| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX emitX86.cpp XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | |
| 14 | #include "jitpch.h" |
| 15 | #ifdef _MSC_VER |
| 16 | #pragma hdrstop |
| 17 | #endif |
| 18 | |
| 19 | #if defined(_TARGET_XARCH_) |
| 20 | |
| 21 | /*****************************************************************************/ |
| 22 | /*****************************************************************************/ |
| 23 | |
| 24 | #include "instr.h" |
| 25 | #include "emit.h" |
| 26 | #include "codegen.h" |
| 27 | |
| 28 | bool IsSSEInstruction(instruction ins) |
| 29 | { |
| 30 | return (ins >= INS_FIRST_SSE_INSTRUCTION) && (ins <= INS_LAST_SSE_INSTRUCTION); |
| 31 | } |
| 32 | |
| 33 | bool IsSSEOrAVXInstruction(instruction ins) |
| 34 | { |
| 35 | return (ins >= INS_FIRST_SSE_INSTRUCTION) && (ins <= INS_LAST_AVX_INSTRUCTION); |
| 36 | } |
| 37 | |
| 38 | bool IsAVXOnlyInstruction(instruction ins) |
| 39 | { |
| 40 | return (ins >= INS_FIRST_AVX_INSTRUCTION) && (ins <= INS_LAST_AVX_INSTRUCTION); |
| 41 | } |
| 42 | |
| 43 | bool IsFMAInstruction(instruction ins) |
| 44 | { |
| 45 | return (ins >= INS_FIRST_FMA_INSTRUCTION) && (ins <= INS_LAST_FMA_INSTRUCTION); |
| 46 | } |
| 47 | |
| 48 | bool IsBMIInstruction(instruction ins) |
| 49 | { |
| 50 | return (ins >= INS_FIRST_BMI_INSTRUCTION) && (ins <= INS_LAST_BMI_INSTRUCTION); |
| 51 | } |
| 52 | |
| 53 | regNumber getBmiRegNumber(instruction ins) |
| 54 | { |
| 55 | switch (ins) |
| 56 | { |
| 57 | case INS_blsi: |
| 58 | { |
| 59 | return (regNumber)3; |
| 60 | } |
| 61 | |
| 62 | case INS_blsmsk: |
| 63 | { |
| 64 | return (regNumber)2; |
| 65 | } |
| 66 | |
| 67 | case INS_blsr: |
| 68 | { |
| 69 | return (regNumber)1; |
| 70 | } |
| 71 | |
| 72 | default: |
| 73 | { |
| 74 | assert(IsBMIInstruction(ins)); |
| 75 | return REG_NA; |
| 76 | } |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | regNumber getSseShiftRegNumber(instruction ins) |
| 81 | { |
| 82 | switch (ins) |
| 83 | { |
| 84 | case INS_psrldq: |
| 85 | { |
| 86 | return (regNumber)3; |
| 87 | } |
| 88 | |
| 89 | case INS_pslldq: |
| 90 | { |
| 91 | return (regNumber)7; |
| 92 | } |
| 93 | |
| 94 | case INS_psrld: |
| 95 | case INS_psrlw: |
| 96 | case INS_psrlq: |
| 97 | { |
| 98 | return (regNumber)2; |
| 99 | } |
| 100 | |
| 101 | case INS_pslld: |
| 102 | case INS_psllw: |
| 103 | case INS_psllq: |
| 104 | { |
| 105 | return (regNumber)6; |
| 106 | } |
| 107 | |
| 108 | case INS_psrad: |
| 109 | case INS_psraw: |
| 110 | { |
| 111 | return (regNumber)4; |
| 112 | } |
| 113 | |
| 114 | default: |
| 115 | { |
| 116 | assert(!"Invalid instruction for SSE2 instruction of the form: opcode reg, immed8" ); |
| 117 | return REG_NA; |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | bool emitter::IsAVXInstruction(instruction ins) |
| 123 | { |
| 124 | return UseVEXEncoding() && IsSSEOrAVXInstruction(ins); |
| 125 | } |
| 126 | |
| 127 | // Returns true if the AVX instruction is a binary operator that requires 3 operands. |
| 128 | // When we emit an instruction with only two operands, we will duplicate the destination |
| 129 | // as a source. |
| 130 | // TODO-XArch-Cleanup: This is a temporary solution for now. Eventually this needs to |
| 131 | // be formalized by adding an additional field to instruction table to |
| 132 | // to indicate whether a 3-operand instruction. |
| 133 | bool emitter::IsDstDstSrcAVXInstruction(instruction ins) |
| 134 | { |
| 135 | return ((CodeGenInterface::instInfo[ins] & INS_Flags_IsDstDstSrcAVXInstruction) != 0) && IsAVXInstruction(ins); |
| 136 | } |
| 137 | |
| 138 | // Returns true if the AVX instruction requires 3 operands that duplicate the source |
| 139 | // register in the vvvv field. |
| 140 | // TODO-XArch-Cleanup: This is a temporary solution for now. Eventually this needs to |
| 141 | // be formalized by adding an additional field to instruction table to |
| 142 | // to indicate whether a 3-operand instruction. |
| 143 | bool emitter::IsDstSrcSrcAVXInstruction(instruction ins) |
| 144 | { |
| 145 | return ((CodeGenInterface::instInfo[ins] & INS_Flags_IsDstSrcSrcAVXInstruction) != 0) && IsAVXInstruction(ins); |
| 146 | } |
| 147 | |
| 148 | #ifdef FEATURE_HW_INTRINSICS |
| 149 | //------------------------------------------------------------------------ |
| 150 | // IsDstSrcImmAvxInstruction: Checks if the instruction has a "reg, reg/mem, imm" or |
| 151 | // "reg/mem, reg, imm" form for the legacy, VEX, and EVEX |
| 152 | // encodings. |
| 153 | // |
| 154 | // Arguments: |
| 155 | // instruction -- processor instruction to check |
| 156 | // |
| 157 | // Return Value: |
| 158 | // true if instruction has a "reg, reg/mem, imm" or "reg/mem, reg, imm" encoding |
| 159 | // form for the legacy, VEX, and EVEX encodings. |
| 160 | // |
| 161 | // That is, the instruction takes two operands, one of which is immediate, and it |
| 162 | // does not need to encode any data in the VEX.vvvv field. |
| 163 | // |
| 164 | static bool IsDstSrcImmAvxInstruction(instruction ins) |
| 165 | { |
| 166 | switch (ins) |
| 167 | { |
| 168 | case INS_aeskeygenassist: |
| 169 | case INS_extractps: |
| 170 | case INS_pextrb: |
| 171 | case INS_pextrw: |
| 172 | case INS_pextrd: |
| 173 | case INS_pextrq: |
| 174 | case INS_pshufd: |
| 175 | case INS_pshufhw: |
| 176 | case INS_pshuflw: |
| 177 | case INS_roundpd: |
| 178 | case INS_roundps: |
| 179 | return true; |
| 180 | default: |
| 181 | return false; |
| 182 | } |
| 183 | } |
| 184 | #endif // FEATURE_HW_INTRINSICS |
| 185 | |
| 186 | // ------------------------------------------------------------------- |
| 187 | // Is4ByteSSEInstruction: Returns true if the SSE instruction is a 4-byte opcode. |
| 188 | // |
| 189 | // Arguments: |
| 190 | // ins - instruction |
| 191 | // |
| 192 | // Note that this should be true for any of the instructions in instrsXArch.h |
| 193 | // that use the SSE38 or SSE3A macro but returns false if the VEX encoding is |
| 194 | // in use, since that encoding does not require an additional byte. |
| 195 | bool emitter::Is4ByteSSEInstruction(instruction ins) |
| 196 | { |
| 197 | return !UseVEXEncoding() && EncodedBySSE38orSSE3A(ins); |
| 198 | } |
| 199 | |
| 200 | // Returns true if this instruction requires a VEX prefix |
| 201 | // All AVX instructions require a VEX prefix |
| 202 | bool emitter::TakesVexPrefix(instruction ins) |
| 203 | { |
| 204 | // special case vzeroupper as it requires 2-byte VEX prefix |
| 205 | // special case the fencing, movnti and the prefetch instructions as they never take a VEX prefix |
| 206 | switch (ins) |
| 207 | { |
| 208 | case INS_lfence: |
| 209 | case INS_mfence: |
| 210 | case INS_movnti: |
| 211 | case INS_prefetchnta: |
| 212 | case INS_prefetcht0: |
| 213 | case INS_prefetcht1: |
| 214 | case INS_prefetcht2: |
| 215 | case INS_sfence: |
| 216 | case INS_vzeroupper: |
| 217 | return false; |
| 218 | default: |
| 219 | break; |
| 220 | } |
| 221 | |
| 222 | return IsAVXInstruction(ins); |
| 223 | } |
| 224 | |
| 225 | // Add base VEX prefix without setting W, R, X, or B bits |
| 226 | // L bit will be set based on emitter attr. |
| 227 | // |
| 228 | // 2-byte VEX prefix = C5 <R,vvvv,L,pp> |
| 229 | // 3-byte VEX prefix = C4 <R,X,B,m-mmmm> <W,vvvv,L,pp> |
| 230 | // - R, X, B, W - bits to express corresponding REX prefixes |
| 231 | // - m-mmmmm (5-bit) |
| 232 | // 0-00001 - implied leading 0F opcode byte |
| 233 | // 0-00010 - implied leading 0F 38 opcode bytes |
| 234 | // 0-00011 - implied leading 0F 3A opcode bytes |
| 235 | // Rest - reserved for future use and usage of them will uresult in Undefined instruction exception |
| 236 | // |
| 237 | // - vvvv (4-bits) - register specifier in 1's complement form; must be 1111 if unused |
| 238 | // - L - scalar or AVX-128 bit operations (L=0), 256-bit operations (L=1) |
| 239 | // - pp (2-bits) - opcode extension providing equivalent functionality of a SIMD size prefix |
| 240 | // these prefixes are treated mandatory when used with escape opcode 0Fh for |
| 241 | // some SIMD instructions |
| 242 | // 00 - None (0F - packed float) |
| 243 | // 01 - 66 (66 0F - packed double) |
| 244 | // 10 - F3 (F3 0F - scalar float |
| 245 | // 11 - F2 (F2 0F - scalar double) |
| 246 | #define DEFAULT_3BYTE_VEX_PREFIX 0xC4E07800000000ULL |
