at |
86 | // the same index. |
87 | // pArguments is used as the complete array of arguments to pass to the managed function. |
88 | // |
89 | // Unfortunately the necessary information to complete pass (a) perfectly may cause a gc, so |
90 | // instead, pass (a) is over-aggressive and protects the following: All object refs into |
91 | // pObjectRefArray, and puts all values that could be raw pointers into pMaybeInteriorPtrArray. |
92 | // |
93 | // b) Discovers the method to be called, and if it is a 'new' allocate an object for the result. |
94 | // |
95 | // c) Gather information about the method that will be called. |
96 | // |
97 | // d) Here we gather information from the method signature which tells which args are |
98 | // ByRef and various other flags. We will use this information in later passes. |
99 | // |
100 | // e) Using the information in pass (c), for each argument: box arguments, placing newly |
101 | // boxed items into pObjectRefArray immediately after creating them. |
102 | // |
103 | // f) Pre-allocate any object for a returned value. |
104 | // |
105 | // g) Using the information is pass (c), all arguments are copied into a scratch buffer before |
106 | // invoking the managed function. |
107 | // |
108 | // h) pArguments is loaded from the pre-allocated return object, the individual elements |
109 | // of the other 3 arrays, and from any non-ByRef literals. This is the complete stack |
110 | // to be passed to the managed function. For performance increase, it can remove any |
111 | // overly aggressive items that were placed in pMaybeInteriorPtrArray. |
112 | // |
113 | |
114 | // |
115 | // IsElementTypeSpecial() |
116 | // |
117 | // This is a simple function used to check if a CorElementType needs special handling for func eval. |
118 | // |
119 | // parameters: type - the CorElementType which we need to check |
120 | // |
121 | // return value: true if the specified type needs special handling |
122 | // |
123 | inline static bool IsElementTypeSpecial(CorElementType type) |
124 | { |
125 | LIMITED_METHOD_CONTRACT; |
126 | |
127 | return ((type == ELEMENT_TYPE_CLASS) || |
128 | (type == ELEMENT_TYPE_OBJECT) || |
129 | (type == ELEMENT_TYPE_ARRAY) || |
130 | (type == ELEMENT_TYPE_SZARRAY) || |
131 | (type == ELEMENT_TYPE_STRING)); |
132 | } |
133 | |
134 | // |
135 | // GetAndSetLiteralValue() |
136 | // |
137 | // This helper function extracts the value out of the source pointer while taking into account alignment and size. |
138 | // Then it stores the value into the destination pointer, again taking into account alignment and size. |
139 | // |
140 | // parameters: pDst - destination pointer |
141 | // dstType - the CorElementType of the destination value |
142 | // pSrc - source pointer |
143 | // srcType - the CorElementType of the source value |
144 | // |
145 | // return value: none |
146 | // |
147 | inline static void GetAndSetLiteralValue(LPVOID pDst, CorElementType dstType, LPVOID pSrc, CorElementType srcType) |
148 | { |
149 | LIMITED_METHOD_CONTRACT; |
150 | |
151 | UINT64 srcValue; |
152 | |
153 | // Retrieve the value using the source CorElementType. |
154 | switch (g_pEEInterface->GetSizeForCorElementType(srcType)) |
155 | { |
156 | case 1: |
157 | srcValue = (UINT64)*((BYTE*)pSrc); |
158 | break; |
159 | case 2: |
160 | srcValue = (UINT64)*((USHORT*)pSrc); |
161 | break; |
162 | case 4: |
163 | srcValue = (UINT64)*((UINT32*)pSrc); |
164 | break; |
165 | case 8: |
166 | srcValue = (UINT64)*((UINT64*)pSrc); |
167 | break; |
168 | |
169 | default: |
170 | UNREACHABLE(); |
171 | } |
172 | |
173 | // Cast to the appropriate type using the destination CorElementType. |
174 | switch (dstType) |
175 | { |
176 | case ELEMENT_TYPE_BOOLEAN: |
177 | *(BYTE*)pDst = (BYTE)!!srcValue; |
178 | break; |
179 | case ELEMENT_TYPE_I1: |
180 | *(INT8*)pDst = (INT8)srcValue; |
181 | break; |
182 | case ELEMENT_TYPE_U1: |
183 | *(UINT8*)pDst = (UINT8)srcValue; |
184 | break; |
185 | case ELEMENT_TYPE_I2: |
186 | *(INT16*)pDst = (INT16)srcValue; |
187 | break; |
188 | case ELEMENT_TYPE_U2: |
189 | case ELEMENT_TYPE_CHAR: |
190 | *(UINT16*)pDst = (UINT16)srcValue; |
191 | break; |
192 | #if !defined(_WIN64) |
193 | case ELEMENT_TYPE_I: |
194 | #endif |
195 | case ELEMENT_TYPE_I4: |
196 | *(int*)pDst = (int)srcValue; |
197 | break; |
198 | #if !defined(_WIN64) |
199 | case ELEMENT_TYPE_U: |
200 | #endif |
201 | case ELEMENT_TYPE_U4: |
202 | case ELEMENT_TYPE_R4: |
203 | *(unsigned*)pDst = (unsigned)srcValue; |
204 | break; |
205 | #if defined(_WIN64) |
206 | case ELEMENT_TYPE_I: |
207 | #endif |
208 | case ELEMENT_TYPE_I8: |
209 | case ELEMENT_TYPE_R8: |
210 | *(INT64*)pDst = (INT64)srcValue; |
211 | break; |
212 | |
213 | #if defined(_WIN64) |
214 | case ELEMENT_TYPE_U: |
215 | #endif |
216 | case ELEMENT_TYPE_U8: |
217 | *(UINT64*)pDst = (UINT64)srcValue; |
218 | break; |
219 | case ELEMENT_TYPE_FNPTR: |
220 | case ELEMENT_TYPE_PTR: |
221 | *(void **)pDst = (void *)(SIZE_T)srcValue; |
222 | break; |
223 | |
224 | default: |
225 | UNREACHABLE(); |
226 | } |
227 | |
228 | } |
229 | |
230 | |
231 | // |
232 | // Throw on not supported func evals |
233 | // |
234 | static void ValidateFuncEvalReturnType(DebuggerIPCE_FuncEvalType evalType, MethodTable * pMT) |
235 | { |
236 | CONTRACTL |
237 | { |
238 | THROWS; |
239 | GC_TRIGGERS; |
240 | } |
241 | CONTRACTL_END; |
242 | |
243 | if (pMT == g_pStringClass) |
244 | { |
245 | if (evalType == DB_IPCE_FET_NEW_OBJECT || evalType == DB_IPCE_FET_NEW_OBJECT_NC) |
246 | { |
247 | // Cannot call New object on String constructor. |
248 | COMPlusThrow(kArgumentException,W("Argument_CannotCreateString" )); |
249 | } |
250 | } |
251 | else if (g_pEEInterface->IsTypedReference(pMT)) |
252 | { |
253 | // Cannot create typed references through funceval. |
254 | if (evalType == DB_IPCE_FET_NEW_OBJECT || evalType == DB_IPCE_FET_NEW_OBJECT_NC || evalType == DB_IPCE_FET_NORMAL) |
255 | { |
256 | COMPlusThrow(kArgumentException, W("Argument_CannotCreateTypedReference" )); |
257 | } |
258 | } |
259 | } |
260 | |
261 | // |
262 | // Given a register, return the value. |
263 | // |
264 | static SIZE_T GetRegisterValue(DebuggerEval *pDE, CorDebugRegister reg, void *regAddr, SIZE_T regValue) |
265 | { |
266 | LIMITED_METHOD_CONTRACT; |
267 | |
268 | SIZE_T ret = 0; |
269 | |
270 | // Check whether the register address is the marker value for a register in a non-leaf frame. |
271 | // This is related to the funceval breaking change. |
272 | // |
273 | if (regAddr == CORDB_ADDRESS_TO_PTR(kNonLeafFrameRegAddr)) |
274 | { |
275 | ret = regValue; |
276 | } |
277 | else |
278 | { |
279 | switch (reg) |
280 | { |
281 | case REGISTER_STACK_POINTER: |
282 | ret = (SIZE_T)GetSP(&pDE->m_context); |
283 | break; |
284 | |
285 | case REGISTER_FRAME_POINTER: |
286 | ret = (SIZE_T)GetFP(&pDE->m_context); |
287 | break; |
288 | |
289 | #if defined(_TARGET_X86_) |
290 | case REGISTER_X86_EAX: |
291 | ret = pDE->m_context.Eax; |
292 | break; |
293 | |
294 | case REGISTER_X86_ECX: |
295 | ret = pDE->m_context.Ecx; |
296 | break; |
297 | |
298 | case REGISTER_X86_EDX: |
299 | ret = pDE->m_context.Edx; |
300 | break; |
301 | |
302 | case REGISTER_X86_EBX: |
303 | ret = pDE->m_context.Ebx; |
304 | break; |
305 | |
306 | case REGISTER_X86_ESI: |
307 | ret = pDE->m_context.Esi; |
308 | break; |
309 | |
310 | case REGISTER_X86_EDI: |
311 | ret = pDE->m_context.Edi; |
312 | break; |
313 | |
314 | #elif defined(_TARGET_AMD64_) |
315 | case REGISTER_AMD64_RAX: |
316 | ret = pDE->m_context.Rax; |
317 | break; |
318 | |
319 | case REGISTER_AMD64_RCX: |
320 | ret = pDE->m_context.Rcx; |
321 | break; |
322 | |
323 | case REGISTER_AMD64_RDX: |
324 | ret = pDE->m_context.Rdx; |
325 | break; |
326 | |
327 | case REGISTER_AMD64_RBX: |
328 | ret = pDE->m_context.Rbx; |
329 | break; |
330 | |
331 | case REGISTER_AMD64_RSI: |
332 | ret = pDE->m_context.Rsi; |
333 | break; |
334 | |
335 | case REGISTER_AMD64_RDI: |
336 | ret = pDE->m_context.Rdi; |
337 | break; |
338 | |
339 | case REGISTER_AMD64_R8: |
340 | ret = pDE->m_context.R8; |
341 | break; |
342 | |
343 | case REGISTER_AMD64_R9: |
344 | ret = pDE->m_context.R9; |
345 | break; |
346 | |
347 | case REGISTER_AMD64_R10: |
348 | ret = pDE->m_context.R10; |
349 | break; |
350 | |
351 | case REGISTER_AMD64_R11: |
352 | ret = pDE->m_context.R11; |
353 | break; |
354 | |
355 | case REGISTER_AMD64_R12: |
356 | ret = pDE->m_context.R12; |
357 | break; |
358 | |
359 | case REGISTER_AMD64_R13: |
360 | ret = pDE->m_context.R13; |
361 | break; |
362 | |
363 | case REGISTER_AMD64_R14: |
364 | ret = pDE->m_context.R14; |
365 | break; |
366 | |
367 | case REGISTER_AMD64_R15: |
368 | ret = pDE->m_context.R15; |
369 | break; |
370 | |
371 | // fall through |
372 | case REGISTER_AMD64_XMM0: |
373 | case REGISTER_AMD64_XMM1: |
374 | case REGISTER_AMD64_XMM2: |
375 | case REGISTER_AMD64_XMM3: |
376 | case REGISTER_AMD64_XMM4: |
377 | case REGISTER_AMD64_XMM5: |
378 | case REGISTER_AMD64_XMM6: |
379 | case REGISTER_AMD64_XMM7: |
380 | case REGISTER_AMD64_XMM8: |
381 | case REGISTER_AMD64_XMM9: |
382 | case REGISTER_AMD64_XMM10: |
383 | case REGISTER_AMD64_XMM11: |
384 | case REGISTER_AMD64_XMM12: |
385 | case REGISTER_AMD64_XMM13: |
386 | case REGISTER_AMD64_XMM14: |
387 | case REGISTER_AMD64_XMM15: |
388 | ret = FPSpillToR8(&(pDE->m_context.Xmm0) + (reg - REGISTER_AMD64_XMM0)); |
389 | break; |
390 | |
391 | #endif // !_TARGET_X86_ && !_TARGET_AMD64_ |
392 | default: |
393 | _ASSERT(!"Invalid register number!" ); |
394 | |
395 | } |
396 | } |
397 | |
398 | return ret; |
399 | } |
400 | |
401 | // |
402 | // Given a register, set its value. |
403 | // |
404 | static void SetRegisterValue(DebuggerEval *pDE, CorDebugRegister reg, void *regAddr, SIZE_T newValue) |
405 | { |
406 | CONTRACTL |
407 | { |
408 | THROWS; |
409 | } |
410 | CONTRACTL_END; |
411 | |
412 | // Check whether the register address is the marker value for a register in a non-leaf frame. |
413 | // If so, then we can't update the register. Throw an exception to communicate this error. |
414 | if (regAddr == CORDB_ADDRESS_TO_PTR(kNonLeafFrameRegAddr)) |
415 | { |
416 | COMPlusThrowHR(CORDBG_E_FUNC_EVAL_CANNOT_UPDATE_REGISTER_IN_NONLEAF_FRAME); |
417 | return; |
418 | } |
419 | else |
420 | { |
421 | switch (reg) |
422 | { |
423 | case REGISTER_STACK_POINTER: |
424 | SetSP(&pDE->m_context, newValue); |
425 | break; |
426 | |
427 | case REGISTER_FRAME_POINTER: |
428 | SetFP(&pDE->m_context, newValue); |
429 | break; |
430 | |
431 | #ifdef _TARGET_X86_ |
432 | case REGISTER_X86_EAX: |
433 | pDE->m_context.Eax = newValue; |
434 | break; |
435 | |
436 | case REGISTER_X86_ECX: |
437 | pDE->m_context.Ecx = newValue; |
438 | break; |
439 | |
440 | case REGISTER_X86_EDX: |
441 | pDE->m_context.Edx = newValue; |
442 | break; |
443 | |
444 | case REGISTER_X86_EBX: |
445 | pDE->m_context.Ebx = newValue; |
446 | break; |
447 | |
448 | case REGISTER_X86_ESI: |
449 | pDE->m_context.Esi = newValue; |
450 | break; |
451 | |
452 | case REGISTER_X86_EDI: |
453 | pDE->m_context.Edi = newValue; |
454 | break; |
455 | |
456 | #elif defined(_TARGET_AMD64_) |
457 | case REGISTER_AMD64_RAX: |
458 | pDE->m_context.Rax = newValue; |
459 | break; |
460 | |
461 | case REGISTER_AMD64_RCX: |
462 | pDE->m_context.Rcx = newValue; |
463 | break; |
464 | |
465 | case REGISTER_AMD64_RDX: |
466 | pDE->m_context.Rdx = newValue; |
467 | break; |
468 | |
469 | case REGISTER_AMD64_RBX: |
470 | pDE->m_context.Rbx = newValue; |
471 | break; |
472 | |
473 | case REGISTER_AMD64_RSI: |
474 | pDE->m_context.Rsi = newValue; |
475 | break; |
476 | |
477 | case REGISTER_AMD64_RDI: |
478 | pDE->m_context.Rdi = newValue; |
479 | break; |
480 | |
481 | case REGISTER_AMD64_R8: |
482 | pDE->m_context.R8= newValue; |
483 | break; |
484 | |
485 | case REGISTER_AMD64_R9: |
486 | pDE->m_context.R9= newValue; |
487 | break; |
488 | |
489 | case REGISTER_AMD64_R10: |
490 | pDE->m_context.R10= newValue; |
491 | break; |
492 | |
493 | case REGISTER_AMD64_R11: |
494 | pDE->m_context.R11 = newValue; |
495 | break; |
496 | |
497 | case REGISTER_AMD64_R12: |
498 | pDE->m_context.R12 = newValue; |
499 | break; |
500 | |
501 | case REGISTER_AMD64_R13: |
502 | pDE->m_context.R13 = newValue; |
503 | break; |
504 | |
505 | case REGISTER_AMD64_R14: |
506 | pDE->m_context.R14 = newValue; |
507 | break; |
508 | |
509 | case REGISTER_AMD64_R15: |
510 | pDE->m_context.R15 = newValue; |
511 | break; |
512 | |
513 | // fall through |
514 | case REGISTER_AMD64_XMM0: |
515 | case REGISTER_AMD64_XMM1: |
516 | case REGISTER_AMD64_XMM2: |
517 | case REGISTER_AMD64_XMM3: |
518 | case REGISTER_AMD64_XMM4: |
519 | case REGISTER_AMD64_XMM5: |
520 | case REGISTER_AMD64_XMM6: |
521 | case REGISTER_AMD64_XMM7: |
522 | case REGISTER_AMD64_XMM8: |
523 | case REGISTER_AMD64_XMM9: |
524 | case REGISTER_AMD64_XMM10: |
525 | case REGISTER_AMD64_XMM11: |
526 | case REGISTER_AMD64_XMM12: |
527 | case REGISTER_AMD64_XMM13: |
528 | case REGISTER_AMD64_XMM14: |
529 | case REGISTER_AMD64_XMM15: |
530 | R8ToFPSpill(&(pDE->m_context.Xmm0) + (reg - REGISTER_AMD64_XMM0), newValue); |
531 | break; |
532 | |
533 | #endif // !_TARGET_X86_ && !_TARGET_AMD64_ |
534 | default: |
535 | _ASSERT(!"Invalid register number!" ); |
536 | |
537 | } |
538 | } |
539 | } |
540 | |
541 | |
542 | /* |
543 | * GetRegsiterValueAndReturnAddress |
544 | * |
545 | * This routine takes out a value from a register, or set of registers, into one of |
546 | * the given buffers (depending on size), and returns a pointer to the filled in |
547 | * buffer, or NULL on error. |
548 | * |
549 | * Parameters: |
550 | * pDE - pointer to the DebuggerEval object being processed. |
551 | * pFEAD - Information about this particular argument. |
552 | * pInt64Buf - pointer to a buffer of type INT64 |
553 | * pSizeTBuf - pointer to a buffer of native size type. |
554 | * |
555 | * Returns: |
556 | * pointer to the filled in buffer, else NULL on error. |
557 | * |
558 | */ |
559 | static PVOID GetRegisterValueAndReturnAddress(DebuggerEval *pDE, |
560 | DebuggerIPCE_FuncEvalArgData *pFEAD, |
561 | INT64 *pInt64Buf, |
562 | SIZE_T *pSizeTBuf |
563 | ) |
564 | { |
565 | LIMITED_METHOD_CONTRACT; |
566 | |
567 | PVOID pAddr; |
568 | |
569 | #if !defined(_WIN64) |
570 | pAddr = pInt64Buf; |
571 | DWORD *pLow = (DWORD*)(pInt64Buf); |
572 | DWORD *pHigh = pLow + 1; |
573 | #endif // _WIN64 |
574 | |
575 | switch (pFEAD->argHome.kind) |
576 | { |
577 | #if !defined(_WIN64) |
578 | case RAK_REGREG: |
579 | *pLow = GetRegisterValue(pDE, pFEAD->argHome.u.reg2, pFEAD->argHome.u.reg2Addr, pFEAD->argHome.u.reg2Value); |
580 | *pHigh = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
581 | break; |
582 | |
583 | case RAK_MEMREG: |
584 | *pLow = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
585 | *pHigh = *((DWORD*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)); |
586 | break; |
587 | |
588 | case RAK_REGMEM: |
589 | *pLow = *((DWORD*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)); |
590 | *pHigh = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
591 | break; |
592 | #endif // _WIN64 |
593 | |
594 | case RAK_REG: |
595 | // Simply grab the value out of the proper register. |
596 | *pSizeTBuf = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
597 | pAddr = pSizeTBuf; |
598 | break; |
599 | |
600 | default: |
601 | pAddr = NULL; |
602 | break; |
603 | } |
604 | |
605 | return pAddr; |
606 | } |
607 | |
608 | //--------------------------------------------------------------------------------------- |
609 | // |
610 | // Clean up any temporary value class variables we have allocated for the funceval. |
611 | // |
612 | // Arguments: |
613 | // pStackStructArray - array whose elements track the location and type of the temporary variables |
614 | // |
615 | |
616 | void CleanUpTemporaryVariables(ValueClassInfo ** ppProtectedValueClasses) |
617 | { |
618 | while (*ppProtectedValueClasses != NULL) |
619 | { |
620 | ValueClassInfo * pValueClassInfo = *ppProtectedValueClasses; |
621 | *ppProtectedValueClasses = pValueClassInfo->pNext; |
622 | |
623 | DeleteInteropSafe(reinterpret_cast<BYTE *>(pValueClassInfo)); |
624 | } |
625 | } |
626 | |
627 | |
628 | #ifdef _DEBUG |
629 | |
630 | // |
631 | // Create a parallel array that tracks that we have initialized information in |
632 | // each array. |
633 | // |
634 | #define MAX_DATA_LOCATIONS_TRACKED 100 |
635 | |
636 | typedef DWORD DataLocation; |
637 | |
638 | #define DL_NonExistent 0x00 |
639 | #define DL_ObjectRefArray 0x01 |
640 | #define DL_MaybeInteriorPtrArray 0x02 |
641 | #define DL_BufferForArgsArray 0x04 |
642 | #define DL_All 0xFF |
643 | |
644 | #endif // _DEBUG |
645 | |
646 | |
647 | /* |
648 | * GetFuncEvalArgValue |
649 | * |
650 | * This routine is used to fill the pArgument array with the appropriate value. This function |
651 | * uses the three parallel array entries given, and places the correct value, or reference to |
