| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // **************************************************************************** |
| 5 | // File: funceval.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // funceval.cpp - Debugger func-eval routines. |
| 10 | // |
| 11 | // **************************************************************************** |
| 12 | // Putting code & #includes, #defines, etc, before the stdafx.h will |
| 13 | // cause the code,etc, to be silently ignored |
| 14 | |
| 15 | |
| 16 | #include "stdafx.h" |
| 17 | #include "debugdebugger.h" |
| 18 | #include "../inc/common.h" |
| 19 | #include "perflog.h" |
| 20 | #include "eeconfig.h" // This is here even for retail & free builds... |
| 21 | #include "../../dlls/mscorrc/resource.h" |
| 22 | |
| 23 | #include "vars.hpp" |
| 24 | #include "threads.h" |
| 25 | #include "appdomain.inl" |
| 26 | #include <limits.h> |
| 27 | #include "ilformatter.h" |
| 28 | |
| 29 | #ifndef DACCESS_COMPILE |
| 30 | |
| 31 | // |
| 32 | // This is the main file for processing func-evals. Nestle in |
| 33 | // with a cup o' tea and read on. |
| 34 | // |
| 35 | // The most common case is handled in GCProtectArgsAndDoNormalFuncEval(), which follows |
| 36 | // all the comments below. The two other corner cases are handled in |
| 37 | // FuncEvalHijackWorker(), and are extremely straight-forward. |
| 38 | // |
| 39 | // There are several steps to successfully processing a func-eval. At a |
| 40 | // very high level, the first step is to gather all the information necessary |
| 41 | // to make the call (specifically, gather arg info and method info); the second |
| 42 | // step is to actually make the call to managed code; finally, the third step |
| 43 | // is to take all results and unpackage them. |
| 44 | // |
| 45 | // The first step (gathering arg and method info) has several critical passes that |
| 46 | // must be made. |
| 47 | // a) Protect all passed in args from a GC. |
| 48 | // b) Transition into the appropriate AppDomain if necessary |
| 49 | // c) Pre-allocate object for 'new' calls and, if necessary, box the 'this' argument. (May cause a GC) |
| 50 | // d) Gather method info (May cause GC) |
| 51 | // e) Gather info from runtime about args. (May cause a GC) |
| 52 | // f) Box args that need to be, GC-protecting the newly boxed items. (May cause a GC) |
| 53 | // g) Pre-allocate object for return values. (May cause a GC) |
| 54 | // h) Copy to pBufferForArgsArray all the args. This array is used to hold values that |
| 55 | // may need writable memory for ByRef args. |
| 56 | // i) Create and load pArgumentArray to be passed as the stack for the managed call. |
| 57 | // NOTE: From the time we load the first argument into the stack we cannot cause a GC |
| 58 | // as the argument array cannot be GC-protected. |
| 59 | // |
| 60 | // The second step (Making the managed call), is relatively easy, and is a single call. |
| 61 | // |
| 62 | // The third step (unpacking all results), has a couple of passes as well. |
| 63 | // a) Copy back all resulting values. |
| 64 | // b) Free all temporary work memory. |
| 65 | // |
| 66 | // |
| 67 | // The most difficult part of doing a func-eval is the first step, since once you |
| 68 | // have everything set up, unpacking and calling are reverse, gc-safe, operations. Thus, |
| 69 | // elaboration is needed on the first step. |
| 70 | // |
| 71 | // a) Protect all passed in args from a GC. This must be done in a gc-forbid region, |
| 72 | // and the code path to this function must not trigger a gc either. In this function five |
| 73 | // parallel arrays are used: pObjectRefArray, pMaybeInteriorPtrArray, pByRefMaybeInteriorPtrArray, |
| 74 | // pBufferForArgsArray, and pArguments. |
| 75 | // pObjectRefArray is used to gc-protect all arguments and results that are objects. |
| 76 | // pMaybeInteriorPtrArray is used to gc-protect all arguments that might be pointers |
| 77 | // to an interior of a managed object. |
| 78 | // pByRefMaybeInteriorPtrArray is similar to pMaybeInteriorPtrArray, except that it protects the |
| 79 | // address of the arguments instead of the arguments themselves. This is needed because we may have |
| 80 | // by ref arguments whose address is an interior pointer into the GC heap. |
| 81 | // pBufferForArgsArray is used strictly as a buffer for copying primitives |
| 82 | // that need to be passed as ByRef, or may be enregistered. This array also holds |
| 83 | // handles. |
| 84 | // These first two arrays are mutually exclusive, that is, if there is an entry |
| 85 | // in one array at index i, there should be no entry in either of the other arrays at |
| 86 | // the same index. |
| 87 | // pArguments is used as the complete array of arguments to pass to the managed function. |
| 88 | // |
| 89 | // Unfortunately the necessary information to complete pass (a) perfectly may cause a gc, so |
| 90 | // instead, pass (a) is over-aggressive and protects the following: All object refs into |
| 91 | // pObjectRefArray, and puts all values that could be raw pointers into pMaybeInteriorPtrArray. |
| 92 | // |
| 93 | // b) Discovers the method to be called, and if it is a 'new' allocate an object for the result. |
| 94 | // |
| 95 | // c) Gather information about the method that will be called. |
| 96 | // |
| 97 | // d) Here we gather information from the method signature which tells which args are |
| 98 | // ByRef and various other flags. We will use this information in later passes. |
| 99 | // |
| 100 | // e) Using the information in pass (c), for each argument: box arguments, placing newly |
| 101 | // boxed items into pObjectRefArray immediately after creating them. |
| 102 | // |
| 103 | // f) Pre-allocate any object for a returned value. |
| 104 | // |
| 105 | // g) Using the information is pass (c), all arguments are copied into a scratch buffer before |
| 106 | // invoking the managed function. |
| 107 | // |
| 108 | // h) pArguments is loaded from the pre-allocated return object, the individual elements |
| 109 | // of the other 3 arrays, and from any non-ByRef literals. This is the complete stack |
| 110 | // to be passed to the managed function. For performance increase, it can remove any |
| 111 | // overly aggressive items that were placed in pMaybeInteriorPtrArray. |
| 112 | // |
| 113 | |
| 114 | // |
| 115 | // IsElementTypeSpecial() |
| 116 | // |
| 117 | // This is a simple function used to check if a CorElementType needs special handling for func eval. |
| 118 | // |
| 119 | // parameters: type - the CorElementType which we need to check |
| 120 | // |
| 121 | // return value: true if the specified type needs special handling |
| 122 | // |
| 123 | inline static bool IsElementTypeSpecial(CorElementType type) |
| 124 | { |
| 125 | LIMITED_METHOD_CONTRACT; |
| 126 | |
| 127 | return ((type == ELEMENT_TYPE_CLASS) || |
| 128 | (type == ELEMENT_TYPE_OBJECT) || |
| 129 | (type == ELEMENT_TYPE_ARRAY) || |
| 130 | (type == ELEMENT_TYPE_SZARRAY) || |
| 131 | (type == ELEMENT_TYPE_STRING)); |
| 132 | } |
| 133 | |
| 134 | // |
| 135 | // GetAndSetLiteralValue() |
| 136 | // |
| 137 | // This helper function extracts the value out of the source pointer while taking into account alignment and size. |
| 138 | // Then it stores the value into the destination pointer, again taking into account alignment and size. |
| 139 | // |
| 140 | // parameters: pDst - destination pointer |
| 141 | // dstType - the CorElementType of the destination value |
| 142 | // pSrc - source pointer |
| 143 | // srcType - the CorElementType of the source value |
| 144 | // |
| 145 | // return value: none |
| 146 | // |
| 147 | inline static void GetAndSetLiteralValue(LPVOID pDst, CorElementType dstType, LPVOID pSrc, CorElementType srcType) |
| 148 | { |
| 149 | LIMITED_METHOD_CONTRACT; |
| 150 | |
| 151 | UINT64 srcValue; |
| 152 | |
| 153 | // Retrieve the value using the source CorElementType. |
| 154 | switch (g_pEEInterface->GetSizeForCorElementType(srcType)) |
| 155 | { |
| 156 | case 1: |
| 157 | srcValue = (UINT64)*((BYTE*)pSrc); |
| 158 | break; |
| 159 | case 2: |
| 160 | srcValue = (UINT64)*((USHORT*)pSrc); |
| 161 | break; |
| 162 | case 4: |
| 163 | srcValue = (UINT64)*((UINT32*)pSrc); |
| 164 | break; |
| 165 | case 8: |
| 166 | srcValue = (UINT64)*((UINT64*)pSrc); |
| 167 | break; |
| 168 | |
| 169 | default: |
| 170 | UNREACHABLE(); |
| 171 | } |
| 172 | |
| 173 | // Cast to the appropriate type using the destination CorElementType. |
| 174 | switch (dstType) |
| 175 | { |
| 176 | case ELEMENT_TYPE_BOOLEAN: |
| 177 | *(BYTE*)pDst = (BYTE)!!srcValue; |
| 178 | break; |
| 179 | case ELEMENT_TYPE_I1: |
| 180 | *(INT8*)pDst = (INT8)srcValue; |
| 181 | break; |
| 182 | case ELEMENT_TYPE_U1: |
| 183 | *(UINT8*)pDst = (UINT8)srcValue; |
| 184 | break; |
| 185 | case ELEMENT_TYPE_I2: |
| 186 | *(INT16*)pDst = (INT16)srcValue; |
| 187 | break; |
| 188 | case ELEMENT_TYPE_U2: |
| 189 | case ELEMENT_TYPE_CHAR: |
| 190 | *(UINT16*)pDst = (UINT16)srcValue; |
| 191 | break; |
| 192 | #if !defined(_WIN64) |
| 193 | case ELEMENT_TYPE_I: |
| 194 | #endif |
| 195 | case ELEMENT_TYPE_I4: |
| 196 | *(int*)pDst = (int)srcValue; |
| 197 | break; |
| 198 | #if !defined(_WIN64) |
| 199 | case ELEMENT_TYPE_U: |
| 200 | #endif |
| 201 | case ELEMENT_TYPE_U4: |
| 202 | case ELEMENT_TYPE_R4: |
| 203 | *(unsigned*)pDst = (unsigned)srcValue; |
| 204 | break; |
| 205 | #if defined(_WIN64) |
| 206 | case ELEMENT_TYPE_I: |
| 207 | #endif |
| 208 | case ELEMENT_TYPE_I8: |
| 209 | case ELEMENT_TYPE_R8: |
| 210 | *(INT64*)pDst = (INT64)srcValue; |
| 211 | break; |
| 212 | |
| 213 | #if defined(_WIN64) |
| 214 | case ELEMENT_TYPE_U: |
| 215 | #endif |
| 216 | case ELEMENT_TYPE_U8: |
| 217 | *(UINT64*)pDst = (UINT64)srcValue; |
| 218 | break; |
| 219 | case ELEMENT_TYPE_FNPTR: |
| 220 | case ELEMENT_TYPE_PTR: |
| 221 | *(void **)pDst = (void *)(SIZE_T)srcValue; |
| 222 | break; |
| 223 | |
| 224 | default: |
| 225 | UNREACHABLE(); |
| 226 | } |
| 227 | |
| 228 | } |
| 229 | |
| 230 | |
| 231 | // |
| 232 | // Throw on not supported func evals |
| 233 | // |
| 234 | static void ValidateFuncEvalReturnType(DebuggerIPCE_FuncEvalType evalType, MethodTable * pMT) |
| 235 | { |
| 236 | CONTRACTL |
| 237 | { |
| 238 | THROWS; |
| 239 | GC_TRIGGERS; |
| 240 | } |
| 241 | CONTRACTL_END; |
| 242 | |
| 243 | if (pMT == g_pStringClass) |
| 244 | { |
| 245 | if (evalType == DB_IPCE_FET_NEW_OBJECT || evalType == DB_IPCE_FET_NEW_OBJECT_NC) |
| 246 | { |
| 247 | // Cannot call New object on String constructor. |
| 248 | COMPlusThrow(kArgumentException,W("Argument_CannotCreateString" )); |
| 249 | } |
| 250 | } |
| 251 | else if (g_pEEInterface->IsTypedReference(pMT)) |
| 252 | { |
| 253 | // Cannot create typed references through funceval. |
| 254 | if (evalType == DB_IPCE_FET_NEW_OBJECT || evalType == DB_IPCE_FET_NEW_OBJECT_NC || evalType == DB_IPCE_FET_NORMAL) |
| 255 | { |
| 256 | COMPlusThrow(kArgumentException, W("Argument_CannotCreateTypedReference" )); |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | // |
| 262 | // Given a register, return the value. |
| 263 | // |
| 264 | static SIZE_T GetRegisterValue(DebuggerEval *pDE, CorDebugRegister reg, void *regAddr, SIZE_T regValue) |
| 265 | { |
| 266 | LIMITED_METHOD_CONTRACT; |
| 267 | |
| 268 | SIZE_T ret = 0; |
| 269 | |
| 270 | // Check whether the register address is the marker value for a register in a non-leaf frame. |
| 271 | // This is related to the funceval breaking change. |
| 272 | // |
| 273 | if (regAddr == CORDB_ADDRESS_TO_PTR(kNonLeafFrameRegAddr)) |
| 274 | { |
| 275 | ret = regValue; |
| 276 | } |
| 277 | else |
| 278 | { |
| 279 | switch (reg) |
| 280 | { |
| 281 | case REGISTER_STACK_POINTER: |
| 282 | ret = (SIZE_T)GetSP(&pDE->m_context); |
| 283 | break; |
| 284 | |
| 285 | case REGISTER_FRAME_POINTER: |
| 286 | ret = (SIZE_T)GetFP(&pDE->m_context); |
| 287 | break; |
| 288 | |
| 289 | #if defined(_TARGET_X86_) |
| 290 | case REGISTER_X86_EAX: |
| 291 | ret = pDE->m_context.Eax; |
| 292 | break; |
| 293 | |
| 294 | case REGISTER_X86_ECX: |
| 295 | ret = pDE->m_context.Ecx; |
| 296 | break; |
| 297 | |
| 298 | case REGISTER_X86_EDX: |
| 299 | ret = pDE->m_context.Edx; |
| 300 | break; |
| 301 | |
| 302 | case REGISTER_X86_EBX: |
| 303 | ret = pDE->m_context.Ebx; |
| 304 | break; |
| 305 | |
| 306 | case REGISTER_X86_ESI: |
| 307 | ret = pDE->m_context.Esi; |
| 308 | break; |
| 309 | |
| 310 | case REGISTER_X86_EDI: |
| 311 | ret = pDE->m_context.Edi; |
| 312 | break; |
| 313 | |
| 314 | #elif defined(_TARGET_AMD64_) |
| 315 | case REGISTER_AMD64_RAX: |
| 316 | ret = pDE->m_context.Rax; |
| 317 | break; |
| 318 | |
| 319 | case REGISTER_AMD64_RCX: |
| 320 | ret = pDE->m_context.Rcx; |
| 321 | break; |
| 322 | |
| 323 | case REGISTER_AMD64_RDX: |
| 324 | ret = pDE->m_context.Rdx; |
| 325 | break; |
| 326 | |
| 327 | case REGISTER_AMD64_RBX: |
| 328 | ret = pDE->m_context.Rbx; |
| 329 | break; |
| 330 | |
| 331 | case REGISTER_AMD64_RSI: |
| 332 | ret = pDE->m_context.Rsi; |
| 333 | break; |
| 334 | |
| 335 | case REGISTER_AMD64_RDI: |
| 336 | ret = pDE->m_context.Rdi; |
| 337 | break; |
| 338 | |
| 339 | case REGISTER_AMD64_R8: |
| 340 | ret = pDE->m_context.R8; |
| 341 | break; |
| 342 | |
| 343 | case REGISTER_AMD64_R9: |
| 344 | ret = pDE->m_context.R9; |
| 345 | break; |
| 346 | |
| 347 | case REGISTER_AMD64_R10: |
| 348 | ret = pDE->m_context.R10; |
| 349 | break; |
| 350 | |
| 351 | case REGISTER_AMD64_R11: |
| 352 | ret = pDE->m_context.R11; |
| 353 | break; |
| 354 | |
| 355 | case REGISTER_AMD64_R12: |
| 356 | ret = pDE->m_context.R12; |
| 357 | break; |
| 358 | |
| 359 | case REGISTER_AMD64_R13: |
| 360 | ret = pDE->m_context.R13; |
| 361 | break; |
| 362 | |
| 363 | case REGISTER_AMD64_R14: |
| 364 | ret = pDE->m_context.R14; |
| 365 | break; |
| 366 | |
| 367 | case REGISTER_AMD64_R15: |
| 368 | ret = pDE->m_context.R15; |
| 369 | break; |
| 370 | |
| 371 | // fall through |
| 372 | case REGISTER_AMD64_XMM0: |
| 373 | case REGISTER_AMD64_XMM1: |
| 374 | case REGISTER_AMD64_XMM2: |
| 375 | case REGISTER_AMD64_XMM3: |
| 376 | case REGISTER_AMD64_XMM4: |
| 377 | case REGISTER_AMD64_XMM5: |
| 378 | case REGISTER_AMD64_XMM6: |
| 379 | case REGISTER_AMD64_XMM7: |
| 380 | case REGISTER_AMD64_XMM8: |
| 381 | case REGISTER_AMD64_XMM9: |
| 382 | case REGISTER_AMD64_XMM10: |
| 383 | case REGISTER_AMD64_XMM11: |
| 384 | case REGISTER_AMD64_XMM12: |
| 385 | case REGISTER_AMD64_XMM13: |
| 386 | case REGISTER_AMD64_XMM14: |
| 387 | case REGISTER_AMD64_XMM15: |
| 388 | ret = FPSpillToR8(&(pDE->m_context.Xmm0) + (reg - REGISTER_AMD64_XMM0)); |
| 389 | break; |
| 390 | |
| 391 | #endif // !_TARGET_X86_ && !_TARGET_AMD64_ |
| 392 | default: |
| 393 | _ASSERT(!"Invalid register number!" ); |
| 394 | |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | return ret; |
| 399 | } |
| 400 | |
| 401 | // |
| 402 | // Given a register, set its value. |
| 403 | // |
| 404 | static void SetRegisterValue(DebuggerEval *pDE, CorDebugRegister reg, void *regAddr, SIZE_T newValue) |
| 405 | { |
| 406 | CONTRACTL |
| 407 | { |
| 408 | THROWS; |
| 409 | } |
| 410 | CONTRACTL_END; |
| 411 | |
| 412 | // Check whether the register address is the marker value for a register in a non-leaf frame. |
| 413 | // If so, then we can't update the register. Throw an exception to communicate this error. |
| 414 | if (regAddr == CORDB_ADDRESS_TO_PTR(kNonLeafFrameRegAddr)) |
| 415 | { |
| 416 | COMPlusThrowHR(CORDBG_E_FUNC_EVAL_CANNOT_UPDATE_REGISTER_IN_NONLEAF_FRAME); |
| 417 | return; |
| 418 | } |
| 419 | else |
| 420 | { |
| 421 | switch (reg) |
| 422 | { |
| 423 | case REGISTER_STACK_POINTER: |
| 424 | SetSP(&pDE->m_context, newValue); |
| 425 | break; |
| 426 | |
| 427 | case REGISTER_FRAME_POINTER: |
| 428 | SetFP(&pDE->m_context, newValue); |
| 429 | break; |
| 430 | |
| 431 | #ifdef _TARGET_X86_ |
| 432 | case REGISTER_X86_EAX: |
| 433 | pDE->m_context.Eax = newValue; |
| 434 | break; |
| 435 | |
| 436 | case REGISTER_X86_ECX: |
| 437 | pDE->m_context.Ecx = newValue; |
| 438 | break; |
| 439 | |
| 440 | case REGISTER_X86_EDX: |
| 441 | pDE->m_context.Edx = newValue; |
| 442 | break; |
| 443 | |
| 444 | case REGISTER_X86_EBX: |
| 445 | pDE->m_context.Ebx = newValue; |
| 446 | break; |
| 447 | |
| 448 | case REGISTER_X86_ESI: |
| 449 | pDE->m_context.Esi = newValue; |
| 450 | break; |
| 451 | |
| 452 | case REGISTER_X86_EDI: |
| 453 | pDE->m_context.Edi = newValue; |
| 454 | break; |
| 455 | |
| 456 | #elif defined(_TARGET_AMD64_) |
| 457 | case REGISTER_AMD64_RAX: |
| 458 | pDE->m_context.Rax = newValue; |
| 459 | break; |
| 460 | |
| 461 | case REGISTER_AMD64_RCX: |
| 462 | pDE->m_context.Rcx = newValue; |
| 463 | break; |
| 464 | |
| 465 | case REGISTER_AMD64_RDX: |
| 466 | pDE->m_context.Rdx = newValue; |
| 467 | break; |
| 468 | |
| 469 | case REGISTER_AMD64_RBX: |
| 470 | pDE->m_context.Rbx = newValue; |
| 471 | break; |
| 472 | |
| 473 | case REGISTER_AMD64_RSI: |
| 474 | pDE->m_context.Rsi = newValue; |
| 475 | break; |
| 476 | |
| 477 | case REGISTER_AMD64_RDI: |
| 478 | pDE->m_context.Rdi = newValue; |
| 479 | break; |
| 480 | |
| 481 | case REGISTER_AMD64_R8: |
| 482 | pDE->m_context.R8= newValue; |
| 483 | break; |
| 484 | |
| 485 | case REGISTER_AMD64_R9: |
| 486 | pDE->m_context.R9= newValue; |
| 487 | break; |
| 488 | |
| 489 | case REGISTER_AMD64_R10: |
| 490 | pDE->m_context.R10= newValue; |
| 491 | break; |
| 492 | |
| 493 | case REGISTER_AMD64_R11: |
| 494 | pDE->m_context.R11 = newValue; |
| 495 | break; |
| 496 | |
| 497 | case REGISTER_AMD64_R12: |
| 498 | pDE->m_context.R12 = newValue; |
| 499 | break; |
| 500 | |
| 501 | case REGISTER_AMD64_R13: |
| 502 | pDE->m_context.R13 = newValue; |
| 503 | break; |
| 504 | |
| 505 | case REGISTER_AMD64_R14: |
| 506 | pDE->m_context.R14 = newValue; |
| 507 | break; |
| 508 | |
| 509 | case REGISTER_AMD64_R15: |
| 510 | pDE->m_context.R15 = newValue; |
| 511 | break; |
| 512 | |
| 513 | // fall through |
| 514 | case REGISTER_AMD64_XMM0: |
| 515 | case REGISTER_AMD64_XMM1: |
| 516 | case REGISTER_AMD64_XMM2: |
| 517 | case REGISTER_AMD64_XMM3: |
| 518 | case REGISTER_AMD64_XMM4: |
| 519 | case REGISTER_AMD64_XMM5: |
| 520 | case REGISTER_AMD64_XMM6: |
| 521 | case REGISTER_AMD64_XMM7: |
| 522 | case REGISTER_AMD64_XMM8: |
| 523 | case REGISTER_AMD64_XMM9: |
| 524 | case REGISTER_AMD64_XMM10: |
| 525 | case REGISTER_AMD64_XMM11: |
| 526 | case REGISTER_AMD64_XMM12: |
| 527 | case REGISTER_AMD64_XMM13: |