| 247 | #define DEFAULT_3BYTE_VEX_PREFIX_MASK 0xFFFFFF00000000ULL |
| 248 | #define LBIT_IN_3BYTE_VEX_PREFIX 0x00000400000000ULL |
| 249 | emitter::code_t emitter::AddVexPrefix(instruction ins, code_t code, emitAttr attr) |
| 250 | { |
| 251 | // The 2-byte VEX encoding is preferred when possible, but actually emitting |
| 252 | // it depends on a number of factors that we may not know until much later. |
| 253 | // |
| 254 | // In order to handle this "easily", we just carry the 3-byte encoding all |
| 255 | // the way through and "fix-up" the encoding when the VEX prefix is actually |
| 256 | // emitted, by simply checking that all the requirements were met. |
| 257 | |
| 258 | // Only AVX instructions require VEX prefix |
| 259 | assert(IsAVXInstruction(ins)); |
| 260 | |
| 261 | // Shouldn't have already added VEX prefix |
| 262 | assert(!hasVexPrefix(code)); |
| 263 | |
| 264 | assert((code & DEFAULT_3BYTE_VEX_PREFIX_MASK) == 0); |
| 265 | |
| 266 | code |= DEFAULT_3BYTE_VEX_PREFIX; |
| 267 | |
| 268 | if (attr == EA_32BYTE) |
| 269 | { |
| 270 | // Set L bit to 1 in case of instructions that operate on 256-bits. |
| 271 | code |= LBIT_IN_3BYTE_VEX_PREFIX; |
| 272 | } |
| 273 | |
| 274 | return code; |
| 275 | } |
| 276 | |
| 277 | // Returns true if this instruction, for the given EA_SIZE(attr), will require a REX.W prefix |
| 278 | bool TakesRexWPrefix(instruction ins, emitAttr attr) |
| 279 | { |
| 280 | // Because the current implementation of AVX does not have a way to distinguish between the register |
| 281 | // size specification (128 vs. 256 bits) and the operand size specification (32 vs. 64 bits), where both are |
| 282 | // required, the instruction must be created with the register size attribute (EA_16BYTE or EA_32BYTE), |
| 283 | // and here we must special case these by the opcode. |
| 284 | switch (ins) |
| 285 | { |
| 286 | case INS_vpermpd: |
| 287 | case INS_vpermq: |
| 288 | case INS_vpsrlvq: |
| 289 | case INS_vpsllvq: |
| 290 | case INS_pinsrq: |
| 291 | case INS_pextrq: |
| 292 | case INS_vfmadd132pd: |
| 293 | case INS_vfmadd213pd: |
| 294 | case INS_vfmadd231pd: |
| 295 | case INS_vfmadd132sd: |
| 296 | case INS_vfmadd213sd: |
| 297 | case INS_vfmadd231sd: |
| 298 | case INS_vfmaddsub132pd: |
| 299 | case INS_vfmaddsub213pd: |
| 300 | case INS_vfmaddsub231pd: |
| 301 | case INS_vfmsubadd132pd: |
| 302 | case INS_vfmsubadd213pd: |
| 303 | case INS_vfmsubadd231pd: |
| 304 | case INS_vfmsub132pd: |
| 305 | case INS_vfmsub213pd: |
| 306 | case INS_vfmsub231pd: |
| 307 | case INS_vfmsub132sd: |
| 308 | case INS_vfmsub213sd: |
| 309 | case INS_vfmsub231sd: |
| 310 | case INS_vfnmadd132pd: |
| 311 | case INS_vfnmadd213pd: |
| 312 | case INS_vfnmadd231pd: |
| 313 | case INS_vfnmadd132sd: |
| 314 | case INS_vfnmadd213sd: |
| 315 | case INS_vfnmadd231sd: |
| 316 | case INS_vfnmsub132pd: |
| 317 | case INS_vfnmsub213pd: |
| 318 | case INS_vfnmsub231pd: |
| 319 | case INS_vfnmsub132sd: |
| 320 | case INS_vfnmsub213sd: |
| 321 | case INS_vfnmsub231sd: |
| 322 | case INS_vpmaskmovq: |
| 323 | case INS_vpgatherdq: |
| 324 | case INS_vpgatherqq: |
| 325 | case INS_vgatherdpd: |
| 326 | case INS_vgatherqpd: |
| 327 | return true; |
| 328 | default: |
| 329 | break; |
| 330 | } |
| 331 | |
| 332 | #ifdef _TARGET_AMD64_ |
| 333 | // movsx should always sign extend out to 8 bytes just because we don't track |
| 334 | // whether the dest should be 4 bytes or 8 bytes (attr indicates the size |
| 335 | // of the source, not the dest). |
| 336 | // A 4-byte movzx is equivalent to an 8 byte movzx, so it is not special |
| 337 | // cased here. |
| 338 | // |
| 339 | // Rex_jmp = jmp with rex prefix always requires rex.w prefix. |
| 340 | if (ins == INS_movsx || ins == INS_rex_jmp) |
| 341 | { |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | if (EA_SIZE(attr) != EA_8BYTE) |
| 346 | { |
| 347 | return false; |
| 348 | } |
| 349 | |
| 350 | if (IsSSEOrAVXInstruction(ins)) |
| 351 | { |
| 352 | switch (ins) |
| 353 | { |
| 354 | case INS_andn: |
| 355 | case INS_bextr: |
| 356 | case INS_blsi: |
| 357 | case INS_blsmsk: |
| 358 | case INS_blsr: |
| 359 | case INS_bzhi: |
| 360 | case INS_cvttsd2si: |
| 361 | case INS_cvttss2si: |
| 362 | case INS_cvtsd2si: |
| 363 | case INS_cvtss2si: |
| 364 | case INS_cvtsi2sd: |
| 365 | case INS_cvtsi2ss: |
| 366 | case INS_mov_xmm2i: |
| 367 | case INS_mov_i2xmm: |
| 368 | case INS_movnti: |
| 369 | case INS_mulx: |
| 370 | case INS_pdep: |
| 371 | case INS_pext: |
| 372 | return true; |
| 373 | default: |
| 374 | return false; |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | // TODO-XArch-Cleanup: Better way to not emit REX.W when we don't need it, than just testing all these |
| 379 | // opcodes... |
| 380 | // These are all the instructions that default to 8-byte operand without the REX.W bit |
| 381 | // With 1 special case: movzx because the 4 byte version still zeros-out the hi 4 bytes |
| 382 | // so we never need it |
| 383 | if ((ins != INS_push) && (ins != INS_pop) && (ins != INS_movq) && (ins != INS_movzx) && (ins != INS_push_hide) && |
| 384 | (ins != INS_pop_hide) && (ins != INS_ret) && (ins != INS_call) && !((ins >= INS_i_jmp) && (ins <= INS_l_jg))) |
| 385 | { |
| 386 | return true; |
| 387 | } |
| 388 | else |
| 389 | { |
| 390 | return false; |
| 391 | } |
| 392 | #else //!_TARGET_AMD64 = _TARGET_X86_ |
| 393 | return false; |
| 394 | #endif //!_TARGET_AMD64_ |
| 395 | } |
| 396 | |
| 397 | // Returns true if using this register will require a REX.* prefix. |
| 398 | // Since XMM registers overlap with YMM registers, this routine |
| 399 | // can also be used to know whether a YMM register if the |
| 400 | // instruction in question is AVX. |
| 401 | bool IsExtendedReg(regNumber reg) |
| 402 | { |
| 403 | #ifdef _TARGET_AMD64_ |
| 404 | return ((reg >= REG_R8) && (reg <= REG_R15)) || ((reg >= REG_XMM8) && (reg <= REG_XMM15)); |
| 405 | #else |
| 406 | // X86 JIT operates in 32-bit mode and hence extended reg are not available. |
| 407 | return false; |
| 408 | #endif |
| 409 | } |
| 410 | |
| 411 | // Returns true if using this register, for the given EA_SIZE(attr), will require a REX.* prefix |
| 412 | bool IsExtendedReg(regNumber reg, emitAttr attr) |
| 413 | { |
| 414 | #ifdef _TARGET_AMD64_ |
| 415 | // Not a register, so doesn't need a prefix |
| 416 | if (reg > REG_XMM15) |
| 417 | { |
| 418 | return false; |
| 419 | } |
| 420 | |
| 421 | // Opcode field only has 3 bits for the register, these high registers |
| 422 | // need a 4th bit, that comes from the REX prefix (eiter REX.X, REX.R, or REX.B) |
| 423 | if (IsExtendedReg(reg)) |
| 424 | { |
| 425 | return true; |
| 426 | } |
| 427 | |
| 428 | if (EA_SIZE(attr) != EA_1BYTE) |
| 429 | { |
| 430 | return false; |
| 431 | } |
| 432 | |
| 433 | // There are 12 one byte registers addressible 'below' r8b: |
| 434 | // al, cl, dl, bl, ah, ch, dh, bh, spl, bpl, sil, dil. |
| 435 | // The first 4 are always addressible, the last 8 are divided into 2 sets: |
| 436 | // ah, ch, dh, bh |
| 437 | // -- or -- |
| 438 | // spl, bpl, sil, dil |
| 439 | // Both sets are encoded exactly the same, the difference is the presence |
| 440 | // of a REX prefix, even a REX prefix with no other bits set (0x40). |
| 441 | // So in order to get to the second set we need a REX prefix (but no bits). |
| 442 | // |
| 443 | // TODO-AMD64-CQ: if we ever want to start using the first set, we'll need a different way of |
| 444 | // encoding/tracking/encoding registers. |
| 445 | return (reg >= REG_RSP); |
| 446 | #else |
| 447 | // X86 JIT operates in 32-bit mode and hence extended reg are not available. |
| 448 | return false; |
| 449 | #endif |
| 450 | } |
| 451 | |
| 452 | // Since XMM registers overlap with YMM registers, this routine |
| 453 | // can also used to know whether a YMM register in case of AVX instructions. |
| 454 | bool IsXMMReg(regNumber reg) |
| 455 | { |
| 456 | #ifdef _TARGET_AMD64_ |
| 457 | return (reg >= REG_XMM0) && (reg <= REG_XMM15); |
| 458 | #else // !_TARGET_AMD64_ |
| 459 | return (reg >= REG_XMM0) && (reg <= REG_XMM7); |
| 460 | #endif // !_TARGET_AMD64_ |
| 461 | } |
| 462 | |
| 463 | // Returns bits to be encoded in instruction for the given register. |
| 464 | unsigned RegEncoding(regNumber reg) |
| 465 | { |
| 466 | static_assert((REG_XMM0 & 0x7) == 0, "bad XMMBASE" ); |
| 467 | return (unsigned)(reg & 0x7); |