652 | * the value in pArgument. |
653 | * |
654 | * Parameters: |
655 | * pDE - pointer to the DebuggerEval object being processed. |
656 | * pFEAD - Information about this particular argument. |
657 | * isByRef - Is the argument being passed ByRef. |
658 | * fNeedBoxOrUnbox - Did the argument need boxing or unboxing. |
659 | * argTH - The type handle for the argument. |
660 | * byrefArgSigType - The signature type of a parameter that isByRef == true. |
661 | * pArgument - Location to place the reference or value. |
662 | * pMaybeInteriorPtrArg - A pointer that contains a value that may be pointers to |
663 | * the interior of a managed object. |
664 | * pObjectRefArg - A pointer that contains an object ref. It was built previously. |
665 | * pBufferArg - A pointer for holding stuff that did not need to be protected. |
666 | * |
667 | * Returns: |
668 | * None. |
669 | * |
670 | */ |
671 | static void GetFuncEvalArgValue(DebuggerEval *pDE, |
672 | DebuggerIPCE_FuncEvalArgData *pFEAD, |
673 | bool isByRef, |
674 | bool fNeedBoxOrUnbox, |
675 | TypeHandle argTH, |
676 | CorElementType byrefArgSigType, |
677 | TypeHandle byrefArgTH, |
678 | ARG_SLOT *pArgument, |
679 | void *pMaybeInteriorPtrArg, |
680 | OBJECTREF *pObjectRefArg, |
681 | INT64 *pBufferArg, |
682 | ValueClassInfo ** ppProtectedValueClasses, |
683 | CorElementType argSigType |
684 | DEBUG_ARG(DataLocation dataLocation) |
685 | ) |
686 | { |
687 | CONTRACTL |
688 | { |
689 | THROWS; |
690 | GC_NOTRIGGER; |
691 | } |
692 | CONTRACTL_END; |
693 | |
694 | _ASSERTE((dataLocation != DL_NonExistent) || |
695 | (pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE)); |
696 | |
697 | switch (pFEAD->argElementType) |
698 | { |
699 | case ELEMENT_TYPE_I8: |
700 | case ELEMENT_TYPE_U8: |
701 | case ELEMENT_TYPE_R8: |
702 | { |
703 | INT64 *pSource; |
704 | |
705 | #if defined(_WIN64) |
706 | _ASSERTE(dataLocation & DL_MaybeInteriorPtrArray); |
707 | |
708 | pSource = (INT64 *)pMaybeInteriorPtrArg; |
709 | #else // !_WIN64 |
710 | _ASSERTE(dataLocation & DL_BufferForArgsArray); |
711 | |
712 | pSource = pBufferArg; |
713 | #endif // !_WIN64 |
714 | |
715 | if (!isByRef) |
716 | { |
717 | *((INT64*)pArgument) = *pSource; |
718 | } |
719 | else |
720 | { |
721 | *pArgument = PtrToArgSlot(pSource); |
722 | } |
723 | } |
724 | break; |
725 | |
726 | case ELEMENT_TYPE_VALUETYPE: |
727 | { |
728 | SIZE_T v = 0; |
729 | LPVOID pAddr = NULL; |
730 | INT64 bigVal = 0; |
731 | |
732 | if (pFEAD->argAddr != NULL) |
733 | { |
734 | pAddr = *((void **)pMaybeInteriorPtrArg); |
735 | } |
736 | else |
737 | { |
738 | pAddr = GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
739 | |
740 | if (pAddr == NULL) |
741 | { |
742 | COMPlusThrow(kArgumentNullException); |
743 | } |
744 | } |
745 | |
746 | |
747 | _ASSERTE(pAddr); |
748 | |
749 | if (!fNeedBoxOrUnbox && !isByRef) |
750 | { |
751 | _ASSERTE(argTH.GetMethodTable()); |
752 | |
753 | unsigned size = argTH.GetMethodTable()->GetNumInstanceFieldBytes(); |
754 | if (size <= sizeof(ARG_SLOT) |
755 | #if defined(_TARGET_AMD64_) |
756 | // On AMD64 we pass value types of size which are not powers of 2 by ref. |
757 | && ((size & (size-1)) == 0) |
758 | #endif // _TARGET_AMD64_ |
759 | ) |
760 | { |
761 | memcpyNoGCRefs(ArgSlotEndianessFixup(pArgument, sizeof(LPVOID)), pAddr, size); |
762 | } |
763 | else |
764 | { |
765 | _ASSERTE(pFEAD->argAddr != NULL); |
766 | #if defined(ENREGISTERED_PARAMTYPE_MAXSIZE) |
767 | if (ArgIterator::IsArgPassedByRef(argTH)) |
768 | { |
769 | // On X64, by-value value class arguments which are bigger than 8 bytes are passed by reference |
770 | // according to the native calling convention. The same goes for value class arguments whose size |
771 | // is smaller than 8 bytes but not a power of 2. To avoid side effets, we need to allocate a |
772 | // temporary variable and pass that by reference instead. On ARM64, by-value value class |
773 | // arguments which are bigger than 16 bytes are passed by reference. |
774 | _ASSERTE(ppProtectedValueClasses != NULL); |
775 | |
776 | BYTE * pTemp = new (interopsafe) BYTE[ALIGN_UP(sizeof(ValueClassInfo), 8) + size]; |
777 | |
778 | ValueClassInfo * pValueClassInfo = (ValueClassInfo *)pTemp; |
779 | LPVOID pData = pTemp + ALIGN_UP(sizeof(ValueClassInfo), 8); |
780 | |
781 | memcpyNoGCRefs(pData, pAddr, size); |
782 | *pArgument = PtrToArgSlot(pData); |
783 | |
784 | pValueClassInfo->pData = pData; |
785 | pValueClassInfo->pMT = argTH.GetMethodTable(); |
786 | |
787 | pValueClassInfo->pNext = *ppProtectedValueClasses; |
788 | *ppProtectedValueClasses = pValueClassInfo; |
789 | } |
790 | else |
791 | #endif // ENREGISTERED_PARAMTYPE_MAXSIZE |
792 | *pArgument = PtrToArgSlot(pAddr); |
793 | |
794 | } |
795 | } |
796 | else |
797 | { |
798 | if (fNeedBoxOrUnbox) |
799 | { |
800 | *pArgument = ObjToArgSlot(*pObjectRefArg); |
801 | } |
802 | else |
803 | { |
804 | if (pFEAD->argAddr) |
805 | { |
806 | *pArgument = PtrToArgSlot(pAddr); |
807 | } |
808 | else |
809 | { |
810 | // The argument is the address of where we're holding the primitive in the PrimitiveArg array. We |
811 | // stick the real value from the register into the PrimitiveArg array. It should be in a single |
812 | // register since it is pointer-sized. |
813 | _ASSERTE( pFEAD->argHome.kind == RAK_REG ); |
814 | *pArgument = PtrToArgSlot(pBufferArg); |
815 | *pBufferArg = (INT64)v; |
816 | } |
817 | } |
818 | } |
819 | } |
820 | break; |
821 | |
822 | default: |
823 | // literal values smaller than 8 bytes and "special types" (e.g. object, string, etc.) |
824 | |
825 | { |
826 | INT64 *pSource; |
827 | |
828 | INDEBUG(DataLocation expectedLocation); |
829 | |
830 | #ifdef _TARGET_X86_ |
831 | if ((pFEAD->argElementType == ELEMENT_TYPE_I4) || |
832 | (pFEAD->argElementType == ELEMENT_TYPE_U4) || |
833 | (pFEAD->argElementType == ELEMENT_TYPE_R4)) |
834 | { |
835 | INDEBUG(expectedLocation = DL_MaybeInteriorPtrArray); |
836 | |
837 | pSource = (INT64 *)pMaybeInteriorPtrArg; |
838 | } |
839 | else |
840 | #endif |
841 | if (IsElementTypeSpecial(pFEAD->argElementType)) |
842 | { |
843 | INDEBUG(expectedLocation = DL_ObjectRefArray); |
844 | |
845 | pSource = (INT64 *)pObjectRefArg; |
846 | } |
847 | else |
848 | { |
849 | INDEBUG(expectedLocation = DL_BufferForArgsArray); |
850 | |
851 | pSource = pBufferArg; |
852 | } |
853 | |
854 | if (pFEAD->argAddr != NULL) |
855 | { |
856 | if (!isByRef) |
857 | { |
858 | if (pFEAD->argIsHandleValue) |
859 | { |
860 | _ASSERTE(dataLocation & DL_BufferForArgsArray); |
861 | |
862 | OBJECTHANDLE oh = *((OBJECTHANDLE*)(pBufferArg)); // Always comes from buffer |
863 | *pArgument = PtrToArgSlot(g_pEEInterface->GetObjectFromHandle(oh)); |
864 | } |
865 | else |
866 | { |
867 | _ASSERTE(dataLocation & expectedLocation); |
868 | |
869 | if (pSource != NULL) |
870 | { |
871 | *pArgument = *pSource; // may come from either array. |
872 | } |
873 | else |
874 | { |
875 | *pArgument = NULL; |
876 | } |
877 | } |
878 | } |
879 | else |
880 | { |
881 | if (pFEAD->argIsHandleValue) |
882 | { |
883 | _ASSERTE(dataLocation & DL_BufferForArgsArray); |
884 | |
885 | *pArgument = *pBufferArg; // Buffer contains the object handle, in this case, so |
886 | // just copy that across. |
887 | } |
888 | else |
889 | { |
890 | _ASSERTE(dataLocation & expectedLocation); |
891 | |
892 | *pArgument = PtrToArgSlot(pSource); // Load the argument with the address of our buffer. |
893 | } |
894 | } |
895 | } |
896 | else if (pFEAD->argIsLiteral) |
897 | { |
898 | _ASSERTE(dataLocation & expectedLocation); |
899 | |
900 | if (!isByRef) |
901 | { |
902 | if (pSource != NULL) |
903 | { |
904 | *pArgument = *pSource; // may come from either array. |
905 | } |
906 | else |
907 | { |
908 | *pArgument = NULL; |
909 | } |
910 | } |
911 | else |
912 | { |
913 | *pArgument = PtrToArgSlot(pSource); // Load the argument with the address of our buffer. |
914 | } |
915 | } |
916 | else |
917 | { |
918 | if (!isByRef) |
919 | { |
920 | if (pSource != NULL) |
921 | { |
922 | *pArgument = *pSource; // may come from either array. |
923 | } |
924 | else |
925 | { |
926 | *pArgument = NULL; |
927 | } |
928 | } |
929 | else |
930 | { |
931 | *pArgument = PtrToArgSlot(pSource); // Load the argument with the address of our buffer. |
932 | } |
933 | } |
934 | |
935 | // If we need to unbox, then unbox the arg now. |
936 | if (fNeedBoxOrUnbox) |
937 | { |
938 | if (!isByRef) |
939 | { |
940 | // function expects valuetype, argument received is class or object |
941 | |
942 | // Take the ObjectRef off the stack. |
943 | ARG_SLOT oi1 = *pArgument; |
944 | OBJECTREF o1 = ArgSlotToObj(oi1); |
945 | |
946 | // For Nullable types, we need a 'true' nullable to pass to the function, and we do this |
947 | // by passing a boxed nullable that we unbox. We allocated this space earlier however we |
948 | // did not know the data location until just now. Fill it in with the data and use that |
949 | // to pass to the function. |
950 | |
951 | if (Nullable::IsNullableType(argTH)) |
952 | { |
953 | _ASSERTE(*pObjectRefArg != 0); |
954 | _ASSERTE((*pObjectRefArg)->GetMethodTable() == argTH.GetMethodTable()); |
955 | if (o1 != *pObjectRefArg) |
956 | { |
957 | Nullable::UnBoxNoCheck((*pObjectRefArg)->GetData(), o1, (*pObjectRefArg)->GetMethodTable()); |
958 | o1 = *pObjectRefArg; |
959 | } |
960 | } |
961 | |
962 | if (o1 == NULL) |
963 | { |
964 | COMPlusThrow(kArgumentNullException); |
965 | } |
966 | |
967 | |
968 | if (!o1->GetMethodTable()->IsValueType()) |
969 | { |
970 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
971 | } |
972 | |
973 | |
974 | // Unbox the little fella to get a pointer to the raw data. |
975 | void *pData = o1->GetData(); |
976 | |
977 | // Get its size to make sure it fits in an ARG_SLOT |
978 | unsigned size = o1->GetMethodTable()->GetNumInstanceFieldBytes(); |
979 | |
980 | if (size <= sizeof(ARG_SLOT)) |
981 | { |
982 | // Its not ByRef, so we need to copy the value class onto the ARG_SLOT. |
983 | CopyValueClassUnchecked(ArgSlotEndianessFixup(pArgument, sizeof(LPVOID)), pData, o1->GetMethodTable()); |
984 | } |
985 | else |
986 | { |
987 | // Store pointer to the space in the ARG_SLOT |
988 | *pArgument = PtrToArgSlot(pData); |
989 | } |
990 | } |
991 | else |
992 | { |
993 | // Function expects byref valuetype, argument received is byref class. |
994 | |
995 | // Grab the ObjectRef off the stack via the pointer on the stack. Note: the stack has a pointer to the |
996 | // ObjectRef since the arg was specified as byref. |
997 | OBJECTREF* op1 = (OBJECTREF*)ArgSlotToPtr(*pArgument); |
998 | if (op1 == NULL) |
999 | { |
1000 | COMPlusThrow(kArgumentNullException); |
1001 | } |
1002 | OBJECTREF o1 = *op1; |
1003 | |
1004 | // For Nullable types, we need a 'true' nullable to pass to the function, and we do this |
1005 | // by passing a boxed nullable that we unbox. We allocated this space earlier however we |
1006 | // did not know the data location until just now. Fill it in with the data and use that |
1007 | // to pass to the function. |
1008 | |
1009 | if (Nullable::IsNullableType(byrefArgTH)) |
1010 | { |
1011 | _ASSERTE(*pObjectRefArg != 0 && (*pObjectRefArg)->GetMethodTable() == byrefArgTH.GetMethodTable()); |
1012 | if (o1 != *pObjectRefArg) |
1013 | { |
1014 | Nullable::UnBoxNoCheck((*pObjectRefArg)->GetData(), o1, (*pObjectRefArg)->GetMethodTable()); |
1015 | o1 = *pObjectRefArg; |
1016 | } |
1017 | } |
1018 | |
1019 | if (o1 == NULL) |
1020 | { |
1021 | COMPlusThrow(kArgumentNullException); |
1022 | } |
1023 | |
1024 | _ASSERTE(o1->GetMethodTable()->IsValueType()); |
1025 | |
1026 | // Unbox the little fella to get a pointer to the raw data. |
1027 | void *pData = o1->GetData(); |
1028 | |
1029 | // If it is ByRef, then we just replace the ObjectRef with a pointer to the data. |
1030 | *pArgument = PtrToArgSlot(pData); |
1031 | } |
1032 | } |
1033 | |
1034 | // Validate any objectrefs that are supposed to be on the stack. |
1035 | // <TODO>@TODO: Move this to before the boxing/unboxing above</TODO> |
1036 | if (!fNeedBoxOrUnbox) |
1037 | { |
1038 | Object *objPtr; |
1039 | if (!isByRef) |
1040 | { |
1041 | if (IsElementTypeSpecial(argSigType)) |
1042 | { |
1043 | // validate the integrity of the object |
1044 | objPtr = (Object*)ArgSlotToPtr(*pArgument); |
1045 | if (FAILED(ValidateObject(objPtr))) |
1046 | { |
1047 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
1048 | } |
1049 | } |
1050 | } |
1051 | else |
1052 | { |
1053 | _ASSERTE(argSigType == ELEMENT_TYPE_BYREF); |
1054 | if (IsElementTypeSpecial(byrefArgSigType)) |
1055 | { |
1056 | objPtr = *(Object**)(ArgSlotToPtr(*pArgument)); |
1057 | if (FAILED(ValidateObject(objPtr))) |
1058 | { |
1059 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
1060 | } |
1061 | } |
1062 | } |
1063 | } |
1064 | } |
1065 | } |
1066 | } |
1067 | |
1068 | static CorDebugRegister GetArgAddrFromReg( DebuggerIPCE_FuncEvalArgData *pFEAD) |
1069 | { |
1070 | CorDebugRegister retval = REGISTER_INSTRUCTION_POINTER; // good as default as any |
1071 | #if defined(_WIN64) |
1072 | retval = (pFEAD->argHome.kind == RAK_REG ? |
1073 | pFEAD->argHome.reg1 : |
1074 | (CorDebugRegister)((int)REGISTER_IA64_F0 + pFEAD->argHome.floatIndex)); |
1075 | #else // !_WIN64 |
1076 | retval = pFEAD->argHome.reg1; |
1077 | #endif // !_WIN64 |
1078 | return retval; |
1079 | } |
1080 | |
1081 | // |
1082 | // Given info about a byref argument, retrieve the current value from the pBufferForArgsArray, |
1083 | // the pMaybeInteriorPtrArray, the pByRefMaybeInteriorPtrArray, or the pObjectRefArray. Then |
1084 | // place it back into the proper register or address. |
1085 | // |
1086 | // Note that we should never use the argAddr of the DebuggerIPCE_FuncEvalArgData in this function |
1087 | // since the address may be an interior GC pointer and may have been moved by the GC. Instead, |
1088 | // use the pByRefMaybeInteriorPtrArray. |
1089 | // |
1090 | static void SetFuncEvalByRefArgValue(DebuggerEval *pDE, |
1091 | DebuggerIPCE_FuncEvalArgData *pFEAD, |
1092 | CorElementType byrefArgSigType, |
1093 | INT64 bufferByRefArg, |
1094 | void *maybeInteriorPtrArg, |
1095 | void *byRefMaybeInteriorPtrArg, |
1096 | OBJECTREF objectRefByRefArg) |
1097 | { |
1098 | WRAPPER_NO_CONTRACT; |
1099 | |
1100 | switch (pFEAD->argElementType) |
1101 | { |
1102 | case ELEMENT_TYPE_I8: |
1103 | case ELEMENT_TYPE_U8: |
1104 | case ELEMENT_TYPE_R8: |
1105 | // 64bit values |
1106 | { |
1107 | INT64 source; |
1108 | |
1109 | #if defined(_WIN64) |
1110 | source = (INT64)maybeInteriorPtrArg; |
1111 | #else // !_WIN64 |
1112 | source = bufferByRefArg; |
1113 | #endif // !_WIN64 |
1114 | |
1115 | if (pFEAD->argIsLiteral) |
1116 | { |
1117 | // If this was a literal arg, then copy the updated primitive back into the literal. |
1118 | memcpy(pFEAD->argLiteralData, &source, sizeof(pFEAD->argLiteralData)); |
1119 | } |
1120 | else if (pFEAD->argAddr != NULL) |
1121 | { |
1122 | *((INT64 *)byRefMaybeInteriorPtrArg) = source; |
1123 | return; |
1124 | } |
1125 | else |
1126 | { |
1127 | #if !defined(_WIN64) |
1128 | // RAK_REG is the only 4 byte type, all others are 8 byte types. |
1129 | _ASSERTE(pFEAD->argHome.kind != RAK_REG); |
1130 | |
1131 | SIZE_T *pLow = (SIZE_T*)(&source); |
1132 | SIZE_T *pHigh = pLow + 1; |
1133 | |
1134 | switch (pFEAD->argHome.kind) |
1135 | { |
1136 | case RAK_REGREG: |
1137 | SetRegisterValue(pDE, pFEAD->argHome.u.reg2, pFEAD->argHome.u.reg2Addr, *pLow); |
1138 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, *pHigh); |
1139 | break; |
1140 | |
1141 | case RAK_MEMREG: |
1142 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, *pLow); |
1143 | *((SIZE_T*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)) = *pHigh; |
1144 | break; |
1145 | |
1146 | case RAK_REGMEM: |
1147 | *((SIZE_T*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)) = *pLow; |
1148 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, *pHigh); |
1149 | break; |
1150 | |
1151 | default: |
1152 | break; |
1153 | } |
1154 | #else // _WIN64 |
1155 | // The only types we use are RAK_REG and RAK_FLOAT, and both of them can be 4 or 8 bytes. |
1156 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) || (pFEAD->argHome.kind == RAK_FLOAT)); |
1157 | |
1158 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, source); |
1159 | #endif // _WIN64 |
1160 | } |
1161 | } |
1162 | break; |
1163 | |
1164 | default: |
1165 | // literal values smaller than 8 bytes and "special types" (e.g. object, array, string, etc.) |
1166 | { |
1167 | SIZE_T source; |
1168 | |
1169 | #ifdef _TARGET_X86_ |
1170 | if ((pFEAD->argElementType == ELEMENT_TYPE_I4) || |
1171 | (pFEAD->argElementType == ELEMENT_TYPE_U4) || |
1172 | (pFEAD->argElementType == ELEMENT_TYPE_R4)) |
1173 | { |
1174 | source = (SIZE_T)maybeInteriorPtrArg; |
1175 | } |
1176 | else |
1177 | { |
1178 | #endif |
1179 | source = (SIZE_T)bufferByRefArg; |
1180 | #ifdef _TARGET_X86_ |