| 528 | case REGISTER_AMD64_XMM14: |
| 529 | case REGISTER_AMD64_XMM15: |
| 530 | R8ToFPSpill(&(pDE->m_context.Xmm0) + (reg - REGISTER_AMD64_XMM0), newValue); |
| 531 | break; |
| 532 | |
| 533 | #endif // !_TARGET_X86_ && !_TARGET_AMD64_ |
| 534 | default: |
| 535 | _ASSERT(!"Invalid register number!" ); |
| 536 | |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | |
| 542 | /* |
| 543 | * GetRegsiterValueAndReturnAddress |
| 544 | * |
| 545 | * This routine takes out a value from a register, or set of registers, into one of |
| 546 | * the given buffers (depending on size), and returns a pointer to the filled in |
| 547 | * buffer, or NULL on error. |
| 548 | * |
| 549 | * Parameters: |
| 550 | * pDE - pointer to the DebuggerEval object being processed. |
| 551 | * pFEAD - Information about this particular argument. |
| 552 | * pInt64Buf - pointer to a buffer of type INT64 |
| 553 | * pSizeTBuf - pointer to a buffer of native size type. |
| 554 | * |
| 555 | * Returns: |
| 556 | * pointer to the filled in buffer, else NULL on error. |
| 557 | * |
| 558 | */ |
| 559 | static PVOID GetRegisterValueAndReturnAddress(DebuggerEval *pDE, |
| 560 | DebuggerIPCE_FuncEvalArgData *pFEAD, |
| 561 | INT64 *pInt64Buf, |
| 562 | SIZE_T *pSizeTBuf |
| 563 | ) |
| 564 | { |
| 565 | LIMITED_METHOD_CONTRACT; |
| 566 | |
| 567 | PVOID pAddr; |
| 568 | |
| 569 | #if !defined(_WIN64) |
| 570 | pAddr = pInt64Buf; |
| 571 | DWORD *pLow = (DWORD*)(pInt64Buf); |
| 572 | DWORD *pHigh = pLow + 1; |
| 573 | #endif // _WIN64 |
| 574 | |
| 575 | switch (pFEAD->argHome.kind) |
| 576 | { |
| 577 | #if !defined(_WIN64) |
| 578 | case RAK_REGREG: |
| 579 | *pLow = GetRegisterValue(pDE, pFEAD->argHome.u.reg2, pFEAD->argHome.u.reg2Addr, pFEAD->argHome.u.reg2Value); |
| 580 | *pHigh = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 581 | break; |
| 582 | |
| 583 | case RAK_MEMREG: |
| 584 | *pLow = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 585 | *pHigh = *((DWORD*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)); |
| 586 | break; |
| 587 | |
| 588 | case RAK_REGMEM: |
| 589 | *pLow = *((DWORD*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)); |
| 590 | *pHigh = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 591 | break; |
| 592 | #endif // _WIN64 |
| 593 | |
| 594 | case RAK_REG: |
| 595 | // Simply grab the value out of the proper register. |
| 596 | *pSizeTBuf = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 597 | pAddr = pSizeTBuf; |
| 598 | break; |
| 599 | |
| 600 | default: |
| 601 | pAddr = NULL; |
| 602 | break; |
| 603 | } |
| 604 | |
| 605 | return pAddr; |
| 606 | } |
| 607 | |
| 608 | //--------------------------------------------------------------------------------------- |
| 609 | // |
| 610 | // Clean up any temporary value class variables we have allocated for the funceval. |
| 611 | // |
| 612 | // Arguments: |
| 613 | // pStackStructArray - array whose elements track the location and type of the temporary variables |
| 614 | // |
| 615 | |
| 616 | void CleanUpTemporaryVariables(ValueClassInfo ** ppProtectedValueClasses) |
| 617 | { |
| 618 | while (*ppProtectedValueClasses != NULL) |
| 619 | { |
| 620 | ValueClassInfo * pValueClassInfo = *ppProtectedValueClasses; |
| 621 | *ppProtectedValueClasses = pValueClassInfo->pNext; |
| 622 | |
| 623 | DeleteInteropSafe(reinterpret_cast<BYTE *>(pValueClassInfo)); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | |
| 628 | #ifdef _DEBUG |
| 629 | |
| 630 | // |
| 631 | // Create a parallel array that tracks that we have initialized information in |
| 632 | // each array. |
| 633 | // |
| 634 | #define MAX_DATA_LOCATIONS_TRACKED 100 |
| 635 | |
| 636 | typedef DWORD DataLocation; |
| 637 | |
| 638 | #define DL_NonExistent 0x00 |
| 639 | #define DL_ObjectRefArray 0x01 |
| 640 | #define DL_MaybeInteriorPtrArray 0x02 |
| 641 | #define DL_BufferForArgsArray 0x04 |
| 642 | #define DL_All 0xFF |
| 643 | |
| 644 | #endif // _DEBUG |
| 645 | |
| 646 | |
| 647 | /* |
| 648 | * GetFuncEvalArgValue |
| 649 | * |
| 650 | * This routine is used to fill the pArgument array with the appropriate value. This function |
| 651 | * uses the three parallel array entries given, and places the correct value, or reference to |
| 652 | * the value in pArgument. |
| 653 | * |
| 654 | * Parameters: |
| 655 | * pDE - pointer to the DebuggerEval object being processed. |
| 656 | * pFEAD - Information about this particular argument. |
| 657 | * isByRef - Is the argument being passed ByRef. |
| 658 | * fNeedBoxOrUnbox - Did the argument need boxing or unboxing. |
| 659 | * argTH - The type handle for the argument. |
| 660 | * byrefArgSigType - The signature type of a parameter that isByRef == true. |
| 661 | * pArgument - Location to place the reference or value. |
| 662 | * pMaybeInteriorPtrArg - A pointer that contains a value that may be pointers to |
| 663 | * the interior of a managed object. |
| 664 | * pObjectRefArg - A pointer that contains an object ref. It was built previously. |
| 665 | * pBufferArg - A pointer for holding stuff that did not need to be protected. |
| 666 | * |
| 667 | * Returns: |
| 668 | * None. |
| 669 | * |
| 670 | */ |
| 671 | static void GetFuncEvalArgValue(DebuggerEval *pDE, |
| 672 | DebuggerIPCE_FuncEvalArgData *pFEAD, |
| 673 | bool isByRef, |
| 674 | bool fNeedBoxOrUnbox, |
| 675 | TypeHandle argTH, |
| 676 | CorElementType byrefArgSigType, |
| 677 | TypeHandle byrefArgTH, |
| 678 | ARG_SLOT *pArgument, |
| 679 | void *pMaybeInteriorPtrArg, |
| 680 | OBJECTREF *pObjectRefArg, |
| 681 | INT64 *pBufferArg, |
| 682 | ValueClassInfo ** ppProtectedValueClasses, |
| 683 | CorElementType argSigType |
| 684 | DEBUG_ARG(DataLocation dataLocation) |
| 685 | ) |
| 686 | { |
| 687 | CONTRACTL |
| 688 | { |
| 689 | THROWS; |
| 690 | GC_NOTRIGGER; |
| 691 | } |
| 692 | CONTRACTL_END; |
| 693 | |
| 694 | _ASSERTE((dataLocation != DL_NonExistent) || |
| 695 | (pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE)); |
| 696 | |
| 697 | switch (pFEAD->argElementType) |
| 698 | { |
| 699 | case ELEMENT_TYPE_I8: |
| 700 | case ELEMENT_TYPE_U8: |
| 701 | case ELEMENT_TYPE_R8: |
| 702 | { |
| 703 | INT64 *pSource; |
| 704 | |
| 705 | #if defined(_WIN64) |
| 706 | _ASSERTE(dataLocation & DL_MaybeInteriorPtrArray); |
| 707 | |
| 708 | pSource = (INT64 *)pMaybeInteriorPtrArg; |
| 709 | #else // !_WIN64 |
| 710 | _ASSERTE(dataLocation & DL_BufferForArgsArray); |
| 711 | |
| 712 | pSource = pBufferArg; |
| 713 | #endif // !_WIN64 |
| 714 | |
| 715 | if (!isByRef) |
| 716 | { |
| 717 | *((INT64*)pArgument) = *pSource; |
| 718 | } |
| 719 | else |
| 720 | { |
| 721 | *pArgument = PtrToArgSlot(pSource); |
| 722 | } |
| 723 | } |
| 724 | break; |
| 725 | |
| 726 | case ELEMENT_TYPE_VALUETYPE: |
| 727 | { |
| 728 | SIZE_T v = 0; |
| 729 | LPVOID pAddr = NULL; |
| 730 | INT64 bigVal = 0; |
| 731 | |
| 732 | if (pFEAD->argAddr != NULL) |
| 733 | { |
| 734 | pAddr = *((void **)pMaybeInteriorPtrArg); |
| 735 | } |
| 736 | else |
| 737 | { |
| 738 | pAddr = GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
| 739 | |
| 740 | if (pAddr == NULL) |
| 741 | { |
| 742 | COMPlusThrow(kArgumentNullException); |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | |
| 747 | _ASSERTE(pAddr); |
| 748 | |
| 749 | if (!fNeedBoxOrUnbox && !isByRef) |
| 750 | { |
| 751 | _ASSERTE(argTH.GetMethodTable()); |
| 752 | |
| 753 | unsigned size = argTH.GetMethodTable()->GetNumInstanceFieldBytes(); |
| 754 | if (size <= sizeof(ARG_SLOT) |
| 755 | #if defined(_TARGET_AMD64_) |
| 756 | // On AMD64 we pass value types of size which are not powers of 2 by ref. |
| 757 | && ((size & (size-1)) == 0) |
| 758 | #endif // _TARGET_AMD64_ |
| 759 | ) |
| 760 | { |
| 761 | memcpyNoGCRefs(ArgSlotEndianessFixup(pArgument, sizeof(LPVOID)), pAddr, size); |
| 762 | } |
| 763 | else |
| 764 | { |
| 765 | _ASSERTE(pFEAD->argAddr != NULL); |
| 766 | #if defined(ENREGISTERED_PARAMTYPE_MAXSIZE) |
| 767 | if (ArgIterator::IsArgPassedByRef(argTH)) |
| 768 | { |
| 769 | // On X64, by-value value class arguments which are bigger than 8 bytes are passed by reference |
| 770 | // according to the native calling convention. The same goes for value class arguments whose size |
| 771 | // is smaller than 8 bytes but not a power of 2. To avoid side effets, we need to allocate a |
| 772 | // temporary variable and pass that by reference instead. On ARM64, by-value value class |
| 773 | // arguments which are bigger than 16 bytes are passed by reference. |
| 774 | _ASSERTE(ppProtectedValueClasses != NULL); |
| 775 | |
| 776 | BYTE * pTemp = new (interopsafe) BYTE[ALIGN_UP(sizeof(ValueClassInfo), 8) + size]; |
| 777 | |
| 778 | ValueClassInfo * pValueClassInfo = (ValueClassInfo *)pTemp; |
| 779 | LPVOID pData = pTemp + ALIGN_UP(sizeof(ValueClassInfo), 8); |
| 780 | |
| 781 | memcpyNoGCRefs(pData, pAddr, size); |
| 782 | *pArgument = PtrToArgSlot(pData); |
| 783 | |
| 784 | pValueClassInfo->pData = pData; |
| 785 | pValueClassInfo->pMT = argTH.GetMethodTable(); |
| 786 | |
| 787 | pValueClassInfo->pNext = *ppProtectedValueClasses; |
| 788 | *ppProtectedValueClasses = pValueClassInfo; |
| 789 | } |
| 790 | else |
| 791 | #endif // ENREGISTERED_PARAMTYPE_MAXSIZE |
| 792 | *pArgument = PtrToArgSlot(pAddr); |
| 793 | |
| 794 | } |
| 795 | } |
| 796 | else |
| 797 | { |
| 798 | if (fNeedBoxOrUnbox) |
| 799 | { |
| 800 | *pArgument = ObjToArgSlot(*pObjectRefArg); |
| 801 | } |
| 802 | else |
| 803 | { |
| 804 | if (pFEAD->argAddr) |
| 805 | { |
| 806 | *pArgument = PtrToArgSlot(pAddr); |
| 807 | } |
| 808 | else |
| 809 | { |
| 810 | // The argument is the address of where we're holding the primitive in the PrimitiveArg array. We |
| 811 | // stick the real value from the register into the PrimitiveArg array. It should be in a single |
| 812 | // register since it is pointer-sized. |
| 813 | _ASSERTE( pFEAD->argHome.kind == RAK_REG ); |
| 814 | *pArgument = PtrToArgSlot(pBufferArg); |
| 815 | *pBufferArg = (INT64)v; |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | break; |
| 821 | |
| 822 | default: |
| 823 | // literal values smaller than 8 bytes and "special types" (e.g. object, string, etc.) |
| 824 | |
| 825 | { |
| 826 | INT64 *pSource; |
| 827 | |
| 828 | INDEBUG(DataLocation expectedLocation); |
| 829 | |
| 830 | #ifdef _TARGET_X86_ |
| 831 | if ((pFEAD->argElementType == ELEMENT_TYPE_I4) || |
| 832 | (pFEAD->argElementType == ELEMENT_TYPE_U4) || |
| 833 | (pFEAD->argElementType == ELEMENT_TYPE_R4)) |
| 834 | { |
| 835 | INDEBUG(expectedLocation = DL_MaybeInteriorPtrArray); |
| 836 | |
| 837 | pSource = (INT64 *)pMaybeInteriorPtrArg; |
| 838 | } |
| 839 | else |
| 840 | #endif |
| 841 | if (IsElementTypeSpecial(pFEAD->argElementType)) |
| 842 | { |
| 843 | INDEBUG(expectedLocation = DL_ObjectRefArray); |
| 844 | |
| 845 | pSource = (INT64 *)pObjectRefArg; |
| 846 | } |
| 847 | else |
| 848 | { |
| 849 | INDEBUG(expectedLocation = DL_BufferForArgsArray); |
| 850 | |
| 851 | pSource = pBufferArg; |
| 852 | } |
| 853 | |
| 854 | if (pFEAD->argAddr != NULL) |
| 855 | { |
| 856 | if (!isByRef) |
| 857 | { |
| 858 | if (pFEAD->argIsHandleValue) |
| 859 | { |
| 860 | _ASSERTE(dataLocation & DL_BufferForArgsArray); |
| 861 | |
| 862 | OBJECTHANDLE oh = *((OBJECTHANDLE*)(pBufferArg)); // Always comes from buffer |
| 863 | *pArgument = PtrToArgSlot(g_pEEInterface->GetObjectFromHandle(oh)); |
| 864 | } |
| 865 | else |
| 866 | { |
| 867 | _ASSERTE(dataLocation & expectedLocation); |
| 868 | |
| 869 | if (pSource != NULL) |
| 870 | { |
| 871 | *pArgument = *pSource; // may come from either array. |
| 872 | } |
| 873 | else |
| 874 | { |
| 875 | *pArgument = NULL; |
| 876 | } |
| 877 | } |
| 878 | } |
| 879 | else |
| 880 | { |
| 881 | if (pFEAD->argIsHandleValue) |
| 882 | { |
| 883 | _ASSERTE(dataLocation & DL_BufferForArgsArray); |
| 884 | |
| 885 | *pArgument = *pBufferArg; // Buffer contains the object handle, in this case, so |
| 886 | // just copy that across. |
| 887 | } |
| 888 | else |
| 889 | { |
| 890 | _ASSERTE(dataLocation & expectedLocation); |
| 891 | |
| 892 | *pArgument = PtrToArgSlot(pSource); // Load the argument with the address of our buffer. |
| 893 | } |
| 894 | } |
| 895 | } |
| 896 | else if (pFEAD->argIsLiteral) |
| 897 | { |
| 898 | _ASSERTE(dataLocation & expectedLocation); |
| 899 | |
| 900 | if (!isByRef) |
| 901 | { |
| 902 | if (pSource != NULL) |
| 903 | { |
| 904 | *pArgument = *pSource; // may come from either array. |
| 905 | } |
| 906 | else |
| 907 | { |
| 908 | *pArgument = NULL; |
| 909 | } |
| 910 | } |
| 911 | else |
| 912 | { |
| 913 | *pArgument = PtrToArgSlot(pSource); // Load the argument with the address of our buffer. |
| 914 | } |
| 915 | } |
| 916 | else |
| 917 | { |
| 918 | if (!isByRef) |
| 919 | { |
| 920 | if (pSource != NULL) |
| 921 | { |
| 922 | *pArgument = *pSource; // may come from either array. |
| 923 | } |
| 924 | else |
| 925 | { |
| 926 | *pArgument = NULL; |
| 927 | } |
| 928 | } |
| 929 | else |
| 930 | { |
| 931 | *pArgument = PtrToArgSlot(pSource); // Load the argument with the address of our buffer. |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | // If we need to unbox, then unbox the arg now. |
| 936 | if (fNeedBoxOrUnbox) |
| 937 | { |
| 938 | if (!isByRef) |
| 939 | { |
| 940 | // function expects valuetype, argument received is class or object |
| 941 | |
| 942 | // Take the ObjectRef off the stack. |
| 943 | ARG_SLOT oi1 = *pArgument; |
| 944 | OBJECTREF o1 = ArgSlotToObj(oi1); |
| 945 | |
| 946 | // For Nullable types, we need a 'true' nullable to pass to the function, and we do this |
| 947 | // by passing a boxed nullable that we unbox. We allocated this space earlier however we |
| 948 | // did not know the data location until just now. Fill it in with the data and use that |
| 949 | // to pass to the function. |
| 950 | |
| 951 | if (Nullable::IsNullableType(argTH)) |
| 952 | { |
| 953 | _ASSERTE(*pObjectRefArg != 0); |
| 954 | _ASSERTE((*pObjectRefArg)->GetMethodTable() == argTH.GetMethodTable()); |
| 955 | if (o1 != *pObjectRefArg) |
| 956 | { |
| 957 | Nullable::UnBoxNoCheck((*pObjectRefArg)->GetData(), o1, (*pObjectRefArg)->GetMethodTable()); |
| 958 | o1 = *pObjectRefArg; |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | if (o1 == NULL) |
| 963 | { |
| 964 | COMPlusThrow(kArgumentNullException); |
| 965 | } |
| 966 | |
| 967 | |
| 968 | if (!o1->GetMethodTable()->IsValueType()) |
| 969 | { |
| 970 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 971 | } |
| 972 | |
| 973 | |
| 974 | // Unbox the little fella to get a pointer to the raw data. |
| 975 | void *pData = o1->GetData(); |
| 976 | |
| 977 | // Get its size to make sure it fits in an ARG_SLOT |
| 978 | unsigned size = o1->GetMethodTable()->GetNumInstanceFieldBytes(); |
| 979 | |
| 980 | if (size <= sizeof(ARG_SLOT)) |
| 981 | { |
| 982 | // Its not ByRef, so we need to copy the value class onto the ARG_SLOT. |
| 983 | CopyValueClassUnchecked(ArgSlotEndianessFixup(pArgument, sizeof(LPVOID)), pData, o1->GetMethodTable()); |
| 984 | } |
| 985 | else |
| 986 | { |
| 987 | // Store pointer to the space in the ARG_SLOT |
| 988 | *pArgument = PtrToArgSlot(pData); |
| 989 | } |
| 990 | } |
| 991 | else |
| 992 | { |
| 993 | // Function expects byref valuetype, argument received is byref class. |
| 994 | |
| 995 | // Grab the ObjectRef off the stack via the pointer on the stack. Note: the stack has a pointer to the |
| 996 | // ObjectRef since the arg was specified as byref. |
| 997 | OBJECTREF* op1 = (OBJECTREF*)ArgSlotToPtr(*pArgument); |
| 998 | if (op1 == NULL) |
| 999 | { |
| 1000 | COMPlusThrow(kArgumentNullException); |
| 1001 | } |
| 1002 | OBJECTREF o1 = *op1; |
| 1003 | |
| 1004 | // For Nullable types, we need a 'true' nullable to pass to the function, and we do this |
| 1005 | // by passing a boxed nullable that we unbox. We allocated this space earlier however we |
| 1006 | // did not know the data location until just now. Fill it in with the data and use that |
| 1007 | // to pass to the function. |
| 1008 | |
| 1009 | if (Nullable::IsNullableType(byrefArgTH)) |
| 1010 | { |
| 1011 | _ASSERTE(*pObjectRefArg != 0 && (*pObjectRefArg)->GetMethodTable() == byrefArgTH.GetMethodTable()); |
| 1012 | if (o1 != *pObjectRefArg) |
| 1013 | { |
| 1014 | Nullable::UnBoxNoCheck((*pObjectRefArg)->GetData(), o1, (*pObjectRefArg)->GetMethodTable()); |
| 1015 | o1 = *pObjectRefArg; |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | if (o1 == NULL) |
| 1020 | { |
| 1021 | COMPlusThrow(kArgumentNullException); |
| 1022 | } |
| 1023 | |
| 1024 | _ASSERTE(o1->GetMethodTable()->IsValueType()); |
| 1025 | |
| 1026 | // Unbox the little fella to get a pointer to the raw data. |
| 1027 | void *pData = o1->GetData(); |
| 1028 | |
| 1029 | // If it is ByRef, then we just replace the ObjectRef with a pointer to the data. |
| 1030 | *pArgument = PtrToArgSlot(pData); |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | // Validate any objectrefs that are supposed to be on the stack. |
| 1035 | // <TODO>@TODO: Move this to before the boxing/unboxing above</TODO> |
| 1036 | if (!fNeedBoxOrUnbox) |
| 1037 | { |
| 1038 | Object *objPtr; |
| 1039 | if (!isByRef) |
| 1040 | { |
| 1041 | if (IsElementTypeSpecial(argSigType)) |
| 1042 | { |
| 1043 | // validate the integrity of the object |
| 1044 | objPtr = (Object*)ArgSlotToPtr(*pArgument); |
| 1045 | if (FAILED(ValidateObject(objPtr))) |
| 1046 | { |
| 1047 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 1048 | } |
| 1049 | } |
| 1050 | } |
| 1051 | else |
| 1052 | { |
| 1053 | _ASSERTE(argSigType == ELEMENT_TYPE_BYREF); |
| 1054 | if (IsElementTypeSpecial(byrefArgSigType)) |
| 1055 | { |
| 1056 | objPtr = *(Object**)(ArgSlotToPtr(*pArgument)); |
| 1057 | if (FAILED(ValidateObject(objPtr))) |
| 1058 | { |
| 1059 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 1060 | } |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | static CorDebugRegister GetArgAddrFromReg( DebuggerIPCE_FuncEvalArgData *pFEAD) |
| 1069 | { |
| 1070 | CorDebugRegister retval = REGISTER_INSTRUCTION_POINTER; // good as default as any |
| 1071 | #if defined(_WIN64) |
| 1072 | retval = (pFEAD->argHome.kind == RAK_REG ? |
| 1073 | pFEAD->argHome.reg1 : |
| 1074 | (CorDebugRegister)((int)REGISTER_IA64_F0 + pFEAD->argHome.floatIndex)); |
| 1075 | #else // !_WIN64 |
| 1076 | retval = pFEAD->argHome.reg1; |
| 1077 | #endif // !_WIN64 |
| 1078 | return retval; |
| 1079 | } |
| 1080 | |
| 1081 | // |