| 468 | } |
| 469 | |
| 470 | // Utility routines that abstract the logic of adding REX.W, REX.R, REX.X, REX.B and REX prefixes |
| 471 | // SSE2: separate 1-byte prefix gets added before opcode. |
| 472 | // AVX: specific bits within VEX prefix need to be set in bit-inverted form. |
| 473 | emitter::code_t emitter::AddRexWPrefix(instruction ins, code_t code) |
| 474 | { |
| 475 | if (UseVEXEncoding() && IsAVXInstruction(ins)) |
| 476 | { |
| 477 | if (TakesVexPrefix(ins)) |
| 478 | { |
| 479 | // W-bit is available only in 3-byte VEX prefix that starts with byte C4. |
| 480 | assert(hasVexPrefix(code)); |
| 481 | |
| 482 | // W-bit is the only bit that is added in non bit-inverted form. |
| 483 | return emitter::code_t(code | 0x00008000000000ULL); |
| 484 | } |
| 485 | } |
| 486 | #ifdef _TARGET_AMD64_ |
| 487 | return emitter::code_t(code | 0x4800000000ULL); |
| 488 | #else |
| 489 | assert(!"UNREACHED" ); |
| 490 | return code; |
| 491 | #endif |
| 492 | } |
| 493 | |
| 494 | #ifdef _TARGET_AMD64_ |
| 495 | |
| 496 | emitter::code_t emitter::AddRexRPrefix(instruction ins, code_t code) |
| 497 | { |
| 498 | if (UseVEXEncoding() && IsAVXInstruction(ins)) |
| 499 | { |
| 500 | if (TakesVexPrefix(ins)) |
| 501 | { |
| 502 | // R-bit is supported by both 2-byte and 3-byte VEX prefix |
| 503 | assert(hasVexPrefix(code)); |
| 504 | |
| 505 | // R-bit is added in bit-inverted form. |
| 506 | return code & 0xFF7FFFFFFFFFFFULL; |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | return code | 0x4400000000ULL; |
| 511 | } |
| 512 | |
| 513 | emitter::code_t emitter::AddRexXPrefix(instruction ins, code_t code) |
| 514 | { |
| 515 | if (UseVEXEncoding() && IsAVXInstruction(ins)) |
| 516 | { |
| 517 | if (TakesVexPrefix(ins)) |
| 518 | { |
| 519 | // X-bit is available only in 3-byte VEX prefix that starts with byte C4. |
| 520 | assert(hasVexPrefix(code)); |
| 521 | |
| 522 | // X-bit is added in bit-inverted form. |
| 523 | return code & 0xFFBFFFFFFFFFFFULL; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | return code | 0x4200000000ULL; |
| 528 | } |
| 529 | |
| 530 | emitter::code_t emitter::AddRexBPrefix(instruction ins, code_t code) |
| 531 | { |
| 532 | if (UseVEXEncoding() && IsAVXInstruction(ins)) |
| 533 | { |
| 534 | if (TakesVexPrefix(ins)) |
| 535 | { |
| 536 | // B-bit is available only in 3-byte VEX prefix that starts with byte C4. |
| 537 | assert(hasVexPrefix(code)); |
| 538 | |
| 539 | // B-bit is added in bit-inverted form. |
| 540 | return code & 0xFFDFFFFFFFFFFFULL; |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | return code | 0x4100000000ULL; |
| 545 | } |
| 546 | |
| 547 | // Adds REX prefix (0x40) without W, R, X or B bits set |
| 548 | emitter::code_t emitter::AddRexPrefix(instruction ins, code_t code) |
| 549 | { |
| 550 | assert(!UseVEXEncoding() || !IsAVXInstruction(ins)); |
| 551 | return code | 0x4000000000ULL; |
| 552 | } |
| 553 | |
| 554 | #endif //_TARGET_AMD64_ |
| 555 | |
| 556 | bool isPrefix(BYTE b) |
| 557 | { |
| 558 | assert(b != 0); // Caller should check this |
| 559 | assert(b != 0x67); // We don't use the address size prefix |
| 560 | assert(b != 0x65); // The GS segment override prefix is emitted separately |
| 561 | assert(b != 0x64); // The FS segment override prefix is emitted separately |
| 562 | assert(b != 0xF0); // The lock prefix is emitted separately |
| 563 | assert(b != 0x2E); // We don't use the CS segment override prefix |
| 564 | assert(b != 0x3E); // Or the DS segment override prefix |
| 565 | assert(b != 0x26); // Or the ES segment override prefix |
| 566 | assert(b != 0x36); // Or the SS segment override prefix |
| 567 | |
| 568 | // That just leaves the size prefixes used in SSE opcodes: |
| 569 | // Scalar Double Scalar Single Packed Double |
| 570 | return ((b == 0xF2) || (b == 0xF3) || (b == 0x66)); |
| 571 | } |
| 572 | |
| 573 | // Outputs VEX prefix (in case of AVX instructions) and REX.R/X/W/B otherwise. |
| 574 | unsigned emitter::emitOutputRexOrVexPrefixIfNeeded(instruction ins, BYTE* dst, code_t& code) |
| 575 | { |
| 576 | if (hasVexPrefix(code)) |
| 577 | { |
| 578 | // Only AVX instructions should have a VEX prefix |
| 579 | assert(UseVEXEncoding() && IsAVXInstruction(ins)); |
| 580 | code_t vexPrefix = (code >> 32) & 0x00FFFFFF; |
| 581 | code &= 0x00000000FFFFFFFFLL; |
| 582 | |
| 583 | WORD leadingBytes = 0; |
| 584 | BYTE check = (code >> 24) & 0xFF; |
| 585 | if (check != 0) |
| 586 | { |
| 587 | // 3-byte opcode: with the bytes ordered as 0x2211RM33 or |
| 588 | // 4-byte opcode: with the bytes ordered as 0x22114433 |
| 589 | // check for a prefix in the 11 position |
| 590 | BYTE sizePrefix = (code >> 16) & 0xFF; |
| 591 | if ((sizePrefix != 0) && isPrefix(sizePrefix)) |
| 592 | { |
| 593 | // 'pp' bits in byte2 of VEX prefix allows us to encode SIMD size prefixes as two bits |
| 594 | // |
| 595 | // 00 - None (0F - packed float) |
| 596 | // 01 - 66 (66 0F - packed double) |
| 597 | // 10 - F3 (F3 0F - scalar float |
| 598 | // 11 - F2 (F2 0F - scalar double) |
| 599 | switch (sizePrefix) |
| 600 | { |
| 601 | case 0x66: |
| 602 | if (IsBMIInstruction(ins)) |
| 603 | { |
| 604 | switch (ins) |
| 605 | { |
| 606 | case INS_pdep: |
| 607 | case INS_mulx: |
| 608 | { |
| 609 | vexPrefix |= 0x03; |
| 610 | break; |
| 611 | } |
| 612 | |
| 613 | case INS_pext: |
| 614 | { |
| 615 | vexPrefix |= 0x02; |
| 616 | break; |
| 617 | } |
| 618 | |
| 619 | default: |
| 620 | { |
| 621 | vexPrefix |= 0x00; |
| 622 | break; |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | else |
| 627 | { |
| 628 | vexPrefix |= 0x01; |
| 629 | } |
| 630 | break; |
| 631 | case 0xF3: |
| 632 | vexPrefix |= 0x02; |
| 633 | break; |
| 634 | case 0xF2: |
| 635 | vexPrefix |= 0x03; |
| 636 | break; |
| 637 | default: |
| 638 | assert(!"unrecognized SIMD size prefix" ); |
| 639 | unreached(); |
| 640 | } |
| 641 | |
| 642 | // Now the byte in the 22 position must be an escape byte 0F |
| 643 | leadingBytes = check; |
| 644 | assert(leadingBytes == 0x0F); |
| 645 | |
| 646 | // Get rid of both sizePrefix and escape byte |
| 647 | code &= 0x0000FFFFLL; |
| 648 | |
| 649 | // Check the byte in the 33 position to see if it is 3A or 38. |
| 650 | // In such a case escape bytes must be 0x0F3A or 0x0F38 |
| 651 | check = code & 0xFF; |
| 652 | if (check == 0x3A || check == 0x38) |
| 653 | { |
| 654 | leadingBytes = (leadingBytes << 8) | check; |
| 655 | code &= 0x0000FF00LL; |
| 656 | } |
| 657 | } |
| 658 | } |
| 659 | else |
| 660 | { |
| 661 | // 2-byte opcode with the bytes ordered as 0x0011RM22 |
| 662 | // the byte in position 11 must be an escape byte. |
| 663 | leadingBytes = (code >> 16) & 0xFF; |
| 664 | assert(leadingBytes == 0x0F || leadingBytes == 0x00); |
| 665 | code &= 0xFFFF; |
| 666 | } |
| 667 | |
| 668 | // If there is an escape byte it must be 0x0F or 0x0F3A or 0x0F38 |
| 669 | // m-mmmmm bits in byte 1 of VEX prefix allows us to encode these |
| 670 | // implied leading bytes. 0x0F is supported by both the 2-byte and |
| 671 | // 3-byte encoding. While 0x0F3A and 0x0F38 are only supported by |
| 672 | // the 3-byte version. |
| 673 | |
| 674 | switch (leadingBytes) |
| 675 | { |
| 676 | case 0x00: |
| 677 | // there is no leading byte |
| 678 | break; |
| 679 | case 0x0F: |
| 680 | vexPrefix |= 0x0100; |
| 681 | break; |
| 682 | case 0x0F38: |
| 683 | vexPrefix |= 0x0200; |
| 684 | break; |
| 685 | case 0x0F3A: |
| 686 | vexPrefix |= 0x0300; |
| 687 | break; |
| 688 | default: |
| 689 | assert(!"encountered unknown leading bytes" ); |
| 690 | unreached(); |
| 691 | } |
| 692 | |
| 693 | // At this point |
| 694 | // VEX.2211RM33 got transformed as VEX.0000RM33 |
| 695 | // VEX.0011RM22 got transformed as VEX.0000RM22 |
| 696 | // |
| 697 | // Now output VEX prefix leaving the 4-byte opcode |
| 698 | |
| 699 | // The 2-byte VEX encoding, requires that the X and B-bits are set (these |
| 700 | // bits are inverted from the REX values so set means off), the W-bit is |
| 701 | // not set (this bit is not inverted), and that the m-mmmm bits are 0-0001 |
| 702 | // (the 2-byte VEX encoding only supports the 0x0F leading byte). When these |
| 703 | // conditions are met, we can change byte-0 from 0xC4 to 0xC5 and then |
| 704 | // byte-1 is the logical-or of bit 7 from byte-1 and bits 0-6 from byte 2 |