1181 | } |
1182 | #endif |
1183 | |
1184 | if (pFEAD->argIsLiteral) |
1185 | { |
1186 | // If this was a literal arg, then copy the updated primitive back into the literal. |
1187 | // The literall buffer is a fixed size (8 bytes), but our source may be 4 or 8 bytes |
1188 | // depending on the platform. To prevent reading past the end of the source, we |
1189 | // zero the destination buffer and copy only as many bytes as available. |
1190 | memset( pFEAD->argLiteralData, 0, sizeof(pFEAD->argLiteralData) ); |
1191 | if (IsElementTypeSpecial(pFEAD->argElementType)) |
1192 | { |
1193 | _ASSERTE( sizeof(pFEAD->argLiteralData) >= sizeof(objectRefByRefArg) ); |
1194 | memcpy(pFEAD->argLiteralData, &objectRefByRefArg, sizeof(objectRefByRefArg)); |
1195 | } |
1196 | else |
1197 | { |
1198 | _ASSERTE( sizeof(pFEAD->argLiteralData) >= sizeof(source) ); |
1199 | memcpy(pFEAD->argLiteralData, &source, sizeof(source)); |
1200 | } |
1201 | } |
1202 | else if (pFEAD->argAddr == NULL) |
1203 | { |
1204 | // If the 32bit value is enregistered, copy it back to the proper regs. |
1205 | |
1206 | // RAK_REG is the only valid 4 byte type on WIN32. On WIN64, both RAK_REG and RAK_FLOAT can be |
1207 | // 4 bytes or 8 bytes. |
1208 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) |
1209 | WIN64_ONLY(|| (pFEAD->argHome.kind == RAK_FLOAT))); |
1210 | |
1211 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
1212 | |
1213 | // Shove the result back into the proper register. |
1214 | if (IsElementTypeSpecial(pFEAD->argElementType)) |
1215 | { |
1216 | SetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, (SIZE_T)ObjToArgSlot(objectRefByRefArg)); |
1217 | } |
1218 | else |
1219 | { |
1220 | SetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, (SIZE_T)source); |
1221 | } |
1222 | } |
1223 | else |
1224 | { |
1225 | // If the result was an object by ref, then copy back the new location of the object (in GC case). |
1226 | if (pFEAD->argIsHandleValue) |
1227 | { |
1228 | // do nothing. The Handle was passed in the pArgument array directly |
1229 | } |
1230 | else if (IsElementTypeSpecial(pFEAD->argElementType)) |
1231 | { |
1232 | *((SIZE_T*)byRefMaybeInteriorPtrArg) = (SIZE_T)ObjToArgSlot(objectRefByRefArg); |
1233 | } |
1234 | else if (pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE) |
1235 | { |
1236 | // Do nothing, we passed in the pointer to the valuetype in the pArgument array directly. |
1237 | } |
1238 | else |
1239 | { |
1240 | GetAndSetLiteralValue(byRefMaybeInteriorPtrArg, pFEAD->argElementType, &source, ELEMENT_TYPE_PTR); |
1241 | } |
1242 | } |
1243 | } // end default |
1244 | } // end switch |
1245 | } |
1246 | |
1247 | |
1248 | /* |
1249 | * GCProtectAllPassedArgs |
1250 | * |
1251 | * This routine is the first step in doing a func-eval. For a complete overview, see |
1252 | * the comments at the top of this file. |
1253 | * |
1254 | * This routine over-aggressively protects all arguments that may be references to |
1255 | * managed objects. This function cannot crawl the function signature, since doing |
1256 | * so may trigger a GC, and thus, we must assume everything is ByRef. |
1257 | * |
1258 | * Parameters: |
1259 | * pDE - pointer to the DebuggerEval object being processed. |
1260 | * pObjectRefArray - An array that contains any object refs. It was built previously. |
1261 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
1262 | * the interior of a managed object. |
1263 | * pBufferForArgsArray - An array for holding stuff that does not need to be protected. |
1264 | * Any handle for the 'this' pointer is put in here for pulling it out later. |
1265 | * |
1266 | * Returns: |
1267 | * None. |
1268 | * |
1269 | */ |
1270 | static void GCProtectAllPassedArgs(DebuggerEval *pDE, |
1271 | OBJECTREF *pObjectRefArray, |
1272 | void **pMaybeInteriorPtrArray, |
1273 | void **pByRefMaybeInteriorPtrArray, |
1274 | INT64 *pBufferForArgsArray |
1275 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
1276 | ) |
1277 | { |
1278 | CONTRACTL |
1279 | { |
1280 | NOTHROW; |
1281 | GC_NOTRIGGER; |
1282 | MODE_COOPERATIVE; |
1283 | } |
1284 | CONTRACTL_END; |
1285 | |
1286 | |
1287 | DebuggerIPCE_FuncEvalArgData *argData = pDE->GetArgData(); |
1288 | |
1289 | unsigned currArgIndex = 0; |
1290 | |
1291 | // |
1292 | // Gather all the information for the parameters. |
1293 | // |
1294 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
1295 | { |
1296 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
1297 | |
1298 | // In case any of the arguments is a by ref argument and points into the GC heap, |
1299 | // we need to GC protect their addresses as well. |
1300 | if (pFEAD->argAddr != NULL) |
1301 | { |
1302 | pByRefMaybeInteriorPtrArray[currArgIndex] = pFEAD->argAddr; |
1303 | } |
1304 | |
1305 | switch (pFEAD->argElementType) |
1306 | { |
1307 | case ELEMENT_TYPE_I8: |
1308 | case ELEMENT_TYPE_U8: |
1309 | case ELEMENT_TYPE_R8: |
1310 | // 64bit values |
1311 | |
1312 | #if defined(_WIN64) |
1313 | // |
1314 | // Only need to worry about protecting if a pointer is a 64 bit quantity. |
1315 | // |
1316 | _ASSERTE(sizeof(void *) == sizeof(INT64)); |
1317 | |
1318 | if (pFEAD->argAddr != NULL) |
1319 | { |
1320 | pMaybeInteriorPtrArray[currArgIndex] = *((void **)(pFEAD->argAddr)); |
1321 | #ifdef _DEBUG |
1322 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1323 | { |
1324 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
1325 | } |
1326 | #endif |
1327 | } |
1328 | else if (pFEAD->argIsLiteral) |
1329 | { |
1330 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(void *)); |
1331 | |
1332 | // |
1333 | // If this is a byref literal arg, then it maybe an interior ptr. |
1334 | // |
1335 | void *v = NULL; |
1336 | memcpy(&v, pFEAD->argLiteralData, sizeof(v)); |
1337 | pMaybeInteriorPtrArray[currArgIndex] = v; |
1338 | #ifdef _DEBUG |
1339 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1340 | { |
1341 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
1342 | } |
1343 | #endif |
1344 | } |
1345 | else |
1346 | { |
1347 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) || (pFEAD->argHome.kind == RAK_FLOAT)); |
1348 | |
1349 | |
1350 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
1351 | SIZE_T v = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
1352 | pMaybeInteriorPtrArray[currArgIndex] = (void *)(v); |
1353 | |
1354 | #ifdef _DEBUG |
1355 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1356 | { |
1357 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
1358 | } |
1359 | #endif |
1360 | } |
1361 | #endif // _WIN64 |
1362 | break; |
1363 | |
1364 | case ELEMENT_TYPE_VALUETYPE: |
1365 | // |
1366 | // If the value type address could be an interior pointer. |
1367 | // |
1368 | if (pFEAD->argAddr != NULL) |
1369 | { |
1370 | pMaybeInteriorPtrArray[currArgIndex] = ((void **)(pFEAD->argAddr)); |
1371 | } |
1372 | |
1373 | INDEBUG(pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray); |
1374 | break; |
1375 | |
1376 | case ELEMENT_TYPE_CLASS: |
1377 | case ELEMENT_TYPE_OBJECT: |
1378 | case ELEMENT_TYPE_STRING: |
1379 | case ELEMENT_TYPE_ARRAY: |
1380 | case ELEMENT_TYPE_SZARRAY: |
1381 | |
1382 | if (pFEAD->argAddr != NULL) |
1383 | { |
1384 | if (pFEAD->argIsHandleValue) |
1385 | { |
1386 | OBJECTHANDLE oh = (OBJECTHANDLE)(pFEAD->argAddr); |
1387 | pBufferForArgsArray[currArgIndex] = (INT64)(size_t)oh; |
1388 | |
1389 | INDEBUG(pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray); |
1390 | } |
1391 | else |
1392 | { |
1393 | pObjectRefArray[currArgIndex] = *((OBJECTREF *)(pFEAD->argAddr)); |
1394 | |
1395 | INDEBUG(pDataLocationArray[currArgIndex] |= DL_ObjectRefArray); |
1396 | } |
1397 | } |
1398 | else if (pFEAD->argIsLiteral) |
1399 | { |
1400 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(OBJECTREF)); |
1401 | OBJECTREF v = NULL; |
1402 | memcpy(&v, pFEAD->argLiteralData, sizeof(v)); |
1403 | pObjectRefArray[currArgIndex] = v; |
1404 | #ifdef _DEBUG |
1405 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1406 | { |
1407 | pDataLocationArray[currArgIndex] |= DL_ObjectRefArray; |
1408 | } |
1409 | #endif |
1410 | } |
1411 | else |
1412 | { |
1413 | // RAK_REG is the only valid pointer-sized type. |
1414 | _ASSERTE(pFEAD->argHome.kind == RAK_REG); |
1415 | |
1416 | // Simply grab the value out of the proper register. |
1417 | SIZE_T v = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
1418 | |
1419 | // The argument is the address. |
1420 | pObjectRefArray[currArgIndex] = (OBJECTREF)v; |
1421 | #ifdef _DEBUG |
1422 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1423 | { |
1424 | pDataLocationArray[currArgIndex] |= DL_ObjectRefArray; |
1425 | } |
1426 | #endif |
1427 | } |
1428 | break; |
1429 | |
1430 | case ELEMENT_TYPE_I4: |
1431 | case ELEMENT_TYPE_U4: |
1432 | case ELEMENT_TYPE_R4: |
1433 | // 32bit values |
1434 | |
1435 | #ifdef _TARGET_X86_ |
1436 | _ASSERTE(sizeof(void *) == sizeof(INT32)); |
1437 | |
1438 | if (pFEAD->argAddr != NULL) |
1439 | { |
1440 | if (pFEAD->argIsHandleValue) |
1441 | { |
1442 | // |
1443 | // Ignorable - no need to protect |
1444 | // |
1445 | } |
1446 | else |
1447 | { |
1448 | pMaybeInteriorPtrArray[currArgIndex] = *((void **)(pFEAD->argAddr)); |
1449 | #ifdef _DEBUG |
1450 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1451 | { |
1452 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
1453 | } |
1454 | #endif |
1455 | } |
1456 | } |
1457 | else if (pFEAD->argIsLiteral) |
1458 | { |
1459 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(INT32)); |
1460 | |
1461 | // |
1462 | // If this is a byref literal arg, then it maybe an interior ptr. |
1463 | // |
1464 | void *v = NULL; |
1465 | memcpy(&v, pFEAD->argLiteralData, sizeof(v)); |
1466 | pMaybeInteriorPtrArray[currArgIndex] = v; |
1467 | #ifdef _DEBUG |
1468 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1469 | { |
1470 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
1471 | } |
1472 | #endif |
1473 | } |
1474 | else |
1475 | { |
1476 | // RAK_REG is the only valid 4 byte type on WIN32. |
1477 | _ASSERTE(pFEAD->argHome.kind == RAK_REG); |
1478 | |
1479 | // Simply grab the value out of the proper register. |
1480 | SIZE_T v = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
1481 | |
1482 | // The argument is the address. |
1483 | pMaybeInteriorPtrArray[currArgIndex] = (void *)v; |
1484 | #ifdef _DEBUG |
1485 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1486 | { |
1487 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
1488 | } |
1489 | #endif |
1490 | } |
1491 | #endif // _TARGET_X86_ |
1492 | |
1493 | default: |
1494 | // |
1495 | // Ignorable - no need to protect |
1496 | // |
1497 | break; |
1498 | } |
1499 | } |
1500 | } |
1501 | |
1502 | /* |
1503 | * ResolveFuncEvalGenericArgInfo |
1504 | * |
1505 | * This function pulls out any generic args and makes sure the method is loaded for it. |
1506 | * |
1507 | * Parameters: |
1508 | * pDE - pointer to the DebuggerEval object being processed. |
1509 | * |
1510 | * Returns: |
1511 | * None. |
1512 | * |
1513 | */ |
1514 | void ResolveFuncEvalGenericArgInfo(DebuggerEval *pDE) |
1515 | { |
1516 | CONTRACTL |
1517 | { |
1518 | THROWS; |
1519 | GC_TRIGGERS; |
1520 | } |
1521 | CONTRACTL_END; |
1522 | |
1523 | DebuggerIPCE_TypeArgData *firstdata = pDE->GetTypeArgData(); |
1524 | unsigned int nGenericArgs = pDE->m_genericArgsCount; |
1525 | SIZE_T cbAllocSize; |
1526 | if ((!ClrSafeInt<SIZE_T>::multiply(nGenericArgs, sizeof(TypeHandle *), cbAllocSize)) || |
1527 | (cbAllocSize != (size_t)(cbAllocSize))) |
1528 | { |
1529 | ThrowHR(COR_E_OVERFLOW); |
1530 | } |
1531 | TypeHandle * pGenericArgs = (nGenericArgs == 0) ? NULL : (TypeHandle *) _alloca(cbAllocSize); |
1532 | |
1533 | // |
1534 | // Snag the type arguments from the input and get the |
1535 | // method desc that corresponds to the instantiated desc. |
1536 | // |
1537 | Debugger::TypeDataWalk walk(firstdata, pDE->m_genericArgsNodeCount); |
1538 | walk.ReadTypeHandles(nGenericArgs, pGenericArgs); |
1539 | |
1540 | // <TODO>better error message</TODO> |
1541 | if (!walk.Finished()) |
1542 | { |
1543 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
1544 | } |
1545 | |
1546 | // Find the proper MethodDesc that we need to call. |
1547 | // Since we're already in the target domain, it can't be unloaded so it's safe to |
1548 | // use domain specific structures like the Module*. |
1549 | _ASSERTE( GetAppDomain() == pDE->m_debuggerModule->GetAppDomain() ); |
1550 | pDE->m_md = g_pEEInterface->LoadMethodDef(pDE->m_debuggerModule->GetRuntimeModule(), |
1551 | pDE->m_methodToken, |
1552 | nGenericArgs, |
1553 | pGenericArgs, |
1554 | &(pDE->m_ownerTypeHandle)); |
1555 | |
1556 | |
1557 | // We better have a MethodDesc at this point. |
1558 | _ASSERTE(pDE->m_md != NULL); |
1559 | |
1560 | ValidateFuncEvalReturnType(pDE->m_evalType , pDE->m_md->GetMethodTable()); |
1561 | |
1562 | // If this is a new object operation, then we should have a .ctor. |
1563 | if ((pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) && !pDE->m_md->IsCtor()) |
1564 | { |
1565 | COMPlusThrow(kArgumentException, W("Argument_MissingDefaultConstructor" )); |
1566 | } |
1567 | |
1568 | pDE->m_md->EnsureActive(); |
1569 | |
1570 | // Run the Class Init for this class, if necessary. |
1571 | MethodTable * pOwningMT = pDE->m_ownerTypeHandle.GetMethodTable(); |
1572 | pOwningMT->EnsureInstanceActive(); |
1573 | pOwningMT->CheckRunClassInitThrowing(); |
1574 | |
1575 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
1576 | { |
1577 | // Work out the exact type of the allocated object |
1578 | pDE->m_resultType = (nGenericArgs == 0) |
1579 | ? TypeHandle(pDE->m_md->GetMethodTable()) |
1580 | : g_pEEInterface->LoadInstantiation(pDE->m_md->GetModule(), pDE->m_md->GetMethodTable()->GetCl(), nGenericArgs, pGenericArgs); |
1581 | } |
1582 | } |
1583 | |
1584 | |
1585 | /* |
1586 | * BoxFuncEvalThisParameter |
1587 | * |
1588 | * This function is a helper for DoNormalFuncEval. It boxes the 'this' parameter if necessary. |
1589 | * For example, when a method Object.ToString is called on a value class like System.DateTime |
1590 | * |
1591 | * Parameters: |
1592 | * pDE - pointer to the DebuggerEval object being processed. |
1593 | * argData - Array of information about the arguments. |
1594 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
1595 | * the interior of a managed object. |
1596 | * pObjectRef - A GC protected place to put a boxed value, if necessary. |
1597 | * |
1598 | * Returns: |
1599 | * None |
1600 | * |
1601 | */ |
1602 | void BoxFuncEvalThisParameter(DebuggerEval *pDE, |
1603 | DebuggerIPCE_FuncEvalArgData *argData, |
1604 | void **pMaybeInteriorPtrArray, |
1605 | OBJECTREF *pObjectRefArg // out |
1606 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
1607 | ) |
1608 | { |
1609 | WRAPPER_NO_CONTRACT; |
1610 | |
1611 | // |
1612 | // See if we have a value type that is going to be passed as a 'this' pointer. |
1613 | // |
1614 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && |
1615 | !pDE->m_md->IsStatic() && |
1616 | (pDE->m_argCount > 0)) |
1617 | { |
1618 | // Allocate the space for box nullables. Nullable parameters need a unboxed |
1619 | // nullable value to point at, where our current representation does not have |
1620 | // an unboxed value inside them. Thus we need another buffer to hold it (and |
1621 | // gcprotects it. We used boxed values for this by converting them to 'true' |
1622 | // nullable form, calling the function, and in the case of byrefs, converting |
1623 | // them back afterward. |
1624 | |
1625 | MethodTable* pMT = pDE->m_md->GetMethodTable(); |
1626 | if (Nullable::IsNullableType(pMT)) |
1627 | { |
1628 | OBJECTREF obj = AllocateObject(pMT); |
1629 | if (*pObjectRefArg != NULL) |
1630 | { |
1631 | BOOL typesMatch = Nullable::UnBox(obj->GetData(), *pObjectRefArg, pMT); |
1632 | (void)typesMatch; //prevent "unused variable" error from GCC |
1633 | _ASSERTE(typesMatch); |
1634 | } |
1635 | *pObjectRefArg = obj; |
1636 | } |
1637 | |
1638 | if (argData[0].argElementType == ELEMENT_TYPE_VALUETYPE) |
1639 | { |
1640 | // |
1641 | // See if we need to box up the 'this' parameter. |
1642 | // |
1643 | if (!pDE->m_md->GetMethodTable()->IsValueType()) |
1644 | { |
1645 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[0]; |
1646 | SIZE_T v; |
1647 | LPVOID pAddr = NULL; |
1648 | INT64 bigVal; |
1649 | |
1650 | { |
1651 | GCX_FORBID(); //pAddr is unprotected from the time we initialize it |
1652 | |
1653 | if (pFEAD->argAddr != NULL) |
1654 | { |
1655 | _ASSERTE(pDataLocationArray[0] & DL_MaybeInteriorPtrArray); |
1656 | pAddr = pMaybeInteriorPtrArray[0]; |
1657 | INDEBUG(pDataLocationArray[0] &= ~DL_MaybeInteriorPtrArray); |
1658 | } |
1659 | else |
1660 | { |
1661 | |
1662 | pAddr = GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
1663 | |
1664 | if (pAddr == NULL) |
1665 | { |
1666 | COMPlusThrow(kArgumentNullException); |