| 1082 | // Given info about a byref argument, retrieve the current value from the pBufferForArgsArray, |
| 1083 | // the pMaybeInteriorPtrArray, the pByRefMaybeInteriorPtrArray, or the pObjectRefArray. Then |
| 1084 | // place it back into the proper register or address. |
| 1085 | // |
| 1086 | // Note that we should never use the argAddr of the DebuggerIPCE_FuncEvalArgData in this function |
| 1087 | // since the address may be an interior GC pointer and may have been moved by the GC. Instead, |
| 1088 | // use the pByRefMaybeInteriorPtrArray. |
| 1089 | // |
| 1090 | static void SetFuncEvalByRefArgValue(DebuggerEval *pDE, |
| 1091 | DebuggerIPCE_FuncEvalArgData *pFEAD, |
| 1092 | CorElementType byrefArgSigType, |
| 1093 | INT64 bufferByRefArg, |
| 1094 | void *maybeInteriorPtrArg, |
| 1095 | void *byRefMaybeInteriorPtrArg, |
| 1096 | OBJECTREF objectRefByRefArg) |
| 1097 | { |
| 1098 | WRAPPER_NO_CONTRACT; |
| 1099 | |
| 1100 | switch (pFEAD->argElementType) |
| 1101 | { |
| 1102 | case ELEMENT_TYPE_I8: |
| 1103 | case ELEMENT_TYPE_U8: |
| 1104 | case ELEMENT_TYPE_R8: |
| 1105 | // 64bit values |
| 1106 | { |
| 1107 | INT64 source; |
| 1108 | |
| 1109 | #if defined(_WIN64) |
| 1110 | source = (INT64)maybeInteriorPtrArg; |
| 1111 | #else // !_WIN64 |
| 1112 | source = bufferByRefArg; |
| 1113 | #endif // !_WIN64 |
| 1114 | |
| 1115 | if (pFEAD->argIsLiteral) |
| 1116 | { |
| 1117 | // If this was a literal arg, then copy the updated primitive back into the literal. |
| 1118 | memcpy(pFEAD->argLiteralData, &source, sizeof(pFEAD->argLiteralData)); |
| 1119 | } |
| 1120 | else if (pFEAD->argAddr != NULL) |
| 1121 | { |
| 1122 | *((INT64 *)byRefMaybeInteriorPtrArg) = source; |
| 1123 | return; |
| 1124 | } |
| 1125 | else |
| 1126 | { |
| 1127 | #if !defined(_WIN64) |
| 1128 | // RAK_REG is the only 4 byte type, all others are 8 byte types. |
| 1129 | _ASSERTE(pFEAD->argHome.kind != RAK_REG); |
| 1130 | |
| 1131 | SIZE_T *pLow = (SIZE_T*)(&source); |
| 1132 | SIZE_T *pHigh = pLow + 1; |
| 1133 | |
| 1134 | switch (pFEAD->argHome.kind) |
| 1135 | { |
| 1136 | case RAK_REGREG: |
| 1137 | SetRegisterValue(pDE, pFEAD->argHome.u.reg2, pFEAD->argHome.u.reg2Addr, *pLow); |
| 1138 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, *pHigh); |
| 1139 | break; |
| 1140 | |
| 1141 | case RAK_MEMREG: |
| 1142 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, *pLow); |
| 1143 | *((SIZE_T*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)) = *pHigh; |
| 1144 | break; |
| 1145 | |
| 1146 | case RAK_REGMEM: |
| 1147 | *((SIZE_T*)CORDB_ADDRESS_TO_PTR(pFEAD->argHome.addr)) = *pLow; |
| 1148 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, *pHigh); |
| 1149 | break; |
| 1150 | |
| 1151 | default: |
| 1152 | break; |
| 1153 | } |
| 1154 | #else // _WIN64 |
| 1155 | // The only types we use are RAK_REG and RAK_FLOAT, and both of them can be 4 or 8 bytes. |
| 1156 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) || (pFEAD->argHome.kind == RAK_FLOAT)); |
| 1157 | |
| 1158 | SetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, source); |
| 1159 | #endif // _WIN64 |
| 1160 | } |
| 1161 | } |
| 1162 | break; |
| 1163 | |
| 1164 | default: |
| 1165 | // literal values smaller than 8 bytes and "special types" (e.g. object, array, string, etc.) |
| 1166 | { |
| 1167 | SIZE_T source; |
| 1168 | |
| 1169 | #ifdef _TARGET_X86_ |
| 1170 | if ((pFEAD->argElementType == ELEMENT_TYPE_I4) || |
| 1171 | (pFEAD->argElementType == ELEMENT_TYPE_U4) || |
| 1172 | (pFEAD->argElementType == ELEMENT_TYPE_R4)) |
| 1173 | { |
| 1174 | source = (SIZE_T)maybeInteriorPtrArg; |
| 1175 | } |
| 1176 | else |
| 1177 | { |
| 1178 | #endif |
| 1179 | source = (SIZE_T)bufferByRefArg; |
| 1180 | #ifdef _TARGET_X86_ |
| 1181 | } |
| 1182 | #endif |
| 1183 | |
| 1184 | if (pFEAD->argIsLiteral) |
| 1185 | { |
| 1186 | // If this was a literal arg, then copy the updated primitive back into the literal. |
| 1187 | // The literall buffer is a fixed size (8 bytes), but our source may be 4 or 8 bytes |
| 1188 | // depending on the platform. To prevent reading past the end of the source, we |
| 1189 | // zero the destination buffer and copy only as many bytes as available. |
| 1190 | memset( pFEAD->argLiteralData, 0, sizeof(pFEAD->argLiteralData) ); |
| 1191 | if (IsElementTypeSpecial(pFEAD->argElementType)) |
| 1192 | { |
| 1193 | _ASSERTE( sizeof(pFEAD->argLiteralData) >= sizeof(objectRefByRefArg) ); |
| 1194 | memcpy(pFEAD->argLiteralData, &objectRefByRefArg, sizeof(objectRefByRefArg)); |
| 1195 | } |
| 1196 | else |
| 1197 | { |
| 1198 | _ASSERTE( sizeof(pFEAD->argLiteralData) >= sizeof(source) ); |
| 1199 | memcpy(pFEAD->argLiteralData, &source, sizeof(source)); |
| 1200 | } |
| 1201 | } |
| 1202 | else if (pFEAD->argAddr == NULL) |
| 1203 | { |
| 1204 | // If the 32bit value is enregistered, copy it back to the proper regs. |
| 1205 | |
| 1206 | // RAK_REG is the only valid 4 byte type on WIN32. On WIN64, both RAK_REG and RAK_FLOAT can be |
| 1207 | // 4 bytes or 8 bytes. |
| 1208 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) |
| 1209 | WIN64_ONLY(|| (pFEAD->argHome.kind == RAK_FLOAT))); |
| 1210 | |
| 1211 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
| 1212 | |
| 1213 | // Shove the result back into the proper register. |
| 1214 | if (IsElementTypeSpecial(pFEAD->argElementType)) |
| 1215 | { |
| 1216 | SetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, (SIZE_T)ObjToArgSlot(objectRefByRefArg)); |
| 1217 | } |
| 1218 | else |
| 1219 | { |
| 1220 | SetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, (SIZE_T)source); |
| 1221 | } |
| 1222 | } |
| 1223 | else |
| 1224 | { |
| 1225 | // If the result was an object by ref, then copy back the new location of the object (in GC case). |
| 1226 | if (pFEAD->argIsHandleValue) |
| 1227 | { |
| 1228 | // do nothing. The Handle was passed in the pArgument array directly |
| 1229 | } |
| 1230 | else if (IsElementTypeSpecial(pFEAD->argElementType)) |
| 1231 | { |
| 1232 | *((SIZE_T*)byRefMaybeInteriorPtrArg) = (SIZE_T)ObjToArgSlot(objectRefByRefArg); |
| 1233 | } |
| 1234 | else if (pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE) |
| 1235 | { |
| 1236 | // Do nothing, we passed in the pointer to the valuetype in the pArgument array directly. |
| 1237 | } |
| 1238 | else |
| 1239 | { |
| 1240 | GetAndSetLiteralValue(byRefMaybeInteriorPtrArg, pFEAD->argElementType, &source, ELEMENT_TYPE_PTR); |
| 1241 | } |
| 1242 | } |
| 1243 | } // end default |
| 1244 | } // end switch |
| 1245 | } |
| 1246 | |
| 1247 | |
| 1248 | /* |
| 1249 | * GCProtectAllPassedArgs |
| 1250 | * |
| 1251 | * This routine is the first step in doing a func-eval. For a complete overview, see |
| 1252 | * the comments at the top of this file. |
| 1253 | * |
| 1254 | * This routine over-aggressively protects all arguments that may be references to |
| 1255 | * managed objects. This function cannot crawl the function signature, since doing |
| 1256 | * so may trigger a GC, and thus, we must assume everything is ByRef. |
| 1257 | * |
| 1258 | * Parameters: |
| 1259 | * pDE - pointer to the DebuggerEval object being processed. |
| 1260 | * pObjectRefArray - An array that contains any object refs. It was built previously. |
| 1261 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
| 1262 | * the interior of a managed object. |
| 1263 | * pBufferForArgsArray - An array for holding stuff that does not need to be protected. |
| 1264 | * Any handle for the 'this' pointer is put in here for pulling it out later. |
| 1265 | * |
| 1266 | * Returns: |
| 1267 | * None. |
| 1268 | * |
| 1269 | */ |
| 1270 | static void GCProtectAllPassedArgs(DebuggerEval *pDE, |
| 1271 | OBJECTREF *pObjectRefArray, |
| 1272 | void **pMaybeInteriorPtrArray, |
| 1273 | void **pByRefMaybeInteriorPtrArray, |
| 1274 | INT64 *pBufferForArgsArray |
| 1275 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 1276 | ) |
| 1277 | { |
| 1278 | CONTRACTL |
| 1279 | { |
| 1280 | NOTHROW; |
| 1281 | GC_NOTRIGGER; |
| 1282 | MODE_COOPERATIVE; |
| 1283 | } |
| 1284 | CONTRACTL_END; |
| 1285 | |
| 1286 | |
| 1287 | DebuggerIPCE_FuncEvalArgData *argData = pDE->GetArgData(); |
| 1288 | |
| 1289 | unsigned currArgIndex = 0; |
| 1290 | |
| 1291 | // |
| 1292 | // Gather all the information for the parameters. |
| 1293 | // |
| 1294 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
| 1295 | { |
| 1296 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
| 1297 | |
| 1298 | // In case any of the arguments is a by ref argument and points into the GC heap, |
| 1299 | // we need to GC protect their addresses as well. |
| 1300 | if (pFEAD->argAddr != NULL) |
| 1301 | { |
| 1302 | pByRefMaybeInteriorPtrArray[currArgIndex] = pFEAD->argAddr; |
| 1303 | } |
| 1304 | |
| 1305 | switch (pFEAD->argElementType) |
| 1306 | { |
| 1307 | case ELEMENT_TYPE_I8: |
| 1308 | case ELEMENT_TYPE_U8: |
| 1309 | case ELEMENT_TYPE_R8: |
| 1310 | // 64bit values |
| 1311 | |
| 1312 | #if defined(_WIN64) |
| 1313 | // |
| 1314 | // Only need to worry about protecting if a pointer is a 64 bit quantity. |
| 1315 | // |
| 1316 | _ASSERTE(sizeof(void *) == sizeof(INT64)); |
| 1317 | |
| 1318 | if (pFEAD->argAddr != NULL) |
| 1319 | { |
| 1320 | pMaybeInteriorPtrArray[currArgIndex] = *((void **)(pFEAD->argAddr)); |
| 1321 | #ifdef _DEBUG |
| 1322 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1323 | { |
| 1324 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
| 1325 | } |
| 1326 | #endif |
| 1327 | } |
| 1328 | else if (pFEAD->argIsLiteral) |
| 1329 | { |
| 1330 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(void *)); |
| 1331 | |
| 1332 | // |
| 1333 | // If this is a byref literal arg, then it maybe an interior ptr. |
| 1334 | // |
| 1335 | void *v = NULL; |
| 1336 | memcpy(&v, pFEAD->argLiteralData, sizeof(v)); |
| 1337 | pMaybeInteriorPtrArray[currArgIndex] = v; |
| 1338 | #ifdef _DEBUG |
| 1339 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1340 | { |
| 1341 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
| 1342 | } |
| 1343 | #endif |
| 1344 | } |
| 1345 | else |
| 1346 | { |
| 1347 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) || (pFEAD->argHome.kind == RAK_FLOAT)); |
| 1348 | |
| 1349 | |
| 1350 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
| 1351 | SIZE_T v = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 1352 | pMaybeInteriorPtrArray[currArgIndex] = (void *)(v); |
| 1353 | |
| 1354 | #ifdef _DEBUG |
| 1355 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1356 | { |
| 1357 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
| 1358 | } |
| 1359 | #endif |
| 1360 | } |
| 1361 | #endif // _WIN64 |
| 1362 | break; |
| 1363 | |
| 1364 | case ELEMENT_TYPE_VALUETYPE: |
| 1365 | // |
| 1366 | // If the value type address could be an interior pointer. |
| 1367 | // |
| 1368 | if (pFEAD->argAddr != NULL) |
| 1369 | { |
| 1370 | pMaybeInteriorPtrArray[currArgIndex] = ((void **)(pFEAD->argAddr)); |
| 1371 | } |
| 1372 | |
| 1373 | INDEBUG(pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray); |
| 1374 | break; |
| 1375 | |
| 1376 | case ELEMENT_TYPE_CLASS: |
| 1377 | case ELEMENT_TYPE_OBJECT: |
| 1378 | case ELEMENT_TYPE_STRING: |
| 1379 | case ELEMENT_TYPE_ARRAY: |
| 1380 | case ELEMENT_TYPE_SZARRAY: |
| 1381 | |
| 1382 | if (pFEAD->argAddr != NULL) |
| 1383 | { |
| 1384 | if (pFEAD->argIsHandleValue) |
| 1385 | { |
| 1386 | OBJECTHANDLE oh = (OBJECTHANDLE)(pFEAD->argAddr); |
| 1387 | pBufferForArgsArray[currArgIndex] = (INT64)(size_t)oh; |
| 1388 | |
| 1389 | INDEBUG(pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray); |
| 1390 | } |
| 1391 | else |
| 1392 | { |
| 1393 | pObjectRefArray[currArgIndex] = *((OBJECTREF *)(pFEAD->argAddr)); |
| 1394 | |
| 1395 | INDEBUG(pDataLocationArray[currArgIndex] |= DL_ObjectRefArray); |
| 1396 | } |
| 1397 | } |
| 1398 | else if (pFEAD->argIsLiteral) |
| 1399 | { |
| 1400 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(OBJECTREF)); |
| 1401 | OBJECTREF v = NULL; |
| 1402 | memcpy(&v, pFEAD->argLiteralData, sizeof(v)); |
| 1403 | pObjectRefArray[currArgIndex] = v; |
| 1404 | #ifdef _DEBUG |
| 1405 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1406 | { |
| 1407 | pDataLocationArray[currArgIndex] |= DL_ObjectRefArray; |
| 1408 | } |
| 1409 | #endif |
| 1410 | } |
| 1411 | else |
| 1412 | { |
| 1413 | // RAK_REG is the only valid pointer-sized type. |
| 1414 | _ASSERTE(pFEAD->argHome.kind == RAK_REG); |
| 1415 | |
| 1416 | // Simply grab the value out of the proper register. |
| 1417 | SIZE_T v = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 1418 | |
| 1419 | // The argument is the address. |
| 1420 | pObjectRefArray[currArgIndex] = (OBJECTREF)v; |
| 1421 | #ifdef _DEBUG |
| 1422 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1423 | { |
| 1424 | pDataLocationArray[currArgIndex] |= DL_ObjectRefArray; |
| 1425 | } |
| 1426 | #endif |
| 1427 | } |
| 1428 | break; |
| 1429 | |
| 1430 | case ELEMENT_TYPE_I4: |
| 1431 | case ELEMENT_TYPE_U4: |
| 1432 | case ELEMENT_TYPE_R4: |
| 1433 | // 32bit values |
| 1434 | |
| 1435 | #ifdef _TARGET_X86_ |
| 1436 | _ASSERTE(sizeof(void *) == sizeof(INT32)); |
| 1437 | |
| 1438 | if (pFEAD->argAddr != NULL) |
| 1439 | { |
| 1440 | if (pFEAD->argIsHandleValue) |
| 1441 | { |
| 1442 | // |
| 1443 | // Ignorable - no need to protect |
| 1444 | // |
| 1445 | } |
| 1446 | else |
| 1447 | { |
| 1448 | pMaybeInteriorPtrArray[currArgIndex] = *((void **)(pFEAD->argAddr)); |
| 1449 | #ifdef _DEBUG |
| 1450 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1451 | { |
| 1452 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
| 1453 | } |
| 1454 | #endif |
| 1455 | } |
| 1456 | } |
| 1457 | else if (pFEAD->argIsLiteral) |
| 1458 | { |
| 1459 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(INT32)); |
| 1460 | |
| 1461 | // |
| 1462 | // If this is a byref literal arg, then it maybe an interior ptr. |
| 1463 | // |
| 1464 | void *v = NULL; |
| 1465 | memcpy(&v, pFEAD->argLiteralData, sizeof(v)); |
| 1466 | pMaybeInteriorPtrArray[currArgIndex] = v; |
| 1467 | #ifdef _DEBUG |
| 1468 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1469 | { |
| 1470 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
| 1471 | } |
| 1472 | #endif |
| 1473 | } |
| 1474 | else |
| 1475 | { |
| 1476 | // RAK_REG is the only valid 4 byte type on WIN32. |
| 1477 | _ASSERTE(pFEAD->argHome.kind == RAK_REG); |
| 1478 | |
| 1479 | // Simply grab the value out of the proper register. |
| 1480 | SIZE_T v = GetRegisterValue(pDE, pFEAD->argHome.reg1, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 1481 | |
| 1482 | // The argument is the address. |
| 1483 | pMaybeInteriorPtrArray[currArgIndex] = (void *)v; |
| 1484 | #ifdef _DEBUG |
| 1485 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1486 | { |
| 1487 | pDataLocationArray[currArgIndex] |= DL_MaybeInteriorPtrArray; |
| 1488 | } |
| 1489 | #endif |
| 1490 | } |
| 1491 | #endif // _TARGET_X86_ |
| 1492 | |
| 1493 | default: |
| 1494 | // |
| 1495 | // Ignorable - no need to protect |
| 1496 | // |
| 1497 | break; |
| 1498 | } |
| 1499 | } |
| 1500 | } |
| 1501 | |
| 1502 | /* |
| 1503 | * ResolveFuncEvalGenericArgInfo |
| 1504 | * |
| 1505 | * This function pulls out any generic args and makes sure the method is loaded for it. |
| 1506 | * |
| 1507 | * Parameters: |
| 1508 | * pDE - pointer to the DebuggerEval object being processed. |
| 1509 | * |
| 1510 | * Returns: |
| 1511 | * None. |
| 1512 | * |
| 1513 | */ |
| 1514 | void ResolveFuncEvalGenericArgInfo(DebuggerEval *pDE) |
| 1515 | { |
| 1516 | CONTRACTL |
| 1517 | { |
| 1518 | THROWS; |
| 1519 | GC_TRIGGERS; |
| 1520 | } |
| 1521 | CONTRACTL_END; |
| 1522 | |
| 1523 | DebuggerIPCE_TypeArgData *firstdata = pDE->GetTypeArgData(); |
| 1524 | unsigned int nGenericArgs = pDE->m_genericArgsCount; |
| 1525 | SIZE_T cbAllocSize; |
| 1526 | if ((!ClrSafeInt<SIZE_T>::multiply(nGenericArgs, sizeof(TypeHandle *), cbAllocSize)) || |
| 1527 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 1528 | { |
| 1529 | ThrowHR(COR_E_OVERFLOW); |
| 1530 | } |
| 1531 | TypeHandle * pGenericArgs = (nGenericArgs == 0) ? NULL : (TypeHandle *) _alloca(cbAllocSize); |
| 1532 | |
| 1533 | // |
| 1534 | // Snag the type arguments from the input and get the |
| 1535 | // method desc that corresponds to the instantiated desc. |
| 1536 | // |
| 1537 | Debugger::TypeDataWalk walk(firstdata, pDE->m_genericArgsNodeCount); |
| 1538 | walk.ReadTypeHandles(nGenericArgs, pGenericArgs); |
| 1539 | |
| 1540 | // <TODO>better error message</TODO> |
| 1541 | if (!walk.Finished()) |
| 1542 | { |
| 1543 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
| 1544 | } |
| 1545 | |
| 1546 | // Find the proper MethodDesc that we need to call. |
| 1547 | // Since we're already in the target domain, it can't be unloaded so it's safe to |
| 1548 | // use domain specific structures like the Module*. |
| 1549 | _ASSERTE( GetAppDomain() == pDE->m_debuggerModule->GetAppDomain() ); |
| 1550 | pDE->m_md = g_pEEInterface->LoadMethodDef(pDE->m_debuggerModule->GetRuntimeModule(), |
| 1551 | pDE->m_methodToken, |
| 1552 | nGenericArgs, |
| 1553 | pGenericArgs, |
| 1554 | &(pDE->m_ownerTypeHandle)); |
| 1555 | |
| 1556 | |
| 1557 | // We better have a MethodDesc at this point. |
| 1558 | _ASSERTE(pDE->m_md != NULL); |
| 1559 | |
| 1560 | ValidateFuncEvalReturnType(pDE->m_evalType , pDE->m_md->GetMethodTable()); |
| 1561 | |
| 1562 | // If this is a new object operation, then we should have a .ctor. |
| 1563 | if ((pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) && !pDE->m_md->IsCtor()) |
| 1564 | { |
| 1565 | COMPlusThrow(kArgumentException, W("Argument_MissingDefaultConstructor" )); |
| 1566 | } |
| 1567 | |
| 1568 | pDE->m_md->EnsureActive(); |
| 1569 | |
| 1570 | // Run the Class Init for this class, if necessary. |
| 1571 | MethodTable * pOwningMT = pDE->m_ownerTypeHandle.GetMethodTable(); |
| 1572 | pOwningMT->EnsureInstanceActive(); |
| 1573 | pOwningMT->CheckRunClassInitThrowing(); |
| 1574 | |
| 1575 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
| 1576 | { |
| 1577 | // Work out the exact type of the allocated object |
| 1578 | pDE->m_resultType = (nGenericArgs == 0) |
| 1579 | ? TypeHandle(pDE->m_md->GetMethodTable()) |
| 1580 | : g_pEEInterface->LoadInstantiation(pDE->m_md->GetModule(), pDE->m_md->GetMethodTable()->GetCl(), nGenericArgs, pGenericArgs); |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | |
| 1585 | /* |
| 1586 | * BoxFuncEvalThisParameter |
| 1587 | * |