| 705 | // from the 3-byte VEX encoding. |
| 706 | // |
| 707 | // Given the above, the check can be reduced to a simple mask and comparison. |
| 708 | // * 0xFFFF7F80 is a mask that ignores any bits whose value we don't care about: |
| 709 | // * R can be set or unset (0x7F ignores bit 7) |
| 710 | // * vvvv can be any value (0x80 ignores bits 3-6) |
| 711 | // * L can be set or unset (0x80 ignores bit 2) |
| 712 | // * pp can be any value (0x80 ignores bits 0-1) |
| 713 | // * 0x00C46100 is a value that signifies the requirements listed above were met: |
| 714 | // * We must be a three-byte VEX opcode (0x00C4) |
| 715 | // * X and B must be set (0x61 validates bits 5-6) |
| 716 | // * m-mmmm must be 0-00001 (0x61 validates bits 0-4) |
| 717 | // * W must be unset (0x00 validates bit 7) |
| 718 | if ((vexPrefix & 0xFFFF7F80) == 0x00C46100) |
| 719 | { |
| 720 | emitOutputByte(dst, 0xC5); |
| 721 | emitOutputByte(dst + 1, ((vexPrefix >> 8) & 0x80) | (vexPrefix & 0x7F)); |
| 722 | return 2; |
| 723 | } |
| 724 | |
| 725 | emitOutputByte(dst, ((vexPrefix >> 16) & 0xFF)); |
| 726 | emitOutputByte(dst + 1, ((vexPrefix >> 8) & 0xFF)); |
| 727 | emitOutputByte(dst + 2, vexPrefix & 0xFF); |
| 728 | return 3; |
| 729 | } |
| 730 | |
| 731 | #ifdef _TARGET_AMD64_ |
| 732 | if (code > 0x00FFFFFFFFLL) |
| 733 | { |
| 734 | BYTE prefix = (code >> 32) & 0xFF; |
| 735 | noway_assert(prefix >= 0x40 && prefix <= 0x4F); |
| 736 | code &= 0x00000000FFFFFFFFLL; |
| 737 | |
| 738 | // TODO-AMD64-Cleanup: when we remove the prefixes (just the SSE opcodes right now) |
| 739 | // we can remove this code as well |
| 740 | |
| 741 | // The REX prefix is required to come after all other prefixes. |
| 742 | // Some of our 'opcodes' actually include some prefixes, if that |
| 743 | // is the case, shift them over and place the REX prefix after |
| 744 | // the other prefixes, and emit any prefix that got moved out. |
| 745 | BYTE check = (code >> 24) & 0xFF; |
| 746 | if (check == 0) |
| 747 | { |
| 748 | // 3-byte opcode: with the bytes ordered as 0x00113322 |
| 749 | // check for a prefix in the 11 position |
| 750 | check = (code >> 16) & 0xFF; |
| 751 | if (check != 0 && isPrefix(check)) |
| 752 | { |
| 753 | // Swap the rex prefix and whatever this prefix is |
| 754 | code = (((DWORD)prefix << 16) | (code & 0x0000FFFFLL)); |
| 755 | // and then emit the other prefix |
| 756 | return emitOutputByte(dst, check); |
| 757 | } |
| 758 | } |
| 759 | else |
| 760 | { |
| 761 | // 4-byte opcode with the bytes ordered as 0x22114433 |
| 762 | // first check for a prefix in the 11 position |
| 763 | BYTE check2 = (code >> 16) & 0xFF; |
| 764 | if (isPrefix(check2)) |
| 765 | { |
| 766 | assert(!isPrefix(check)); // We currently don't use this, so it is untested |
| 767 | if (isPrefix(check)) |
| 768 | { |
| 769 | // 3 prefixes were rex = rr, check = c1, check2 = c2 encoded as 0xrrc1c2XXXX |
| 770 | // Change to c2rrc1XXXX, and emit check2 now |
| 771 | code = (((code_t)prefix << 24) | ((code_t)check << 16) | (code & 0x0000FFFFLL)); |
| 772 | } |
| 773 | else |
| 774 | { |
| 775 | // 2 prefixes were rex = rr, check2 = c2 encoded as 0xrrXXc2XXXX, (check is part of the opcode) |
| 776 | // Change to c2XXrrXXXX, and emit check2 now |
| 777 | code = (((code_t)check << 24) | ((code_t)prefix << 16) | (code & 0x0000FFFFLL)); |
| 778 | } |
| 779 | return emitOutputByte(dst, check2); |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | return emitOutputByte(dst, prefix); |
| 784 | } |
| 785 | #endif // _TARGET_AMD64_ |
| 786 | |
| 787 | return 0; |
| 788 | } |
| 789 | |
| 790 | #ifdef _TARGET_AMD64_ |
| 791 | /***************************************************************************** |
| 792 | * Is the last instruction emitted a call instruction? |
| 793 | */ |
| 794 | bool emitter::emitIsLastInsCall() |
| 795 | { |
| 796 | if ((emitLastIns != nullptr) && (emitLastIns->idIns() == INS_call)) |
| 797 | { |
| 798 | return true; |
| 799 | } |
| 800 | |
| 801 | return false; |
| 802 | } |
| 803 | |
| 804 | /***************************************************************************** |
| 805 | * We're about to create an epilog. If the last instruction we output was a 'call', |
| 806 | * then we need to insert a NOP, to allow for proper exception-handling behavior. |
| 807 | */ |
| 808 | void emitter::emitOutputPreEpilogNOP() |
| 809 | { |
| 810 | if (emitIsLastInsCall()) |
| 811 | { |
| 812 | emitIns(INS_nop); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | #endif //_TARGET_AMD64_ |
| 817 | |
| 818 | // Size of rex prefix in bytes |
| 819 | unsigned emitter::emitGetRexPrefixSize(instruction ins) |
| 820 | { |
| 821 | // In case of AVX instructions, REX prefixes are part of VEX prefix. |
| 822 | // And hence requires no additional byte to encode REX prefixes. |
| 823 | if (IsAVXInstruction(ins)) |
| 824 | { |
| 825 | return 0; |
| 826 | } |
| 827 | |
| 828 | // If not AVX, then we would need 1-byte to encode REX prefix. |
| 829 | return 1; |
| 830 | } |
| 831 | |
| 832 | // Size of vex prefix in bytes |
| 833 | unsigned emitter::emitGetVexPrefixSize(instruction ins, emitAttr attr) |
| 834 | { |
| 835 | if (IsAVXInstruction(ins)) |
| 836 | { |
| 837 | return 3; |
| 838 | } |
| 839 | |
| 840 | // If not AVX, then we don't need to encode vex prefix. |
| 841 | return 0; |
| 842 | } |
| 843 | |
| 844 | // VEX prefix encodes some bytes of the opcode and as a result, overall size of the instruction reduces. |
| 845 | // Therefore, to estimate the size adding VEX prefix size and size of instruction opcode bytes will always overstimate. |
| 846 | // Instead this routine will adjust the size of VEX prefix based on the number of bytes of opcode it encodes so that |
| 847 | // instruction size estimate will be accurate. |
| 848 | // Basically this function will decrease the vexPrefixSize, |
| 849 | // so that opcodeSize + vexPrefixAdjustedSize will be the right size. |
| 850 | // rightOpcodeSize + vexPrefixSize |
| 851 | //=(opcodeSize - ExtrabytesSize) + vexPrefixSize |
| 852 | //=opcodeSize + (vexPrefixSize - ExtrabytesSize) |
| 853 | //=opcodeSize + vexPrefixAdjustedSize |
| 854 | unsigned emitter::emitGetVexPrefixAdjustedSize(instruction ins, emitAttr attr, code_t code) |
| 855 | { |
| 856 | if (IsAVXInstruction(ins)) |
| 857 | { |
| 858 | unsigned vexPrefixAdjustedSize = emitGetVexPrefixSize(ins, attr); |
| 859 | assert(vexPrefixAdjustedSize == 3); |
| 860 | |
| 861 | // In this case, opcode will contains escape prefix at least one byte, |
| 862 | // vexPrefixAdjustedSize should be minus one. |
| 863 | vexPrefixAdjustedSize -= 1; |
| 864 | |
| 865 | // Get the fourth byte in Opcode. |
| 866 | // If this byte is non-zero, then we should check whether the opcode contains SIMD prefix or not. |
| 867 | BYTE check = (code >> 24) & 0xFF; |
| 868 | if (check != 0) |
| 869 | { |
| 870 | // 3-byte opcode: with the bytes ordered as 0x2211RM33 or |
| 871 | // 4-byte opcode: with the bytes ordered as 0x22114433 |
| 872 | // Simd prefix is at the first byte. |
| 873 | BYTE sizePrefix = (code >> 16) & 0xFF; |
| 874 | if (sizePrefix != 0 && isPrefix(sizePrefix)) |
| 875 | { |
| 876 | vexPrefixAdjustedSize -= 1; |
| 877 | } |
| 878 | |
| 879 | // If the opcode size is 4 bytes, then the second escape prefix is at fourth byte in opcode. |
| 880 | // But in this case the opcode has not counted R\M part. |
| 881 | // opcodeSize + VexPrefixAdjustedSize - ExtraEscapePrefixSize + ModR\MSize |
| 882 | //=opcodeSize + VexPrefixAdjustedSize -1 + 1 |
| 883 | //=opcodeSize + VexPrefixAdjustedSize |
| 884 | // So although we may have second byte escape prefix, we won't decrease vexPrefixAdjustedSize. |
| 885 | } |
| 886 | |
| 887 | return vexPrefixAdjustedSize; |
| 888 | } |
| 889 | return 0; |
| 890 | } |
| 891 | |
| 892 | // Get size of rex or vex prefix emitted in code |
| 893 | unsigned emitter::emitGetPrefixSize(code_t code) |
| 894 | { |
| 895 | if (hasVexPrefix(code)) |
| 896 | { |
| 897 | return 3; |
| 898 | } |
| 899 | |
| 900 | if (hasRexPrefix(code)) |
| 901 | { |
| 902 | return 1; |
| 903 | } |
| 904 | |
| 905 | return 0; |
| 906 | } |
| 907 | |
| 908 | #ifdef _TARGET_X86_ |
| 909 | /***************************************************************************** |
| 910 | * |
| 911 | * Record a non-empty stack |
| 912 | */ |
| 913 | |
| 914 | void emitter::emitMarkStackLvl(unsigned stackLevel) |