1667 | } |
1668 | } |
1669 | |
1670 | _ASSERTE(pAddr != NULL); |
1671 | } //GCX_FORBID |
1672 | |
1673 | GCPROTECT_BEGININTERIOR(pAddr); //ReadTypeHandle may trigger a GC and move the object that has the value type at pAddr as a field |
1674 | |
1675 | // |
1676 | // Grab the class of this value type. If the type is a parameterized |
1677 | // struct type then it may not have yet been loaded by the EE (generics |
1678 | // code sharing may have meant we have never bothered to create the exact |
1679 | // type yet). |
1680 | // |
1681 | // A buffer should have been allocated for the full struct type |
1682 | _ASSERTE(argData[0].fullArgType != NULL); |
1683 | Debugger::TypeDataWalk walk((DebuggerIPCE_TypeArgData *) argData[0].fullArgType, argData[0].fullArgTypeNodeCount); |
1684 | |
1685 | TypeHandle typeHandle = walk.ReadTypeHandle(); |
1686 | |
1687 | if (typeHandle.IsNull()) |
1688 | { |
1689 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
1690 | } |
1691 | // |
1692 | // Box up this value type |
1693 | // |
1694 | *pObjectRefArg = typeHandle.GetMethodTable()->Box(pAddr); |
1695 | if (Nullable::IsNullableType(typeHandle.GetMethodTable()) && (*pObjectRefArg == NULL)) |
1696 | { |
1697 | COMPlusThrow(kArgumentNullException); |
1698 | } |
1699 | GCPROTECT_END(); |
1700 | |
1701 | INDEBUG(pDataLocationArray[0] |= DL_ObjectRefArray); |
1702 | } |
1703 | } |
1704 | } |
1705 | } |
1706 | |
1707 | |
1708 | // |
1709 | // This is used to store (temporarily) information about the arguments that func-eval |
1710 | // will pass. It is used only for the args of the function, not the return buffer nor |
1711 | // the 'this' pointer, if there is any of either. |
1712 | // |
1713 | struct FuncEvalArgInfo |
1714 | { |
1715 | CorElementType argSigType; |
1716 | CorElementType byrefArgSigType; |
1717 | TypeHandle byrefArgTypeHandle; |
1718 | bool fNeedBoxOrUnbox; |
1719 | TypeHandle sigTypeHandle; |
1720 | }; |
1721 | |
1722 | |
1723 | |
1724 | /* |
1725 | * GatherFuncEvalArgInfo |
1726 | * |
1727 | * This function is a helper for DoNormalFuncEval. It gathers together all the information |
1728 | * necessary to process the arguments. |
1729 | * |
1730 | * Parameters: |
1731 | * pDE - pointer to the DebuggerEval object being processed. |
1732 | * mSig - The metadata signature of the fuction to call. |
1733 | * argData - Array of information about the arguments. |
1734 | * pFEArgInfo - An array of structs to hold the argument information. |
1735 | * |
1736 | * Returns: |
1737 | * None. |
1738 | * |
1739 | */ |
1740 | void GatherFuncEvalArgInfo(DebuggerEval *pDE, |
1741 | MetaSig mSig, |
1742 | DebuggerIPCE_FuncEvalArgData *argData, |
1743 | FuncEvalArgInfo *pFEArgInfo // out |
1744 | ) |
1745 | { |
1746 | WRAPPER_NO_CONTRACT; |
1747 | |
1748 | unsigned currArgIndex = 0; |
1749 | |
1750 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
1751 | { |
1752 | // |
1753 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
1754 | // |
1755 | currArgIndex++; |
1756 | } |
1757 | |
1758 | // |
1759 | // Gather all the information for the parameters. |
1760 | // |
1761 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
1762 | { |
1763 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
1764 | |
1765 | // |
1766 | // Move to the next arg in the signature. |
1767 | // |
1768 | CorElementType argSigType = mSig.NextArgNormalized(); |
1769 | _ASSERTE(argSigType != ELEMENT_TYPE_END); |
1770 | |
1771 | // |
1772 | // If this arg is a byref arg, then we'll need to know what type we're referencing for later... |
1773 | // |
1774 | TypeHandle byrefTypeHandle = TypeHandle(); |
1775 | CorElementType byrefArgSigType = ELEMENT_TYPE_END; |
1776 | if (argSigType == ELEMENT_TYPE_BYREF) |
1777 | { |
1778 | byrefArgSigType = mSig.GetByRefType(&byrefTypeHandle); |
1779 | } |
1780 | |
1781 | // |
1782 | // If the sig says class but we've got a value class parameter, then remember that we need to box it. If |
1783 | // the sig says value class, but we've got a boxed value class, then remember that we need to unbox it. |
1784 | // |
1785 | bool fNeedBoxOrUnbox = ((argSigType == ELEMENT_TYPE_CLASS) && (pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE)) || |
1786 | (((argSigType == ELEMENT_TYPE_VALUETYPE) && ((pFEAD->argElementType == ELEMENT_TYPE_CLASS) || (pFEAD->argElementType == ELEMENT_TYPE_OBJECT))) || |
1787 | // This is when method signature is expecting a BYREF ValueType, yet we receive the boxed valuetype's handle. |
1788 | (pFEAD->argElementType == ELEMENT_TYPE_CLASS && argSigType == ELEMENT_TYPE_BYREF && byrefArgSigType == ELEMENT_TYPE_VALUETYPE)); |
1789 | |
1790 | pFEArgInfo[currArgIndex].argSigType = argSigType; |
1791 | pFEArgInfo[currArgIndex].byrefArgSigType = byrefArgSigType; |
1792 | pFEArgInfo[currArgIndex].byrefArgTypeHandle = byrefTypeHandle; |
1793 | pFEArgInfo[currArgIndex].fNeedBoxOrUnbox = fNeedBoxOrUnbox; |
1794 | pFEArgInfo[currArgIndex].sigTypeHandle = mSig.GetLastTypeHandleThrowing(); |
1795 | } |
1796 | } |
1797 | |
1798 | |
1799 | /* |
1800 | * BoxFuncEvalArguments |
1801 | * |
1802 | * This function is a helper for DoNormalFuncEval. It boxes all the arguments that |
1803 | * need to be. |
1804 | * |
1805 | * Parameters: |
1806 | * pDE - pointer to the DebuggerEval object being processed. |
1807 | * argData - Array of information about the arguments. |
1808 | * pFEArgInfo - An array of structs to hold the argument information. |
1809 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
1810 | * the interior of a managed object. |
1811 | * pObjectRef - A GC protected place to put a boxed value, if necessary. |
1812 | * |
1813 | * Returns: |
1814 | * None |
1815 | * |
1816 | */ |
1817 | void BoxFuncEvalArguments(DebuggerEval *pDE, |
1818 | DebuggerIPCE_FuncEvalArgData *argData, |
1819 | FuncEvalArgInfo *pFEArgInfo, |
1820 | void **pMaybeInteriorPtrArray, |
1821 | OBJECTREF *pObjectRef // out |
1822 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
1823 | ) |
1824 | { |
1825 | WRAPPER_NO_CONTRACT; |
1826 | |
1827 | unsigned currArgIndex = 0; |
1828 | |
1829 | |
1830 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
1831 | { |
1832 | // |
1833 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
1834 | // |
1835 | currArgIndex++; |
1836 | } |
1837 | |
1838 | // |
1839 | // Gather all the information for the parameters. |
1840 | // |
1841 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
1842 | { |
1843 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
1844 | |
1845 | // Allocate the space for box nullables. Nullable parameters need a unboxed |
1846 | // nullable value to point at, where our current representation does not have |
1847 | // an unboxed value inside them. Thus we need another buffer to hold it (and |
1848 | // gcprotects it. We used boxed values for this by converting them to 'true' |
1849 | // nullable form, calling the function, and in the case of byrefs, converting |
1850 | // them back afterward. |
1851 | |
1852 | TypeHandle th = pFEArgInfo[currArgIndex].sigTypeHandle; |
1853 | if (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF) |
1854 | th = pFEArgInfo[currArgIndex].byrefArgTypeHandle; |
1855 | |
1856 | if (!th.IsNull() && Nullable::IsNullableType(th)) |
1857 | { |
1858 | |
1859 | OBJECTREF obj = AllocateObject(th.AsMethodTable()); |
1860 | if (pObjectRef[currArgIndex] != NULL) |
1861 | { |
1862 | BOOL typesMatch = Nullable::UnBox(obj->GetData(), pObjectRef[currArgIndex], th.AsMethodTable()); |
1863 | (void)typesMatch; //prevent "unused variable" error from GCC |
1864 | _ASSERTE(typesMatch); |
1865 | } |
1866 | pObjectRef[currArgIndex] = obj; |
1867 | } |
1868 | |
1869 | // |
1870 | // Check if we should box this value now |
1871 | // |
1872 | if ((pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE) && |
1873 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF) && |
1874 | pFEArgInfo[currArgIndex].fNeedBoxOrUnbox) |
1875 | { |
1876 | SIZE_T v; |
1877 | INT64 bigVal; |
1878 | LPVOID pAddr = NULL; |
1879 | |
1880 | if (pFEAD->argAddr != NULL) |
1881 | { |
1882 | _ASSERTE(pDataLocationArray[currArgIndex] & DL_MaybeInteriorPtrArray); |
1883 | pAddr = pMaybeInteriorPtrArray[currArgIndex]; |
1884 | INDEBUG(pDataLocationArray[currArgIndex] &= ~DL_MaybeInteriorPtrArray); |
1885 | } |
1886 | else |
1887 | { |
1888 | |
1889 | pAddr = GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
1890 | |
1891 | if (pAddr == NULL) |
1892 | { |
1893 | COMPlusThrow(kArgumentNullException); |
1894 | } |
1895 | } |
1896 | |
1897 | _ASSERTE(pAddr != NULL); |
1898 | |
1899 | MethodTable * pMT = pFEArgInfo[currArgIndex].sigTypeHandle.GetMethodTable(); |
1900 | |
1901 | // |
1902 | // Stuff the newly boxed item into our GC-protected array. |
1903 | // |
1904 | pObjectRef[currArgIndex] = pMT->Box(pAddr); |
1905 | |
1906 | #ifdef _DEBUG |
1907 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
1908 | { |
1909 | pDataLocationArray[currArgIndex] |= DL_ObjectRefArray; |
1910 | } |
1911 | #endif |
1912 | } |
1913 | } |
1914 | } |
1915 | |
1916 | |
1917 | /* |
1918 | * GatherFuncEvalMethodInfo |
1919 | * |
1920 | * This function is a helper for DoNormalFuncEval. It gathers together all the information |
1921 | * necessary to process the method |
1922 | * |
1923 | * Parameters: |
1924 | * pDE - pointer to the DebuggerEval object being processed. |
1925 | * mSig - The metadata signature of the fuction to call. |
1926 | * argData - Array of information about the arguments. |
1927 | * ppUnboxedMD - Returns a resolve method desc if the original is an unboxing stub. |
1928 | * pObjectRefArray - GC protected array of objects passed to this func-eval call. |
1929 | * used to resolve down to the method target for generics. |
1930 | * pBufferForArgsArray - Array of values not needing gc-protection. May hold the |
1931 | * handle for the method targer for generics. |
1932 | * pfHasRetBuffArg - TRUE if the function has a return buffer. |
1933 | * pRetValueType - The TypeHandle of the return value. |
1934 | * |
1935 | * |
1936 | * Returns: |
1937 | * None. |
1938 | * |
1939 | */ |
1940 | void GatherFuncEvalMethodInfo(DebuggerEval *pDE, |
1941 | MetaSig mSig, |
1942 | DebuggerIPCE_FuncEvalArgData *argData, |
1943 | MethodDesc **ppUnboxedMD, |
1944 | OBJECTREF *pObjectRefArray, |
1945 | INT64 *pBufferForArgsArray, |
1946 | BOOL *pfHasRetBuffArg, // out |
1947 | BOOL *pfHasNonStdByValReturn, // out |
1948 | TypeHandle *pRetValueType // out, only if fHasRetBuffArg == true |
1949 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
1950 | ) |
1951 | { |
1952 | WRAPPER_NO_CONTRACT; |
1953 | |
1954 | // |
1955 | // If 'this' is a non-static function that points to an unboxing stub, we need to return the |
1956 | // unboxed method desc to really call. |
1957 | // |
1958 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && !pDE->m_md->IsStatic() && pDE->m_md->IsUnboxingStub()) |
1959 | { |
1960 | *ppUnboxedMD = pDE->m_md->GetMethodTable()->GetUnboxedEntryPointMD(pDE->m_md); |
1961 | } |
1962 | |
1963 | // |
1964 | // Resolve down to the method on the class of the 'this' parameter. |
1965 | // |
1966 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && pDE->m_md->IsVtableMethod()) |
1967 | { |
1968 | // |
1969 | // Assuming that a constructor can't be an interface method... |
1970 | // |
1971 | _ASSERTE(pDE->m_evalType == DB_IPCE_FET_NORMAL); |
1972 | |
1973 | // |
1974 | // We need to go grab the 'this' argument to figure out what class we're headed for... |
1975 | // |
1976 | if (pDE->m_argCount == 0) |
1977 | { |
1978 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
1979 | } |
1980 | |
1981 | // |
1982 | // We should have a valid this pointer. |
1983 | // <TODO>@todo: But the check should cover the register kind as well!</TODO> |
1984 | // |
1985 | if ((argData[0].argHome.kind == RAK_NONE) && (argData[0].argAddr == NULL)) |
1986 | { |
1987 | COMPlusThrow(kArgumentNullException); |
1988 | } |
1989 | |
1990 | // |
1991 | // Assume we can only have this for real objects or boxed value types, not value classes... |
1992 | // |
1993 | _ASSERTE((argData[0].argElementType == ELEMENT_TYPE_OBJECT) || |
1994 | (argData[0].argElementType == ELEMENT_TYPE_STRING) || |
1995 | (argData[0].argElementType == ELEMENT_TYPE_CLASS) || |
1996 | (argData[0].argElementType == ELEMENT_TYPE_ARRAY) || |
1997 | (argData[0].argElementType == ELEMENT_TYPE_SZARRAY) || |
1998 | ((argData[0].argElementType == ELEMENT_TYPE_VALUETYPE) && |
1999 | (pObjectRefArray[0] != NULL))); |
2000 | |
2001 | // |
2002 | // Now get the object pointer to our first arg. |
2003 | // |
2004 | OBJECTREF objRef = NULL; |
2005 | GCPROTECT_BEGIN(objRef); |
2006 | |
2007 | if (argData[0].argElementType == ELEMENT_TYPE_VALUETYPE) |
2008 | { |
2009 | // |
2010 | // In this case, we know where it is. |
2011 | // |
2012 | objRef = pObjectRefArray[0]; |
2013 | _ASSERTE(pDataLocationArray[0] & DL_ObjectRefArray); |
2014 | } |
2015 | else |
2016 | { |
2017 | TypeHandle dummyTH; |
2018 | ARG_SLOT objSlot; |
2019 | |
2020 | // |
2021 | // Take out the first arg. We're gonna trick GetFuncEvalArgValue by passing in just our |
2022 | // object ref as the stack. |
2023 | // |
2024 | // Note that we are passing ELEMENT_TYPE_END in the last parameter because we want to |
2025 | // supress the the valid object ref check. |
2026 | // |
2027 | GetFuncEvalArgValue(pDE, |
2028 | &(argData[0]), |
2029 | false, |
2030 | false, |
2031 | dummyTH, |
2032 | ELEMENT_TYPE_CLASS, |
2033 | dummyTH, |
2034 | &objSlot, |
2035 | NULL, |
2036 | pObjectRefArray, |
2037 | pBufferForArgsArray, |
2038 | NULL, |
2039 | ELEMENT_TYPE_END |
2040 | DEBUG_ARG(pDataLocationArray[0]) |
2041 | ); |
2042 | |
2043 | objRef = ArgSlotToObj(objSlot); |
2044 | } |
2045 | |
2046 | // |
2047 | // Validate the object |
2048 | // |
2049 | if (FAILED(ValidateObject(OBJECTREFToObject(objRef)))) |
2050 | { |
2051 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
2052 | } |
2053 | |
2054 | // |
2055 | // Null isn't valid in this case! |
2056 | // |
2057 | if (objRef == NULL) |
2058 | { |
2059 | COMPlusThrow(kArgumentNullException); |
2060 | } |
2061 | |
2062 | // |
2063 | // Make sure that the object supplied is of a type that can call the method supplied. |
2064 | // |
2065 | if (!g_pEEInterface->ObjIsInstanceOf(OBJECTREFToObject(objRef), pDE->m_ownerTypeHandle)) |
2066 | { |
2067 | COMPlusThrow(kArgumentException, W("Argument_CORDBBadMethod" )); |
2068 | } |
2069 | |
2070 | // |
2071 | // Now, find the proper MethodDesc for this interface method based on the object we're invoking the |
2072 | // method on. |
2073 | // |
2074 | pDE->m_targetCodeAddr = pDE->m_md->GetCallTarget(&objRef, pDE->m_ownerTypeHandle); |
2075 | |
2076 | GCPROTECT_END(); |
2077 | } |
2078 | else |
2079 | { |
2080 | pDE->m_targetCodeAddr = pDE->m_md->GetCallTarget(NULL, pDE->m_ownerTypeHandle); |
2081 | } |
2082 | |
2083 | // |
2084 | // Get the resulting type now. Doing this may trigger a GC or throw. |
2085 | // |
2086 | if (pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) |
2087 | { |
2088 | pDE->m_resultType = mSig.GetRetTypeHandleThrowing(); |
2089 | } |
2090 | |
2091 | // |
2092 | // Check if there is an explicit return argument, or if the return type is really a VALUETYPE but our |
2093 | // calling convention is passing it in registers. We just need to remember the pretValueClass so |
2094 | // that we will box it properly on our way out. |
2095 | // |
2096 | { |
2097 | ArgIterator argit(&mSig); |
2098 | *pfHasRetBuffArg = argit.HasRetBuffArg(); |
2099 | *pfHasNonStdByValReturn = argit.HasNonStandardByvalReturn(); |
2100 | } |
2101 | |
2102 | CorElementType retType = mSig.GetReturnType(); |
2103 | CorElementType retTypeNormalized = mSig.GetReturnTypeNormalized(); |
2104 | |
2105 | |
2106 | if (*pfHasRetBuffArg || *pfHasNonStdByValReturn |
2107 | || ((retType == ELEMENT_TYPE_VALUETYPE) && (retType != retTypeNormalized))) |
2108 | { |
2109 | *pRetValueType = mSig.GetRetTypeHandleThrowing(); |
2110 | } |
2111 | else |
2112 | { |
2113 | // |
2114 | // Make sure the caller initialized this value |
2115 | // |
2116 | _ASSERTE((*pRetValueType).IsNull()); |
2117 | } |
2118 | } |
2119 | |
2120 | /* |
2121 | * CopyArgsToBuffer |
2122 | * |
2123 | * This routine copies all the arguments to a local buffer, so that any one that needs to be |
2124 | * passed can be. Note that this local buffer is NOT GC-protected, and so all the values |
2125 | * in the buffer may not be relied on. You *must* use GetFuncEvalArgValue() to load up the |
2126 | * Arguments for the call, because it has the logic to decide which of the parallel arrays to pull |
2127 | * from. |
2128 | * |
2129 | * Parameters: |
2130 | * pDE - pointer to the DebuggerEval object being processed. |
2131 | * argData - Array of information about the arguments. |
2132 | * pFEArgInfo - An array of structs to hold the argument information. Must have be previously filled in. |
2133 | * pBufferArray - An array to store values. |