| 1588 | * This function is a helper for DoNormalFuncEval. It boxes the 'this' parameter if necessary. |
| 1589 | * For example, when a method Object.ToString is called on a value class like System.DateTime |
| 1590 | * |
| 1591 | * Parameters: |
| 1592 | * pDE - pointer to the DebuggerEval object being processed. |
| 1593 | * argData - Array of information about the arguments. |
| 1594 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
| 1595 | * the interior of a managed object. |
| 1596 | * pObjectRef - A GC protected place to put a boxed value, if necessary. |
| 1597 | * |
| 1598 | * Returns: |
| 1599 | * None |
| 1600 | * |
| 1601 | */ |
| 1602 | void BoxFuncEvalThisParameter(DebuggerEval *pDE, |
| 1603 | DebuggerIPCE_FuncEvalArgData *argData, |
| 1604 | void **pMaybeInteriorPtrArray, |
| 1605 | OBJECTREF *pObjectRefArg // out |
| 1606 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 1607 | ) |
| 1608 | { |
| 1609 | WRAPPER_NO_CONTRACT; |
| 1610 | |
| 1611 | // |
| 1612 | // See if we have a value type that is going to be passed as a 'this' pointer. |
| 1613 | // |
| 1614 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && |
| 1615 | !pDE->m_md->IsStatic() && |
| 1616 | (pDE->m_argCount > 0)) |
| 1617 | { |
| 1618 | // Allocate the space for box nullables. Nullable parameters need a unboxed |
| 1619 | // nullable value to point at, where our current representation does not have |
| 1620 | // an unboxed value inside them. Thus we need another buffer to hold it (and |
| 1621 | // gcprotects it. We used boxed values for this by converting them to 'true' |
| 1622 | // nullable form, calling the function, and in the case of byrefs, converting |
| 1623 | // them back afterward. |
| 1624 | |
| 1625 | MethodTable* pMT = pDE->m_md->GetMethodTable(); |
| 1626 | if (Nullable::IsNullableType(pMT)) |
| 1627 | { |
| 1628 | OBJECTREF obj = AllocateObject(pMT); |
| 1629 | if (*pObjectRefArg != NULL) |
| 1630 | { |
| 1631 | BOOL typesMatch = Nullable::UnBox(obj->GetData(), *pObjectRefArg, pMT); |
| 1632 | (void)typesMatch; //prevent "unused variable" error from GCC |
| 1633 | _ASSERTE(typesMatch); |
| 1634 | } |
| 1635 | *pObjectRefArg = obj; |
| 1636 | } |
| 1637 | |
| 1638 | if (argData[0].argElementType == ELEMENT_TYPE_VALUETYPE) |
| 1639 | { |
| 1640 | // |
| 1641 | // See if we need to box up the 'this' parameter. |
| 1642 | // |
| 1643 | if (!pDE->m_md->GetMethodTable()->IsValueType()) |
| 1644 | { |
| 1645 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[0]; |
| 1646 | SIZE_T v; |
| 1647 | LPVOID pAddr = NULL; |
| 1648 | INT64 bigVal; |
| 1649 | |
| 1650 | { |
| 1651 | GCX_FORBID(); //pAddr is unprotected from the time we initialize it |
| 1652 | |
| 1653 | if (pFEAD->argAddr != NULL) |
| 1654 | { |
| 1655 | _ASSERTE(pDataLocationArray[0] & DL_MaybeInteriorPtrArray); |
| 1656 | pAddr = pMaybeInteriorPtrArray[0]; |
| 1657 | INDEBUG(pDataLocationArray[0] &= ~DL_MaybeInteriorPtrArray); |
| 1658 | } |
| 1659 | else |
| 1660 | { |
| 1661 | |
| 1662 | pAddr = GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
| 1663 | |
| 1664 | if (pAddr == NULL) |
| 1665 | { |
| 1666 | COMPlusThrow(kArgumentNullException); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | _ASSERTE(pAddr != NULL); |
| 1671 | } //GCX_FORBID |
| 1672 | |
| 1673 | GCPROTECT_BEGININTERIOR(pAddr); //ReadTypeHandle may trigger a GC and move the object that has the value type at pAddr as a field |
| 1674 | |
| 1675 | // |
| 1676 | // Grab the class of this value type. If the type is a parameterized |
| 1677 | // struct type then it may not have yet been loaded by the EE (generics |
| 1678 | // code sharing may have meant we have never bothered to create the exact |
| 1679 | // type yet). |
| 1680 | // |
| 1681 | // A buffer should have been allocated for the full struct type |
| 1682 | _ASSERTE(argData[0].fullArgType != NULL); |
| 1683 | Debugger::TypeDataWalk walk((DebuggerIPCE_TypeArgData *) argData[0].fullArgType, argData[0].fullArgTypeNodeCount); |
| 1684 | |
| 1685 | TypeHandle typeHandle = walk.ReadTypeHandle(); |
| 1686 | |
| 1687 | if (typeHandle.IsNull()) |
| 1688 | { |
| 1689 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 1690 | } |
| 1691 | // |
| 1692 | // Box up this value type |
| 1693 | // |
| 1694 | *pObjectRefArg = typeHandle.GetMethodTable()->Box(pAddr); |
| 1695 | if (Nullable::IsNullableType(typeHandle.GetMethodTable()) && (*pObjectRefArg == NULL)) |
| 1696 | { |
| 1697 | COMPlusThrow(kArgumentNullException); |
| 1698 | } |
| 1699 | GCPROTECT_END(); |
| 1700 | |
| 1701 | INDEBUG(pDataLocationArray[0] |= DL_ObjectRefArray); |
| 1702 | } |
| 1703 | } |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | |
| 1708 | // |
| 1709 | // This is used to store (temporarily) information about the arguments that func-eval |
| 1710 | // will pass. It is used only for the args of the function, not the return buffer nor |
| 1711 | // the 'this' pointer, if there is any of either. |
| 1712 | // |
| 1713 | struct FuncEvalArgInfo |
| 1714 | { |
| 1715 | CorElementType argSigType; |
| 1716 | CorElementType byrefArgSigType; |
| 1717 | TypeHandle byrefArgTypeHandle; |
| 1718 | bool fNeedBoxOrUnbox; |
| 1719 | TypeHandle sigTypeHandle; |
| 1720 | }; |
| 1721 | |
| 1722 | |
| 1723 | |
| 1724 | /* |
| 1725 | * GatherFuncEvalArgInfo |
| 1726 | * |
| 1727 | * This function is a helper for DoNormalFuncEval. It gathers together all the information |
| 1728 | * necessary to process the arguments. |
| 1729 | * |
| 1730 | * Parameters: |
| 1731 | * pDE - pointer to the DebuggerEval object being processed. |
| 1732 | * mSig - The metadata signature of the fuction to call. |
| 1733 | * argData - Array of information about the arguments. |
| 1734 | * pFEArgInfo - An array of structs to hold the argument information. |
| 1735 | * |
| 1736 | * Returns: |
| 1737 | * None. |
| 1738 | * |
| 1739 | */ |
| 1740 | void GatherFuncEvalArgInfo(DebuggerEval *pDE, |
| 1741 | MetaSig mSig, |
| 1742 | DebuggerIPCE_FuncEvalArgData *argData, |
| 1743 | FuncEvalArgInfo *pFEArgInfo // out |
| 1744 | ) |
| 1745 | { |
| 1746 | WRAPPER_NO_CONTRACT; |
| 1747 | |
| 1748 | unsigned currArgIndex = 0; |
| 1749 | |
| 1750 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
| 1751 | { |
| 1752 | // |
| 1753 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
| 1754 | // |
| 1755 | currArgIndex++; |
| 1756 | } |
| 1757 | |
| 1758 | // |
| 1759 | // Gather all the information for the parameters. |
| 1760 | // |
| 1761 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
| 1762 | { |
| 1763 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
| 1764 | |
| 1765 | // |
| 1766 | // Move to the next arg in the signature. |
| 1767 | // |
| 1768 | CorElementType argSigType = mSig.NextArgNormalized(); |
| 1769 | _ASSERTE(argSigType != ELEMENT_TYPE_END); |
| 1770 | |
| 1771 | // |
| 1772 | // If this arg is a byref arg, then we'll need to know what type we're referencing for later... |
| 1773 | // |
| 1774 | TypeHandle byrefTypeHandle = TypeHandle(); |
| 1775 | CorElementType byrefArgSigType = ELEMENT_TYPE_END; |
| 1776 | if (argSigType == ELEMENT_TYPE_BYREF) |
| 1777 | { |
| 1778 | byrefArgSigType = mSig.GetByRefType(&byrefTypeHandle); |
| 1779 | } |
| 1780 | |
| 1781 | // |
| 1782 | // If the sig says class but we've got a value class parameter, then remember that we need to box it. If |
| 1783 | // the sig says value class, but we've got a boxed value class, then remember that we need to unbox it. |
| 1784 | // |
| 1785 | bool fNeedBoxOrUnbox = ((argSigType == ELEMENT_TYPE_CLASS) && (pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE)) || |
| 1786 | (((argSigType == ELEMENT_TYPE_VALUETYPE) && ((pFEAD->argElementType == ELEMENT_TYPE_CLASS) || (pFEAD->argElementType == ELEMENT_TYPE_OBJECT))) || |
| 1787 | // This is when method signature is expecting a BYREF ValueType, yet we receive the boxed valuetype's handle. |
| 1788 | (pFEAD->argElementType == ELEMENT_TYPE_CLASS && argSigType == ELEMENT_TYPE_BYREF && byrefArgSigType == ELEMENT_TYPE_VALUETYPE)); |
| 1789 | |
| 1790 | pFEArgInfo[currArgIndex].argSigType = argSigType; |
| 1791 | pFEArgInfo[currArgIndex].byrefArgSigType = byrefArgSigType; |
| 1792 | pFEArgInfo[currArgIndex].byrefArgTypeHandle = byrefTypeHandle; |
| 1793 | pFEArgInfo[currArgIndex].fNeedBoxOrUnbox = fNeedBoxOrUnbox; |
| 1794 | pFEArgInfo[currArgIndex].sigTypeHandle = mSig.GetLastTypeHandleThrowing(); |
| 1795 | } |
| 1796 | } |
| 1797 | |
| 1798 | |
| 1799 | /* |
| 1800 | * BoxFuncEvalArguments |
| 1801 | * |
| 1802 | * This function is a helper for DoNormalFuncEval. It boxes all the arguments that |
| 1803 | * need to be. |
| 1804 | * |
| 1805 | * Parameters: |
| 1806 | * pDE - pointer to the DebuggerEval object being processed. |
| 1807 | * argData - Array of information about the arguments. |
| 1808 | * pFEArgInfo - An array of structs to hold the argument information. |
| 1809 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
| 1810 | * the interior of a managed object. |
| 1811 | * pObjectRef - A GC protected place to put a boxed value, if necessary. |
| 1812 | * |
| 1813 | * Returns: |
| 1814 | * None |
| 1815 | * |
| 1816 | */ |
| 1817 | void BoxFuncEvalArguments(DebuggerEval *pDE, |
| 1818 | DebuggerIPCE_FuncEvalArgData *argData, |
| 1819 | FuncEvalArgInfo *pFEArgInfo, |
| 1820 | void **pMaybeInteriorPtrArray, |
| 1821 | OBJECTREF *pObjectRef // out |
| 1822 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 1823 | ) |
| 1824 | { |
| 1825 | WRAPPER_NO_CONTRACT; |
| 1826 | |
| 1827 | unsigned currArgIndex = 0; |
| 1828 | |
| 1829 | |
| 1830 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
| 1831 | { |
| 1832 | // |
| 1833 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
| 1834 | // |
| 1835 | currArgIndex++; |
| 1836 | } |
| 1837 | |
| 1838 | // |
| 1839 | // Gather all the information for the parameters. |
| 1840 | // |
| 1841 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
| 1842 | { |
| 1843 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
| 1844 | |
| 1845 | // Allocate the space for box nullables. Nullable parameters need a unboxed |
| 1846 | // nullable value to point at, where our current representation does not have |
| 1847 | // an unboxed value inside them. Thus we need another buffer to hold it (and |
| 1848 | // gcprotects it. We used boxed values for this by converting them to 'true' |
| 1849 | // nullable form, calling the function, and in the case of byrefs, converting |
| 1850 | // them back afterward. |
| 1851 | |
| 1852 | TypeHandle th = pFEArgInfo[currArgIndex].sigTypeHandle; |
| 1853 | if (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF) |
| 1854 | th = pFEArgInfo[currArgIndex].byrefArgTypeHandle; |
| 1855 | |
| 1856 | if (!th.IsNull() && Nullable::IsNullableType(th)) |
| 1857 | { |
| 1858 | |
| 1859 | OBJECTREF obj = AllocateObject(th.AsMethodTable()); |
| 1860 | if (pObjectRef[currArgIndex] != NULL) |
| 1861 | { |
| 1862 | BOOL typesMatch = Nullable::UnBox(obj->GetData(), pObjectRef[currArgIndex], th.AsMethodTable()); |
| 1863 | (void)typesMatch; //prevent "unused variable" error from GCC |
| 1864 | _ASSERTE(typesMatch); |
| 1865 | } |
| 1866 | pObjectRef[currArgIndex] = obj; |
| 1867 | } |
| 1868 | |
| 1869 | // |
| 1870 | // Check if we should box this value now |
| 1871 | // |
| 1872 | if ((pFEAD->argElementType == ELEMENT_TYPE_VALUETYPE) && |
| 1873 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF) && |
| 1874 | pFEArgInfo[currArgIndex].fNeedBoxOrUnbox) |
| 1875 | { |
| 1876 | SIZE_T v; |
| 1877 | INT64 bigVal; |
| 1878 | LPVOID pAddr = NULL; |
| 1879 | |
| 1880 | if (pFEAD->argAddr != NULL) |
| 1881 | { |
| 1882 | _ASSERTE(pDataLocationArray[currArgIndex] & DL_MaybeInteriorPtrArray); |
| 1883 | pAddr = pMaybeInteriorPtrArray[currArgIndex]; |
| 1884 | INDEBUG(pDataLocationArray[currArgIndex] &= ~DL_MaybeInteriorPtrArray); |
| 1885 | } |
| 1886 | else |
| 1887 | { |
| 1888 | |
| 1889 | pAddr = GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
| 1890 | |
| 1891 | if (pAddr == NULL) |
| 1892 | { |
| 1893 | COMPlusThrow(kArgumentNullException); |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | _ASSERTE(pAddr != NULL); |
| 1898 | |
| 1899 | MethodTable * pMT = pFEArgInfo[currArgIndex].sigTypeHandle.GetMethodTable(); |
| 1900 | |
| 1901 | // |
| 1902 | // Stuff the newly boxed item into our GC-protected array. |
| 1903 | // |
| 1904 | pObjectRef[currArgIndex] = pMT->Box(pAddr); |
| 1905 | |
| 1906 | #ifdef _DEBUG |
| 1907 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 1908 | { |
| 1909 | pDataLocationArray[currArgIndex] |= DL_ObjectRefArray; |
| 1910 | } |
| 1911 | #endif |
| 1912 | } |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | |
| 1917 | /* |
| 1918 | * GatherFuncEvalMethodInfo |
| 1919 | * |
| 1920 | * This function is a helper for DoNormalFuncEval. It gathers together all the information |
| 1921 | * necessary to process the method |
| 1922 | * |
| 1923 | * Parameters: |
| 1924 | * pDE - pointer to the DebuggerEval object being processed. |
| 1925 | * mSig - The metadata signature of the fuction to call. |
| 1926 | * argData - Array of information about the arguments. |
| 1927 | * ppUnboxedMD - Returns a resolve method desc if the original is an unboxing stub. |
| 1928 | * pObjectRefArray - GC protected array of objects passed to this func-eval call. |
| 1929 | * used to resolve down to the method target for generics. |
| 1930 | * pBufferForArgsArray - Array of values not needing gc-protection. May hold the |
| 1931 | * handle for the method targer for generics. |
| 1932 | * pfHasRetBuffArg - TRUE if the function has a return buffer. |
| 1933 | * pRetValueType - The TypeHandle of the return value. |
| 1934 | * |
| 1935 | * |
| 1936 | * Returns: |
| 1937 | * None. |
| 1938 | * |
| 1939 | */ |
| 1940 | void GatherFuncEvalMethodInfo(DebuggerEval *pDE, |
| 1941 | MetaSig mSig, |
| 1942 | DebuggerIPCE_FuncEvalArgData *argData, |
| 1943 | MethodDesc **ppUnboxedMD, |
| 1944 | OBJECTREF *pObjectRefArray, |
| 1945 | INT64 *pBufferForArgsArray, |
| 1946 | BOOL *pfHasRetBuffArg, // out |
| 1947 | BOOL *pfHasNonStdByValReturn, // out |
| 1948 | TypeHandle *pRetValueType // out, only if fHasRetBuffArg == true |
| 1949 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 1950 | ) |
| 1951 | { |
| 1952 | WRAPPER_NO_CONTRACT; |
| 1953 | |
| 1954 | // |
| 1955 | // If 'this' is a non-static function that points to an unboxing stub, we need to return the |
| 1956 | // unboxed method desc to really call. |
| 1957 | // |
| 1958 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && !pDE->m_md->IsStatic() && pDE->m_md->IsUnboxingStub()) |
| 1959 | { |
| 1960 | *ppUnboxedMD = pDE->m_md->GetMethodTable()->GetUnboxedEntryPointMD(pDE->m_md); |
| 1961 | } |
| 1962 | |
| 1963 | // |
| 1964 | // Resolve down to the method on the class of the 'this' parameter. |
| 1965 | // |
| 1966 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && pDE->m_md->IsVtableMethod()) |
| 1967 | { |
| 1968 | // |
| 1969 | // Assuming that a constructor can't be an interface method... |
| 1970 | // |
| 1971 | _ASSERTE(pDE->m_evalType == DB_IPCE_FET_NORMAL); |
| 1972 | |
| 1973 | // |
| 1974 | // We need to go grab the 'this' argument to figure out what class we're headed for... |
| 1975 | // |
| 1976 | if (pDE->m_argCount == 0) |
| 1977 | { |
| 1978 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 1979 | } |
| 1980 | |
| 1981 | // |
| 1982 | // We should have a valid this pointer. |
| 1983 | // <TODO>@todo: But the check should cover the register kind as well!</TODO> |
| 1984 | // |
| 1985 | if ((argData[0].argHome.kind == RAK_NONE) && (argData[0].argAddr == NULL)) |
| 1986 | { |
| 1987 | COMPlusThrow(kArgumentNullException); |
| 1988 | } |
| 1989 | |
| 1990 | // |
| 1991 | // Assume we can only have this for real objects or boxed value types, not value classes... |
| 1992 | // |
| 1993 | _ASSERTE((argData[0].argElementType == ELEMENT_TYPE_OBJECT) || |
| 1994 | (argData[0].argElementType == ELEMENT_TYPE_STRING) || |
| 1995 | (argData[0].argElementType == ELEMENT_TYPE_CLASS) || |
| 1996 | (argData[0].argElementType == ELEMENT_TYPE_ARRAY) || |
| 1997 | (argData[0].argElementType == ELEMENT_TYPE_SZARRAY) || |
| 1998 | ((argData[0].argElementType == ELEMENT_TYPE_VALUETYPE) && |
| 1999 | (pObjectRefArray[0] != NULL))); |
| 2000 | |
| 2001 | // |
| 2002 | // Now get the object pointer to our first arg. |
| 2003 | // |
| 2004 | OBJECTREF objRef = NULL; |
| 2005 | GCPROTECT_BEGIN(objRef); |
| 2006 | |
| 2007 | if (argData[0].argElementType == ELEMENT_TYPE_VALUETYPE) |
| 2008 | { |
| 2009 | // |
| 2010 | // In this case, we know where it is. |
| 2011 | // |
| 2012 | objRef = pObjectRefArray[0]; |
| 2013 | _ASSERTE(pDataLocationArray[0] & DL_ObjectRefArray); |
| 2014 | } |
| 2015 | else |
| 2016 | { |
| 2017 | TypeHandle dummyTH; |
| 2018 | ARG_SLOT objSlot; |
| 2019 | |
| 2020 | // |
| 2021 | // Take out the first arg. We're gonna trick GetFuncEvalArgValue by passing in just our |
| 2022 | // object ref as the stack. |
| 2023 | // |
| 2024 | // Note that we are passing ELEMENT_TYPE_END in the last parameter because we want to |
| 2025 | // supress the the valid object ref check. |
| 2026 | // |
| 2027 | GetFuncEvalArgValue(pDE, |
| 2028 | &(argData[0]), |
| 2029 | false, |
| 2030 | false, |
| 2031 | dummyTH, |
| 2032 | ELEMENT_TYPE_CLASS, |
| 2033 | dummyTH, |
| 2034 | &objSlot, |
| 2035 | NULL, |
| 2036 | pObjectRefArray, |
| 2037 | pBufferForArgsArray, |
| 2038 | NULL, |
| 2039 | ELEMENT_TYPE_END |
| 2040 | DEBUG_ARG(pDataLocationArray[0]) |
| 2041 | ); |
| 2042 | |
| 2043 | objRef = ArgSlotToObj(objSlot); |
| 2044 | } |
| 2045 | |
| 2046 | // |
| 2047 | // Validate the object |
| 2048 | // |
| 2049 | if (FAILED(ValidateObject(OBJECTREFToObject(objRef)))) |
| 2050 | { |
| 2051 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 2052 | } |
| 2053 | |
| 2054 | // |
| 2055 | // Null isn't valid in this case! |
| 2056 | // |
| 2057 | if (objRef == NULL) |
| 2058 | { |
| 2059 | COMPlusThrow(kArgumentNullException); |
| 2060 | } |
| 2061 | |
| 2062 | // |
| 2063 | // Make sure that the object supplied is of a type that can call the method supplied. |
| 2064 | // |
| 2065 | if (!g_pEEInterface->ObjIsInstanceOf(OBJECTREFToObject(objRef), pDE->m_ownerTypeHandle)) |
| 2066 | { |
| 2067 | COMPlusThrow(kArgumentException, W("Argument_CORDBBadMethod" )); |
| 2068 | } |
| 2069 | |
| 2070 | // |
| 2071 | // Now, find the proper MethodDesc for this interface method based on the object we're invoking the |
| 2072 | // method on. |