| 915 | { |
| 916 | assert(int(stackLevel) >= 0); |
| 917 | assert(emitCurStackLvl == 0); |
| 918 | assert(emitCurIG->igStkLvl == 0); |
| 919 | assert(emitCurIGfreeNext == emitCurIGfreeBase); |
| 920 | |
| 921 | assert(stackLevel && stackLevel % sizeof(int) == 0); |
| 922 | |
| 923 | emitCurStackLvl = emitCurIG->igStkLvl = stackLevel; |
| 924 | |
| 925 | if (emitMaxStackDepth < emitCurStackLvl) |
| 926 | { |
| 927 | JITDUMP("Upping emitMaxStackDepth from %d to %d\n" , emitMaxStackDepth, emitCurStackLvl); |
| 928 | emitMaxStackDepth = emitCurStackLvl; |
| 929 | } |
| 930 | } |
| 931 | #endif |
| 932 | |
| 933 | /***************************************************************************** |
| 934 | * |
| 935 | * Get hold of the address mode displacement value for an indirect call. |
| 936 | */ |
| 937 | |
| 938 | inline ssize_t emitter::emitGetInsCIdisp(instrDesc* id) |
| 939 | { |
| 940 | if (id->idIsLargeCall()) |
| 941 | { |
| 942 | return ((instrDescCGCA*)id)->idcDisp; |
| 943 | } |
| 944 | else |
| 945 | { |
| 946 | assert(!id->idIsLargeDsp()); |
| 947 | assert(!id->idIsLargeCns()); |
| 948 | |
| 949 | return id->idAddr()->iiaAddrMode.amDisp; |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | /** *************************************************************************** |
| 954 | * |
| 955 | * The following table is used by the instIsFP()/instUse/DefFlags() helpers. |
| 956 | */ |
| 957 | |
| 958 | // clang-format off |
| 959 | const insFlags CodeGenInterface::instInfo[] = |
| 960 | { |
| 961 | #define INST0(id, nm, um, mr, flags) static_cast<insFlags>(flags), |
| 962 | #define INST1(id, nm, um, mr, flags) static_cast<insFlags>(flags), |
| 963 | #define INST2(id, nm, um, mr, mi, flags) static_cast<insFlags>(flags), |
| 964 | #define INST3(id, nm, um, mr, mi, rm, flags) static_cast<insFlags>(flags), |
| 965 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) static_cast<insFlags>(flags), |
| 966 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) static_cast<insFlags>(flags), |
| 967 | #include "instrs.h" |
| 968 | #undef INST0 |
| 969 | #undef INST1 |
| 970 | #undef INST2 |
| 971 | #undef INST3 |
| 972 | #undef INST4 |
| 973 | #undef INST5 |
| 974 | }; |
| 975 | // clang-format on |
| 976 | |
| 977 | /***************************************************************************** |
| 978 | * |
| 979 | * Initialize the table used by emitInsModeFormat(). |
| 980 | */ |
| 981 | |
| 982 | // clang-format off |
| 983 | const BYTE emitter::emitInsModeFmtTab[] = |
| 984 | { |
| 985 | #define INST0(id, nm, um, mr, flags) um, |
| 986 | #define INST1(id, nm, um, mr, flags) um, |
| 987 | #define INST2(id, nm, um, mr, mi, flags) um, |
| 988 | #define INST3(id, nm, um, mr, mi, rm, flags) um, |
| 989 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) um, |
| 990 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) um, |
| 991 | #include "instrs.h" |
| 992 | #undef INST0 |
| 993 | #undef INST1 |
| 994 | #undef INST2 |
| 995 | #undef INST3 |
| 996 | #undef INST4 |
| 997 | #undef INST5 |
| 998 | }; |
| 999 | // clang-format on |
| 1000 | |
| 1001 | #ifdef DEBUG |
| 1002 | unsigned const emitter::emitInsModeFmtCnt = _countof(emitInsModeFmtTab); |
| 1003 | #endif |
| 1004 | |
| 1005 | /***************************************************************************** |
| 1006 | * |
| 1007 | * Combine the given base format with the update mode of the instuction. |
| 1008 | */ |
| 1009 | |
| 1010 | inline emitter::insFormat emitter::emitInsModeFormat(instruction ins, insFormat base) |
| 1011 | { |
| 1012 | assert(IF_RRD + IUM_RD == IF_RRD); |
| 1013 | assert(IF_RRD + IUM_WR == IF_RWR); |
| 1014 | assert(IF_RRD + IUM_RW == IF_RRW); |
| 1015 | |
| 1016 | return (insFormat)(base + emitInsUpdateMode(ins)); |
| 1017 | } |
| 1018 | |
| 1019 | // This is a helper we need due to Vs Whidbey #254016 in order to distinguish |
| 1020 | // if we can not possibly be updating an integer register. This is not the best |
| 1021 | // solution, but the other ones (see bug) are going to be much more complicated. |
| 1022 | bool emitter::emitInsCanOnlyWriteSSE2OrAVXReg(instrDesc* id) |
| 1023 | { |
| 1024 | instruction ins = id->idIns(); |
| 1025 | |
| 1026 | if (!IsSSEOrAVXInstruction(ins)) |
| 1027 | { |
| 1028 | return false; |
| 1029 | } |
| 1030 | |
| 1031 | switch (ins) |
| 1032 | { |
| 1033 | case INS_andn: |
| 1034 | case INS_bextr: |
| 1035 | case INS_blsi: |
| 1036 | case INS_blsmsk: |
| 1037 | case INS_blsr: |
| 1038 | case INS_bzhi: |
| 1039 | case INS_cvttsd2si: |
| 1040 | case INS_cvttss2si: |
| 1041 | case INS_cvtsd2si: |
| 1042 | case INS_cvtss2si: |
| 1043 | case INS_extractps: |
| 1044 | case INS_mov_xmm2i: |
| 1045 | case INS_movmskpd: |
| 1046 | case INS_movmskps: |
| 1047 | case INS_mulx: |
| 1048 | case INS_pdep: |
| 1049 | case INS_pext: |
| 1050 | case INS_pmovmskb: |
| 1051 | case INS_pextrb: |
| 1052 | case INS_pextrd: |
| 1053 | case INS_pextrq: |
| 1054 | case INS_pextrw: |
| 1055 | case INS_pextrw_sse41: |
| 1056 | { |
| 1057 | // These SSE instructions write to a general purpose integer register. |
| 1058 | return false; |
| 1059 | } |
| 1060 | |
| 1061 | default: |
| 1062 | { |
| 1063 | return true; |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | /***************************************************************************** |
| 1069 | * |
| 1070 | * Returns the base encoding of the given CPU instruction. |
| 1071 | */ |
| 1072 | |
| 1073 | inline size_t insCode(instruction ins) |
| 1074 | { |
| 1075 | // clang-format off |
| 1076 | const static |
| 1077 | size_t insCodes[] = |
| 1078 | { |
| 1079 | #define INST0(id, nm, um, mr, flags) mr, |
| 1080 | #define INST1(id, nm, um, mr, flags) mr, |
| 1081 | #define INST2(id, nm, um, mr, mi, flags) mr, |
| 1082 | #define INST3(id, nm, um, mr, mi, rm, flags) mr, |
| 1083 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) mr, |
| 1084 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) mr, |
| 1085 | #include "instrs.h" |
| 1086 | #undef INST0 |
| 1087 | #undef INST1 |
| 1088 | #undef INST2 |
| 1089 | #undef INST3 |
| 1090 | #undef INST4 |
| 1091 | #undef INST5 |
| 1092 | }; |
| 1093 | // clang-format on |
| 1094 | |
| 1095 | assert((unsigned)ins < _countof(insCodes)); |
| 1096 | assert((insCodes[ins] != BAD_CODE)); |
| 1097 | |
| 1098 | return insCodes[ins]; |
| 1099 | } |
| 1100 | |
| 1101 | /***************************************************************************** |
| 1102 | * |
| 1103 | * Returns the "AL/AX/EAX, imm" accumulator encoding of the given instruction. |
| 1104 | */ |
| 1105 | |
| 1106 | inline size_t insCodeACC(instruction ins) |
| 1107 | { |
| 1108 | // clang-format off |
| 1109 | const static |
| 1110 | size_t insCodesACC[] = |
| 1111 | { |
| 1112 | #define INST0(id, nm, um, mr, flags) |
| 1113 | #define INST1(id, nm, um, mr, flags) |
| 1114 | #define INST2(id, nm, um, mr, mi, flags) |
| 1115 | #define INST3(id, nm, um, mr, mi, rm, flags) |
| 1116 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) a4, |
| 1117 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) a4, |
| 1118 | #include "instrs.h" |
| 1119 | #undef INST0 |
| 1120 | #undef INST1 |
| 1121 | #undef INST2 |
| 1122 | #undef INST3 |
| 1123 | #undef INST4 |
| 1124 | #undef INST5 |
| 1125 | }; |
| 1126 | // clang-format on |
| 1127 | |
| 1128 | assert((unsigned)ins < _countof(insCodesACC)); |
| 1129 | assert((insCodesACC[ins] != BAD_CODE)); |
| 1130 | |
| 1131 | return insCodesACC[ins]; |
| 1132 | } |
| 1133 | |
| 1134 | /***************************************************************************** |
| 1135 | * |
| 1136 | * Returns the "register" encoding of the given CPU instruction. |
| 1137 | */ |
| 1138 | |
| 1139 | inline size_t insCodeRR(instruction ins) |
| 1140 | { |
| 1141 | // clang-format off |
| 1142 | const static |
| 1143 | size_t insCodesRR[] = |
| 1144 | { |
| 1145 | #define INST0(id, nm, um, mr, flags) |
| 1146 | #define INST1(id, nm, um, mr, flags) |
| 1147 | #define INST2(id, nm, um, mr, mi, flags) |
| 1148 | #define INST3(id, nm, um, mr, mi, rm, flags) |
| 1149 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) |
| 1150 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) rr, |
| 1151 | #include "instrs.h" |
| 1152 | #undef INST0 |
| 1153 | #undef INST1 |
| 1154 | #undef INST2 |
| 1155 | #undef INST3 |
| 1156 | #undef INST4 |