2134 | * |
2135 | * Returns: |
2136 | * None. |
2137 | * |
2138 | */ |
2139 | void CopyArgsToBuffer(DebuggerEval *pDE, |
2140 | DebuggerIPCE_FuncEvalArgData *argData, |
2141 | FuncEvalArgInfo *pFEArgInfo, |
2142 | INT64 *pBufferArray |
2143 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
2144 | ) |
2145 | { |
2146 | CONTRACTL |
2147 | { |
2148 | THROWS; |
2149 | GC_NOTRIGGER; |
2150 | } |
2151 | CONTRACTL_END; |
2152 | |
2153 | unsigned currArgIndex = 0; |
2154 | |
2155 | |
2156 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
2157 | { |
2158 | // |
2159 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
2160 | // |
2161 | currArgIndex++; |
2162 | } |
2163 | |
2164 | // |
2165 | // Spin thru each argument now |
2166 | // |
2167 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
2168 | { |
2169 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
2170 | BOOL isByRef = (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF); |
2171 | BOOL fNeedBoxOrUnbox; |
2172 | fNeedBoxOrUnbox = pFEArgInfo[currArgIndex].fNeedBoxOrUnbox; |
2173 | |
2174 | |
2175 | LOG((LF_CORDB, LL_EVERYTHING, "CATB: currArgIndex=%d\n" , |
2176 | currArgIndex)); |
2177 | LOG((LF_CORDB, LL_EVERYTHING, |
2178 | "\t: argSigType=0x%x, byrefArgSigType=0x%0x, inType=0x%0x\n" , |
2179 | pFEArgInfo[currArgIndex].argSigType, |
2180 | pFEArgInfo[currArgIndex].byrefArgSigType, |
2181 | pFEAD->argElementType)); |
2182 | |
2183 | INT64 *pDest = &(pBufferArray[currArgIndex]); |
2184 | |
2185 | switch (pFEAD->argElementType) |
2186 | { |
2187 | case ELEMENT_TYPE_I8: |
2188 | case ELEMENT_TYPE_U8: |
2189 | case ELEMENT_TYPE_R8: |
2190 | |
2191 | if (pFEAD->argAddr != NULL) |
2192 | { |
2193 | *pDest = *(INT64*)(pFEAD->argAddr); |
2194 | #ifdef _DEBUG |
2195 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2196 | { |
2197 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2198 | } |
2199 | #endif |
2200 | } |
2201 | else if (pFEAD->argIsLiteral) |
2202 | { |
2203 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(void *)); |
2204 | |
2205 | // If this is a literal arg, then we just copy the data. |
2206 | memcpy(pDest, pFEAD->argLiteralData, sizeof(INT64)); |
2207 | #ifdef _DEBUG |
2208 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2209 | { |
2210 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2211 | } |
2212 | #endif |
2213 | } |
2214 | else |
2215 | { |
2216 | |
2217 | #if !defined(_WIN64) |
2218 | // RAK_REG is the only 4 byte type, all others are 8 byte types. |
2219 | _ASSERTE(pFEAD->argHome.kind != RAK_REG); |
2220 | |
2221 | INT64 bigVal = 0; |
2222 | SIZE_T v; |
2223 | INT64 *pAddr; |
2224 | |
2225 | pAddr = (INT64*)GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
2226 | |
2227 | if (pAddr == NULL) |
2228 | { |
2229 | COMPlusThrow(kArgumentNullException); |
2230 | } |
2231 | |
2232 | *pDest = *pAddr; |
2233 | |
2234 | #else // _WIN64 |
2235 | // Both RAK_REG and RAK_FLOAT can be either 4 bytes or 8 bytes. |
2236 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) || (pFEAD->argHome.kind == RAK_FLOAT)); |
2237 | |
2238 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
2239 | *pDest = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
2240 | #endif // _WIN64 |
2241 | |
2242 | |
2243 | |
2244 | #ifdef _DEBUG |
2245 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2246 | { |
2247 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2248 | } |
2249 | #endif |
2250 | } |
2251 | break; |
2252 | |
2253 | case ELEMENT_TYPE_VALUETYPE: |
2254 | |
2255 | // |
2256 | // For value types, we dont do anything here, instead delay until GetFuncEvalArgInfo |
2257 | // |
2258 | break; |
2259 | |
2260 | case ELEMENT_TYPE_CLASS: |
2261 | case ELEMENT_TYPE_OBJECT: |
2262 | case ELEMENT_TYPE_STRING: |
2263 | case ELEMENT_TYPE_ARRAY: |
2264 | case ELEMENT_TYPE_SZARRAY: |
2265 | |
2266 | if (pFEAD->argAddr != NULL) |
2267 | { |
2268 | if (!isByRef) |
2269 | { |
2270 | if (pFEAD->argIsHandleValue) |
2271 | { |
2272 | OBJECTHANDLE oh = (OBJECTHANDLE)(pFEAD->argAddr); |
2273 | *pDest = (INT64)(size_t)oh; |
2274 | } |
2275 | else |
2276 | { |
2277 | *pDest = *((SIZE_T*)(pFEAD->argAddr)); |
2278 | } |
2279 | #ifdef _DEBUG |
2280 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2281 | { |
2282 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2283 | } |
2284 | #endif |
2285 | } |
2286 | else |
2287 | { |
2288 | if (pFEAD->argIsHandleValue) |
2289 | { |
2290 | *pDest = (INT64)(size_t)(pFEAD->argAddr); |
2291 | } |
2292 | else |
2293 | { |
2294 | *pDest = *(SIZE_T*)(pFEAD->argAddr); |
2295 | } |
2296 | #ifdef _DEBUG |
2297 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2298 | { |
2299 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2300 | } |
2301 | #endif |
2302 | } |
2303 | } |
2304 | else if (pFEAD->argIsLiteral) |
2305 | { |
2306 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(INT64)); |
2307 | |
2308 | // The called function may expect a larger/smaller value than the literal value. |
2309 | // So we convert the value to the right type. |
2310 | |
2311 | CONSISTENCY_CHECK_MSGF(((pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_CLASS) || |
2312 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_SZARRAY) || |
2313 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_ARRAY)) || |
2314 | (isByRef && ((pFEArgInfo[currArgIndex].byrefArgSigType == ELEMENT_TYPE_CLASS) || |
2315 | (pFEArgInfo[currArgIndex].byrefArgSigType == ELEMENT_TYPE_SZARRAY) || |
2316 | (pFEArgInfo[currArgIndex].byrefArgSigType == ELEMENT_TYPE_ARRAY))), |
2317 | ("argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d" , |
2318 | pFEArgInfo[currArgIndex].argSigType, |
2319 | pFEArgInfo[currArgIndex].byrefArgSigType, |
2320 | isByRef)); |
2321 | |
2322 | LOG((LF_CORDB, LL_EVERYTHING, |
2323 | "argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d\n" , |
2324 | pFEArgInfo[currArgIndex].argSigType, pFEArgInfo[currArgIndex].byrefArgSigType, isByRef)); |
2325 | |
2326 | *(SIZE_T*)pDest = *(SIZE_T*)pFEAD->argLiteralData; |
2327 | #ifdef _DEBUG |
2328 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2329 | { |
2330 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2331 | } |
2332 | #endif |
2333 | } |
2334 | else |
2335 | { |
2336 | // RAK_REG is the only valid 4 byte type on WIN32. On WIN64, RAK_REG and RAK_FLOAT |
2337 | // can both be either 4 bytes or 8 bytes; |
2338 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) |
2339 | WIN64_ONLY(|| (pFEAD->argHome.kind == RAK_FLOAT))); |
2340 | |
2341 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
2342 | |
2343 | // Simply grab the value out of the proper register. |
2344 | SIZE_T v = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
2345 | *pDest = v; |
2346 | #ifdef _DEBUG |
2347 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2348 | { |
2349 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2350 | } |
2351 | #endif |
2352 | } |
2353 | break; |
2354 | |
2355 | default: |
2356 | // 4-byte, 2-byte, or 1-byte values |
2357 | |
2358 | if (pFEAD->argAddr != NULL) |
2359 | { |
2360 | if (!isByRef) |
2361 | { |
2362 | if (pFEAD->argIsHandleValue) |
2363 | { |
2364 | OBJECTHANDLE oh = (OBJECTHANDLE)(pFEAD->argAddr); |
2365 | *pDest = (INT64)(size_t)oh; |
2366 | } |
2367 | else |
2368 | { |
2369 | GetAndSetLiteralValue(pDest, pFEArgInfo[currArgIndex].argSigType, |
2370 | pFEAD->argAddr, pFEAD->argElementType); |
2371 | } |
2372 | #ifdef _DEBUG |
2373 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2374 | { |
2375 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2376 | } |
2377 | #endif |
2378 | } |
2379 | else |
2380 | { |
2381 | if (pFEAD->argIsHandleValue) |
2382 | { |
2383 | *pDest = (INT64)(size_t)(pFEAD->argAddr); |
2384 | } |
2385 | else |
2386 | { |
2387 | // We have to make sure we only grab the correct size of memory from the source. On IA64, we |
2388 | // have to make sure we don't cause misaligned data exceptions as well. Then we put the value |
2389 | // into the pBufferArray. The reason is that we may be passing in some values by ref to a |
2390 | // function that's expecting something of a bigger size. Thus, if we don't do this, then we'll |
2391 | // be bashing memory right next to the source value as the function being called acts upon some |
2392 | // bigger value. |
2393 | GetAndSetLiteralValue(pDest, pFEArgInfo[currArgIndex].byrefArgSigType, |
2394 | pFEAD->argAddr, pFEAD->argElementType); |
2395 | } |
2396 | #ifdef _DEBUG |
2397 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2398 | { |
2399 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2400 | } |
2401 | #endif |
2402 | } |
2403 | } |
2404 | else if (pFEAD->argIsLiteral) |
2405 | { |
2406 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(INT32)); |
2407 | |
2408 | // The called function may expect a larger/smaller value than the literal value, |
2409 | // so we convert the value to the right type. |
2410 | |
2411 | CONSISTENCY_CHECK_MSGF( |
2412 | ((pFEArgInfo[currArgIndex].argSigType>=ELEMENT_TYPE_BOOLEAN) && (pFEArgInfo[currArgIndex].argSigType<=ELEMENT_TYPE_R8)) || |
2413 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_PTR) || |
2414 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_I) || |
2415 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_U) || |
2416 | (isByRef && ((pFEArgInfo[currArgIndex].byrefArgSigType>=ELEMENT_TYPE_BOOLEAN) && (pFEArgInfo[currArgIndex].byrefArgSigType<=ELEMENT_TYPE_R8))), |
2417 | ("argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d" , pFEArgInfo[currArgIndex].argSigType, pFEArgInfo[currArgIndex].byrefArgSigType, isByRef)); |
2418 | |
2419 | LOG((LF_CORDB, LL_EVERYTHING, |
2420 | "argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d\n" , |
2421 | pFEArgInfo[currArgIndex].argSigType, |
2422 | pFEArgInfo[currArgIndex].byrefArgSigType, |
2423 | isByRef)); |
2424 | |
2425 | CorElementType relevantType = (isByRef ? pFEArgInfo[currArgIndex].byrefArgSigType : pFEArgInfo[currArgIndex].argSigType); |
2426 | |
2427 | GetAndSetLiteralValue(pDest, relevantType, pFEAD->argLiteralData, pFEAD->argElementType); |
2428 | #ifdef _DEBUG |
2429 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2430 | { |
2431 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2432 | } |
2433 | #endif |
2434 | } |
2435 | else |
2436 | { |
2437 | // RAK_REG is the only valid 4 byte type on WIN32. On WIN64, RAK_REG and RAK_FLOAT |
2438 | // can both be either 4 bytes or 8 bytes; |
2439 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) |
2440 | WIN64_ONLY(|| (pFEAD->argHome.kind == RAK_FLOAT))); |
2441 | |
2442 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
2443 | |
2444 | // Simply grab the value out of the proper register. |
2445 | SIZE_T v = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
2446 | *pDest = v; |
2447 | #ifdef _DEBUG |
2448 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
2449 | { |
2450 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
2451 | } |
2452 | #endif |
2453 | } |
2454 | } |
2455 | } |
2456 | } |
2457 | |
2458 | |
2459 | /* |
2460 | * PackArgumentArray |
2461 | * |
2462 | * This routine fills a given array with the correct values for passing to a managed function. |
2463 | * It uses various component arrays that contain information to correctly create the argument array. |
2464 | * |
2465 | * Parameters: |
2466 | * pDE - pointer to the DebuggerEval object being processed. |
2467 | * argData - Array of information about the arguments. |
2468 | * pUnboxedMD - MethodDesc of the function to call, after unboxing. |
2469 | * RetValueType - Type Handle of the return value of the managed function we will call. |
2470 | * pFEArgInfo - An array of structs to hold the argument information. Must have be previously filled in. |
2471 | * pObjectRefArray - An array that contains any object refs. It was built previously. |
2472 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
2473 | * the interior of a managed object. |
2474 | * pBufferForArgsArray - An array that contains values that need writable memory space |
2475 | * for passing ByRef. |
2476 | * newObj - Pre-allocated object for a 'new' call. |
2477 | * pArguments - This array is packed from the above arrays. |
2478 | * ppRetValue - Return value buffer if fRetValueArg is TRUE |
2479 | * |
2480 | * Returns: |
2481 | * None. |
2482 | * |
2483 | */ |
2484 | void PackArgumentArray(DebuggerEval *pDE, |
2485 | DebuggerIPCE_FuncEvalArgData *argData, |
2486 | FuncEvalArgInfo *pFEArgInfo, |
2487 | MethodDesc *pUnboxedMD, |
2488 | TypeHandle RetValueType, |
2489 | OBJECTREF *pObjectRefArray, |
2490 | void **pMaybeInteriorPtrArray, |
2491 | INT64 *pBufferForArgsArray, |
2492 | ValueClassInfo ** ppProtectedValueClasses, |
2493 | OBJECTREF newObj, |
2494 | BOOL fRetValueArg, |
2495 | ARG_SLOT *pArguments, |
2496 | PVOID * ppRetValue |
2497 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
2498 | ) |
2499 | { |
2500 | WRAPPER_NO_CONTRACT; |
2501 | |
2502 | GCX_FORBID(); |
2503 | |
2504 | unsigned currArgIndex = 0; |
2505 | unsigned currArgSlot = 0; |
2506 | |
2507 | |
2508 | // |
2509 | // THIS POINTER (if any) |
2510 | // For non-static methods, or when returning a new object, |
2511 | // the first arg in the array is 'this' or the new object. |
2512 | // |
2513 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
2514 | { |
2515 | // |
2516 | // If this is a new object op, then we need to fill in the 0'th |
2517 | // arg slot with the 'this' ptr. |
2518 | // |
2519 | pArguments[0] = ObjToArgSlot(newObj); |
2520 | |
2521 | // |
2522 | // If we are invoking a function on a value class, but we have a boxed value class for 'this', |
2523 | // then go ahead and unbox it and leave a ref to the value class on the stack as 'this'. |
2524 | // |
2525 | if (pDE->m_md->GetMethodTable()->IsValueType()) |
2526 | { |
2527 | _ASSERTE(newObj->GetMethodTable()->IsValueType()); |
2528 | |
2529 | // This is one of those places we use true boxed nullables |
2530 | _ASSERTE(!Nullable::IsNullableType(pDE->m_md->GetMethodTable()) || |
2531 | newObj->GetMethodTable() == pDE->m_md->GetMethodTable()); |
2532 | void *pData = newObj->GetData(); |
2533 | pArguments[0] = PtrToArgSlot(pData); |
2534 | } |
2535 | |
2536 | // |
2537 | // Bump up the arg slot |
2538 | // |
2539 | currArgSlot++; |
2540 | } |
2541 | else if (!pDE->m_md->IsStatic()) |
2542 | { |
2543 | // |
2544 | // Place 'this' first in the array for non-static methods. |
2545 | // |
2546 | TypeHandle dummyTH; |
2547 | bool isByRef = false; |
2548 | bool fNeedBoxOrUnbox = false; |
2549 | |
2550 | // We had better have an object for a 'this' argument! |
2551 | CorElementType et = argData[0].argElementType; |
2552 | |
2553 | if (!(IsElementTypeSpecial(et) || |
2554 | et == ELEMENT_TYPE_VALUETYPE)) |
2555 | { |
2556 | COMPlusThrow(kArgumentOutOfRangeException, W("ArgumentOutOfRange_Enum" )); |
2557 | } |
2558 | |
2559 | LOG((LF_CORDB, LL_EVERYTHING, "this: currArgSlot=%d, currArgIndex=%d et=0x%x\n" , currArgSlot, currArgIndex, et)); |
2560 | |
2561 | if (pDE->m_md->GetMethodTable()->IsValueType()) |
2562 | { |
2563 | // For value classes, the 'this' parameter is always passed by reference. |
2564 | // However do not unbox if we are calling an unboxing stub. |
2565 | if (pDE->m_md == pUnboxedMD) |
2566 | { |
2567 | // pDE->m_md is expecting an unboxed this pointer. Then we will unbox it. |
2568 | isByRef = true; |
2569 | |
2570 | // Remember if we need to unbox this parameter, though. |
2571 | if ((et == ELEMENT_TYPE_CLASS) || (et == ELEMENT_TYPE_OBJECT)) |
2572 | { |
2573 | fNeedBoxOrUnbox = true; |
2574 | } |
2575 | } |
2576 | } |
2577 | else if (et == ELEMENT_TYPE_VALUETYPE) |
2578 | { |
2579 | // When the method that we invoking is defined on non value type and we receive the ValueType as input, |
2580 | // we are calling methods on System.Object. In this case, we need to box the input ValueType. |
2581 | fNeedBoxOrUnbox = true; |
2582 | } |
2583 | |
2584 | GetFuncEvalArgValue(pDE, |
2585 | &argData[currArgIndex], |
2586 | isByRef, |
2587 | fNeedBoxOrUnbox, |
2588 | dummyTH, |
2589 | ELEMENT_TYPE_CLASS, |
2590 | pDE->m_md->GetMethodTable(), |
2591 | &(pArguments[currArgSlot]), |
2592 | &(pMaybeInteriorPtrArray[currArgIndex]), |
2593 | &(pObjectRefArray[currArgIndex]), |
2594 | &(pBufferForArgsArray[currArgIndex]), |
2595 | NULL, |
2596 | ELEMENT_TYPE_OBJECT |
2597 | DEBUG_ARG((currArgIndex < MAX_DATA_LOCATIONS_TRACKED) ? pDataLocationArray[currArgIndex] |
2598 | : DL_All) |
2599 | ); |
2600 | |
2601 | LOG((LF_CORDB, LL_EVERYTHING, "this = 0x%08x\n" , ArgSlotToPtr(pArguments[currArgSlot]))); |
2602 | |
2603 | // We need to check 'this' for a null ref ourselves... NOTE: only do this if we put an object reference on |
2604 | // the stack. If we put a byref for a value type, then we don't need to do this! |
2605 | if (!isByRef) |
2606 | { |
2607 | // The this pointer is not a unboxed value type. |
2608 | |
2609 | ARG_SLOT oi1 = pArguments[currArgSlot]; |