| 2073 | // |
| 2074 | pDE->m_targetCodeAddr = pDE->m_md->GetCallTarget(&objRef, pDE->m_ownerTypeHandle); |
| 2075 | |
| 2076 | GCPROTECT_END(); |
| 2077 | } |
| 2078 | else |
| 2079 | { |
| 2080 | pDE->m_targetCodeAddr = pDE->m_md->GetCallTarget(NULL, pDE->m_ownerTypeHandle); |
| 2081 | } |
| 2082 | |
| 2083 | // |
| 2084 | // Get the resulting type now. Doing this may trigger a GC or throw. |
| 2085 | // |
| 2086 | if (pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) |
| 2087 | { |
| 2088 | pDE->m_resultType = mSig.GetRetTypeHandleThrowing(); |
| 2089 | } |
| 2090 | |
| 2091 | // |
| 2092 | // Check if there is an explicit return argument, or if the return type is really a VALUETYPE but our |
| 2093 | // calling convention is passing it in registers. We just need to remember the pretValueClass so |
| 2094 | // that we will box it properly on our way out. |
| 2095 | // |
| 2096 | { |
| 2097 | ArgIterator argit(&mSig); |
| 2098 | *pfHasRetBuffArg = argit.HasRetBuffArg(); |
| 2099 | *pfHasNonStdByValReturn = argit.HasNonStandardByvalReturn(); |
| 2100 | } |
| 2101 | |
| 2102 | CorElementType retType = mSig.GetReturnType(); |
| 2103 | CorElementType retTypeNormalized = mSig.GetReturnTypeNormalized(); |
| 2104 | |
| 2105 | |
| 2106 | if (*pfHasRetBuffArg || *pfHasNonStdByValReturn |
| 2107 | || ((retType == ELEMENT_TYPE_VALUETYPE) && (retType != retTypeNormalized))) |
| 2108 | { |
| 2109 | *pRetValueType = mSig.GetRetTypeHandleThrowing(); |
| 2110 | } |
| 2111 | else |
| 2112 | { |
| 2113 | // |
| 2114 | // Make sure the caller initialized this value |
| 2115 | // |
| 2116 | _ASSERTE((*pRetValueType).IsNull()); |
| 2117 | } |
| 2118 | } |
| 2119 | |
| 2120 | /* |
| 2121 | * CopyArgsToBuffer |
| 2122 | * |
| 2123 | * This routine copies all the arguments to a local buffer, so that any one that needs to be |
| 2124 | * passed can be. Note that this local buffer is NOT GC-protected, and so all the values |
| 2125 | * in the buffer may not be relied on. You *must* use GetFuncEvalArgValue() to load up the |
| 2126 | * Arguments for the call, because it has the logic to decide which of the parallel arrays to pull |
| 2127 | * from. |
| 2128 | * |
| 2129 | * Parameters: |
| 2130 | * pDE - pointer to the DebuggerEval object being processed. |
| 2131 | * argData - Array of information about the arguments. |
| 2132 | * pFEArgInfo - An array of structs to hold the argument information. Must have be previously filled in. |
| 2133 | * pBufferArray - An array to store values. |
| 2134 | * |
| 2135 | * Returns: |
| 2136 | * None. |
| 2137 | * |
| 2138 | */ |
| 2139 | void CopyArgsToBuffer(DebuggerEval *pDE, |
| 2140 | DebuggerIPCE_FuncEvalArgData *argData, |
| 2141 | FuncEvalArgInfo *pFEArgInfo, |
| 2142 | INT64 *pBufferArray |
| 2143 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 2144 | ) |
| 2145 | { |
| 2146 | CONTRACTL |
| 2147 | { |
| 2148 | THROWS; |
| 2149 | GC_NOTRIGGER; |
| 2150 | } |
| 2151 | CONTRACTL_END; |
| 2152 | |
| 2153 | unsigned currArgIndex = 0; |
| 2154 | |
| 2155 | |
| 2156 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
| 2157 | { |
| 2158 | // |
| 2159 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
| 2160 | // |
| 2161 | currArgIndex++; |
| 2162 | } |
| 2163 | |
| 2164 | // |
| 2165 | // Spin thru each argument now |
| 2166 | // |
| 2167 | for ( ; currArgIndex < pDE->m_argCount; currArgIndex++) |
| 2168 | { |
| 2169 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
| 2170 | BOOL isByRef = (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF); |
| 2171 | BOOL fNeedBoxOrUnbox; |
| 2172 | fNeedBoxOrUnbox = pFEArgInfo[currArgIndex].fNeedBoxOrUnbox; |
| 2173 | |
| 2174 | |
| 2175 | LOG((LF_CORDB, LL_EVERYTHING, "CATB: currArgIndex=%d\n" , |
| 2176 | currArgIndex)); |
| 2177 | LOG((LF_CORDB, LL_EVERYTHING, |
| 2178 | "\t: argSigType=0x%x, byrefArgSigType=0x%0x, inType=0x%0x\n" , |
| 2179 | pFEArgInfo[currArgIndex].argSigType, |
| 2180 | pFEArgInfo[currArgIndex].byrefArgSigType, |
| 2181 | pFEAD->argElementType)); |
| 2182 | |
| 2183 | INT64 *pDest = &(pBufferArray[currArgIndex]); |
| 2184 | |
| 2185 | switch (pFEAD->argElementType) |
| 2186 | { |
| 2187 | case ELEMENT_TYPE_I8: |
| 2188 | case ELEMENT_TYPE_U8: |
| 2189 | case ELEMENT_TYPE_R8: |
| 2190 | |
| 2191 | if (pFEAD->argAddr != NULL) |
| 2192 | { |
| 2193 | *pDest = *(INT64*)(pFEAD->argAddr); |
| 2194 | #ifdef _DEBUG |
| 2195 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2196 | { |
| 2197 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2198 | } |
| 2199 | #endif |
| 2200 | } |
| 2201 | else if (pFEAD->argIsLiteral) |
| 2202 | { |
| 2203 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(void *)); |
| 2204 | |
| 2205 | // If this is a literal arg, then we just copy the data. |
| 2206 | memcpy(pDest, pFEAD->argLiteralData, sizeof(INT64)); |
| 2207 | #ifdef _DEBUG |
| 2208 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2209 | { |
| 2210 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2211 | } |
| 2212 | #endif |
| 2213 | } |
| 2214 | else |
| 2215 | { |
| 2216 | |
| 2217 | #if !defined(_WIN64) |
| 2218 | // RAK_REG is the only 4 byte type, all others are 8 byte types. |
| 2219 | _ASSERTE(pFEAD->argHome.kind != RAK_REG); |
| 2220 | |
| 2221 | INT64 bigVal = 0; |
| 2222 | SIZE_T v; |
| 2223 | INT64 *pAddr; |
| 2224 | |
| 2225 | pAddr = (INT64*)GetRegisterValueAndReturnAddress(pDE, pFEAD, &bigVal, &v); |
| 2226 | |
| 2227 | if (pAddr == NULL) |
| 2228 | { |
| 2229 | COMPlusThrow(kArgumentNullException); |
| 2230 | } |
| 2231 | |
| 2232 | *pDest = *pAddr; |
| 2233 | |
| 2234 | #else // _WIN64 |
| 2235 | // Both RAK_REG and RAK_FLOAT can be either 4 bytes or 8 bytes. |
| 2236 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) || (pFEAD->argHome.kind == RAK_FLOAT)); |
| 2237 | |
| 2238 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
| 2239 | *pDest = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 2240 | #endif // _WIN64 |
| 2241 | |
| 2242 | |
| 2243 | |
| 2244 | #ifdef _DEBUG |
| 2245 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2246 | { |
| 2247 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2248 | } |
| 2249 | #endif |
| 2250 | } |
| 2251 | break; |
| 2252 | |
| 2253 | case ELEMENT_TYPE_VALUETYPE: |
| 2254 | |
| 2255 | // |
| 2256 | // For value types, we dont do anything here, instead delay until GetFuncEvalArgInfo |
| 2257 | // |
| 2258 | break; |
| 2259 | |
| 2260 | case ELEMENT_TYPE_CLASS: |
| 2261 | case ELEMENT_TYPE_OBJECT: |
| 2262 | case ELEMENT_TYPE_STRING: |
| 2263 | case ELEMENT_TYPE_ARRAY: |
| 2264 | case ELEMENT_TYPE_SZARRAY: |
| 2265 | |
| 2266 | if (pFEAD->argAddr != NULL) |
| 2267 | { |
| 2268 | if (!isByRef) |
| 2269 | { |
| 2270 | if (pFEAD->argIsHandleValue) |
| 2271 | { |
| 2272 | OBJECTHANDLE oh = (OBJECTHANDLE)(pFEAD->argAddr); |
| 2273 | *pDest = (INT64)(size_t)oh; |
| 2274 | } |
| 2275 | else |
| 2276 | { |
| 2277 | *pDest = *((SIZE_T*)(pFEAD->argAddr)); |
| 2278 | } |
| 2279 | #ifdef _DEBUG |
| 2280 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2281 | { |
| 2282 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2283 | } |
| 2284 | #endif |
| 2285 | } |
| 2286 | else |
| 2287 | { |
| 2288 | if (pFEAD->argIsHandleValue) |
| 2289 | { |
| 2290 | *pDest = (INT64)(size_t)(pFEAD->argAddr); |
| 2291 | } |
| 2292 | else |
| 2293 | { |
| 2294 | *pDest = *(SIZE_T*)(pFEAD->argAddr); |
| 2295 | } |
| 2296 | #ifdef _DEBUG |
| 2297 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2298 | { |
| 2299 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2300 | } |
| 2301 | #endif |
| 2302 | } |
| 2303 | } |
| 2304 | else if (pFEAD->argIsLiteral) |
| 2305 | { |
| 2306 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(INT64)); |
| 2307 | |
| 2308 | // The called function may expect a larger/smaller value than the literal value. |
| 2309 | // So we convert the value to the right type. |
| 2310 | |
| 2311 | CONSISTENCY_CHECK_MSGF(((pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_CLASS) || |
| 2312 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_SZARRAY) || |
| 2313 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_ARRAY)) || |
| 2314 | (isByRef && ((pFEArgInfo[currArgIndex].byrefArgSigType == ELEMENT_TYPE_CLASS) || |
| 2315 | (pFEArgInfo[currArgIndex].byrefArgSigType == ELEMENT_TYPE_SZARRAY) || |
| 2316 | (pFEArgInfo[currArgIndex].byrefArgSigType == ELEMENT_TYPE_ARRAY))), |
| 2317 | ("argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d" , |
| 2318 | pFEArgInfo[currArgIndex].argSigType, |
| 2319 | pFEArgInfo[currArgIndex].byrefArgSigType, |
| 2320 | isByRef)); |
| 2321 | |
| 2322 | LOG((LF_CORDB, LL_EVERYTHING, |
| 2323 | "argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d\n" , |
| 2324 | pFEArgInfo[currArgIndex].argSigType, pFEArgInfo[currArgIndex].byrefArgSigType, isByRef)); |
| 2325 | |
| 2326 | *(SIZE_T*)pDest = *(SIZE_T*)pFEAD->argLiteralData; |
| 2327 | #ifdef _DEBUG |
| 2328 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2329 | { |
| 2330 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2331 | } |
| 2332 | #endif |
| 2333 | } |
| 2334 | else |
| 2335 | { |
| 2336 | // RAK_REG is the only valid 4 byte type on WIN32. On WIN64, RAK_REG and RAK_FLOAT |
| 2337 | // can both be either 4 bytes or 8 bytes; |
| 2338 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) |
| 2339 | WIN64_ONLY(|| (pFEAD->argHome.kind == RAK_FLOAT))); |
| 2340 | |
| 2341 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
| 2342 | |
| 2343 | // Simply grab the value out of the proper register. |
| 2344 | SIZE_T v = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 2345 | *pDest = v; |
| 2346 | #ifdef _DEBUG |
| 2347 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2348 | { |
| 2349 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2350 | } |
| 2351 | #endif |
| 2352 | } |
| 2353 | break; |
| 2354 | |
| 2355 | default: |
| 2356 | // 4-byte, 2-byte, or 1-byte values |
| 2357 | |
| 2358 | if (pFEAD->argAddr != NULL) |
| 2359 | { |
| 2360 | if (!isByRef) |
| 2361 | { |
| 2362 | if (pFEAD->argIsHandleValue) |
| 2363 | { |
| 2364 | OBJECTHANDLE oh = (OBJECTHANDLE)(pFEAD->argAddr); |
| 2365 | *pDest = (INT64)(size_t)oh; |
| 2366 | } |
| 2367 | else |
| 2368 | { |
| 2369 | GetAndSetLiteralValue(pDest, pFEArgInfo[currArgIndex].argSigType, |
| 2370 | pFEAD->argAddr, pFEAD->argElementType); |
| 2371 | } |
| 2372 | #ifdef _DEBUG |
| 2373 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2374 | { |
| 2375 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2376 | } |
| 2377 | #endif |
| 2378 | } |
| 2379 | else |
| 2380 | { |
| 2381 | if (pFEAD->argIsHandleValue) |
| 2382 | { |
| 2383 | *pDest = (INT64)(size_t)(pFEAD->argAddr); |
| 2384 | } |
| 2385 | else |
| 2386 | { |
| 2387 | // We have to make sure we only grab the correct size of memory from the source. On IA64, we |
| 2388 | // have to make sure we don't cause misaligned data exceptions as well. Then we put the value |
| 2389 | // into the pBufferArray. The reason is that we may be passing in some values by ref to a |
| 2390 | // function that's expecting something of a bigger size. Thus, if we don't do this, then we'll |
| 2391 | // be bashing memory right next to the source value as the function being called acts upon some |
| 2392 | // bigger value. |
| 2393 | GetAndSetLiteralValue(pDest, pFEArgInfo[currArgIndex].byrefArgSigType, |
| 2394 | pFEAD->argAddr, pFEAD->argElementType); |
| 2395 | } |
| 2396 | #ifdef _DEBUG |
| 2397 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2398 | { |
| 2399 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2400 | } |
| 2401 | #endif |
| 2402 | } |
| 2403 | } |
| 2404 | else if (pFEAD->argIsLiteral) |
| 2405 | { |
| 2406 | _ASSERTE(sizeof(pFEAD->argLiteralData) >= sizeof(INT32)); |
| 2407 | |
| 2408 | // The called function may expect a larger/smaller value than the literal value, |
| 2409 | // so we convert the value to the right type. |
| 2410 | |
| 2411 | CONSISTENCY_CHECK_MSGF( |
| 2412 | ((pFEArgInfo[currArgIndex].argSigType>=ELEMENT_TYPE_BOOLEAN) && (pFEArgInfo[currArgIndex].argSigType<=ELEMENT_TYPE_R8)) || |
| 2413 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_PTR) || |
| 2414 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_I) || |
| 2415 | (pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_U) || |
| 2416 | (isByRef && ((pFEArgInfo[currArgIndex].byrefArgSigType>=ELEMENT_TYPE_BOOLEAN) && (pFEArgInfo[currArgIndex].byrefArgSigType<=ELEMENT_TYPE_R8))), |
| 2417 | ("argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d" , pFEArgInfo[currArgIndex].argSigType, pFEArgInfo[currArgIndex].byrefArgSigType, isByRef)); |
| 2418 | |
| 2419 | LOG((LF_CORDB, LL_EVERYTHING, |
| 2420 | "argSigType=0x%0x, byrefArgSigType=0x%0x, isByRef=%d\n" , |
| 2421 | pFEArgInfo[currArgIndex].argSigType, |
| 2422 | pFEArgInfo[currArgIndex].byrefArgSigType, |
| 2423 | isByRef)); |
| 2424 | |
| 2425 | CorElementType relevantType = (isByRef ? pFEArgInfo[currArgIndex].byrefArgSigType : pFEArgInfo[currArgIndex].argSigType); |
| 2426 | |
| 2427 | GetAndSetLiteralValue(pDest, relevantType, pFEAD->argLiteralData, pFEAD->argElementType); |
| 2428 | #ifdef _DEBUG |
| 2429 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2430 | { |
| 2431 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2432 | } |
| 2433 | #endif |
| 2434 | } |
| 2435 | else |
| 2436 | { |
| 2437 | // RAK_REG is the only valid 4 byte type on WIN32. On WIN64, RAK_REG and RAK_FLOAT |
| 2438 | // can both be either 4 bytes or 8 bytes; |
| 2439 | _ASSERTE((pFEAD->argHome.kind == RAK_REG) |
| 2440 | WIN64_ONLY(|| (pFEAD->argHome.kind == RAK_FLOAT))); |
| 2441 | |
| 2442 | CorDebugRegister regNum = GetArgAddrFromReg(pFEAD); |
| 2443 | |
| 2444 | // Simply grab the value out of the proper register. |
| 2445 | SIZE_T v = GetRegisterValue(pDE, regNum, pFEAD->argHome.reg1Addr, pFEAD->argHome.reg1Value); |
| 2446 | *pDest = v; |
| 2447 | #ifdef _DEBUG |
| 2448 | if (currArgIndex < MAX_DATA_LOCATIONS_TRACKED) |
| 2449 | { |
| 2450 | pDataLocationArray[currArgIndex] |= DL_BufferForArgsArray; |
| 2451 | } |
| 2452 | #endif |
| 2453 | } |
| 2454 | } |
| 2455 | } |
| 2456 | } |
| 2457 | |
| 2458 | |
| 2459 | /* |
| 2460 | * PackArgumentArray |
| 2461 | * |
| 2462 | * This routine fills a given array with the correct values for passing to a managed function. |
| 2463 | * It uses various component arrays that contain information to correctly create the argument array. |
| 2464 | * |
| 2465 | * Parameters: |
| 2466 | * pDE - pointer to the DebuggerEval object being processed. |
| 2467 | * argData - Array of information about the arguments. |
| 2468 | * pUnboxedMD - MethodDesc of the function to call, after unboxing. |
| 2469 | * RetValueType - Type Handle of the return value of the managed function we will call. |
| 2470 | * pFEArgInfo - An array of structs to hold the argument information. Must have be previously filled in. |
| 2471 | * pObjectRefArray - An array that contains any object refs. It was built previously. |
| 2472 | * pMaybeInteriorPtrArray - An array that contains values that may be pointers to |
| 2473 | * the interior of a managed object. |
| 2474 | * pBufferForArgsArray - An array that contains values that need writable memory space |
| 2475 | * for passing ByRef. |
| 2476 | * newObj - Pre-allocated object for a 'new' call. |
| 2477 | * pArguments - This array is packed from the above arrays. |
| 2478 | * ppRetValue - Return value buffer if fRetValueArg is TRUE |
| 2479 | * |
| 2480 | * Returns: |
| 2481 | * None. |
| 2482 | * |
| 2483 | */ |
| 2484 | void PackArgumentArray(DebuggerEval *pDE, |
| 2485 | DebuggerIPCE_FuncEvalArgData *argData, |
| 2486 | FuncEvalArgInfo *pFEArgInfo, |
| 2487 | MethodDesc *pUnboxedMD, |
| 2488 | TypeHandle RetValueType, |
| 2489 | OBJECTREF *pObjectRefArray, |
| 2490 | void **pMaybeInteriorPtrArray, |
| 2491 | INT64 *pBufferForArgsArray, |
| 2492 | ValueClassInfo ** ppProtectedValueClasses, |
| 2493 | OBJECTREF newObj, |
| 2494 | BOOL fRetValueArg, |
| 2495 | ARG_SLOT *pArguments, |
| 2496 | PVOID * ppRetValue |
| 2497 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 2498 | ) |
| 2499 | { |
| 2500 | WRAPPER_NO_CONTRACT; |
| 2501 | |
| 2502 | GCX_FORBID(); |
| 2503 | |
| 2504 | unsigned currArgIndex = 0; |
| 2505 | unsigned currArgSlot = 0; |
| 2506 | |
| 2507 | |
| 2508 | // |
| 2509 | // THIS POINTER (if any) |
| 2510 | // For non-static methods, or when returning a new object, |
| 2511 | // the first arg in the array is 'this' or the new object. |
| 2512 | // |
| 2513 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
| 2514 | { |
| 2515 | // |
| 2516 | // If this is a new object op, then we need to fill in the 0'th |
| 2517 | // arg slot with the 'this' ptr. |
| 2518 | // |
| 2519 | pArguments[0] = ObjToArgSlot(newObj); |
| 2520 | |
| 2521 | // |
| 2522 | // If we are invoking a function on a value class, but we have a boxed value class for 'this', |
| 2523 | // then go ahead and unbox it and leave a ref to the value class on the stack as 'this'. |
| 2524 | // |
| 2525 | if (pDE->m_md->GetMethodTable()->IsValueType()) |
| 2526 | { |
| 2527 | _ASSERTE(newObj->GetMethodTable()->IsValueType()); |
| 2528 | |
| 2529 | // This is one of those places we use true boxed nullables |
| 2530 | _ASSERTE(!Nullable::IsNullableType(pDE->m_md->GetMethodTable()) || |
| 2531 | newObj->GetMethodTable() == pDE->m_md->GetMethodTable()); |
| 2532 | void *pData = newObj->GetData(); |
| 2533 | pArguments[0] = PtrToArgSlot(pData); |
| 2534 | } |
| 2535 | |
| 2536 | // |
| 2537 | // Bump up the arg slot |
| 2538 | // |
| 2539 | currArgSlot++; |
| 2540 | } |
| 2541 | else if (!pDE->m_md->IsStatic()) |
| 2542 | { |
| 2543 | // |
| 2544 | // Place 'this' first in the array for non-static methods. |
| 2545 | // |
| 2546 | TypeHandle dummyTH; |
| 2547 | bool isByRef = false; |
| 2548 | bool fNeedBoxOrUnbox = false; |
| 2549 | |
| 2550 | // We had better have an object for a 'this' argument! |
| 2551 | CorElementType et = argData[0].argElementType; |
| 2552 | |
| 2553 | if (!(IsElementTypeSpecial(et) || |
| 2554 | et == ELEMENT_TYPE_VALUETYPE)) |
| 2555 | { |
| 2556 | COMPlusThrow(kArgumentOutOfRangeException, W("ArgumentOutOfRange_Enum" )); |
| 2557 | } |
| 2558 | |
| 2559 | LOG((LF_CORDB, LL_EVERYTHING, "this: currArgSlot=%d, currArgIndex=%d et=0x%x\n" , currArgSlot, currArgIndex, et)); |
| 2560 | |
| 2561 | if (pDE->m_md->GetMethodTable()->IsValueType()) |
| 2562 | { |
| 2563 | // For value classes, the 'this' parameter is always passed by reference. |