| 1157 | #undef INST5 |
| 1158 | }; |
| 1159 | // clang-format on |
| 1160 | |
| 1161 | assert((unsigned)ins < _countof(insCodesRR)); |
| 1162 | assert((insCodesRR[ins] != BAD_CODE)); |
| 1163 | |
| 1164 | return insCodesRR[ins]; |
| 1165 | } |
| 1166 | |
| 1167 | // clang-format off |
| 1168 | const static |
| 1169 | size_t insCodesRM[] = |
| 1170 | { |
| 1171 | #define INST0(id, nm, um, mr, flags) |
| 1172 | #define INST1(id, nm, um, mr, flags) |
| 1173 | #define INST2(id, nm, um, mr, mi, flags) |
| 1174 | #define INST3(id, nm, um, mr, mi, rm, flags) rm, |
| 1175 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) rm, |
| 1176 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) rm, |
| 1177 | #include "instrs.h" |
| 1178 | #undef INST0 |
| 1179 | #undef INST1 |
| 1180 | #undef INST2 |
| 1181 | #undef INST3 |
| 1182 | #undef INST4 |
| 1183 | #undef INST5 |
| 1184 | }; |
| 1185 | // clang-format on |
| 1186 | |
| 1187 | // Returns true iff the give CPU instruction has an RM encoding. |
| 1188 | inline bool hasCodeRM(instruction ins) |
| 1189 | { |
| 1190 | assert((unsigned)ins < _countof(insCodesRM)); |
| 1191 | return ((insCodesRM[ins] != BAD_CODE)); |
| 1192 | } |
| 1193 | |
| 1194 | /***************************************************************************** |
| 1195 | * |
| 1196 | * Returns the "reg, [r/m]" encoding of the given CPU instruction. |
| 1197 | */ |
| 1198 | |
| 1199 | inline size_t insCodeRM(instruction ins) |
| 1200 | { |
| 1201 | assert((unsigned)ins < _countof(insCodesRM)); |
| 1202 | assert((insCodesRM[ins] != BAD_CODE)); |
| 1203 | |
| 1204 | return insCodesRM[ins]; |
| 1205 | } |
| 1206 | |
| 1207 | // clang-format off |
| 1208 | const static |
| 1209 | size_t insCodesMI[] = |
| 1210 | { |
| 1211 | #define INST0(id, nm, um, mr, flags) |
| 1212 | #define INST1(id, nm, um, mr, flags) |
| 1213 | #define INST2(id, nm, um, mr, mi, flags) mi, |
| 1214 | #define INST3(id, nm, um, mr, mi, rm, flags) mi, |
| 1215 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) mi, |
| 1216 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) mi, |
| 1217 | #include "instrs.h" |
| 1218 | #undef INST0 |
| 1219 | #undef INST1 |
| 1220 | #undef INST2 |
| 1221 | #undef INST3 |
| 1222 | #undef INST4 |
| 1223 | #undef INST5 |
| 1224 | }; |
| 1225 | // clang-format on |
| 1226 | |
| 1227 | // Returns true iff the give CPU instruction has an MI encoding. |
| 1228 | inline bool hasCodeMI(instruction ins) |
| 1229 | { |
| 1230 | assert((unsigned)ins < _countof(insCodesMI)); |
| 1231 | return ((insCodesMI[ins] != BAD_CODE)); |
| 1232 | } |
| 1233 | |
| 1234 | /***************************************************************************** |
| 1235 | * |
| 1236 | * Returns the "[r/m], 32-bit icon" encoding of the given CPU instruction. |
| 1237 | */ |
| 1238 | |
| 1239 | inline size_t insCodeMI(instruction ins) |
| 1240 | { |
| 1241 | assert((unsigned)ins < _countof(insCodesMI)); |
| 1242 | assert((insCodesMI[ins] != BAD_CODE)); |
| 1243 | |
| 1244 | return insCodesMI[ins]; |
| 1245 | } |
| 1246 | |
| 1247 | // clang-format off |
| 1248 | const static |
| 1249 | size_t insCodesMR[] = |
| 1250 | { |
| 1251 | #define INST0(id, nm, um, mr, flags) |
| 1252 | #define INST1(id, nm, um, mr, flags) mr, |
| 1253 | #define INST2(id, nm, um, mr, mi, flags) mr, |
| 1254 | #define INST3(id, nm, um, mr, mi, rm, flags) mr, |
| 1255 | #define INST4(id, nm, um, mr, mi, rm, a4, flags) mr, |
| 1256 | #define INST5(id, nm, um, mr, mi, rm, a4, rr, flags) mr, |
| 1257 | #include "instrs.h" |
| 1258 | #undef INST0 |
| 1259 | #undef INST1 |
| 1260 | #undef INST2 |
| 1261 | #undef INST3 |
| 1262 | #undef INST4 |
| 1263 | #undef INST5 |
| 1264 | }; |
| 1265 | // clang-format on |
| 1266 | |
| 1267 | // Returns true iff the give CPU instruction has an MR encoding. |
| 1268 | inline bool hasCodeMR(instruction ins) |
| 1269 | { |
| 1270 | assert((unsigned)ins < _countof(insCodesMR)); |
| 1271 | return ((insCodesMR[ins] != BAD_CODE)); |
| 1272 | } |
| 1273 | |
| 1274 | /***************************************************************************** |
| 1275 | * |
| 1276 | * Returns the "[r/m], reg" or "[r/m]" encoding of the given CPU instruction. |
| 1277 | */ |
| 1278 | |
| 1279 | inline size_t insCodeMR(instruction ins) |
| 1280 | { |
| 1281 | assert((unsigned)ins < _countof(insCodesMR)); |
| 1282 | assert((insCodesMR[ins] != BAD_CODE)); |
| 1283 | |
| 1284 | return insCodesMR[ins]; |
| 1285 | } |
| 1286 | |
| 1287 | // Return true if the instruction uses the SSE38 or SSE3A macro in instrsXArch.h. |
| 1288 | bool emitter::(instruction ins) |
| 1289 | { |
| 1290 | const size_t SSE38 = 0x0F660038; |
| 1291 | const size_t SSE3A = 0x0F66003A; |
| 1292 | const size_t MASK = 0xFFFF00FF; |
| 1293 | |
| 1294 | size_t insCode = 0; |
| 1295 | |
| 1296 | if (!IsSSEOrAVXInstruction(ins)) |
| 1297 | { |
| 1298 | return false; |
| 1299 | } |
| 1300 | |
| 1301 | if (hasCodeRM(ins)) |
| 1302 | { |
| 1303 | insCode = insCodeRM(ins); |
| 1304 | } |
| 1305 | else if (hasCodeMI(ins)) |
| 1306 | { |
| 1307 | insCode = insCodeMI(ins); |
| 1308 | } |
| 1309 | else if (hasCodeMR(ins)) |
| 1310 | { |
| 1311 | insCode = insCodeMR(ins); |
| 1312 | } |
| 1313 | |
| 1314 | insCode &= MASK; |
| 1315 | return insCode == SSE38 || insCode == SSE3A; |
| 1316 | } |
| 1317 | |
| 1318 | /***************************************************************************** |
| 1319 | * |
| 1320 | * Returns an encoding for the specified register to be used in the bit0-2 |
| 1321 | * part of an opcode. |
| 1322 | */ |
| 1323 | |
| 1324 | inline unsigned emitter::insEncodeReg012(instruction ins, regNumber reg, emitAttr size, code_t* code) |
| 1325 | { |
| 1326 | assert(reg < REG_STK); |
| 1327 | |
| 1328 | #ifdef _TARGET_AMD64_ |
| 1329 | // Either code is not NULL or reg is not an extended reg. |
| 1330 | // If reg is an extended reg, instruction needs to be prefixed with 'REX' |
| 1331 | // which would require code != NULL. |
| 1332 | assert(code != nullptr || !IsExtendedReg(reg)); |
| 1333 | |
| 1334 | if (IsExtendedReg(reg)) |
| 1335 | { |
| 1336 | *code = AddRexBPrefix(ins, *code); // REX.B |
| 1337 | } |
| 1338 | else if ((EA_SIZE(size) == EA_1BYTE) && (reg > REG_RBX) && (code != nullptr)) |
| 1339 | { |
| 1340 | // We are assuming that we only use/encode SPL, BPL, SIL and DIL |
| 1341 | // not the corresponding AH, CH, DH, or BH |
| 1342 | *code = AddRexPrefix(ins, *code); // REX |
| 1343 | } |
| 1344 | #endif // _TARGET_AMD64_ |
| 1345 | |
| 1346 | unsigned regBits = RegEncoding(reg); |
| 1347 | |
| 1348 | assert(regBits < 8); |
| 1349 | return regBits; |
| 1350 | } |
| 1351 | |
| 1352 | /***************************************************************************** |
| 1353 | * |
| 1354 | * Returns an encoding for the specified register to be used in the bit3-5 |
| 1355 | * part of an opcode. |
| 1356 | */ |
| 1357 | |
| 1358 | inline unsigned emitter::insEncodeReg345(instruction ins, regNumber reg, emitAttr size, code_t* code) |
| 1359 | { |
| 1360 | assert(reg < REG_STK); |
| 1361 | |
| 1362 | #ifdef _TARGET_AMD64_ |
| 1363 | // Either code is not NULL or reg is not an extended reg. |
| 1364 | // If reg is an extended reg, instruction needs to be prefixed with 'REX' |
| 1365 | // which would require code != NULL. |
| 1366 | assert(code != nullptr || !IsExtendedReg(reg)); |
| 1367 | |
| 1368 | if (IsExtendedReg(reg)) |
| 1369 | { |
| 1370 | *code = AddRexRPrefix(ins, *code); // REX.R |
| 1371 | } |
| 1372 | else if ((EA_SIZE(size) == EA_1BYTE) && (reg > REG_RBX) && (code != nullptr)) |
| 1373 | { |
| 1374 | // We are assuming that we only use/encode SPL, BPL, SIL and DIL |
| 1375 | // not the corresponding AH, CH, DH, or BH |
| 1376 | *code = AddRexPrefix(ins, *code); // REX |
| 1377 | } |
| 1378 | #endif // _TARGET_AMD64_ |
| 1379 | |
| 1380 | unsigned regBits = RegEncoding(reg); |
| 1381 | |
| 1382 | assert(regBits < 8); |
| 1383 | return (regBits << 3); |
| 1384 | } |
| 1385 | |
| 1386 | /*********************************************************************************** |
| 1387 | * |
| 1388 | * Returns modified AVX opcode with the specified register encoded in bits 3-6 of |
| 1389 | * byte 2 of VEX prefix. |
| 1390 | */ |
| 1391 | inline emitter::code_t emitter::insEncodeReg3456(instruction ins, regNumber reg, emitAttr size, code_t code) |
| 1392 | { |