2610 | OBJECTREF o1 = ArgSlotToObj(oi1); |
2611 | |
2612 | if (FAILED(ValidateObject(OBJECTREFToObject(o1)))) |
2613 | { |
2614 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
2615 | } |
2616 | |
2617 | if (OBJECTREFToObject(o1) == NULL) |
2618 | { |
2619 | COMPlusThrow(kNullReferenceException, W("NullReference_This" )); |
2620 | } |
2621 | |
2622 | // For interface method, we have already done the check early on. |
2623 | if (!pDE->m_md->IsInterface()) |
2624 | { |
2625 | // We also need to make sure that the method that we are invoking is either defined on this object or the direct/indirect |
2626 | // base objects. |
2627 | Object *objPtr = OBJECTREFToObject(o1); |
2628 | MethodTable *pMT = objPtr->GetMethodTable(); |
2629 | // <TODO> Do this check in the following cases as well... </TODO> |
2630 | if (!pMT->IsArray() |
2631 | && !pDE->m_md->IsSharedByGenericInstantiations()) |
2632 | { |
2633 | TypeHandle thFrom = TypeHandle(pMT); |
2634 | TypeHandle thTarget = TypeHandle(pDE->m_md->GetMethodTable()); |
2635 | //<TODO> What about MaybeCast?</TODO> |
2636 | if (thFrom.CanCastToNoGC(thTarget) == TypeHandle::CannotCast) |
2637 | { |
2638 | COMPlusThrow(kArgumentException, W("Argument_CORDBBadMethod" )); |
2639 | } |
2640 | } |
2641 | } |
2642 | } |
2643 | |
2644 | // |
2645 | // Increment up both arrays. |
2646 | // |
2647 | currArgSlot++; |
2648 | currArgIndex++; |
2649 | } |
2650 | |
2651 | // Special handling for functions that return value classes. |
2652 | if (fRetValueArg) |
2653 | { |
2654 | LOG((LF_CORDB, LL_EVERYTHING, "retBuff: currArgSlot=%d, currArgIndex=%d\n" , currArgSlot, currArgIndex)); |
2655 | |
2656 | // |
2657 | // Allocate buffer for return value and GC protect it in case it contains object references |
2658 | // |
2659 | unsigned size = RetValueType.GetMethodTable()->GetNumInstanceFieldBytes(); |
2660 | |
2661 | #ifdef FEATURE_HFA |
2662 | // The buffer for HFAs has to be always ENREGISTERED_RETURNTYPE_MAXSIZE |
2663 | size = max(size, ENREGISTERED_RETURNTYPE_MAXSIZE); |
2664 | #endif |
2665 | |
2666 | BYTE * pTemp = new (interopsafe) BYTE[ALIGN_UP(sizeof(ValueClassInfo), 8) + size]; |
2667 | |
2668 | ValueClassInfo * pValueClassInfo = (ValueClassInfo *)pTemp; |
2669 | LPVOID pData = pTemp + ALIGN_UP(sizeof(ValueClassInfo), 8); |
2670 | |
2671 | memset(pData, 0, size); |
2672 | |
2673 | pValueClassInfo->pData = pData; |
2674 | pValueClassInfo->pMT = RetValueType.GetMethodTable(); |
2675 | |
2676 | pValueClassInfo->pNext = *ppProtectedValueClasses; |
2677 | *ppProtectedValueClasses = pValueClassInfo; |
2678 | |
2679 | pArguments[currArgSlot++] = PtrToArgSlot(pData); |
2680 | *ppRetValue = pData; |
2681 | } |
2682 | |
2683 | // REAL ARGUMENTS (if any) |
2684 | // Now do the remaining args |
2685 | for ( ; currArgIndex < pDE->m_argCount; currArgSlot++, currArgIndex++) |
2686 | { |
2687 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
2688 | |
2689 | LOG((LF_CORDB, LL_EVERYTHING, "currArgSlot=%d, currArgIndex=%d\n" , |
2690 | currArgSlot, |
2691 | currArgIndex)); |
2692 | LOG((LF_CORDB, LL_EVERYTHING, |
2693 | "\t: argSigType=0x%x, byrefArgSigType=0x%0x, inType=0x%0x\n" , |
2694 | pFEArgInfo[currArgIndex].argSigType, |
2695 | pFEArgInfo[currArgIndex].byrefArgSigType, |
2696 | pFEAD->argElementType)); |
2697 | |
2698 | |
2699 | GetFuncEvalArgValue(pDE, |
2700 | pFEAD, |
2701 | pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF, |
2702 | pFEArgInfo[currArgIndex].fNeedBoxOrUnbox, |
2703 | pFEArgInfo[currArgIndex].sigTypeHandle, |
2704 | pFEArgInfo[currArgIndex].byrefArgSigType, |
2705 | pFEArgInfo[currArgIndex].byrefArgTypeHandle, |
2706 | &(pArguments[currArgSlot]), |
2707 | &(pMaybeInteriorPtrArray[currArgIndex]), |
2708 | &(pObjectRefArray[currArgIndex]), |
2709 | &(pBufferForArgsArray[currArgIndex]), |
2710 | ppProtectedValueClasses, |
2711 | pFEArgInfo[currArgIndex].argSigType |
2712 | DEBUG_ARG((currArgIndex < MAX_DATA_LOCATIONS_TRACKED) ? pDataLocationArray[currArgIndex] |
2713 | : DL_All) |
2714 | ); |
2715 | } |
2716 | } |
2717 | |
2718 | /* |
2719 | * UnpackFuncEvalResult |
2720 | * |
2721 | * This routine takes the resulting object of a func-eval, and does any copying, boxing, unboxing, necessary. |
2722 | * |
2723 | * Parameters: |
2724 | * pDE - pointer to the DebuggerEval object being processed. |
2725 | * newObj - Pre-allocated object for NEW_OBJ func-evals. |
2726 | * retObject - Pre-allocated object to be filled in with the info in pRetBuff. |
2727 | * RetValueType - The return type of the function called. |
2728 | * pRetBuff - The raw bytes returned by the func-eval call when there is a return buffer parameter. |
2729 | * |
2730 | * |
2731 | * Returns: |
2732 | * None. |
2733 | * |
2734 | */ |
2735 | void UnpackFuncEvalResult(DebuggerEval *pDE, |
2736 | OBJECTREF newObj, |
2737 | OBJECTREF retObject, |
2738 | TypeHandle RetValueType, |
2739 | void *pRetBuff |
2740 | ) |
2741 | { |
2742 | CONTRACTL |
2743 | { |
2744 | WRAPPER(THROWS); |
2745 | GC_NOTRIGGER; |
2746 | } |
2747 | CONTRACTL_END; |
2748 | |
2749 | |
2750 | // Ah, but if this was a new object op, then the result is really |
2751 | // the object we allocated above... |
2752 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
2753 | { |
2754 | // We purposely do not morph nullables to be boxed Ts here because debugger EE's otherwise |
2755 | // have no way of creating true nullables that they need for their own purposes. |
2756 | pDE->m_result[0] = ObjToArgSlot(newObj); |
2757 | pDE->m_retValueBoxing = Debugger::AllBoxed; |
2758 | } |
2759 | else if (!RetValueType.IsNull()) |
2760 | { |
2761 | LOG((LF_CORDB, LL_EVERYTHING, "FuncEval call is saving a boxed VC return value.\n" )); |
2762 | |
2763 | // |
2764 | // We pre-created it above |
2765 | // |
2766 | _ASSERTE(retObject != NULL); |
2767 | |
2768 | // This is one of those places we use true boxed nullables |
2769 | _ASSERTE(!Nullable::IsNullableType(RetValueType)|| |
2770 | retObject->GetMethodTable() == RetValueType.GetMethodTable()); |
2771 | |
2772 | if (pRetBuff != NULL) |
2773 | { |
2774 | // box the object |
2775 | CopyValueClass(retObject->GetData(), |
2776 | pRetBuff, |
2777 | RetValueType.GetMethodTable(), |
2778 | retObject->GetAppDomain()); |
2779 | } |
2780 | else |
2781 | { |
2782 | // box the primitive returned, retObject is a true nullable for nullabes, It will be Normalized later |
2783 | CopyValueClass(retObject->GetData(), |
2784 | pDE->m_result, |
2785 | RetValueType.GetMethodTable(), |
2786 | retObject->GetAppDomain()); |
2787 | } |
2788 | |
2789 | pDE->m_result[0] = ObjToArgSlot(retObject); |
2790 | pDE->m_retValueBoxing = Debugger::AllBoxed; |
2791 | } |
2792 | else |
2793 | { |
2794 | // |
2795 | // Other FuncEvals return primitives as unboxed. |
2796 | // |
2797 | pDE->m_retValueBoxing = Debugger::OnlyPrimitivesUnboxed; |
2798 | } |
2799 | |
2800 | LOG((LF_CORDB, LL_INFO10000, "FuncEval call has saved the return value.\n" )); |
2801 | // No exception, so it worked as far as we're concerned. |
2802 | pDE->m_successful = true; |
2803 | |
2804 | // If the result is an object, then place the object |
2805 | // reference into a strong handle and place the handle into the |
2806 | // pDE to protect the result from a collection. |
2807 | CorElementType retClassET = pDE->m_resultType.GetSignatureCorElementType(); |
2808 | |
2809 | if ((pDE->m_retValueBoxing == Debugger::AllBoxed) || |
2810 | !RetValueType.IsNull() || |
2811 | IsElementTypeSpecial(retClassET)) |
2812 | { |
2813 | LOG((LF_CORDB, LL_EVERYTHING, "Creating strong handle for boxed DoNormalFuncEval result.\n" )); |
2814 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(ArgSlotToObj(pDE->m_result[0])); |
2815 | pDE->m_result[0] = (INT64)(LONG_PTR)oh; |
2816 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
2817 | } |
2818 | } |
2819 | |
2820 | /* |
2821 | * UnpackFuncEvalArguments |
2822 | * |
2823 | * This routine takes the resulting object of a func-eval, and does any copying, boxing, unboxing, necessary. |
2824 | * |
2825 | * Parameters: |
2826 | * pDE - pointer to the DebuggerEval object being processed. |
2827 | * newObj - Pre-allocated object for NEW_OBJ func-evals. |
2828 | * retObject - Pre-allocated object to be filled in with the info in pSource. |
2829 | * RetValueType - The return type of the function called. |
2830 | * pSource - The raw bytes returned by the func-eval call when there is a hidden parameter. |
2831 | * |
2832 | * |
2833 | * Returns: |
2834 | * None. |
2835 | * |
2836 | */ |
2837 | void UnpackFuncEvalArguments(DebuggerEval *pDE, |
2838 | DebuggerIPCE_FuncEvalArgData *argData, |
2839 | MetaSig mSig, |
2840 | BOOL staticMethod, |
2841 | OBJECTREF *pObjectRefArray, |
2842 | void **pMaybeInteriorPtrArray, |
2843 | void **pByRefMaybeInteriorPtrArray, |
2844 | INT64 *pBufferForArgsArray |
2845 | ) |
2846 | { |
2847 | WRAPPER_NO_CONTRACT; |
2848 | |
2849 | // Update any enregistered byrefs with their new values from the |
2850 | // proper byref temporary array. |
2851 | if (pDE->m_argCount > 0) |
2852 | { |
2853 | mSig.Reset(); |
2854 | |
2855 | unsigned currArgIndex = 0; |
2856 | |
2857 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
2858 | { |
2859 | // |
2860 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
2861 | // |
2862 | currArgIndex++; |
2863 | } |
2864 | |
2865 | for (; currArgIndex < pDE->m_argCount; currArgIndex++) |
2866 | { |
2867 | CorElementType argSigType = mSig.NextArgNormalized(); |
2868 | |
2869 | LOG((LF_CORDB, LL_EVERYTHING, "currArgIndex=%d argSigType=0x%x\n" , currArgIndex, argSigType)); |
2870 | |
2871 | _ASSERTE(argSigType != ELEMENT_TYPE_END); |
2872 | |
2873 | if (argSigType == ELEMENT_TYPE_BYREF) |
2874 | { |
2875 | TypeHandle byrefClass = TypeHandle(); |
2876 | CorElementType byrefArgSigType = mSig.GetByRefType(&byrefClass); |
2877 | |
2878 | // If these are the true boxed nullables we created in BoxFuncEvalArguments, convert them back |
2879 | pObjectRefArray[currArgIndex] = Nullable::NormalizeBox(pObjectRefArray[currArgIndex]); |
2880 | |
2881 | LOG((LF_CORDB, LL_EVERYTHING, "DoNormalFuncEval: Updating enregistered byref...\n" )); |
2882 | SetFuncEvalByRefArgValue(pDE, |
2883 | &argData[currArgIndex], |
2884 | byrefArgSigType, |
2885 | pBufferForArgsArray[currArgIndex], |
2886 | pMaybeInteriorPtrArray[currArgIndex], |
2887 | pByRefMaybeInteriorPtrArray[currArgIndex], |
2888 | pObjectRefArray[currArgIndex] |
2889 | ); |
2890 | } |
2891 | } |
2892 | } |
2893 | } |
2894 | |
2895 | |
2896 | /* |
2897 | * FuncEvalWrapper |
2898 | * |
2899 | * Helper function for func-eval. We have to split it out so that we can put a __try / __finally in to |
2900 | * notify on a Catch-Handler found. |
2901 | * |
2902 | * Parameters: |
2903 | * pDE - pointer to the DebuggerEval object being processed. |
2904 | * pArguments - created stack to pass for the call. |
2905 | * pCatcherStackAddr - stack address to report as the Catch Handler Found location. |
2906 | * |
2907 | * Returns: |
2908 | * None. |
2909 | * |
2910 | */ |
2911 | void FuncEvalWrapper(MethodDescCallSite* pMDCS, DebuggerEval *pDE, const ARG_SLOT *pArguments, BYTE *pCatcherStackAddr) |
2912 | { |
2913 | struct Param : NotifyOfCHFFilterWrapperParam |
2914 | { |
2915 | MethodDescCallSite* pMDCS; |
2916 | DebuggerEval *pDE; |
2917 | const ARG_SLOT *pArguments; |
2918 | }; |
2919 | |
2920 | Param param; |
2921 | param.pFrame = pCatcherStackAddr; // Inherited from NotifyOfCHFFilterWrapperParam |
2922 | param.pMDCS = pMDCS; |
2923 | param.pDE = pDE; |
2924 | param.pArguments = pArguments; |
2925 | |
2926 | PAL_TRY(Param *, pParam, ¶m) |
2927 | { |
2928 | pParam->pMDCS->CallWithValueTypes_RetArgSlot(pParam->pArguments, pParam->pDE->m_result, sizeof(pParam->pDE->m_result)); |
2929 | } |
2930 | PAL_EXCEPT_FILTER(NotifyOfCHFFilterWrapper) |
2931 | { |
2932 | // Should never reach here b/c handler should always continue search. |
2933 | _ASSERTE(false); |
2934 | } |
2935 | PAL_ENDTRY |
2936 | } |
2937 | |
2938 | /* |
2939 | * RecordFuncEvalException |
2940 | * |
2941 | * Helper function records the details of an exception that occurred during a FuncEval |
2942 | * Note that this should be called from within the target domain of the FuncEval. |
2943 | * |
2944 | * Parameters: |
2945 | * pDE - pointer to the DebuggerEval object being processed |
2946 | * ppException - the Exception object that was thrown |
2947 | * |
2948 | * Returns: |
2949 | * None. |
2950 | */ |
2951 | static void RecordFuncEvalException(DebuggerEval *pDE, |
2952 | OBJECTREF ppException ) |
2953 | { |
2954 | CONTRACTL |
2955 | { |
2956 | THROWS; // CreateStrongHandle could throw OOM |
2957 | GC_NOTRIGGER; |
2958 | MODE_COOPERATIVE; |
2959 | } |
2960 | CONTRACTL_END; |
2961 | |
2962 | // We got an exception. Make the exception into our result. |
2963 | pDE->m_successful = false; |
2964 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - Exception during funceval.\n" )); |
2965 | |
2966 | // |
2967 | // Special handling for thread abort exceptions. We need to explicitly reset the |
2968 | // abort request on the EE thread, then make sure to place this thread on a thunk |
2969 | // that will re-raise the exception when we continue the process. Note: we still |
2970 | // pass this thread abort exception up as the result of the eval. |
2971 | // |
2972 | if (IsExceptionOfType(kThreadAbortException, &ppException)) |
2973 | { |
2974 | if (pDE->m_aborting != DebuggerEval::FE_ABORT_NONE) |
2975 | { |
2976 | // |
2977 | // Reset the abort request. |
2978 | // |
2979 | pDE->m_thread->UserResetAbort(Thread::TAR_FuncEval); |
2980 | |
2981 | // |
2982 | // This is the abort we sent down. |
2983 | // |
2984 | memset(pDE->m_result, 0, sizeof(pDE->m_result)); |
2985 | pDE->m_resultType = TypeHandle(); |
2986 | pDE->m_aborted = true; |
2987 | pDE->m_retValueBoxing = Debugger::NoValueTypeBoxing; |
2988 | |
2989 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - funceval abort exception.\n" )); |
2990 | } |
2991 | else |
2992 | { |
2993 | // |
2994 | // This must have come from somewhere else, remember that we need to |
2995 | // rethrow this. |
2996 | // |
2997 | pDE->m_rethrowAbortException = true; |
2998 | |
2999 | // |
3000 | // The result is the exception object. |
3001 | // |
3002 | pDE->m_result[0] = ObjToArgSlot(ppException); |
3003 | |
3004 | pDE->m_resultType = ppException->GetTypeHandle(); |
3005 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(ArgSlotToObj(pDE->m_result[0])); |
3006 | pDE->m_result[0] = (ARG_SLOT)PTR_TO_CORDB_ADDRESS(oh); |
3007 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
3008 | pDE->m_retValueBoxing = Debugger::NoValueTypeBoxing; |
3009 | |
3010 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - Non-FE abort thread abort..\n" )); |
3011 | } |
3012 | } |
3013 | else |
3014 | { |
3015 | // |
3016 | // The result is the exception object. |
3017 | // |
3018 | pDE->m_result[0] = ObjToArgSlot(ppException); |
3019 | |
3020 | pDE->m_resultType = ppException->GetTypeHandle(); |
3021 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(ArgSlotToObj(pDE->m_result[0])); |
3022 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
3023 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
3024 | |
3025 | pDE->m_retValueBoxing = Debugger::NoValueTypeBoxing; |
3026 | |
3027 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - Exception for the user.\n" )); |
3028 | } |
3029 | } |
3030 | |
3031 | |
3032 | /* |
3033 | * DoNormalFuncEval |
3034 | * |
3035 | * Does the main body of work (steps 1c onward) for the normal func-eval algorithm detailed at the |
3036 | * top of this file. The args have already been GC protected and we've transitioned into the appropriate |
3037 | * domain (steps 1a & 1b). This has to be a seperate function from GCProtectArgsAndDoNormalFuncEval |
3038 | * because otherwise we can't reliably find the right GCFrames to pop when unwinding the stack due to |
3039 | * an exception on 64-bit platforms (we have some GCFrames outside of the TRY, and some inside, |
3040 | * and they won't necesarily be layed out sequentially on the stack if they are all in the same function). |
3041 | * |
3042 | * Parameters: |
3043 | * pDE - pointer to the DebuggerEval object being processed. |
3044 | * pCatcherStackAddr - stack address to report as the Catch Handler Found location. |
3045 | * pObjectRefArray - An array to hold object ref args. This array is protected from GC's. |
3046 | * pMaybeInteriorPtrArray - An array to hold values that may be pointers into a managed object. |
3047 | * This array is protected from GCs. |
3048 | * pByRefMaybeInteriorPtrArray - An array to hold values that may be pointers into a managed |
3049 | * object. This array is protected from GCs. This array protects the address of the arguments |
3050 | * while the pMaybeInteriorPtrArray protects the value of the arguments. We need to do this |
3051 | * because of by ref arguments. |