| 2564 | // However do not unbox if we are calling an unboxing stub. |
| 2565 | if (pDE->m_md == pUnboxedMD) |
| 2566 | { |
| 2567 | // pDE->m_md is expecting an unboxed this pointer. Then we will unbox it. |
| 2568 | isByRef = true; |
| 2569 | |
| 2570 | // Remember if we need to unbox this parameter, though. |
| 2571 | if ((et == ELEMENT_TYPE_CLASS) || (et == ELEMENT_TYPE_OBJECT)) |
| 2572 | { |
| 2573 | fNeedBoxOrUnbox = true; |
| 2574 | } |
| 2575 | } |
| 2576 | } |
| 2577 | else if (et == ELEMENT_TYPE_VALUETYPE) |
| 2578 | { |
| 2579 | // When the method that we invoking is defined on non value type and we receive the ValueType as input, |
| 2580 | // we are calling methods on System.Object. In this case, we need to box the input ValueType. |
| 2581 | fNeedBoxOrUnbox = true; |
| 2582 | } |
| 2583 | |
| 2584 | GetFuncEvalArgValue(pDE, |
| 2585 | &argData[currArgIndex], |
| 2586 | isByRef, |
| 2587 | fNeedBoxOrUnbox, |
| 2588 | dummyTH, |
| 2589 | ELEMENT_TYPE_CLASS, |
| 2590 | pDE->m_md->GetMethodTable(), |
| 2591 | &(pArguments[currArgSlot]), |
| 2592 | &(pMaybeInteriorPtrArray[currArgIndex]), |
| 2593 | &(pObjectRefArray[currArgIndex]), |
| 2594 | &(pBufferForArgsArray[currArgIndex]), |
| 2595 | NULL, |
| 2596 | ELEMENT_TYPE_OBJECT |
| 2597 | DEBUG_ARG((currArgIndex < MAX_DATA_LOCATIONS_TRACKED) ? pDataLocationArray[currArgIndex] |
| 2598 | : DL_All) |
| 2599 | ); |
| 2600 | |
| 2601 | LOG((LF_CORDB, LL_EVERYTHING, "this = 0x%08x\n" , ArgSlotToPtr(pArguments[currArgSlot]))); |
| 2602 | |
| 2603 | // We need to check 'this' for a null ref ourselves... NOTE: only do this if we put an object reference on |
| 2604 | // the stack. If we put a byref for a value type, then we don't need to do this! |
| 2605 | if (!isByRef) |
| 2606 | { |
| 2607 | // The this pointer is not a unboxed value type. |
| 2608 | |
| 2609 | ARG_SLOT oi1 = pArguments[currArgSlot]; |
| 2610 | OBJECTREF o1 = ArgSlotToObj(oi1); |
| 2611 | |
| 2612 | if (FAILED(ValidateObject(OBJECTREFToObject(o1)))) |
| 2613 | { |
| 2614 | COMPlusThrow(kArgumentException, W("Argument_BadObjRef" )); |
| 2615 | } |
| 2616 | |
| 2617 | if (OBJECTREFToObject(o1) == NULL) |
| 2618 | { |
| 2619 | COMPlusThrow(kNullReferenceException, W("NullReference_This" )); |
| 2620 | } |
| 2621 | |
| 2622 | // For interface method, we have already done the check early on. |
| 2623 | if (!pDE->m_md->IsInterface()) |
| 2624 | { |
| 2625 | // We also need to make sure that the method that we are invoking is either defined on this object or the direct/indirect |
| 2626 | // base objects. |
| 2627 | Object *objPtr = OBJECTREFToObject(o1); |
| 2628 | MethodTable *pMT = objPtr->GetMethodTable(); |
| 2629 | // <TODO> Do this check in the following cases as well... </TODO> |
| 2630 | if (!pMT->IsArray() |
| 2631 | && !pDE->m_md->IsSharedByGenericInstantiations()) |
| 2632 | { |
| 2633 | TypeHandle thFrom = TypeHandle(pMT); |
| 2634 | TypeHandle thTarget = TypeHandle(pDE->m_md->GetMethodTable()); |
| 2635 | //<TODO> What about MaybeCast?</TODO> |
| 2636 | if (thFrom.CanCastToNoGC(thTarget) == TypeHandle::CannotCast) |
| 2637 | { |
| 2638 | COMPlusThrow(kArgumentException, W("Argument_CORDBBadMethod" )); |
| 2639 | } |
| 2640 | } |
| 2641 | } |
| 2642 | } |
| 2643 | |
| 2644 | // |
| 2645 | // Increment up both arrays. |
| 2646 | // |
| 2647 | currArgSlot++; |
| 2648 | currArgIndex++; |
| 2649 | } |
| 2650 | |
| 2651 | // Special handling for functions that return value classes. |
| 2652 | if (fRetValueArg) |
| 2653 | { |
| 2654 | LOG((LF_CORDB, LL_EVERYTHING, "retBuff: currArgSlot=%d, currArgIndex=%d\n" , currArgSlot, currArgIndex)); |
| 2655 | |
| 2656 | // |
| 2657 | // Allocate buffer for return value and GC protect it in case it contains object references |
| 2658 | // |
| 2659 | unsigned size = RetValueType.GetMethodTable()->GetNumInstanceFieldBytes(); |
| 2660 | |
| 2661 | #ifdef FEATURE_HFA |
| 2662 | // The buffer for HFAs has to be always ENREGISTERED_RETURNTYPE_MAXSIZE |
| 2663 | size = max(size, ENREGISTERED_RETURNTYPE_MAXSIZE); |
| 2664 | #endif |
| 2665 | |
| 2666 | BYTE * pTemp = new (interopsafe) BYTE[ALIGN_UP(sizeof(ValueClassInfo), 8) + size]; |
| 2667 | |
| 2668 | ValueClassInfo * pValueClassInfo = (ValueClassInfo *)pTemp; |
| 2669 | LPVOID pData = pTemp + ALIGN_UP(sizeof(ValueClassInfo), 8); |
| 2670 | |
| 2671 | memset(pData, 0, size); |
| 2672 | |
| 2673 | pValueClassInfo->pData = pData; |
| 2674 | pValueClassInfo->pMT = RetValueType.GetMethodTable(); |
| 2675 | |
| 2676 | pValueClassInfo->pNext = *ppProtectedValueClasses; |
| 2677 | *ppProtectedValueClasses = pValueClassInfo; |
| 2678 | |
| 2679 | pArguments[currArgSlot++] = PtrToArgSlot(pData); |
| 2680 | *ppRetValue = pData; |
| 2681 | } |
| 2682 | |
| 2683 | // REAL ARGUMENTS (if any) |
| 2684 | // Now do the remaining args |
| 2685 | for ( ; currArgIndex < pDE->m_argCount; currArgSlot++, currArgIndex++) |
| 2686 | { |
| 2687 | DebuggerIPCE_FuncEvalArgData *pFEAD = &argData[currArgIndex]; |
| 2688 | |
| 2689 | LOG((LF_CORDB, LL_EVERYTHING, "currArgSlot=%d, currArgIndex=%d\n" , |
| 2690 | currArgSlot, |
| 2691 | currArgIndex)); |
| 2692 | LOG((LF_CORDB, LL_EVERYTHING, |
| 2693 | "\t: argSigType=0x%x, byrefArgSigType=0x%0x, inType=0x%0x\n" , |
| 2694 | pFEArgInfo[currArgIndex].argSigType, |
| 2695 | pFEArgInfo[currArgIndex].byrefArgSigType, |
| 2696 | pFEAD->argElementType)); |
| 2697 | |
| 2698 | |
| 2699 | GetFuncEvalArgValue(pDE, |
| 2700 | pFEAD, |
| 2701 | pFEArgInfo[currArgIndex].argSigType == ELEMENT_TYPE_BYREF, |
| 2702 | pFEArgInfo[currArgIndex].fNeedBoxOrUnbox, |
| 2703 | pFEArgInfo[currArgIndex].sigTypeHandle, |
| 2704 | pFEArgInfo[currArgIndex].byrefArgSigType, |
| 2705 | pFEArgInfo[currArgIndex].byrefArgTypeHandle, |
| 2706 | &(pArguments[currArgSlot]), |
| 2707 | &(pMaybeInteriorPtrArray[currArgIndex]), |
| 2708 | &(pObjectRefArray[currArgIndex]), |
| 2709 | &(pBufferForArgsArray[currArgIndex]), |
| 2710 | ppProtectedValueClasses, |
| 2711 | pFEArgInfo[currArgIndex].argSigType |
| 2712 | DEBUG_ARG((currArgIndex < MAX_DATA_LOCATIONS_TRACKED) ? pDataLocationArray[currArgIndex] |
| 2713 | : DL_All) |
| 2714 | ); |
| 2715 | } |
| 2716 | } |
| 2717 | |
| 2718 | /* |
| 2719 | * UnpackFuncEvalResult |
| 2720 | * |
| 2721 | * This routine takes the resulting object of a func-eval, and does any copying, boxing, unboxing, necessary. |
| 2722 | * |
| 2723 | * Parameters: |
| 2724 | * pDE - pointer to the DebuggerEval object being processed. |
| 2725 | * newObj - Pre-allocated object for NEW_OBJ func-evals. |
| 2726 | * retObject - Pre-allocated object to be filled in with the info in pRetBuff. |
| 2727 | * RetValueType - The return type of the function called. |
| 2728 | * pRetBuff - The raw bytes returned by the func-eval call when there is a return buffer parameter. |
| 2729 | * |
| 2730 | * |
| 2731 | * Returns: |
| 2732 | * None. |
| 2733 | * |
| 2734 | */ |
| 2735 | void UnpackFuncEvalResult(DebuggerEval *pDE, |
| 2736 | OBJECTREF newObj, |
| 2737 | OBJECTREF retObject, |
| 2738 | TypeHandle RetValueType, |
| 2739 | void *pRetBuff |
| 2740 | ) |
| 2741 | { |
| 2742 | CONTRACTL |
| 2743 | { |
| 2744 | WRAPPER(THROWS); |
| 2745 | GC_NOTRIGGER; |
| 2746 | } |
| 2747 | CONTRACTL_END; |
| 2748 | |
| 2749 | |
| 2750 | // Ah, but if this was a new object op, then the result is really |
| 2751 | // the object we allocated above... |
| 2752 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
| 2753 | { |
| 2754 | // We purposely do not morph nullables to be boxed Ts here because debugger EE's otherwise |
| 2755 | // have no way of creating true nullables that they need for their own purposes. |
| 2756 | pDE->m_result[0] = ObjToArgSlot(newObj); |
| 2757 | pDE->m_retValueBoxing = Debugger::AllBoxed; |
| 2758 | } |
| 2759 | else if (!RetValueType.IsNull()) |
| 2760 | { |
| 2761 | LOG((LF_CORDB, LL_EVERYTHING, "FuncEval call is saving a boxed VC return value.\n" )); |
| 2762 | |
| 2763 | // |
| 2764 | // We pre-created it above |
| 2765 | // |
| 2766 | _ASSERTE(retObject != NULL); |
| 2767 | |
| 2768 | // This is one of those places we use true boxed nullables |
| 2769 | _ASSERTE(!Nullable::IsNullableType(RetValueType)|| |
| 2770 | retObject->GetMethodTable() == RetValueType.GetMethodTable()); |
| 2771 | |
| 2772 | if (pRetBuff != NULL) |
| 2773 | { |
| 2774 | // box the object |
| 2775 | CopyValueClass(retObject->GetData(), |
| 2776 | pRetBuff, |
| 2777 | RetValueType.GetMethodTable(), |
| 2778 | retObject->GetAppDomain()); |
| 2779 | } |
| 2780 | else |
| 2781 | { |
| 2782 | // box the primitive returned, retObject is a true nullable for nullabes, It will be Normalized later |
| 2783 | CopyValueClass(retObject->GetData(), |
| 2784 | pDE->m_result, |
| 2785 | RetValueType.GetMethodTable(), |
| 2786 | retObject->GetAppDomain()); |
| 2787 | } |
| 2788 | |
| 2789 | pDE->m_result[0] = ObjToArgSlot(retObject); |
| 2790 | pDE->m_retValueBoxing = Debugger::AllBoxed; |
| 2791 | } |
| 2792 | else |
| 2793 | { |
| 2794 | // |
| 2795 | // Other FuncEvals return primitives as unboxed. |
| 2796 | // |
| 2797 | pDE->m_retValueBoxing = Debugger::OnlyPrimitivesUnboxed; |
| 2798 | } |
| 2799 | |
| 2800 | LOG((LF_CORDB, LL_INFO10000, "FuncEval call has saved the return value.\n" )); |
| 2801 | // No exception, so it worked as far as we're concerned. |
| 2802 | pDE->m_successful = true; |
| 2803 | |
| 2804 | // If the result is an object, then place the object |
| 2805 | // reference into a strong handle and place the handle into the |
| 2806 | // pDE to protect the result from a collection. |
| 2807 | CorElementType retClassET = pDE->m_resultType.GetSignatureCorElementType(); |
| 2808 | |
| 2809 | if ((pDE->m_retValueBoxing == Debugger::AllBoxed) || |
| 2810 | !RetValueType.IsNull() || |
| 2811 | IsElementTypeSpecial(retClassET)) |
| 2812 | { |
| 2813 | LOG((LF_CORDB, LL_EVERYTHING, "Creating strong handle for boxed DoNormalFuncEval result.\n" )); |
| 2814 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(ArgSlotToObj(pDE->m_result[0])); |
| 2815 | pDE->m_result[0] = (INT64)(LONG_PTR)oh; |
| 2816 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
| 2817 | } |
| 2818 | } |
| 2819 | |
| 2820 | /* |
| 2821 | * UnpackFuncEvalArguments |
| 2822 | * |
| 2823 | * This routine takes the resulting object of a func-eval, and does any copying, boxing, unboxing, necessary. |
| 2824 | * |
| 2825 | * Parameters: |
| 2826 | * pDE - pointer to the DebuggerEval object being processed. |
| 2827 | * newObj - Pre-allocated object for NEW_OBJ func-evals. |
| 2828 | * retObject - Pre-allocated object to be filled in with the info in pSource. |
| 2829 | * RetValueType - The return type of the function called. |
| 2830 | * pSource - The raw bytes returned by the func-eval call when there is a hidden parameter. |
| 2831 | * |
| 2832 | * |
| 2833 | * Returns: |
| 2834 | * None. |
| 2835 | * |
| 2836 | */ |
| 2837 | void UnpackFuncEvalArguments(DebuggerEval *pDE, |
| 2838 | DebuggerIPCE_FuncEvalArgData *argData, |
| 2839 | MetaSig mSig, |
| 2840 | BOOL staticMethod, |
| 2841 | OBJECTREF *pObjectRefArray, |
| 2842 | void **pMaybeInteriorPtrArray, |
| 2843 | void **pByRefMaybeInteriorPtrArray, |
| 2844 | INT64 *pBufferForArgsArray |
| 2845 | ) |
| 2846 | { |
| 2847 | WRAPPER_NO_CONTRACT; |
| 2848 | |
| 2849 | // Update any enregistered byrefs with their new values from the |
| 2850 | // proper byref temporary array. |
| 2851 | if (pDE->m_argCount > 0) |
| 2852 | { |
| 2853 | mSig.Reset(); |
| 2854 | |
| 2855 | unsigned currArgIndex = 0; |
| 2856 | |
| 2857 | if ((pDE->m_evalType == DB_IPCE_FET_NORMAL) && !pDE->m_md->IsStatic()) |
| 2858 | { |
| 2859 | // |
| 2860 | // Skip over the 'this' arg, since this function is not supposed to mess with it. |
| 2861 | // |
| 2862 | currArgIndex++; |
| 2863 | } |
| 2864 | |
| 2865 | for (; currArgIndex < pDE->m_argCount; currArgIndex++) |
| 2866 | { |
| 2867 | CorElementType argSigType = mSig.NextArgNormalized(); |
| 2868 | |
| 2869 | LOG((LF_CORDB, LL_EVERYTHING, "currArgIndex=%d argSigType=0x%x\n" , currArgIndex, argSigType)); |
| 2870 | |
| 2871 | _ASSERTE(argSigType != ELEMENT_TYPE_END); |
| 2872 | |
| 2873 | if (argSigType == ELEMENT_TYPE_BYREF) |
| 2874 | { |
| 2875 | TypeHandle byrefClass = TypeHandle(); |
| 2876 | CorElementType byrefArgSigType = mSig.GetByRefType(&byrefClass); |
| 2877 | |
| 2878 | // If these are the true boxed nullables we created in BoxFuncEvalArguments, convert them back |
| 2879 | pObjectRefArray[currArgIndex] = Nullable::NormalizeBox(pObjectRefArray[currArgIndex]); |
| 2880 | |
| 2881 | LOG((LF_CORDB, LL_EVERYTHING, "DoNormalFuncEval: Updating enregistered byref...\n" )); |
| 2882 | SetFuncEvalByRefArgValue(pDE, |
| 2883 | &argData[currArgIndex], |
| 2884 | byrefArgSigType, |
| 2885 | pBufferForArgsArray[currArgIndex], |
| 2886 | pMaybeInteriorPtrArray[currArgIndex], |
| 2887 | pByRefMaybeInteriorPtrArray[currArgIndex], |
| 2888 | pObjectRefArray[currArgIndex] |
| 2889 | ); |
| 2890 | } |
| 2891 | } |
| 2892 | } |
| 2893 | } |
| 2894 | |
| 2895 | |
| 2896 | /* |
| 2897 | * FuncEvalWrapper |
| 2898 | * |
| 2899 | * Helper function for func-eval. We have to split it out so that we can put a __try / __finally in to |
| 2900 | * notify on a Catch-Handler found. |
| 2901 | * |
| 2902 | * Parameters: |
| 2903 | * pDE - pointer to the DebuggerEval object being processed. |
| 2904 | * pArguments - created stack to pass for the call. |
| 2905 | * pCatcherStackAddr - stack address to report as the Catch Handler Found location. |
| 2906 | * |
| 2907 | * Returns: |
| 2908 | * None. |
| 2909 | * |
| 2910 | */ |
| 2911 | void FuncEvalWrapper(MethodDescCallSite* pMDCS, DebuggerEval *pDE, const ARG_SLOT *pArguments, BYTE *pCatcherStackAddr) |
| 2912 | { |
| 2913 | struct Param : NotifyOfCHFFilterWrapperParam |
| 2914 | { |
| 2915 | MethodDescCallSite* pMDCS; |
| 2916 | DebuggerEval *pDE; |
| 2917 | const ARG_SLOT *pArguments; |
| 2918 | }; |
| 2919 | |
| 2920 | Param param; |
| 2921 | param.pFrame = pCatcherStackAddr; // Inherited from NotifyOfCHFFilterWrapperParam |
| 2922 | param.pMDCS = pMDCS; |
| 2923 | param.pDE = pDE; |
| 2924 | param.pArguments = pArguments; |
| 2925 | |
| 2926 | PAL_TRY(Param *, pParam, ¶m) |
| 2927 | { |
| 2928 | pParam->pMDCS->CallWithValueTypes_RetArgSlot(pParam->pArguments, pParam->pDE->m_result, sizeof(pParam->pDE->m_result)); |
| 2929 | } |
| 2930 | PAL_EXCEPT_FILTER(NotifyOfCHFFilterWrapper) |
| 2931 | { |
| 2932 | // Should never reach here b/c handler should always continue search. |
| 2933 | _ASSERTE(false); |
| 2934 | } |
| 2935 | PAL_ENDTRY |
| 2936 | } |
| 2937 | |
| 2938 | /* |
| 2939 | * RecordFuncEvalException |
| 2940 | * |
| 2941 | * Helper function records the details of an exception that occurred during a FuncEval |
| 2942 | * Note that this should be called from within the target domain of the FuncEval. |
| 2943 | * |
| 2944 | * Parameters: |
| 2945 | * pDE - pointer to the DebuggerEval object being processed |
| 2946 | * ppException - the Exception object that was thrown |
| 2947 | * |
| 2948 | * Returns: |
| 2949 | * None. |
| 2950 | */ |
| 2951 | static void RecordFuncEvalException(DebuggerEval *pDE, |
| 2952 | OBJECTREF ppException ) |
| 2953 | { |
| 2954 | CONTRACTL |
| 2955 | { |
| 2956 | THROWS; // CreateStrongHandle could throw OOM |
| 2957 | GC_NOTRIGGER; |
| 2958 | MODE_COOPERATIVE; |
| 2959 | } |
| 2960 | CONTRACTL_END; |
| 2961 | |
| 2962 | // We got an exception. Make the exception into our result. |
| 2963 | pDE->m_successful = false; |
| 2964 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - Exception during funceval.\n" )); |
| 2965 | |
| 2966 | // |
| 2967 | // Special handling for thread abort exceptions. We need to explicitly reset the |
| 2968 | // abort request on the EE thread, then make sure to place this thread on a thunk |
| 2969 | // that will re-raise the exception when we continue the process. Note: we still |
| 2970 | // pass this thread abort exception up as the result of the eval. |
| 2971 | // |
| 2972 | if (IsExceptionOfType(kThreadAbortException, &ppException)) |
| 2973 | { |
| 2974 | if (pDE->m_aborting != DebuggerEval::FE_ABORT_NONE) |
| 2975 | { |
| 2976 | // |
| 2977 | // Reset the abort request. |
| 2978 | // |
| 2979 | pDE->m_thread->UserResetAbort(Thread::TAR_FuncEval); |
| 2980 | |
| 2981 | // |
| 2982 | // This is the abort we sent down. |
| 2983 | // |
| 2984 | memset(pDE->m_result, 0, sizeof(pDE->m_result)); |
| 2985 | pDE->m_resultType = TypeHandle(); |
| 2986 | pDE->m_aborted = true; |
| 2987 | pDE->m_retValueBoxing = Debugger::NoValueTypeBoxing; |
| 2988 | |
| 2989 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - funceval abort exception.\n" )); |
| 2990 | } |
| 2991 | else |
| 2992 | { |
| 2993 | // |
| 2994 | // This must have come from somewhere else, remember that we need to |
| 2995 | // rethrow this. |
| 2996 | // |
| 2997 | pDE->m_rethrowAbortException = true; |
| 2998 | |
| 2999 | // |
| 3000 | // The result is the exception object. |
| 3001 | // |
| 3002 | pDE->m_result[0] = ObjToArgSlot(ppException); |
| 3003 | |
| 3004 | pDE->m_resultType = ppException->GetTypeHandle(); |
| 3005 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(ArgSlotToObj(pDE->m_result[0])); |
| 3006 | pDE->m_result[0] = (ARG_SLOT)PTR_TO_CORDB_ADDRESS(oh); |
| 3007 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
| 3008 | pDE->m_retValueBoxing = Debugger::NoValueTypeBoxing; |
| 3009 | |
| 3010 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - Non-FE abort thread abort..\n" )); |
| 3011 | } |
| 3012 | } |
| 3013 | else |
| 3014 | { |
| 3015 | // |
| 3016 | // The result is the exception object. |
| 3017 | // |
| 3018 | pDE->m_result[0] = ObjToArgSlot(ppException); |
| 3019 | |
| 3020 | pDE->m_resultType = ppException->GetTypeHandle(); |
| 3021 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(ArgSlotToObj(pDE->m_result[0])); |
| 3022 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
| 3023 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
| 3024 | |
| 3025 | pDE->m_retValueBoxing = Debugger::NoValueTypeBoxing; |
| 3026 | |
| 3027 | LOG((LF_CORDB, LL_EVERYTHING, "D::FEHW - Exception for the user.\n" )); |
| 3028 | } |
| 3029 | } |
| 3030 | |
| 3031 | |
| 3032 | /* |
| 3033 | * DoNormalFuncEval |
| 3034 | * |
| 3035 | * Does the main body of work (steps 1c onward) for the normal func-eval algorithm detailed at the |
| 3036 | * top of this file. The args have already been GC protected and we've transitioned into the appropriate |