| 1393 | assert(reg < REG_STK); |
| 1394 | assert(IsAVXInstruction(ins)); |
| 1395 | assert(hasVexPrefix(code)); |
| 1396 | |
| 1397 | // Get 4-bit register encoding |
| 1398 | // RegEncoding() gives lower 3 bits |
| 1399 | // IsExtendedReg() gives MSB. |
| 1400 | code_t regBits = RegEncoding(reg); |
| 1401 | if (IsExtendedReg(reg)) |
| 1402 | { |
| 1403 | regBits |= 0x08; |
| 1404 | } |
| 1405 | |
| 1406 | // VEX prefix encodes register operand in 1's complement form |
| 1407 | // Shift count = 4-bytes of opcode + 0-2 bits |
| 1408 | assert(regBits <= 0xF); |
| 1409 | regBits <<= 35; |
| 1410 | return code ^ regBits; |
| 1411 | } |
| 1412 | |
| 1413 | /***************************************************************************** |
| 1414 | * |
| 1415 | * Returns an encoding for the specified register to be used in the bit3-5 |
| 1416 | * part of an SIB byte (unshifted). |
| 1417 | * Used exclusively to generate the REX.X bit and truncate the register. |
| 1418 | */ |
| 1419 | |
| 1420 | inline unsigned emitter::insEncodeRegSIB(instruction ins, regNumber reg, code_t* code) |
| 1421 | { |
| 1422 | assert(reg < REG_STK); |
| 1423 | |
| 1424 | #ifdef _TARGET_AMD64_ |
| 1425 | // Either code is not NULL or reg is not an extended reg. |
| 1426 | // If reg is an extended reg, instruction needs to be prefixed with 'REX' |
| 1427 | // which would require code != NULL. |
| 1428 | assert(code != nullptr || reg < REG_R8 || (reg >= REG_XMM0 && reg < REG_XMM8)); |
| 1429 | |
| 1430 | if (IsExtendedReg(reg)) |
| 1431 | { |
| 1432 | *code = AddRexXPrefix(ins, *code); // REX.X |
| 1433 | } |
| 1434 | unsigned regBits = RegEncoding(reg); |
| 1435 | #else // !_TARGET_AMD64_ |
| 1436 | unsigned regBits = reg; |
| 1437 | #endif // !_TARGET_AMD64_ |
| 1438 | |
| 1439 | assert(regBits < 8); |
| 1440 | return regBits; |
| 1441 | } |
| 1442 | |
| 1443 | /***************************************************************************** |
| 1444 | * |
| 1445 | * Returns the "[r/m]" opcode with the mod/RM field set to register. |
| 1446 | */ |
| 1447 | |
| 1448 | inline emitter::code_t emitter::insEncodeMRreg(instruction ins, code_t code) |
| 1449 | { |
| 1450 | // If Byte 4 (which is 0xFF00) is 0, that's where the RM encoding goes. |
| 1451 | // Otherwise, it will be placed after the 4 byte encoding. |
| 1452 | if ((code & 0xFF00) == 0) |
| 1453 | { |
| 1454 | assert((code & 0xC000) == 0); |
| 1455 | code |= 0xC000; |
| 1456 | } |
| 1457 | |
| 1458 | return code; |
| 1459 | } |
| 1460 | |
| 1461 | /***************************************************************************** |
| 1462 | * |
| 1463 | * Returns the given "[r/m]" opcode with the mod/RM field set to register. |
| 1464 | */ |
| 1465 | |
| 1466 | inline emitter::code_t emitter::insEncodeRMreg(instruction ins, code_t code) |
| 1467 | { |
| 1468 | // If Byte 4 (which is 0xFF00) is 0, that's where the RM encoding goes. |
| 1469 | // Otherwise, it will be placed after the 4 byte encoding. |
| 1470 | if ((code & 0xFF00) == 0) |
| 1471 | { |
| 1472 | assert((code & 0xC000) == 0); |
| 1473 | code |= 0xC000; |
| 1474 | } |
| 1475 | return code; |
| 1476 | } |
| 1477 | |
| 1478 | /***************************************************************************** |
| 1479 | * |
| 1480 | * Returns the "byte ptr [r/m]" opcode with the mod/RM field set to |
| 1481 | * the given register. |
| 1482 | */ |
| 1483 | |
| 1484 | inline emitter::code_t emitter::insEncodeMRreg(instruction ins, regNumber reg, emitAttr size, code_t code) |
| 1485 | { |
| 1486 | assert((code & 0xC000) == 0); |
| 1487 | code |= 0xC000; |
| 1488 | unsigned regcode = insEncodeReg012(ins, reg, size, &code) << 8; |
| 1489 | code |= regcode; |
| 1490 | return code; |
| 1491 | } |
| 1492 | |
| 1493 | /***************************************************************************** |
| 1494 | * |
| 1495 | * Returns the "byte ptr [r/m], icon" opcode with the mod/RM field set to |
| 1496 | * the given register. |
| 1497 | */ |
| 1498 | |
| 1499 | inline emitter::code_t emitter::insEncodeMIreg(instruction ins, regNumber reg, emitAttr size, code_t code) |
| 1500 | { |
| 1501 | assert((code & 0xC000) == 0); |
| 1502 | code |= 0xC000; |
| 1503 | unsigned regcode = insEncodeReg012(ins, reg, size, &code) << 8; |
| 1504 | code |= regcode; |
| 1505 | return code; |
| 1506 | } |
| 1507 | |
| 1508 | /***************************************************************************** |
| 1509 | * |
| 1510 | * Returns true iff the given instruction does not have a "[r/m], icon" form, but *does* have a |
| 1511 | * "reg,reg,imm8" form. |
| 1512 | */ |
| 1513 | inline bool insNeedsRRIb(instruction ins) |
| 1514 | { |
| 1515 | // If this list gets longer, use a switch or a table. |
| 1516 | return ins == INS_imul; |
| 1517 | } |
| 1518 | |
| 1519 | /***************************************************************************** |
| 1520 | * |
| 1521 | * Returns the "reg,reg,imm8" opcode with both the reg's set to the |
| 1522 | * the given register. |
| 1523 | */ |
| 1524 | inline emitter::code_t emitter::insEncodeRRIb(instruction ins, regNumber reg, emitAttr size) |
| 1525 | { |
| 1526 | assert(size == EA_4BYTE); // All we handle for now. |
| 1527 | assert(insNeedsRRIb(ins)); |
| 1528 | // If this list gets longer, use a switch, or a table lookup. |
| 1529 | code_t code = 0x69c0; |
| 1530 | unsigned regcode = insEncodeReg012(ins, reg, size, &code); |
| 1531 | // We use the same register as source and destination. (Could have another version that does both regs...) |
| 1532 | code |= regcode; |
| 1533 | code |= (regcode << 3); |
| 1534 | return code; |
| 1535 | } |
| 1536 | |
| 1537 | /***************************************************************************** |
| 1538 | * |
| 1539 | * Returns the "+reg" opcode with the the given register set into the low |
| 1540 | * nibble of the opcode |
| 1541 | */ |
| 1542 | |
| 1543 | inline emitter::code_t emitter::insEncodeOpreg(instruction ins, regNumber reg, emitAttr size) |
| 1544 | { |
| 1545 | code_t code = insCodeRR(ins); |
| 1546 | unsigned regcode = insEncodeReg012(ins, reg, size, &code); |
| 1547 | code |= regcode; |
| 1548 | return code; |
| 1549 | } |
| 1550 | |
| 1551 | /***************************************************************************** |
| 1552 | * |
| 1553 | * Return the 'SS' field value for the given index scale factor. |
| 1554 | */ |
| 1555 | |
| 1556 | inline unsigned emitter::insSSval(unsigned scale) |
| 1557 | { |
| 1558 | assert(scale == 1 || scale == 2 || scale == 4 || scale == 8); |
| 1559 | |
| 1560 | const static BYTE scales[] = { |
| 1561 | 0x00, // 1 |
| 1562 | 0x40, // 2 |
| 1563 | 0xFF, // 3 |
| 1564 | 0x80, // 4 |
| 1565 | 0xFF, // 5 |
| 1566 | 0xFF, // 6 |
| 1567 | 0xFF, // 7 |
| 1568 | 0xC0, // 8 |
| 1569 | }; |
| 1570 | |
| 1571 | return scales[scale - 1]; |
| 1572 | } |
| 1573 | |
| 1574 | const instruction emitJumpKindInstructions[] = {INS_nop, |
| 1575 | |
| 1576 | #define JMP_SMALL(en, rev, ins) INS_##ins, |
| 1577 | #include "emitjmps.h" |
| 1578 | |
| 1579 | INS_call}; |
| 1580 | |
| 1581 | const emitJumpKind emitReverseJumpKinds[] = { |
| 1582 | EJ_NONE, |
| 1583 | |
| 1584 | #define JMP_SMALL(en, rev, ins) EJ_##rev, |
| 1585 | #include "emitjmps.h" |
| 1586 | }; |
| 1587 | |
| 1588 | /***************************************************************************** |
| 1589 | * Look up the instruction for a jump kind |
| 1590 | */ |
| 1591 | |
| 1592 | /*static*/ instruction emitter::emitJumpKindToIns(emitJumpKind jumpKind) |
| 1593 | { |
| 1594 | assert((unsigned)jumpKind < ArrLen(emitJumpKindInstructions)); |
| 1595 | return emitJumpKindInstructions[jumpKind]; |
| 1596 | } |
| 1597 | |
| 1598 | /***************************************************************************** |
| 1599 | * Reverse the conditional jump |
| 1600 | */ |
| 1601 | |
| 1602 | /* static */ emitJumpKind emitter::emitReverseJumpKind(emitJumpKind jumpKind) |
| 1603 | { |
| 1604 | assert(jumpKind < EJ_COUNT); |
| 1605 | return emitReverseJumpKinds[jumpKind]; |
| 1606 | } |
| 1607 | |
| 1608 | /***************************************************************************** |
| 1609 | * The size for these instructions is less than EA_4BYTE, |
| 1610 | * but the target register need not be byte-addressable |
| 1611 | */ |
| 1612 | |
| 1613 | inline bool emitInstHasNoCode(instruction ins) |
| 1614 | { |