3052 | * pBufferForArgsArray - a buffer of temporary scratch space for things that do not need to be |
3053 | * protected, or are protected for free (e.g. Handles). |
3054 | * pDataLocationArray - an array of tracking data for debug sanity checks |
3055 | * |
3056 | * Returns: |
3057 | * None. |
3058 | */ |
3059 | static void DoNormalFuncEval( DebuggerEval *pDE, |
3060 | BYTE *pCatcherStackAddr, |
3061 | OBJECTREF *pObjectRefArray, |
3062 | void **pMaybeInteriorPtrArray, |
3063 | void **pByRefMaybeInteriorPtrArray, |
3064 | INT64 *pBufferForArgsArray, |
3065 | ValueClassInfo ** ppProtectedValueClasses |
3066 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
3067 | ) |
3068 | { |
3069 | CONTRACTL |
3070 | { |
3071 | THROWS; |
3072 | GC_TRIGGERS; |
3073 | MODE_COOPERATIVE; |
3074 | } |
3075 | CONTRACTL_END; |
3076 | |
3077 | // |
3078 | // Now that all the args are protected, we can go back and deal with generic args and resolving |
3079 | // all their information. |
3080 | // |
3081 | ResolveFuncEvalGenericArgInfo(pDE); |
3082 | |
3083 | // |
3084 | // Grab the signature of the method we're working on and do some error checking. |
3085 | // Note that if this instantiated generic code, then this will |
3086 | // correctly give as an instantiated view of the signature that we can iterate without |
3087 | // worrying about generic items in the signature. |
3088 | // |
3089 | MetaSig mSig(pDE->m_md); |
3090 | |
3091 | BYTE callingconvention = mSig.GetCallingConvention(); |
3092 | if (!isCallConv(callingconvention, IMAGE_CEE_CS_CALLCONV_DEFAULT)) |
3093 | { |
3094 | // We don't support calling vararg! |
3095 | COMPlusThrow(kArgumentException, W("Argument_CORDBBadVarArgCallConv" )); |
3096 | } |
3097 | |
3098 | // |
3099 | // We'll need to know if this is a static method or not. |
3100 | // |
3101 | BOOL staticMethod = pDE->m_md->IsStatic(); |
3102 | |
3103 | _ASSERTE((pDE->m_evalType == DB_IPCE_FET_NORMAL) || !staticMethod); |
3104 | |
3105 | // |
3106 | // Do Step 1c - Pre-allocate space for new objects. |
3107 | // |
3108 | OBJECTREF newObj = NULL; |
3109 | GCPROTECT_BEGIN(newObj); |
3110 | |
3111 | SIZE_T allocArgCnt = 0; |
3112 | |
3113 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
3114 | { |
3115 | ValidateFuncEvalReturnType(DB_IPCE_FET_NEW_OBJECT, pDE->m_resultType.GetMethodTable()); |
3116 | pDE->m_resultType.GetMethodTable()->EnsureInstanceActive(); |
3117 | newObj = AllocateObject(pDE->m_resultType.GetMethodTable()); |
3118 | |
3119 | // |
3120 | // Note: we account for an extra argument in the count passed |
3121 | // in. We use this to increase the space allocated for args, |
3122 | // and we use it to control the number of args copied into |
3123 | // those arrays below. Note: m_argCount already includes space |
3124 | // for this. |
3125 | // |
3126 | allocArgCnt = pDE->m_argCount + 1; |
3127 | } |
3128 | else |
3129 | { |
3130 | allocArgCnt = pDE->m_argCount; |
3131 | } |
3132 | |
3133 | // |
3134 | // Validate the argument count with mSig. |
3135 | // |
3136 | if (allocArgCnt != (mSig.NumFixedArgs() + (staticMethod ? 0 : 1))) |
3137 | { |
3138 | COMPlusThrow(kTargetParameterCountException, W("Arg_ParmCnt" )); |
3139 | } |
3140 | |
3141 | // |
3142 | // Do Step 1d - Gather information about the method that will be called. |
3143 | // |
3144 | // An array to hold information about the parameters to be passed. This is |
3145 | // all the information we need to gather before entering the GCX_FORBID area. |
3146 | // |
3147 | DebuggerIPCE_FuncEvalArgData *argData = pDE->GetArgData(); |
3148 | |
3149 | MethodDesc *pUnboxedMD = pDE->m_md; |
3150 | BOOL fHasRetBuffArg; |
3151 | BOOL fHasNonStdByValReturn; |
3152 | TypeHandle RetValueType; |
3153 | |
3154 | BoxFuncEvalThisParameter(pDE, |
3155 | argData, |
3156 | pMaybeInteriorPtrArray, |
3157 | pObjectRefArray |
3158 | DEBUG_ARG(pDataLocationArray) |
3159 | ); |
3160 | |
3161 | GatherFuncEvalMethodInfo(pDE, |
3162 | mSig, |
3163 | argData, |
3164 | &pUnboxedMD, |
3165 | pObjectRefArray, |
3166 | pBufferForArgsArray, |
3167 | &fHasRetBuffArg, |
3168 | &fHasNonStdByValReturn, |
3169 | &RetValueType |
3170 | DEBUG_ARG(pDataLocationArray) |
3171 | ); |
3172 | |
3173 | // |
3174 | // Do Step 1e - Gather info from runtime about args (may trigger a GC). |
3175 | // |
3176 | SIZE_T cbAllocSize; |
3177 | if (!(ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(FuncEvalArgInfo), cbAllocSize)) || |
3178 | (cbAllocSize != (size_t)(cbAllocSize))) |
3179 | { |
3180 | ThrowHR(COR_E_OVERFLOW); |
3181 | } |
3182 | FuncEvalArgInfo * pFEArgInfo = (FuncEvalArgInfo *)_alloca(cbAllocSize); |
3183 | memset(pFEArgInfo, 0, cbAllocSize); |
3184 | |
3185 | GatherFuncEvalArgInfo(pDE, mSig, argData, pFEArgInfo); |
3186 | |
3187 | // |
3188 | // Do Step 1f - Box or unbox arguments one at a time, placing newly boxed items into |
3189 | // pObjectRefArray immediately after creating them. |
3190 | // |
3191 | BoxFuncEvalArguments(pDE, |
3192 | argData, |
3193 | pFEArgInfo, |
3194 | pMaybeInteriorPtrArray, |
3195 | pObjectRefArray |
3196 | DEBUG_ARG(pDataLocationArray) |
3197 | ); |
3198 | |
3199 | #ifdef _DEBUG |
3200 | if (!RetValueType.IsNull()) |
3201 | { |
3202 | _ASSERTE(RetValueType.IsValueType()); |
3203 | } |
3204 | #endif |
3205 | |
3206 | // |
3207 | // Do Step 1g - Pre-allocate any return value object. |
3208 | // |
3209 | OBJECTREF retObject = NULL; |
3210 | GCPROTECT_BEGIN(retObject); |
3211 | |
3212 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && !RetValueType.IsNull()) |
3213 | { |
3214 | ValidateFuncEvalReturnType(pDE->m_evalType, RetValueType.GetMethodTable()); |
3215 | RetValueType.GetMethodTable()->EnsureInstanceActive(); |
3216 | retObject = AllocateObject(RetValueType.GetMethodTable()); |
3217 | } |
3218 | |
3219 | // |
3220 | // Do Step 1h - Copy into scratch buffer all enregistered arguments, and |
3221 | // ByRef literals. |
3222 | // |
3223 | CopyArgsToBuffer(pDE, |
3224 | argData, |
3225 | pFEArgInfo, |
3226 | pBufferForArgsArray |
3227 | DEBUG_ARG(pDataLocationArray) |
3228 | ); |
3229 | |
3230 | // |
3231 | // We presume that the function has a return buffer. This assumption gets squeezed out |
3232 | // when we pack the argument array. |
3233 | // |
3234 | allocArgCnt++; |
3235 | |
3236 | LOG((LF_CORDB, LL_EVERYTHING, |
3237 | "Func eval for %s::%s: allocArgCnt=%d\n" , |
3238 | pDE->m_md->m_pszDebugClassName, |
3239 | pDE->m_md->m_pszDebugMethodName, |
3240 | allocArgCnt)); |
3241 | |
3242 | MethodDescCallSite funcToEval(pDE->m_md, pDE->m_targetCodeAddr); |
3243 | |
3244 | // |
3245 | // Do Step 1i - Create and pack argument array for managed function call. |
3246 | // |
3247 | // Allocate space for argument stack |
3248 | // |
3249 | if ((!ClrSafeInt<SIZE_T>::multiply(allocArgCnt, sizeof(ARG_SLOT), cbAllocSize)) || |
3250 | (cbAllocSize != (size_t)(cbAllocSize))) |
3251 | { |
3252 | ThrowHR(COR_E_OVERFLOW); |
3253 | } |
3254 | ARG_SLOT * pArguments = (ARG_SLOT *)_alloca(cbAllocSize); |
3255 | memset(pArguments, 0, cbAllocSize); |
3256 | |
3257 | LPVOID pRetBuff = NULL; |
3258 | |
3259 | PackArgumentArray(pDE, |
3260 | argData, |
3261 | pFEArgInfo, |
3262 | pUnboxedMD, |
3263 | RetValueType, |
3264 | pObjectRefArray, |
3265 | pMaybeInteriorPtrArray, |
3266 | pBufferForArgsArray, |
3267 | ppProtectedValueClasses, |
3268 | newObj, |
3269 | #ifdef FEATURE_HFA |
3270 | fHasRetBuffArg || fHasNonStdByValReturn, |
3271 | #else |
3272 | fHasRetBuffArg, |
3273 | #endif |
3274 | pArguments, |
3275 | &pRetBuff |
3276 | DEBUG_ARG(pDataLocationArray) |
3277 | ); |
3278 | |
3279 | // |
3280 | // |
3281 | // Do Step 2 - Make the call! |
3282 | // |
3283 | // |
3284 | FuncEvalWrapper(&funcToEval, pDE, pArguments, pCatcherStackAddr); |
3285 | { |
3286 | |
3287 | // We have now entered the zone where taking a GC is fatal until we get the |
3288 | // return value all fixed up. |
3289 | // |
3290 | GCX_FORBID(); |
3291 | |
3292 | |
3293 | // |
3294 | // |
3295 | // Do Step 3 - Unpack results and update ByRef arguments. |
3296 | // |
3297 | // |
3298 | // |
3299 | LOG((LF_CORDB, LL_EVERYTHING, "FuncEval call has returned\n" )); |
3300 | |
3301 | |
3302 | // GC still can't happen until we get our return value out half way through the unpack function |
3303 | |
3304 | UnpackFuncEvalResult(pDE, |
3305 | newObj, |
3306 | retObject, |
3307 | RetValueType, |
3308 | pRetBuff |
3309 | ); |
3310 | } |
3311 | |
3312 | UnpackFuncEvalArguments(pDE, |
3313 | argData, |
3314 | mSig, |
3315 | staticMethod, |
3316 | pObjectRefArray, |
3317 | pMaybeInteriorPtrArray, |
3318 | pByRefMaybeInteriorPtrArray, |
3319 | pBufferForArgsArray |
3320 | ); |
3321 | |
3322 | GCPROTECT_END(); // retObject |
3323 | GCPROTECT_END(); // newObj |
3324 | } |
3325 | |
3326 | /* |
3327 | * GCProtectArgsAndDoNormalFuncEval |
3328 | * |
3329 | * This routine is the primary entrypoint for normal func-evals. It implements the algorithm |
3330 | * described at the top of this file, doing steps 1a and 1b itself, then calling DoNormalFuncEval |
3331 | * to do the rest. |
3332 | * |
3333 | * Parameters: |
3334 | * pDE - pointer to the DebuggerEval object being processed. |
3335 | * pCatcherStackAddr - stack address to report as the Catch Handler Found location. |
3336 | * |
3337 | * Returns: |
3338 | * None. |
3339 | * |
3340 | */ |
3341 | static void GCProtectArgsAndDoNormalFuncEval(DebuggerEval *pDE, |
3342 | BYTE *pCatcherStackAddr ) |
3343 | { |
3344 | CONTRACTL |
3345 | { |
3346 | THROWS; |
3347 | GC_TRIGGERS; |
3348 | MODE_COOPERATIVE; |
3349 | } |
3350 | CONTRACTL_END; |
3351 | |
3352 | |
3353 | INDEBUG(DataLocation pDataLocationArray[MAX_DATA_LOCATIONS_TRACKED]); |
3354 | |
3355 | // |
3356 | // An array to hold object ref args. This array is protected from GC's. |
3357 | // |
3358 | SIZE_T cbAllocSize; |
3359 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(OBJECTREF), cbAllocSize)) || |
3360 | (cbAllocSize != (size_t)(cbAllocSize))) |
3361 | { |
3362 | ThrowHR(COR_E_OVERFLOW); |
3363 | } |
3364 | OBJECTREF * pObjectRefArray = (OBJECTREF*)_alloca(cbAllocSize); |
3365 | memset(pObjectRefArray, 0, cbAllocSize); |
3366 | GCPROTECT_ARRAY_BEGIN(*pObjectRefArray, pDE->m_argCount); |
3367 | |
3368 | // |
3369 | // An array to hold values that may be pointers into a managed object. This array |
3370 | // is protected from GCs. |
3371 | // |
3372 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(void**), cbAllocSize)) || |
3373 | (cbAllocSize != (size_t)(cbAllocSize))) |
3374 | { |
3375 | ThrowHR(COR_E_OVERFLOW); |
3376 | } |
3377 | void ** pMaybeInteriorPtrArray = (void **)_alloca(cbAllocSize); |
3378 | memset(pMaybeInteriorPtrArray, 0, cbAllocSize); |
3379 | GCPROTECT_BEGININTERIOR_ARRAY(*pMaybeInteriorPtrArray, (UINT)(cbAllocSize/sizeof(OBJECTREF))); |
3380 | |
3381 | // |
3382 | // An array to hold values that may be pointers into a managed object. This array |
3383 | // is protected from GCs. This array protects the address of the arguments while the |
3384 | // pMaybeInteriorPtrArray protects the value of the arguments. We need to do this because |
3385 | // of by ref arguments. |
3386 | // |
3387 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(void**), cbAllocSize)) || |
3388 | (cbAllocSize != (size_t)(cbAllocSize))) |
3389 | { |
3390 | ThrowHR(COR_E_OVERFLOW); |
3391 | } |
3392 | void ** pByRefMaybeInteriorPtrArray = (void **)_alloca(cbAllocSize); |
3393 | memset(pByRefMaybeInteriorPtrArray, 0, cbAllocSize); |
3394 | GCPROTECT_BEGININTERIOR_ARRAY(*pByRefMaybeInteriorPtrArray, (UINT)(cbAllocSize/sizeof(OBJECTREF))); |
3395 | |
3396 | // |
3397 | // A buffer of temporary scratch space for things that do not need to be protected, or |
3398 | // are protected for free (e.g. Handles). |
3399 | // |
3400 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(INT64), cbAllocSize)) || |
3401 | (cbAllocSize != (size_t)(cbAllocSize))) |
3402 | { |
3403 | ThrowHR(COR_E_OVERFLOW); |
3404 | } |
3405 | INT64 *pBufferForArgsArray = (INT64*)_alloca(cbAllocSize); |
3406 | memset(pBufferForArgsArray, 0, cbAllocSize); |
3407 | |
3408 | FrameWithCookie<ProtectValueClassFrame> protectValueClassFrame; |
3409 | |
3410 | // |
3411 | // Initialize our tracking array |
3412 | // |
3413 | INDEBUG(memset(pDataLocationArray, 0, sizeof(DataLocation) * (MAX_DATA_LOCATIONS_TRACKED))); |
3414 | |
3415 | { |
3416 | GCX_FORBID(); |
3417 | |
3418 | // |
3419 | // Do step 1a |
3420 | // |
3421 | GCProtectAllPassedArgs(pDE, |
3422 | pObjectRefArray, |
3423 | pMaybeInteriorPtrArray, |
3424 | pByRefMaybeInteriorPtrArray, |
3425 | pBufferForArgsArray |
3426 | DEBUG_ARG(pDataLocationArray) |
3427 | ); |
3428 | |
3429 | } |
3430 | |
3431 | // |
3432 | // Do step 1b: we can switch domains since everything is now protected. |
3433 | // Note that before this point, it's unsafe to rely on pDE->m_module since it may be |
3434 | // invalid due to an AD unload. |
3435 | // All normal func evals should have an AppDomain specified. |
3436 | // |
3437 | _ASSERTE( pDE->m_appDomainId.m_dwId != 0 ); |
3438 | ENTER_DOMAIN_ID( pDE->m_appDomainId ); |
3439 | |
3440 | // Wrap everything in a EX_TRY so we catch any exceptions that could be thrown. |
3441 | // Note that we don't let any thrown exceptions cross the AppDomain boundary because we don't |
3442 | // want them to get marshalled. |
3443 | EX_TRY |
3444 | { |
3445 | DoNormalFuncEval( |
3446 | pDE, |
3447 | pCatcherStackAddr, |
3448 | pObjectRefArray, |
3449 | pMaybeInteriorPtrArray, |
3450 | pByRefMaybeInteriorPtrArray, |
3451 | pBufferForArgsArray, |
3452 | protectValueClassFrame.GetValueClassInfoList() |
3453 | DEBUG_ARG(pDataLocationArray) |
3454 | ); |
3455 | } |
3456 | EX_CATCH |
3457 | { |
3458 | // We got an exception. Make the exception into our result. |
3459 | OBJECTREF ppException = GET_THROWABLE(); |
3460 | GCX_FORBID(); |
3461 | RecordFuncEvalException( pDE, ppException); |
3462 | } |
3463 | // Note: we need to catch all exceptioins here because they all get reported as the result of |
3464 | // the funceval. If a ThreadAbort occurred other than for a funcEval abort, we'll re-throw it manually. |
3465 | EX_END_CATCH(SwallowAllExceptions); |
3466 | |
3467 | // Restore context |
3468 | END_DOMAIN_TRANSITION; |
3469 | |
3470 | protectValueClassFrame.Pop(); |
3471 | |
3472 | CleanUpTemporaryVariables(protectValueClassFrame.GetValueClassInfoList()); |
3473 | |
3474 | GCPROTECT_END(); // pByRefMaybeInteriorPtrArray |
3475 | GCPROTECT_END(); // pMaybeInteriorPtrArray |
3476 | GCPROTECT_END(); // pObjectRefArray |
3477 | LOG((LF_CORDB, LL_EVERYTHING, "DoNormalFuncEval: returning...\n" )); |
3478 | } |
3479 | |
3480 | |
3481 | void FuncEvalHijackRealWorker(DebuggerEval *pDE, Thread* pThread, FuncEvalFrame* pFEFrame) |
3482 | { |
3483 | BYTE * pCatcherStackAddr = (BYTE*) pFEFrame; |
3484 | |
3485 | // Handle normal func evals in DoNormalFuncEval |
3486 | if ((pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) || (pDE->m_evalType == DB_IPCE_FET_NORMAL)) |
3487 | { |
3488 | GCProtectArgsAndDoNormalFuncEval(pDE, pCatcherStackAddr); |
3489 | LOG((LF_CORDB, LL_EVERYTHING, "DoNormalFuncEval has returned.\n" )); |
3490 | return; |
3491 | } |
3492 | |
3493 | // The method may be in a different AD than the thread. |
3494 | // The RS already verified that all of the arguments are in the same appdomain as the function |
3495 | // (because we can't verify it here). |
3496 | // Note that this is exception safe, so we are guarenteed to be in the correct AppDomain when |
3497 | // we leave this method. |
3498 | // Before this, we can't safely use the DebuggerModule* since the domain may have been unloaded. |
3499 | ENTER_DOMAIN_ID( pDE->m_appDomainId ); |
3500 | |
3501 | OBJECTREF newObj = NULL; |
3502 | GCPROTECT_BEGIN(newObj); |
3503 | |
3504 | // Wrap everything in a EX_TRY so we catch any exceptions that could be thrown. |
3505 | // Note that we don't let any thrown exceptions cross the AppDomain boundary because we don't |
3506 | // want them to get marshalled. |
3507 | EX_TRY |
3508 | { |
3509 | DebuggerIPCE_TypeArgData *firstdata = pDE->GetTypeArgData(); |
3510 | DWORD nGenericArgs = pDE->m_genericArgsCount; |
3511 | |
3512 | SIZE_T cbAllocSize; |
3513 | if ((!ClrSafeInt<SIZE_T>::multiply(nGenericArgs, sizeof(TypeHandle *), cbAllocSize)) || |
3514 | (cbAllocSize != (size_t)(cbAllocSize))) |
3515 | { |
3516 | ThrowHR(COR_E_OVERFLOW); |
3517 | } |
3518 | TypeHandle *pGenericArgs = (nGenericArgs == 0) ? NULL : (TypeHandle *) _alloca(cbAllocSize); |
3519 | // |
3520 | // Snag the type arguments from the input and get the |
3521 | // method desc that corresponds to the instantiated desc. |
3522 | // |
3523 | Debugger::TypeDataWalk walk(firstdata, pDE->m_genericArgsNodeCount); |
3524 | walk.ReadTypeHandles(nGenericArgs, pGenericArgs); |
3525 | |
3526 | // <TODO>better error message</TODO> |
3527 | if (!walk.Finished()) |
3528 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
3529 | |
3530 | switch (pDE->m_evalType) |
3531 | { |
3532 | case DB_IPCE_FET_NEW_OBJECT_NC: |