| 3037 | * domain (steps 1a & 1b). This has to be a seperate function from GCProtectArgsAndDoNormalFuncEval |
| 3038 | * because otherwise we can't reliably find the right GCFrames to pop when unwinding the stack due to |
| 3039 | * an exception on 64-bit platforms (we have some GCFrames outside of the TRY, and some inside, |
| 3040 | * and they won't necesarily be layed out sequentially on the stack if they are all in the same function). |
| 3041 | * |
| 3042 | * Parameters: |
| 3043 | * pDE - pointer to the DebuggerEval object being processed. |
| 3044 | * pCatcherStackAddr - stack address to report as the Catch Handler Found location. |
| 3045 | * pObjectRefArray - An array to hold object ref args. This array is protected from GC's. |
| 3046 | * pMaybeInteriorPtrArray - An array to hold values that may be pointers into a managed object. |
| 3047 | * This array is protected from GCs. |
| 3048 | * pByRefMaybeInteriorPtrArray - An array to hold values that may be pointers into a managed |
| 3049 | * object. This array is protected from GCs. This array protects the address of the arguments |
| 3050 | * while the pMaybeInteriorPtrArray protects the value of the arguments. We need to do this |
| 3051 | * because of by ref arguments. |
| 3052 | * pBufferForArgsArray - a buffer of temporary scratch space for things that do not need to be |
| 3053 | * protected, or are protected for free (e.g. Handles). |
| 3054 | * pDataLocationArray - an array of tracking data for debug sanity checks |
| 3055 | * |
| 3056 | * Returns: |
| 3057 | * None. |
| 3058 | */ |
| 3059 | static void DoNormalFuncEval( DebuggerEval *pDE, |
| 3060 | BYTE *pCatcherStackAddr, |
| 3061 | OBJECTREF *pObjectRefArray, |
| 3062 | void **pMaybeInteriorPtrArray, |
| 3063 | void **pByRefMaybeInteriorPtrArray, |
| 3064 | INT64 *pBufferForArgsArray, |
| 3065 | ValueClassInfo ** ppProtectedValueClasses |
| 3066 | DEBUG_ARG(DataLocation pDataLocationArray[]) |
| 3067 | ) |
| 3068 | { |
| 3069 | CONTRACTL |
| 3070 | { |
| 3071 | THROWS; |
| 3072 | GC_TRIGGERS; |
| 3073 | MODE_COOPERATIVE; |
| 3074 | } |
| 3075 | CONTRACTL_END; |
| 3076 | |
| 3077 | // |
| 3078 | // Now that all the args are protected, we can go back and deal with generic args and resolving |
| 3079 | // all their information. |
| 3080 | // |
| 3081 | ResolveFuncEvalGenericArgInfo(pDE); |
| 3082 | |
| 3083 | // |
| 3084 | // Grab the signature of the method we're working on and do some error checking. |
| 3085 | // Note that if this instantiated generic code, then this will |
| 3086 | // correctly give as an instantiated view of the signature that we can iterate without |
| 3087 | // worrying about generic items in the signature. |
| 3088 | // |
| 3089 | MetaSig mSig(pDE->m_md); |
| 3090 | |
| 3091 | BYTE callingconvention = mSig.GetCallingConvention(); |
| 3092 | if (!isCallConv(callingconvention, IMAGE_CEE_CS_CALLCONV_DEFAULT)) |
| 3093 | { |
| 3094 | // We don't support calling vararg! |
| 3095 | COMPlusThrow(kArgumentException, W("Argument_CORDBBadVarArgCallConv" )); |
| 3096 | } |
| 3097 | |
| 3098 | // |
| 3099 | // We'll need to know if this is a static method or not. |
| 3100 | // |
| 3101 | BOOL staticMethod = pDE->m_md->IsStatic(); |
| 3102 | |
| 3103 | _ASSERTE((pDE->m_evalType == DB_IPCE_FET_NORMAL) || !staticMethod); |
| 3104 | |
| 3105 | // |
| 3106 | // Do Step 1c - Pre-allocate space for new objects. |
| 3107 | // |
| 3108 | OBJECTREF newObj = NULL; |
| 3109 | GCPROTECT_BEGIN(newObj); |
| 3110 | |
| 3111 | SIZE_T allocArgCnt = 0; |
| 3112 | |
| 3113 | if (pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) |
| 3114 | { |
| 3115 | ValidateFuncEvalReturnType(DB_IPCE_FET_NEW_OBJECT, pDE->m_resultType.GetMethodTable()); |
| 3116 | pDE->m_resultType.GetMethodTable()->EnsureInstanceActive(); |
| 3117 | newObj = AllocateObject(pDE->m_resultType.GetMethodTable()); |
| 3118 | |
| 3119 | // |
| 3120 | // Note: we account for an extra argument in the count passed |
| 3121 | // in. We use this to increase the space allocated for args, |
| 3122 | // and we use it to control the number of args copied into |
| 3123 | // those arrays below. Note: m_argCount already includes space |
| 3124 | // for this. |
| 3125 | // |
| 3126 | allocArgCnt = pDE->m_argCount + 1; |
| 3127 | } |
| 3128 | else |
| 3129 | { |
| 3130 | allocArgCnt = pDE->m_argCount; |
| 3131 | } |
| 3132 | |
| 3133 | // |
| 3134 | // Validate the argument count with mSig. |
| 3135 | // |
| 3136 | if (allocArgCnt != (mSig.NumFixedArgs() + (staticMethod ? 0 : 1))) |
| 3137 | { |
| 3138 | COMPlusThrow(kTargetParameterCountException, W("Arg_ParmCnt" )); |
| 3139 | } |
| 3140 | |
| 3141 | // |
| 3142 | // Do Step 1d - Gather information about the method that will be called. |
| 3143 | // |
| 3144 | // An array to hold information about the parameters to be passed. This is |
| 3145 | // all the information we need to gather before entering the GCX_FORBID area. |
| 3146 | // |
| 3147 | DebuggerIPCE_FuncEvalArgData *argData = pDE->GetArgData(); |
| 3148 | |
| 3149 | MethodDesc *pUnboxedMD = pDE->m_md; |
| 3150 | BOOL fHasRetBuffArg; |
| 3151 | BOOL fHasNonStdByValReturn; |
| 3152 | TypeHandle RetValueType; |
| 3153 | |
| 3154 | BoxFuncEvalThisParameter(pDE, |
| 3155 | argData, |
| 3156 | pMaybeInteriorPtrArray, |
| 3157 | pObjectRefArray |
| 3158 | DEBUG_ARG(pDataLocationArray) |
| 3159 | ); |
| 3160 | |
| 3161 | GatherFuncEvalMethodInfo(pDE, |
| 3162 | mSig, |
| 3163 | argData, |
| 3164 | &pUnboxedMD, |
| 3165 | pObjectRefArray, |
| 3166 | pBufferForArgsArray, |
| 3167 | &fHasRetBuffArg, |
| 3168 | &fHasNonStdByValReturn, |
| 3169 | &RetValueType |
| 3170 | DEBUG_ARG(pDataLocationArray) |
| 3171 | ); |
| 3172 | |
| 3173 | // |
| 3174 | // Do Step 1e - Gather info from runtime about args (may trigger a GC). |
| 3175 | // |
| 3176 | SIZE_T cbAllocSize; |
| 3177 | if (!(ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(FuncEvalArgInfo), cbAllocSize)) || |
| 3178 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3179 | { |
| 3180 | ThrowHR(COR_E_OVERFLOW); |
| 3181 | } |
| 3182 | FuncEvalArgInfo * pFEArgInfo = (FuncEvalArgInfo *)_alloca(cbAllocSize); |
| 3183 | memset(pFEArgInfo, 0, cbAllocSize); |
| 3184 | |
| 3185 | GatherFuncEvalArgInfo(pDE, mSig, argData, pFEArgInfo); |
| 3186 | |
| 3187 | // |
| 3188 | // Do Step 1f - Box or unbox arguments one at a time, placing newly boxed items into |
| 3189 | // pObjectRefArray immediately after creating them. |
| 3190 | // |
| 3191 | BoxFuncEvalArguments(pDE, |
| 3192 | argData, |
| 3193 | pFEArgInfo, |
| 3194 | pMaybeInteriorPtrArray, |
| 3195 | pObjectRefArray |
| 3196 | DEBUG_ARG(pDataLocationArray) |
| 3197 | ); |
| 3198 | |
| 3199 | #ifdef _DEBUG |
| 3200 | if (!RetValueType.IsNull()) |
| 3201 | { |
| 3202 | _ASSERTE(RetValueType.IsValueType()); |
| 3203 | } |
| 3204 | #endif |
| 3205 | |
| 3206 | // |
| 3207 | // Do Step 1g - Pre-allocate any return value object. |
| 3208 | // |
| 3209 | OBJECTREF retObject = NULL; |
| 3210 | GCPROTECT_BEGIN(retObject); |
| 3211 | |
| 3212 | if ((pDE->m_evalType != DB_IPCE_FET_NEW_OBJECT) && !RetValueType.IsNull()) |
| 3213 | { |
| 3214 | ValidateFuncEvalReturnType(pDE->m_evalType, RetValueType.GetMethodTable()); |
| 3215 | RetValueType.GetMethodTable()->EnsureInstanceActive(); |
| 3216 | retObject = AllocateObject(RetValueType.GetMethodTable()); |
| 3217 | } |
| 3218 | |
| 3219 | // |
| 3220 | // Do Step 1h - Copy into scratch buffer all enregistered arguments, and |
| 3221 | // ByRef literals. |
| 3222 | // |
| 3223 | CopyArgsToBuffer(pDE, |
| 3224 | argData, |
| 3225 | pFEArgInfo, |
| 3226 | pBufferForArgsArray |
| 3227 | DEBUG_ARG(pDataLocationArray) |
| 3228 | ); |
| 3229 | |
| 3230 | // |
| 3231 | // We presume that the function has a return buffer. This assumption gets squeezed out |
| 3232 | // when we pack the argument array. |
| 3233 | // |
| 3234 | allocArgCnt++; |
| 3235 | |
| 3236 | LOG((LF_CORDB, LL_EVERYTHING, |
| 3237 | "Func eval for %s::%s: allocArgCnt=%d\n" , |
| 3238 | pDE->m_md->m_pszDebugClassName, |
| 3239 | pDE->m_md->m_pszDebugMethodName, |
| 3240 | allocArgCnt)); |
| 3241 | |
| 3242 | MethodDescCallSite funcToEval(pDE->m_md, pDE->m_targetCodeAddr); |
| 3243 | |
| 3244 | // |
| 3245 | // Do Step 1i - Create and pack argument array for managed function call. |
| 3246 | // |
| 3247 | // Allocate space for argument stack |
| 3248 | // |
| 3249 | if ((!ClrSafeInt<SIZE_T>::multiply(allocArgCnt, sizeof(ARG_SLOT), cbAllocSize)) || |
| 3250 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3251 | { |
| 3252 | ThrowHR(COR_E_OVERFLOW); |
| 3253 | } |
| 3254 | ARG_SLOT * pArguments = (ARG_SLOT *)_alloca(cbAllocSize); |
| 3255 | memset(pArguments, 0, cbAllocSize); |
| 3256 | |
| 3257 | LPVOID pRetBuff = NULL; |
| 3258 | |
| 3259 | PackArgumentArray(pDE, |
| 3260 | argData, |
| 3261 | pFEArgInfo, |
| 3262 | pUnboxedMD, |
| 3263 | RetValueType, |
| 3264 | pObjectRefArray, |
| 3265 | pMaybeInteriorPtrArray, |
| 3266 | pBufferForArgsArray, |
| 3267 | ppProtectedValueClasses, |
| 3268 | newObj, |
| 3269 | #ifdef FEATURE_HFA |
| 3270 | fHasRetBuffArg || fHasNonStdByValReturn, |
| 3271 | #else |
| 3272 | fHasRetBuffArg, |
| 3273 | #endif |
| 3274 | pArguments, |
| 3275 | &pRetBuff |
| 3276 | DEBUG_ARG(pDataLocationArray) |
| 3277 | ); |
| 3278 | |
| 3279 | // |
| 3280 | // |
| 3281 | // Do Step 2 - Make the call! |
| 3282 | // |
| 3283 | // |
| 3284 | FuncEvalWrapper(&funcToEval, pDE, pArguments, pCatcherStackAddr); |
| 3285 | { |
| 3286 | |
| 3287 | // We have now entered the zone where taking a GC is fatal until we get the |
| 3288 | // return value all fixed up. |
| 3289 | // |
| 3290 | GCX_FORBID(); |
| 3291 | |
| 3292 | |
| 3293 | // |
| 3294 | // |
| 3295 | // Do Step 3 - Unpack results and update ByRef arguments. |
| 3296 | // |
| 3297 | // |
| 3298 | // |
| 3299 | LOG((LF_CORDB, LL_EVERYTHING, "FuncEval call has returned\n" )); |
| 3300 | |
| 3301 | |
| 3302 | // GC still can't happen until we get our return value out half way through the unpack function |
| 3303 | |
| 3304 | UnpackFuncEvalResult(pDE, |
| 3305 | newObj, |
| 3306 | retObject, |
| 3307 | RetValueType, |
| 3308 | pRetBuff |
| 3309 | ); |
| 3310 | } |
| 3311 | |
| 3312 | UnpackFuncEvalArguments(pDE, |
| 3313 | argData, |
| 3314 | mSig, |
| 3315 | staticMethod, |
| 3316 | pObjectRefArray, |
| 3317 | pMaybeInteriorPtrArray, |
| 3318 | pByRefMaybeInteriorPtrArray, |
| 3319 | pBufferForArgsArray |
| 3320 | ); |
| 3321 | |
| 3322 | GCPROTECT_END(); // retObject |
| 3323 | GCPROTECT_END(); // newObj |
| 3324 | } |
| 3325 | |
| 3326 | /* |
| 3327 | * GCProtectArgsAndDoNormalFuncEval |
| 3328 | * |
| 3329 | * This routine is the primary entrypoint for normal func-evals. It implements the algorithm |
| 3330 | * described at the top of this file, doing steps 1a and 1b itself, then calling DoNormalFuncEval |
| 3331 | * to do the rest. |
| 3332 | * |
| 3333 | * Parameters: |
| 3334 | * pDE - pointer to the DebuggerEval object being processed. |
| 3335 | * pCatcherStackAddr - stack address to report as the Catch Handler Found location. |
| 3336 | * |
| 3337 | * Returns: |
| 3338 | * None. |
| 3339 | * |
| 3340 | */ |
| 3341 | static void GCProtectArgsAndDoNormalFuncEval(DebuggerEval *pDE, |
| 3342 | BYTE *pCatcherStackAddr ) |
| 3343 | { |
| 3344 | CONTRACTL |
| 3345 | { |
| 3346 | THROWS; |
| 3347 | GC_TRIGGERS; |
| 3348 | MODE_COOPERATIVE; |
| 3349 | } |
| 3350 | CONTRACTL_END; |
| 3351 | |
| 3352 | |
| 3353 | INDEBUG(DataLocation pDataLocationArray[MAX_DATA_LOCATIONS_TRACKED]); |
| 3354 | |
| 3355 | // |
| 3356 | // An array to hold object ref args. This array is protected from GC's. |
| 3357 | // |
| 3358 | SIZE_T cbAllocSize; |
| 3359 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(OBJECTREF), cbAllocSize)) || |
| 3360 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3361 | { |
| 3362 | ThrowHR(COR_E_OVERFLOW); |
| 3363 | } |
| 3364 | OBJECTREF * pObjectRefArray = (OBJECTREF*)_alloca(cbAllocSize); |
| 3365 | memset(pObjectRefArray, 0, cbAllocSize); |
| 3366 | GCPROTECT_ARRAY_BEGIN(*pObjectRefArray, pDE->m_argCount); |
| 3367 | |
| 3368 | // |
| 3369 | // An array to hold values that may be pointers into a managed object. This array |
| 3370 | // is protected from GCs. |
| 3371 | // |
| 3372 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(void**), cbAllocSize)) || |
| 3373 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3374 | { |
| 3375 | ThrowHR(COR_E_OVERFLOW); |
| 3376 | } |
| 3377 | void ** pMaybeInteriorPtrArray = (void **)_alloca(cbAllocSize); |
| 3378 | memset(pMaybeInteriorPtrArray, 0, cbAllocSize); |
| 3379 | GCPROTECT_BEGININTERIOR_ARRAY(*pMaybeInteriorPtrArray, (UINT)(cbAllocSize/sizeof(OBJECTREF))); |
| 3380 | |
| 3381 | // |
| 3382 | // An array to hold values that may be pointers into a managed object. This array |
| 3383 | // is protected from GCs. This array protects the address of the arguments while the |
| 3384 | // pMaybeInteriorPtrArray protects the value of the arguments. We need to do this because |
| 3385 | // of by ref arguments. |
| 3386 | // |
| 3387 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(void**), cbAllocSize)) || |
| 3388 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3389 | { |
| 3390 | ThrowHR(COR_E_OVERFLOW); |
| 3391 | } |
| 3392 | void ** pByRefMaybeInteriorPtrArray = (void **)_alloca(cbAllocSize); |
| 3393 | memset(pByRefMaybeInteriorPtrArray, 0, cbAllocSize); |
| 3394 | GCPROTECT_BEGININTERIOR_ARRAY(*pByRefMaybeInteriorPtrArray, (UINT)(cbAllocSize/sizeof(OBJECTREF))); |
| 3395 | |
| 3396 | // |
| 3397 | // A buffer of temporary scratch space for things that do not need to be protected, or |
| 3398 | // are protected for free (e.g. Handles). |
| 3399 | // |
| 3400 | if ((!ClrSafeInt<SIZE_T>::multiply(pDE->m_argCount, sizeof(INT64), cbAllocSize)) || |
| 3401 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3402 | { |
| 3403 | ThrowHR(COR_E_OVERFLOW); |
| 3404 | } |
| 3405 | INT64 *pBufferForArgsArray = (INT64*)_alloca(cbAllocSize); |
| 3406 | memset(pBufferForArgsArray, 0, cbAllocSize); |
| 3407 | |
| 3408 | FrameWithCookie<ProtectValueClassFrame> protectValueClassFrame; |
| 3409 | |
| 3410 | // |
| 3411 | // Initialize our tracking array |
| 3412 | // |
| 3413 | INDEBUG(memset(pDataLocationArray, 0, sizeof(DataLocation) * (MAX_DATA_LOCATIONS_TRACKED))); |
| 3414 | |
| 3415 | { |
| 3416 | GCX_FORBID(); |
| 3417 | |
| 3418 | // |
| 3419 | // Do step 1a |
| 3420 | // |
| 3421 | GCProtectAllPassedArgs(pDE, |
| 3422 | pObjectRefArray, |
| 3423 | pMaybeInteriorPtrArray, |
| 3424 | pByRefMaybeInteriorPtrArray, |
| 3425 | pBufferForArgsArray |
| 3426 | DEBUG_ARG(pDataLocationArray) |
| 3427 | ); |
| 3428 | |
| 3429 | } |
| 3430 | |
| 3431 | // |
| 3432 | // Do step 1b: we can switch domains since everything is now protected. |
| 3433 | // Note that before this point, it's unsafe to rely on pDE->m_module since it may be |
| 3434 | // invalid due to an AD unload. |
| 3435 | // All normal func evals should have an AppDomain specified. |
| 3436 | // |
| 3437 | _ASSERTE( pDE->m_appDomainId.m_dwId != 0 ); |
| 3438 | ENTER_DOMAIN_ID( pDE->m_appDomainId ); |
| 3439 | |
| 3440 | // Wrap everything in a EX_TRY so we catch any exceptions that could be thrown. |
| 3441 | // Note that we don't let any thrown exceptions cross the AppDomain boundary because we don't |
| 3442 | // want them to get marshalled. |
| 3443 | EX_TRY |
| 3444 | { |
| 3445 | DoNormalFuncEval( |
| 3446 | pDE, |
| 3447 | pCatcherStackAddr, |
| 3448 | pObjectRefArray, |
| 3449 | pMaybeInteriorPtrArray, |
| 3450 | pByRefMaybeInteriorPtrArray, |
| 3451 | pBufferForArgsArray, |
| 3452 | protectValueClassFrame.GetValueClassInfoList() |
| 3453 | DEBUG_ARG(pDataLocationArray) |
| 3454 | ); |
| 3455 | } |
| 3456 | EX_CATCH |
| 3457 | { |
| 3458 | // We got an exception. Make the exception into our result. |
| 3459 | OBJECTREF ppException = GET_THROWABLE(); |
| 3460 | GCX_FORBID(); |
| 3461 | RecordFuncEvalException( pDE, ppException); |
| 3462 | } |
| 3463 | // Note: we need to catch all exceptioins here because they all get reported as the result of |
| 3464 | // the funceval. If a ThreadAbort occurred other than for a funcEval abort, we'll re-throw it manually. |
| 3465 | EX_END_CATCH(SwallowAllExceptions); |
| 3466 | |
| 3467 | // Restore context |
| 3468 | END_DOMAIN_TRANSITION; |
| 3469 | |
| 3470 | protectValueClassFrame.Pop(); |
| 3471 | |
| 3472 | CleanUpTemporaryVariables(protectValueClassFrame.GetValueClassInfoList()); |
| 3473 | |
| 3474 | GCPROTECT_END(); // pByRefMaybeInteriorPtrArray |
| 3475 | GCPROTECT_END(); // pMaybeInteriorPtrArray |
| 3476 | GCPROTECT_END(); // pObjectRefArray |
| 3477 | LOG((LF_CORDB, LL_EVERYTHING, "DoNormalFuncEval: returning...\n" )); |
| 3478 | } |
| 3479 | |
| 3480 | |
| 3481 | void FuncEvalHijackRealWorker(DebuggerEval *pDE, Thread* pThread, FuncEvalFrame* pFEFrame) |
| 3482 | { |
| 3483 | BYTE * pCatcherStackAddr = (BYTE*) pFEFrame; |
| 3484 | |
| 3485 | // Handle normal func evals in DoNormalFuncEval |
| 3486 | if ((pDE->m_evalType == DB_IPCE_FET_NEW_OBJECT) || (pDE->m_evalType == DB_IPCE_FET_NORMAL)) |
| 3487 | { |
| 3488 | GCProtectArgsAndDoNormalFuncEval(pDE, pCatcherStackAddr); |
| 3489 | LOG((LF_CORDB, LL_EVERYTHING, "DoNormalFuncEval has returned.\n" )); |
| 3490 | return; |
| 3491 | } |
| 3492 | |
| 3493 | // The method may be in a different AD than the thread. |
| 3494 | // The RS already verified that all of the arguments are in the same appdomain as the function |
| 3495 | // (because we can't verify it here). |
| 3496 | // Note that this is exception safe, so we are guarenteed to be in the correct AppDomain when |
| 3497 | // we leave this method. |
| 3498 | // Before this, we can't safely use the DebuggerModule* since the domain may have been unloaded. |
| 3499 | ENTER_DOMAIN_ID( pDE->m_appDomainId ); |
| 3500 | |
| 3501 | OBJECTREF newObj = NULL; |
| 3502 | GCPROTECT_BEGIN(newObj); |
| 3503 | |
| 3504 | // Wrap everything in a EX_TRY so we catch any exceptions that could be thrown. |
| 3505 | // Note that we don't let any thrown exceptions cross the AppDomain boundary because we don't |
| 3506 | // want them to get marshalled. |
| 3507 | EX_TRY |
| 3508 | { |
| 3509 | DebuggerIPCE_TypeArgData *firstdata = pDE->GetTypeArgData(); |
| 3510 | DWORD nGenericArgs = pDE->m_genericArgsCount; |
| 3511 | |
| 3512 | SIZE_T cbAllocSize; |
| 3513 | if ((!ClrSafeInt<SIZE_T>::multiply(nGenericArgs, sizeof(TypeHandle *), cbAllocSize)) || |
| 3514 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 3515 | { |
| 3516 | ThrowHR(COR_E_OVERFLOW); |
| 3517 | } |
| 3518 | TypeHandle *pGenericArgs = (nGenericArgs == 0) ? NULL : (TypeHandle *) _alloca(cbAllocSize); |
| 3519 | // |
| 3520 | // Snag the type arguments from the input and get the |
| 3521 | // method desc that corresponds to the instantiated desc. |
| 3522 | // |
| 3523 | Debugger::TypeDataWalk walk(firstdata, pDE->m_genericArgsNodeCount); |
| 3524 | walk.ReadTypeHandles(nGenericArgs, pGenericArgs); |
| 3525 | |
| 3526 | // <TODO>better error message</TODO> |
| 3527 | if (!walk.Finished()) |
| 3528 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
| 3529 | |
| 3530 | switch (pDE->m_evalType) |
| 3531 | { |
| 3532 | case DB_IPCE_FET_NEW_OBJECT_NC: |
| 3533 | { |
| 3534 | |
| 3535 | // Find the class. |
| 3536 | TypeHandle thClass = g_pEEInterface->LoadClass(pDE->m_debuggerModule->GetRuntimeModule(), |
| 3537 | pDE->m_classToken); |
| 3538 | |
| 3539 | if (thClass.IsNull()) |
| 3540 | COMPlusThrow(kArgumentNullException, W("ArgumentNull_Type" )); |
| 3541 | |
| 3542 | // Apply any type arguments |
| 3543 | TypeHandle th = |
| 3544 | (nGenericArgs == 0) |
| 3545 | ? thClass |
| 3546 | : g_pEEInterface->LoadInstantiation(pDE->m_debuggerModule->GetRuntimeModule(), |
| 3547 | pDE->m_classToken, nGenericArgs, pGenericArgs); |
| 3548 | |
| 3549 | if (th.IsNull() || th.ContainsGenericVariables()) |
| 3550 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
| 3551 | |
| 3552 | // Run the Class Init for this type, if necessary. |
| 3553 | MethodTable * pOwningMT = th.GetMethodTable(); |
| 3554 | pOwningMT->EnsureInstanceActive(); |
| 3555 | pOwningMT->CheckRunClassInitThrowing(); |
| 3556 | |
| 3557 | // Create a new instance of the class |
| 3558 | |
| 3559 | ValidateFuncEvalReturnType(DB_IPCE_FET_NEW_OBJECT_NC, th.GetMethodTable()); |
| 3560 | |
| 3561 | newObj = AllocateObject(th.GetMethodTable()); |
| 3562 | |
| 3563 | // No exception, so it worked. |
| 3564 | pDE->m_successful = true; |
| 3565 | |
| 3566 | // So is the result type. |
| 3567 | pDE->m_resultType = th; |
| 3568 | |
| 3569 | // |
| 3570 | // Box up all returned objects |
| 3571 | // |
| 3572 | pDE->m_retValueBoxing = Debugger::AllBoxed; |
| 3573 | |
| 3574 | // Make a strong handle for the result. |
| 3575 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(newObj); |
| 3576 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
| 3577 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
| 3578 | |
| 3579 | break; |
| 3580 | } |
| 3581 | |
| 3582 | case DB_IPCE_FET_NEW_STRING: |
| 3583 | { |
| 3584 | // Create the string. m_argData is not necessarily null terminated... |
| 3585 | // The numeration parameter represents the string length, not the buffer size, but |
| 3586 | // we have passed the buffer size across to copy our data properly, so must divide back out. |
| 3587 | // NewString will return NULL if pass null, but want an empty string in that case, so |
| 3588 | // just create an EmptyString explicitly. |
| 3589 | if ((pDE->m_argData == NULL) || (pDE->m_stringSize == 0)) |
| 3590 | { |
| 3591 | newObj = StringObject::GetEmptyString(); |
| 3592 | } |
| 3593 | else |
| 3594 | { |
| 3595 | newObj = StringObject::NewString(pDE->GetNewStringArgData(), (int)(pDE->m_stringSize/sizeof(WCHAR))); |
| 3596 | } |
| 3597 | |
| 3598 | // No exception, so it worked. |
| 3599 | pDE->m_successful = true; |
| 3600 | |
| 3601 | // Result type is, of course, a string. |
| 3602 | pDE->m_resultType = newObj->GetTypeHandle(); |
| 3603 | |
| 3604 | // Place the result in a strong handle to protect it from a collection. |
| 3605 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(newObj); |
| 3606 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
| 3607 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
| 3608 | |
| 3609 | break; |
| 3610 | } |
| 3611 | |
| 3612 | case DB_IPCE_FET_NEW_ARRAY: |
| 3613 | { |
| 3614 | // <TODO>@todo: We're only gonna handle SD arrays for right now.</TODO> |
| 3615 | if (pDE->m_arrayRank > 1) |
| 3616 | COMPlusThrow(kRankException, W("Rank_MultiDimNotSupported" )); |
| 3617 | |
| 3618 | // Grab the elementType from the arg/data area. |
| 3619 | _ASSERTE(nGenericArgs == 1); |
| 3620 | TypeHandle th = pGenericArgs[0]; |
| 3621 | |
| 3622 | CorElementType et = th.GetSignatureCorElementType(); |
| 3623 | // Gotta be a primitive, class, or System.Object. |
| 3624 | if (((et < ELEMENT_TYPE_BOOLEAN) || (et > ELEMENT_TYPE_R8)) && |
| 3625 | !IsElementTypeSpecial(et)) |
| 3626 | { |
| 3627 | COMPlusThrow(kArgumentOutOfRangeException, W("ArgumentOutOfRange_Enum" )); |
| 3628 | } |
| 3629 | |
| 3630 | // Grab the dims from the arg/data area. These come after the type arguments. |
| 3631 | SIZE_T *dims; |
| 3632 | dims = (SIZE_T*) (firstdata + pDE->m_genericArgsNodeCount); |
| 3633 | |
| 3634 | if (IsElementTypeSpecial(et)) |
| 3635 | { |
| 3636 | newObj = AllocateObjectArray((DWORD)dims[0], th); |
| 3637 | } |
| 3638 | else |
| 3639 | { |
| 3640 | // Create a simple array. Note: we can only do this type of create here due to the checks above. |
| 3641 | newObj = AllocatePrimitiveArray(et, (DWORD)dims[0]); |
| 3642 | } |
| 3643 | |
| 3644 | // No exception, so it worked. |
| 3645 | pDE->m_successful = true; |
| 3646 | |
| 3647 | // Result type is, of course, the type of the array. |
| 3648 | pDE->m_resultType = newObj->GetTypeHandle(); |
| 3649 | |
| 3650 | // Place the result in a strong handle to protect it from a collection. |
| 3651 | OBJECTHANDLE oh = pDE->m_thread->GetDomain()->CreateStrongHandle(newObj); |
| 3652 | pDE->m_result[0] = (ARG_SLOT)(LONG_PTR)oh; |
| 3653 | pDE->m_vmObjectHandle = VMPTR_OBJECTHANDLE::MakePtr(oh); |
| 3654 | |
| 3655 | break; |
| 3656 | } |
| 3657 | |
| 3658 | default: |
| 3659 | _ASSERTE(!"Invalid eval type!" ); |
| 3660 | } |
| 3661 | } |
| 3662 | EX_CATCH |
| 3663 | { |
| 3664 | // We got an exception. Make the exception into our result. |
| 3665 | OBJECTREF ppException = GET_THROWABLE(); |
| 3666 | GCX_FORBID(); |
| 3667 | RecordFuncEvalException( pDE, ppException); |
| 3668 | } |
| 3669 | // Note: we need to catch all exceptioins here because they all get reported as the result of |
| 3670 | // the funceval. If a ThreadAbort occurred other than for a funcEval abort, we'll re-throw it manually. |
| 3671 | EX_END_CATCH(SwallowAllExceptions); |
| 3672 | |
| 3673 | GCPROTECT_END(); |
| 3674 | |
| 3675 | // |
| 3676 | // Restore context |
| 3677 | // |
| 3678 | END_DOMAIN_TRANSITION; |
| 3679 | |
| 3680 | } |
| 3681 | |
| 3682 | // |
| 3683 | // FuncEvalHijackWorker is the function that managed threads start executing in order to perform a function |
| 3684 | // evaluation. Control is transfered here on the proper thread by hijacking that that's IP to this method in |
| 3685 | // Debugger::FuncEvalSetup. This function can also be called directly by a Runtime thread that is stopped sending a |
| 3686 | // first or second chance exception to the Right Side. |
| 3687 | // |
| 3688 | // The DebuggerEval object may get deleted by the helper thread doing a CleanupFuncEval while this thread is blocked |
| 3689 | // sending the eval complete. |
| 3690 | void * STDCALL FuncEvalHijackWorker(DebuggerEval *pDE) |
| 3691 | { |
| 3692 | CONTRACTL |
| 3693 | { |
| 3694 | MODE_COOPERATIVE; |
| 3695 | GC_TRIGGERS; |
| 3696 | THROWS; |
| 3697 | SO_NOT_MAINLINE; |
| 3698 | |
| 3699 | PRECONDITION(CheckPointer(pDE)); |
| 3700 | } |
| 3701 | CONTRACTL_END; |
| 3702 | |
| 3703 | |
| 3704 | |
| 3705 | Thread *pThread = NULL; |
| 3706 | CONTEXT *filterContext = NULL; |
| 3707 | |
| 3708 | { |
| 3709 | GCX_FORBID(); |
| 3710 | |
| 3711 | LOG((LF_CORDB, LL_INFO100000, "D:FEHW for pDE:%08x evalType:%d\n" , pDE, pDE->m_evalType)); |
| 3712 | |
| 3713 | pThread = GetThread(); |
| 3714 | |
| 3715 | #ifndef DACCESS_COMPILE |
| 3716 | #ifdef _DEBUG |
| 3717 | // |
| 3718 | // Flush all debug tracking information for this thread on object refs as it |
| 3719 | // only approximates proper tracking and may have stale data, resulting in false |
| 3720 | // positives. We dont want that as func-eval runs a lot, so flush them now. |
| 3721 | // |
| 3722 | g_pEEInterface->ObjectRefFlush(pThread); |
| 3723 | #endif |
| 3724 | #endif |
| 3725 | |
| 3726 | if (!pDE->m_evalDuringException) |
| 3727 | { |
| 3728 | // |
| 3729 | // From this point forward we use FORBID regions to guard against GCs. |
| 3730 | // Refer to code:Debugger::FuncEvalSetup to see the increment was done. |
| 3731 | // |
| 3732 | g_pDebugger->DecThreadsAtUnsafePlaces(); |
| 3733 | } |
| 3734 | |
| 3735 | // Preemptive GC is disabled at the start of this method. |
| 3736 | _ASSERTE(g_pEEInterface->IsPreemptiveGCDisabled()); |
| 3737 | |
| 3738 | DebuggerController::DispatchFuncEvalEnter(pThread); |
| 3739 | |
| 3740 | |
| 3741 | // If we've got a filter context still installed, then remove it while we do the work... |
| 3742 | filterContext = g_pEEInterface->GetThreadFilterContext(pDE->m_thread); |
| 3743 | |
| 3744 | if (filterContext) |
| 3745 | { |
| 3746 | _ASSERTE(pDE->m_evalDuringException); |
| 3747 | g_pEEInterface->SetThreadFilterContext(pDE->m_thread, NULL); |
| 3748 | } |
| 3749 | |
| 3750 | } |
| 3751 | |
| 3752 | // |
| 3753 | // Special handling for a re-abort eval. We don't setup a EX_TRY or try to lookup a function to call. All we do |
| 3754 | // is have this thread abort itself. |
| 3755 | // |
| 3756 | if (pDE->m_evalType == DB_IPCE_FET_RE_ABORT) |
| 3757 | { |
| 3758 | // |
| 3759 | // Push our FuncEvalFrame. The return address is equal to the IP in the saved context in the DebuggerEval. The |
| 3760 | // m_Datum becomes the ptr to the DebuggerEval. The frame address also serves as the address of the catch-handler-found. |
| 3761 | // |
| 3762 | FrameWithCookie<FuncEvalFrame> FEFrame(pDE, GetIP(&pDE->m_context), false); |
| 3763 | FEFrame.Push(); |
| 3764 | |
| 3765 | pDE->m_thread->UserAbort(pDE->m_requester, EEPolicy::TA_Safe, INFINITE, Thread::UAC_Normal); |
| 3766 | _ASSERTE(!"Should not return from UserAbort here!" ); |
| 3767 | return NULL; |
| 3768 | } |
| 3769 | |
| 3770 | // |
| 3771 | // We cannot scope the following in a GCX_FORBID(), but we would like to. But we need the frames on the |
| 3772 | // stack here, so they must never go out of scope. |
| 3773 | // |
| 3774 | |
| 3775 | // |
| 3776 | // Push our FuncEvalFrame. The return address is equal to the IP in the saved context in the DebuggerEval. The |
| 3777 | // m_Datum becomes the ptr to the DebuggerEval. The frame address also serves as the address of the catch-handler-found. |
| 3778 | // |
| 3779 | FrameWithCookie<FuncEvalFrame> FEFrame(pDE, GetIP(&pDE->m_context), true); |
| 3780 | FEFrame.Push(); |
| 3781 | |
| 3782 | // On ARM the single step flag is per-thread and not per context. We need to make sure that the SS flag is cleared |
| 3783 | // for the funceval, and that the state is back to what it should be after the funceval completes. |
| 3784 | #ifdef _TARGET_ARM_ |
| 3785 | bool ssEnabled = pDE->m_thread->IsSingleStepEnabled(); |
| 3786 | if (ssEnabled) |
| 3787 | pDE->m_thread->DisableSingleStep(); |
| 3788 | #endif |
| 3789 | |
| 3790 | FuncEvalHijackRealWorker(pDE, pThread, &FEFrame); |
| 3791 | |
| 3792 | #ifdef _TARGET_ARM_ |
| 3793 | if (ssEnabled) |
| 3794 | pDE->m_thread->EnableSingleStep(); |
| 3795 | #endif |
| 3796 | |
| 3797 | |
| 3798 | |
| 3799 | LOG((LF_CORDB, LL_EVERYTHING, "FuncEval has finished its primary work.\n" )); |
| 3800 | |
| 3801 | // |
| 3802 | // The func-eval is now completed, successfully or with failure, aborted or run-to-completion. |
| 3803 | // |
| 3804 | pDE->m_completed = true; |
| 3805 | |
| 3806 | if (pDE->m_thread->IsAbortRequested()) |
| 3807 | { |
| 3808 | // |
| 3809 | // Check if an unmanaged thread tried to also abort this thread while we |
| 3810 | // were doing the func-eval, then that kind we want to rethrow. The check |
| 3811 | // versus m_aborted is for the case where the FE was aborted, we caught that, |
| 3812 | // then cleared the FEAbort request, but there is still an outstanding abort |
| 3813 | // - then it must be a user abort. |
| 3814 | // |
| 3815 | if ((pDE->m_aborting == DebuggerEval::FE_ABORT_NONE) || pDE->m_aborted) |
| 3816 | { |
| 3817 | pDE->m_rethrowAbortException = true; |
| 3818 | } |
| 3819 | |
| 3820 | // |
| 3821 | // Reset the abort request if a func-eval abort was submitted, but the func-eval completed |
| 3822 | // before the abort could take place, we want to make sure we do not throw an abort exception |
| 3823 | // in this case. |
| 3824 | // |
| 3825 | if (pDE->m_aborting != DebuggerEval::FE_ABORT_NONE) |
| 3826 | { |
| 3827 | pDE->m_thread->UserResetAbort(Thread::TAR_FuncEval); |
| 3828 | } |
| 3829 | |
| 3830 | } |
| 3831 | |
| 3832 | // Codepitching can hijack our frame's return address. That means that we'll need to update PC in our saved context |
| 3833 | // so that when its restored, its like we've returned to the codepitching hijack. At this point, the old value of |
| 3834 | // EIP is worthless anyway. |
| 3835 | if (!pDE->m_evalDuringException) |
| 3836 | { |
| 3837 | SetIP(&pDE->m_context, (SIZE_T)FEFrame.GetReturnAddress()); |
| 3838 | } |
| 3839 | |
| 3840 | // |
| 3841 | // Disable all steppers and breakpoints created during the func-eval |
| 3842 | // |
| 3843 | DebuggerController::DispatchFuncEvalExit(pThread); |
| 3844 | |
| 3845 | void *dest = NULL; |
| 3846 | |
| 3847 | if (!pDE->m_evalDuringException) |
| 3848 | { |
| 3849 | // Signal to the helper thread that we're done with our func eval. Start by creating a DebuggerFuncEvalComplete |
| 3850 | // object. Give it an address at which to create the patch, which is a chunk of memory specified by our |
| 3851 | // DebuggerEval big enough to hold a breakpoint instruction. |
| 3852 | #ifdef _TARGET_ARM_ |
| 3853 | dest = (BYTE*)((DWORD)&(pDE->m_bpInfoSegment->m_breakpointInstruction) | THUMB_CODE); |
| 3854 | #else |
| 3855 | dest = &(pDE->m_bpInfoSegment->m_breakpointInstruction); |
| 3856 | #endif |
| 3857 | |
| 3858 | // |
| 3859 | // The created object below sets up itself as a hijack and will destroy itself when the hijack and work |
| 3860 | // is done. |
| 3861 | // |
| 3862 | |
| 3863 | DebuggerFuncEvalComplete *comp; |
| 3864 | comp = new (interopsafe) DebuggerFuncEvalComplete(pThread, dest); |
| 3865 | _ASSERTE(comp != NULL); // would have thrown |
| 3866 | |
| 3867 | // Pop the FuncEvalFrame now that we're pretty much done. Make sure we |
| 3868 | // don't pop the frame too early. Because GC can be triggered in our grabbing of |
| 3869 | // Debugger lock. If we pop the FE frame without setting back thread filter context, |
| 3870 | // the frames left uncrawlable. |
| 3871 | // |
| 3872 | FEFrame.Pop(); |
| 3873 | } |
| 3874 | else |
| 3875 | { |
| 3876 | // We don't have to setup any special hijacks to return from here when we've been processing during an |
| 3877 | // exception. We just go ahead and send the FuncEvalComplete event over now. Don't forget to enable/disable PGC |
| 3878 | // around the call... |
| 3879 | _ASSERTE(g_pEEInterface->IsPreemptiveGCDisabled()); |
| 3880 | |
| 3881 | if (filterContext != NULL) |
| 3882 | { |
| 3883 | g_pEEInterface->SetThreadFilterContext(pDE->m_thread, filterContext); |
| 3884 | } |
| 3885 | |
| 3886 | // Pop the FuncEvalFrame now that we're pretty much done. |
| 3887 | FEFrame.Pop(); |
| 3888 | |
| 3889 | |
| 3890 | { |
| 3891 | // |
| 3892 | // This also grabs the debugger lock, so we can atomically check if a detach has |
| 3893 | // happened. |
| 3894 | // |
| 3895 | SENDIPCEVENT_BEGIN(g_pDebugger, pDE->m_thread); |
| 3896 | |
| 3897 | if ((pDE->m_thread->GetDomain() != NULL) && pDE->m_thread->GetDomain()->IsDebuggerAttached()) |
| 3898 | { |
| 3899 | |
| 3900 | if (CORDebuggerAttached()) |
| 3901 | { |
| 3902 | g_pDebugger->FuncEvalComplete(pDE->m_thread, pDE); |
| 3903 | |
| 3904 | g_pDebugger->SyncAllThreads(SENDIPCEVENT_PtrDbgLockHolder); |
| 3905 | } |
| 3906 | |
| 3907 | } |
| 3908 | |
| 3909 | SENDIPCEVENT_END; |
| 3910 | } |
| 3911 | } |
| 3912 | |
| 3913 | |
| 3914 | // pDE may now point to deleted memory if the helper thread did a CleanupFuncEval while we |
| 3915 | // were blocked waiting for a continue after the func-eval complete. |
| 3916 | |
| 3917 | // We return the address that we want to resume executing at. |
| 3918 | return dest; |
| 3919 | |
| 3920 | } |
| 3921 | |
| 3922 | |
| 3923 | #if defined(WIN64EXCEPTIONS) && !defined(FEATURE_PAL) |
| 3924 | |
| 3925 | EXTERN_C EXCEPTION_DISPOSITION |
| 3926 | FuncEvalHijackPersonalityRoutine(IN PEXCEPTION_RECORD pExceptionRecord |
| 3927 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 3928 | NOT_WIN64_ARG(IN ULONG32 MemoryStackFp), |
| 3929 | IN OUT PCONTEXT pContextRecord, |
| 3930 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 3931 | ) |
| 3932 | { |
| 3933 | DebuggerEval* pDE = NULL; |
| 3934 | #if defined(_TARGET_AMD64_) |
| 3935 | pDE = *(DebuggerEval**)(pDispatcherContext->EstablisherFrame); |
| 3936 | #elif defined(_TARGET_ARM_) |
| 3937 | // on ARM the establisher frame is the SP of the caller of FuncEvalHijack, on other platforms it's FuncEvalHijack's SP. |
| 3938 | // in FuncEvalHijack we allocate 8 bytes of stack space and then store R0 at the current SP, so if we subtract 8 from |
| 3939 | // the establisher frame we can get the stack location where R0 was stored. |
| 3940 | pDE = *(DebuggerEval**)(pDispatcherContext->EstablisherFrame - 8); |
| 3941 | |
| 3942 | #elif defined(_TARGET_ARM64_) |
| 3943 | // on ARM64 the establisher frame is the SP of the caller of FuncEvalHijack. |
| 3944 | // in FuncEvalHijack we allocate 32 bytes of stack space and then store R0 at the current SP + 16, so if we subtract 16 from |
| 3945 | // the establisher frame we can get the stack location where R0 was stored. |
| 3946 | pDE = *(DebuggerEval**)(pDispatcherContext->EstablisherFrame - 16); |
| 3947 | #else |
| 3948 | _ASSERTE(!"NYI - FuncEvalHijackPersonalityRoutine()" ); |
| 3949 | #endif |
| 3950 | |
| 3951 | FixupDispatcherContext(pDispatcherContext, &(pDE->m_context), pContextRecord); |
| 3952 | |
| 3953 | // Returning ExceptionCollidedUnwind will cause the OS to take our new context record and |
| 3954 | // dispatcher context and restart the exception dispatching on this call frame, which is |
| 3955 | // exactly the behavior we want. |
| 3956 | return ExceptionCollidedUnwind; |
| 3957 | } |
| 3958 | |
| 3959 | |
| 3960 | #endif // WIN64EXCEPTIONS && !FEATURE_PAL |
| 3961 | |
| 3962 | #endif // ifndef DACCESS_COMPILE |
| 3963 | |