3533 | { |
3534 | |
3535 | // Find the class. |
3536 | TypeHandle thClass = g_pEEInterface->LoadClass(pDE->m_debuggerModule->GetRuntimeModule(), |
3537 | pDE->m_classToken); |
3538 | |
3539 | if (thClass.IsNull()) |
3540 | COMPlusThrow(kArgumentNullException, W("ArgumentNull_Type" )); |
3541 | |
3542 | // Apply any type arguments |
3543 | TypeHandle th = |
3544 | (nGenericArgs == 0) |
3545 | ? thClass |
3546 | : g_pEEInterface->LoadInstantiation(pDE->m_debuggerModule->GetRuntimeModule(), |
3547 | pDE->m_classToken, nGenericArgs, pGenericArgs); |
3548 | |
3549 | if (th.IsNull() || th.ContainsGenericVariables()) |
3550 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
3551 | |
3552 | // Run the Class Init for this type, if necessary. |
3553 | MethodTable * pOwningMT = th.GetMethodTable(); |
3554 | pOwningMT->EnsureInstanceActive(); |
3555 | pOwningMT->CheckRunClassInitThrowing(); |
3556 | |
3557 | // Create a new instance of the class |
3558 | |
3559 | ValidateFuncEvalReturnType(DB_IPCE_FET_NEW_OBJECT_NC, th.GetMethodTable()); |
3560 | |
3561 | newObj = AllocateObject(th.GetMethodTable()); |
3562 | |
3563 | // No exception, so it worked. |
3564 | pDE->m_successful = true; |
3565 | |
3566 | // So is the result type. |
3567 | pDE->m_resultType = th; |
3568 | |
3569 | // |
3570 | // Box up all returned objects |
3571 | // |
3572 | pDE->m_retValueBoxing = Debugger::AllBoxed; |
3573 | |
3574 | // Make a strong handle for the result. |
3575 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(newObj); |
3576 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
3577 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
3578 | |
3579 | break; |
3580 | } |
3581 | |
3582 | case DB_IPCE_FET_NEW_STRING: |
3583 | { |
3584 | // Create the string. m_argData is not necessarily null terminated... |
3585 | // The numeration parameter represents the string length, not the buffer size, but |
3586 | // we have passed the buffer size across to copy our data properly, so must divide back out. |
3587 | // NewString will return NULL if pass null, but want an empty string in that case, so |
3588 | // just create an EmptyString explicitly. |
3589 | if ((pDE->m_argData == NULL) || (pDE->m_stringSize == 0)) |
3590 | { |
3591 | newObj = StringObject::GetEmptyString(); |
3592 | } |
3593 | else |
3594 | { |
3595 | newObj = StringObject::NewString(pDE->GetNewStringArgData(), (int)(pDE->m_stringSize/sizeof(WCHAR))); |
3596 | } |
3597 | |
3598 | // No exception, so it worked. |
3599 | pDE->m_successful = true; |
3600 | |
3601 | // Result type is, of course, a string. |
3602 | pDE->m_resultType = newObj->GetTypeHandle(); |
3603 | |
3604 | // Place the result in a strong handle to protect it from a collection. |
3605 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(newObj); |
3606 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
3607 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
3608 | |
3609 | break; |
3610 | } |
3611 | |
3612 | case DB_IPCE_FET_NEW_ARRAY: |
3613 | { |
3614 | // <TODO>@todo: We're only gonna handle SD arrays for right now.</TODO> |
3615 | if (pDE->m_arrayRank > 1) |
3616 | COMPlusThrow(kRankException, W("Rank_MultiDimNotSupported" )); |
3617 | |
3618 | // Grab the elementType from the arg/data area. |
3619 | _ASSERTE(nGenericArgs == 1); |
3620 | TypeHandle th = pGenericArgs[0]; |
3621 | |
3622 | CorElementType et = th.GetSignatureCorElementType(); |
3623 | // Gotta be a primitive, class, or System.Object. |
3624 | if (((et < ELEMENT_TYPE_BOOLEAN) || (et > ELEMENT_TYPE_R8)) && |
3625 | !IsElementTypeSpecial(et)) |
3626 | { |
3627 | COMPlusThrow(kArgumentOutOfRangeException, W("ArgumentOutOfRange_Enum" )); |
3628 | } |
3629 | |
3630 | // Grab the dims from the arg/data area. These come after the type arguments. |
3631 | SIZE_T *dims; |
3632 | dims = (SIZE_T*) (firstdata + pDE->m_genericArgsNodeCount); |
3633 | |
3634 | if (IsElementTypeSpecial(et)) |
3635 | { |
3636 | newObj = AllocateObjectArray((DWORD)dims[0], th); |
3637 | } |
3638 | else |
3639 | { |
3640 | // Create a simple array. Note: we can only do this type of create here due to the checks above. |
3641 | newObj = AllocatePrimitiveArray(et, (DWORD)dims[0]); |
3642 | } |
3643 | |
3644 | // No exception, so it worked. |
3645 | pDE->m_successful = true; |
3646 | |
3647 | // Result type is, of course, the type of the array. |
3648 | pDE->m_resultType = newObj->GetTypeHandle(); |
3649 | |
3650 | // Place the result in a strong handle to protect it from a collection. |
3651 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(newObj); |
3652 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
3653 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
3654 | |
3655 | break; |
3656 | } |
3657 | |
3658 | default: |
3659 | _ASSERTE(!"Invalid eval type!" ); |
3660 | } |
3661 | } |
3662 | EX_CATCH |
3663 | { |
3664 | // We got an exception. Make the exception into our result. |
3665 | OBJECTREF ppException = GET_THROWABLE(); |
3666 | GCX_FORBID(); |
3667 | RecordFuncEvalException( pDE, ppException); |
3668 | } |
3669 | // Note: we need to catch all exceptioins here because they all get reported as the result of |
3670 | // the funceval. If a ThreadAbort occurred other than for a funcEval abort, we'll re-throw it manually. |
3671 | EX_END_CATCH(SwallowAllExceptions); |
3672 | |
3673 | GCPROTECT_END(); |
3674 | |
3675 | // |
3676 | // Restore context |
3677 | // |
3678 | END_DOMAIN_TRANSITION; |
3679 | |
3680 | } |
3681 | |
3682 | // |
3683 | // FuncEvalHijackWorker is the function that managed threads start executing in order to perform a function |
3684 | // evaluation. Control is transfered here on the proper thread by hijacking that that's IP to this method in |
3685 | // Debugger::FuncEvalSetup. This function can also be called directly by a Runtime thread that is stopped sending a |
3686 | // first or second chance exception to the Right Side. |
3687 | // |
3688 | // The DebuggerEval object may get deleted by the helper thread doing a CleanupFuncEval while this thread is blocked |
3689 | // sending the eval complete. |
3690 | void * STDCALL FuncEvalHijackWorker(DebuggerEval *pDE) |
3691 | { |
3692 | CONTRACTL |
3693 | { |
3694 | MODE_COOPERATIVE; |
3695 | GC_TRIGGERS; |
3696 | THROWS; |
3697 | SO_NOT_MAINLINE; |
3698 | |
3699 | PRECONDITION(CheckPointer(pDE)); |
3700 | } |
3701 | CONTRACTL_END; |
3702 | |
3703 | |
3704 | |
3705 | Thread *pThread = NULL; |
3706 | CONTEXT *filterContext = NULL; |
3707 | |
3708 | { |
3709 | GCX_FORBID(); |
3710 | |
3711 | LOG((LF_CORDB, LL_INFO100000, "D:FEHW for pDE:%08x evalType:%d\n" , pDE, pDE->m_evalType)); |
3712 | |
3713 | pThread = GetThread(); |
3714 | |
3715 | #ifndef DACCESS_COMPILE |
3716 | #ifdef _DEBUG |
3717 | // |
3718 | // Flush all debug tracking information for this thread on object refs as it |
3719 | // only approximates proper tracking and may have stale data, resulting in false |
3720 | // positives. We dont want that as func-eval runs a lot, so flush them now. |
3721 | // |
3722 | g_pEEInterface->ObjectRefFlush(pThread); |
3723 | #endif |
3724 | #endif |
3725 | |
3726 | if (!pDE->m_evalDuringException) |
3727 | { |
3728 | // |
3729 | // From this point forward we use FORBID regions to guard against GCs. |
3730 | // Refer to code:Debugger::FuncEvalSetup to see the increment was done. |
3731 | // |
3732 | g_pDebugger->DecThreadsAtUnsafePlaces(); |
3733 | } |
3734 | |
3735 | // Preemptive GC is disabled at the start of this method. |
3736 | _ASSERTE(g_pEEInterface->IsPreemptiveGCDisabled()); |
3737 | |
3738 | DebuggerController::DispatchFuncEvalEnter(pThread); |
3739 | |
3740 | |
3741 | // If we've got a filter context still installed, then remove it while we do the work... |
3742 | filterContext = g_pEEInterface->GetThreadFilterContext(pDE->m_thread); |
3743 | |
3744 | if (filterContext) |
3745 | { |
3746 | _ASSERTE(pDE->m_evalDuringException); |
3747 | g_pEEInterface->SetThreadFilterContext(pDE->m_thread, NULL); |
3748 | } |
3749 | |
3750 | } |
3751 | |
3752 | // |
3753 | // Special handling for a re-abort eval. We don't setup a EX_TRY or try to lookup a function to call. All we do |
3754 | // is have this thread abort itself. |
3755 | // |
3756 | if (pDE->m_evalType == DB_IPCE_FET_RE_ABORT) |
3757 | { |
3758 | // |
3759 | // Push our FuncEvalFrame. The return address is equal to the IP in the saved context in the DebuggerEval. The |
3760 | // m_Datum becomes the ptr to the DebuggerEval. The frame address also serves as the address of the catch-handler-found. |
3761 | // |
3762 | FrameWithCookie<FuncEvalFrame> FEFrame(pDE, GetIP(&pDE->m_context), false); |
3763 | FEFrame.Push(); |
3764 | |
3765 | pDE->m_thread->UserAbort(pDE->m_requester, EEPolicy::TA_Safe, INFINITE, Thread::UAC_Normal); |
3766 | _ASSERTE(!"Should not return from UserAbort here!" ); |
3767 | return NULL; |
3768 | } |
3769 | |
3770 | // |
3771 | // We cannot scope the following in a GCX_FORBID(), but we would like to. But we need the frames on the |
3772 | // stack here, so they must never go out of scope. |
3773 | // |
3774 | |
3775 | // |
3776 | // Push our FuncEvalFrame. The return address is equal to the IP in the saved context in the DebuggerEval. The |
3777 | // m_Datum becomes the ptr to the DebuggerEval. The frame address also serves as the address of the catch-handler-found. |
3778 | // |
3779 | FrameWithCookie<FuncEvalFrame> FEFrame(pDE, GetIP(&pDE->m_context), true); |
3780 | FEFrame.Push(); |
3781 | |
3782 | // On ARM the single step flag is per-thread and not per context. We need to make sure that the SS flag is cleared |
3783 | // for the funceval, and that the state is back to what it should be after the funceval completes. |
3784 | #ifdef _TARGET_ARM_ |
3785 | bool ssEnabled = pDE->m_thread->IsSingleStepEnabled(); |
3786 | if (ssEnabled) |
3787 | pDE->m_thread->DisableSingleStep(); |
3788 | #endif |
3789 | |
3790 | FuncEvalHijackRealWorker(pDE, pThread, &FEFrame); |
3791 | |
3792 | #ifdef _TARGET_ARM_ |
3793 | if (ssEnabled) |
3794 | pDE->m_thread->EnableSingleStep(); |
3795 | #endif |
3796 | |
3797 | |
3798 | |
3799 | LOG((LF_CORDB, LL_EVERYTHING, "FuncEval has finished its primary work.\n" )); |
3800 | |
3801 | // |
3802 | // The func-eval is now completed, successfully or with failure, aborted or run-to-completion. |
3803 | // |
3804 | pDE->m_completed = true; |
3805 | |
3806 | if (pDE->m_thread->IsAbortRequested()) |
3807 | { |
3808 | // |
3809 | // Check if an unmanaged thread tried to also abort this thread while we |
3810 | // were doing the func-eval, then that kind we want to rethrow. The check |
3811 | // versus m_aborted is for the case where the FE was aborted, we caught that, |
3812 | // then cleared the FEAbort request, but there is still an outstanding abort |
3813 | // - then it must be a user abort. |
3814 | // |
3815 | if ((pDE->m_aborting == DebuggerEval::FE_ABORT_NONE) || pDE->m_aborted) |
3816 | { |
3817 | pDE->m_rethrowAbortException = true; |
3818 | } |
3819 | |
3820 | // |
3821 | // Reset the abort request if a func-eval abort was submitted, but the func-eval completed |
3822 | // before the abort could take place, we want to make sure we do not throw an abort exception |
3823 | // in this case. |
3824 | // |
3825 | if (pDE->m_aborting != DebuggerEval::FE_ABORT_NONE) |
3826 | { |
3827 | pDE->m_thread->UserResetAbort(Thread::TAR_FuncEval); |
3828 | } |
3829 | |
3830 | } |
3831 | |
3832 | // Codepitching can hijack our frame's return address. That means that we'll need to update PC in our saved context |
3833 | // so that when its restored, its like we've returned to the codepitching hijack. At this point, the old value of |
3834 | // EIP is worthless anyway. |
3835 | if (!pDE->m_evalDuringException) |
3836 | { |
3837 | SetIP(&pDE->m_context, (SIZE_T)FEFrame.GetReturnAddress()); |
3838 | } |
3839 | |
3840 | // |
3841 | // Disable all steppers and breakpoints created during the func-eval |
3842 | // |
3843 | DebuggerController::DispatchFuncEvalExit(pThread); |
3844 | |
3845 | void *dest = NULL; |
3846 | |
3847 | if (!pDE->m_evalDuringException) |
3848 | { |
3849 | // Signal to the helper thread that we're done with our func eval. Start by creating a DebuggerFuncEvalComplete |
3850 | // object. Give it an address at which to create the patch, which is a chunk of memory specified by our |
3851 | // DebuggerEval big enough to hold a breakpoint instruction. |
3852 | #ifdef _TARGET_ARM_ |
3853 | dest = (BYTE*)((DWORD)&(pDE->m_bpInfoSegment->m_breakpointInstruction) | THUMB_CODE); |
3854 | #else |
3855 | dest = &(pDE->m_bpInfoSegment->m_breakpointInstruction); |
3856 | #endif |
3857 | |
3858 | // |
3859 | // The created object below sets up itself as a hijack and will destroy itself when the hijack and work |
3860 | // is done. |
3861 | // |
3862 | |
3863 | DebuggerFuncEvalComplete *comp; |
3864 | comp = new (interopsafe) DebuggerFuncEvalComplete(pThread, dest); |
3865 | _ASSERTE(comp != NULL); // would have thrown |
3866 | |
3867 | // Pop the FuncEvalFrame now that we're pretty much done. Make sure we |
3868 | // don't pop the frame too early. Because GC can be triggered in our grabbing of |
3869 | // Debugger lock. If we pop the FE frame without setting back thread filter context, |
3870 | // the frames left uncrawlable. |
3871 | // |
3872 | FEFrame.Pop(); |
3873 | } |
3874 | else |
3875 | { |
3876 | // We don't have to setup any special hijacks to return from here when we've been processing during an |
3877 | // exception. We just go ahead and send the FuncEvalComplete event over now. Don't forget to enable/disable PGC |
3878 | // around the call... |
3879 | _ASSERTE(g_pEEInterface->IsPreemptiveGCDisabled()); |
3880 | |
3881 | if (filterContext != NULL) |
3882 | { |
3883 | g_pEEInterface->SetThreadFilterContext(pDE->m_thread, filterContext); |
3884 | } |
3885 | |
3886 | // Pop the FuncEvalFrame now that we're pretty much done. |
3887 | FEFrame.Pop(); |
3888 | |
3889 | |
3890 | { |
3891 | // |
3892 | // This also grabs the debugger lock, so we can atomically check if a detach has |
3893 | // happened. |
3894 | // |
3895 | SENDIPCEVENT_BEGIN(g_pDebugger, pDE->m_thread); |
3896 | |
3897 | if ((pDE->m_thread->GetDomain() != NULL) && pDE->m_thread->GetDomain()->IsDebuggerAttached()) |
3898 | { |
3899 | |
3900 | if (CORDebuggerAttached()) |
3901 | { |
3902 | g_pDebugger->FuncEvalComplete(pDE->m_thread, pDE); |
3903 | |
3904 | g_pDebugger->SyncAllThreads(SENDIPCEVENT_PtrDbgLockHolder); |
3905 | } |
3906 | |
3907 | } |
3908 | |
3909 | SENDIPCEVENT_END; |
3910 | } |
3911 | } |
3912 | |
3913 | |
3914 | // pDE may now point to deleted memory if the helper thread did a CleanupFuncEval while we |
3915 | // were blocked waiting for a continue after the func-eval complete. |
3916 | |
3917 | // We return the address that we want to resume executing at. |
3918 | return dest; |
3919 | |
3920 | } |
3921 | |
3922 | |
3923 | #if defined(WIN64EXCEPTIONS) && !defined(FEATURE_PAL) |
3924 | |
3925 | EXTERN_C EXCEPTION_DISPOSITION |
3926 | FuncEvalHijackPersonalityRoutine(IN PEXCEPTION_RECORD pExceptionRecord |
3927 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
3928 | NOT_WIN64_ARG(IN ULONG32 MemoryStackFp), |
3929 | IN OUT PCONTEXT pContextRecord, |
3930 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
3931 | ) |
3932 | { |
3933 | DebuggerEval* pDE = NULL; |
3934 | #if defined(_TARGET_AMD64_) |
3935 | pDE = *(DebuggerEval**)(pDispatcherContext->EstablisherFrame); |
3936 | #elif defined(_TARGET_ARM_) |
3937 | // on ARM the establisher frame is the SP of the caller of FuncEvalHijack, on other platforms it's FuncEvalHijack's SP. |
3938 | // in FuncEvalHijack we allocate 8 bytes of stack space and then store R0 at the current SP, so if we subtract 8 from |
3939 | // the establisher frame we can get the stack location where R0 was stored. |
3940 | pDE = *(DebuggerEval**)(pDispatcherContext->EstablisherFrame - 8); |
3941 | |
3942 | #elif defined(_TARGET_ARM64_) |
3943 | // on ARM64 the establisher frame is the SP of the caller of FuncEvalHijack. |
3944 | // in FuncEvalHijack we allocate 32 bytes of stack space and then store R0 at the current SP + 16, so if we subtract 16 from |
3945 | // the establisher frame we can get the stack location where R0 was stored. |
3946 | pDE = *(DebuggerEval**)(pDispatcherContext->EstablisherFrame - 16); |
3947 | #else |
3948 | _ASSERTE(!"NYI - FuncEvalHijackPersonalityRoutine()" ); |
3949 | #endif |
3950 | |
3951 | FixupDispatcherContext(pDispatcherContext, &(pDE->m_context), pContextRecord); |
3952 | |
3953 | // Returning ExceptionCollidedUnwind will cause the OS to take our new context record and |
3954 | // dispatcher context and restart the exception dispatching on this call frame, which is |
3955 | // exactly the behavior we want. |
3956 | return ExceptionCollidedUnwind; |
3957 | } |
3958 | |
3959 | |
3960 | #endif // WIN64EXCEPTIONS && !FEATURE_PAL |
3961 | |
3962 | #endif // ifndef DACCESS_COMPILE |
3963 | |