| 1615 | if (ins == INS_align) |
| 1616 | { |
| 1617 | return true; |
| 1618 | } |
| 1619 | |
| 1620 | return false; |
| 1621 | } |
| 1622 | |
| 1623 | /***************************************************************************** |
| 1624 | * When encoding instructions that operate on byte registers |
| 1625 | * we have to ensure that we use a low register (EAX, EBX, ECX or EDX) |
| 1626 | * otherwise we will incorrectly encode the instruction |
| 1627 | */ |
| 1628 | |
| 1629 | bool emitter::emitVerifyEncodable(instruction ins, emitAttr size, regNumber reg1, regNumber reg2 /* = REG_NA */) |
| 1630 | { |
| 1631 | #if CPU_HAS_BYTE_REGS |
| 1632 | if (size != EA_1BYTE) // Not operating on a byte register is fine |
| 1633 | { |
| 1634 | return true; |
| 1635 | } |
| 1636 | |
| 1637 | if ((ins != INS_movsx) && // These three instructions support high register |
| 1638 | (ins != INS_movzx) // encodings for reg1 |
| 1639 | #ifdef FEATURE_HW_INTRINSICS |
| 1640 | && (ins != INS_crc32) |
| 1641 | #endif |
| 1642 | ) |
| 1643 | { |
| 1644 | // reg1 must be a byte-able register |
| 1645 | if ((genRegMask(reg1) & RBM_BYTE_REGS) == 0) |
| 1646 | { |
| 1647 | return false; |
| 1648 | } |
| 1649 | } |
| 1650 | // if reg2 is not REG_NA then reg2 must be a byte-able register |
| 1651 | if ((reg2 != REG_NA) && ((genRegMask(reg2) & RBM_BYTE_REGS) == 0)) |
| 1652 | { |
| 1653 | return false; |
| 1654 | } |
| 1655 | #endif |
| 1656 | // The instruction can be encoded |
| 1657 | return true; |
| 1658 | } |
| 1659 | |
| 1660 | /***************************************************************************** |
| 1661 | * |
| 1662 | * Estimate the size (in bytes of generated code) of the given instruction. |
| 1663 | */ |
| 1664 | |
| 1665 | inline UNATIVE_OFFSET emitter::emitInsSize(code_t code) |
| 1666 | { |
| 1667 | UNATIVE_OFFSET size = (code & 0xFF000000) ? 4 : (code & 0x00FF0000) ? 3 : 2; |
| 1668 | #ifdef _TARGET_AMD64_ |
| 1669 | size += emitGetPrefixSize(code); |
| 1670 | #endif |
| 1671 | return size; |
| 1672 | } |
| 1673 | |
| 1674 | inline UNATIVE_OFFSET emitter::emitInsSizeRM(instruction ins) |
| 1675 | { |
| 1676 | return emitInsSize(insCodeRM(ins)); |
| 1677 | } |
| 1678 | |
| 1679 | inline UNATIVE_OFFSET emitter::emitInsSizeRR(instruction ins, regNumber reg1, regNumber reg2, emitAttr attr) |
| 1680 | { |
| 1681 | emitAttr size = EA_SIZE(attr); |
| 1682 | |
| 1683 | UNATIVE_OFFSET sz; |
| 1684 | |
| 1685 | // If Byte 4 (which is 0xFF00) is zero, that's where the RM encoding goes. |
| 1686 | // Otherwise, it will be placed after the 4 byte encoding, making the total 5 bytes. |
| 1687 | // This would probably be better expressed as a different format or something? |
| 1688 | code_t code = insCodeRM(ins); |
| 1689 | |
| 1690 | if ((code & 0xFF00) != 0) |
| 1691 | { |
| 1692 | sz = 5; |
| 1693 | } |
| 1694 | else |
| 1695 | { |
| 1696 | sz = emitInsSize(insEncodeRMreg(ins, code)); |
| 1697 | } |
| 1698 | |
| 1699 | // Most 16-bit operand instructions will need a prefix |
| 1700 | if (size == EA_2BYTE && ins != INS_movsx && ins != INS_movzx) |
| 1701 | { |
| 1702 | sz += 1; |
| 1703 | } |
| 1704 | |
| 1705 | // VEX prefix |
| 1706 | sz += emitGetVexPrefixAdjustedSize(ins, size, insCodeRM(ins)); |
| 1707 | |
| 1708 | // REX prefix |
| 1709 | if (!hasRexPrefix(code)) |
| 1710 | { |
| 1711 | if ((TakesRexWPrefix(ins, size) && ((ins != INS_xor) || (reg1 != reg2))) || IsExtendedReg(reg1, attr) || |
| 1712 | IsExtendedReg(reg2, attr)) |
| 1713 | { |
| 1714 | sz += emitGetRexPrefixSize(ins); |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | return sz; |
| 1719 | } |
| 1720 | |
| 1721 | /*****************************************************************************/ |
| 1722 | |
| 1723 | inline UNATIVE_OFFSET emitter::emitInsSizeSV(code_t code, int var, int dsp) |
| 1724 | { |
| 1725 | UNATIVE_OFFSET size = emitInsSize(code); |
| 1726 | UNATIVE_OFFSET offs; |
| 1727 | bool offsIsUpperBound = true; |
| 1728 | bool EBPbased = true; |
| 1729 | |
| 1730 | /* Is this a temporary? */ |
| 1731 | |
| 1732 | if (var < 0) |
| 1733 | { |
| 1734 | /* An address off of ESP takes an extra byte */ |
| 1735 | |
| 1736 | if (!emitHasFramePtr) |
| 1737 | { |
| 1738 | size++; |
| 1739 | } |
| 1740 | |
| 1741 | // The offset is already assigned. Find the temp. |
| 1742 | TempDsc* tmp = codeGen->regSet.tmpFindNum(var, RegSet::TEMP_USAGE_USED); |
| 1743 | if (tmp == nullptr) |
| 1744 | { |
| 1745 | // It might be in the free lists, if we're working on zero initializing the temps. |
| 1746 | tmp = codeGen->regSet.tmpFindNum(var, RegSet::TEMP_USAGE_FREE); |
| 1747 | } |
| 1748 | assert(tmp != nullptr); |
| 1749 | offs = tmp->tdTempOffs(); |
| 1750 | |
| 1751 | // We only care about the magnitude of the offset here, to determine instruction size. |
| 1752 | if (emitComp->isFramePointerUsed()) |
| 1753 | { |
| 1754 | if ((int)offs < 0) |
| 1755 | { |
| 1756 | offs = -(int)offs; |
| 1757 | } |
| 1758 | } |
| 1759 | else |
| 1760 | { |
| 1761 | // SP-based offsets must already be positive. |
| 1762 | assert((int)offs >= 0); |
| 1763 | } |
| 1764 | } |
| 1765 | else |
| 1766 | { |
| 1767 | |
| 1768 | /* Get the frame offset of the (non-temp) variable */ |
| 1769 | |
| 1770 | offs = dsp + emitComp->lvaFrameAddress(var, &EBPbased); |
| 1771 | |
| 1772 | /* An address off of ESP takes an extra byte */ |
| 1773 | |
| 1774 | if (!EBPbased) |
| 1775 | { |
| 1776 | ++size; |
| 1777 | } |
| 1778 | |
| 1779 | /* Is this a stack parameter reference? */ |
| 1780 | |
| 1781 | if (emitComp->lvaIsParameter(var) |
| 1782 | #if !defined(_TARGET_AMD64_) || defined(UNIX_AMD64_ABI) |
| 1783 | && !emitComp->lvaIsRegArgument(var) |
| 1784 | #endif // !_TARGET_AMD64_ || UNIX_AMD64_ABI |
| 1785 | ) |
| 1786 | { |
| 1787 | /* If no EBP frame, arguments are off of ESP, above temps */ |
| 1788 | |
| 1789 | if (!EBPbased) |
| 1790 | { |
| 1791 | assert((int)offs >= 0); |
| 1792 | |
| 1793 | offsIsUpperBound = false; // since #temps can increase |
| 1794 | offs += emitMaxTmpSize; |
| 1795 | } |
| 1796 | } |
| 1797 | else |
| 1798 | { |
| 1799 | /* Locals off of EBP are at negative offsets */ |
| 1800 | |
| 1801 | if (EBPbased) |
| 1802 | { |
| 1803 | #if defined(_TARGET_AMD64_) && !defined(UNIX_AMD64_ABI) |
| 1804 | // If localloc is not used, then ebp chaining is done and hence |
| 1805 | // offset of locals will be at negative offsets, Otherwise offsets |
| 1806 | // will be positive. In future, when RBP gets positioned in the |
| 1807 | // middle of the frame so as to optimize instruction encoding size, |
| 1808 | // the below asserts needs to be modified appropriately. |
| 1809 | // However, for Unix platforms, we always do frame pointer chaining, |
| 1810 | // so offsets from the frame pointer will always be negative. |
| 1811 | if (emitComp->compLocallocUsed || emitComp->opts.compDbgEnC) |
| 1812 | { |
| 1813 | noway_assert((int)offs >= 0); |
| 1814 | } |
| 1815 | else |
| 1816 | #endif |
| 1817 | { |
| 1818 | // Dev10 804810 - failing this assert can lead to bad codegen and runtime crashes |
| 1819 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 1820 | |
| 1821 | #ifdef UNIX_AMD64_ABI |
| 1822 | LclVarDsc* varDsc = emitComp->lvaTable + var; |
| 1823 | bool isRegPassedArg = varDsc->lvIsParam && varDsc->lvIsRegArg; |
| 1824 | // Register passed args could have a stack offset of 0. |
| 1825 | noway_assert((int)offs < 0 || isRegPassedArg); |
| 1826 | #else // !UNIX_AMD64_ABI |
| 1827 | noway_assert((int)offs < 0); |
| 1828 | #endif // !UNIX_AMD64_ABI |
| 1829 | } |
| 1830 | |
| 1831 | assert(emitComp->lvaTempsHaveLargerOffsetThanVars()); |
| 1832 | |
| 1833 | // lvaInlinedPInvokeFrameVar and lvaStubArgumentVar are placed below the temps |
| 1834 | if (unsigned(var) == emitComp->lvaInlinedPInvokeFrameVar || |
| 1835 | unsigned(var) == emitComp->lvaStubArgumentVar) |
| 1836 | { |
| 1837 | offs -= emitMaxTmpSize; |
| 1838 | } |
| 1839 | |
| 1840 | if ((int)offs < 0) |
| 1841 | { |
| 1842 | // offset is negative |
| 1843 | return size + ((int(offs) >= SCHAR_MIN) ? sizeof(char) : sizeof(int)); |
| 1844 | } |
| 1845 | #ifdef _TARGET_AMD64_ |
| 1846 | // This case arises for localloc frames |
| 1847 | else |
| 1848 | { |
| 1849 | return size + ((offs <= SCHAR_MAX) ? sizeof(char) : sizeof(int)); |
| 1850 | } |
| 1851 | #endif |
| 1852 | } |
| 1853 | |
| 1854 | if (emitComp->lvaTempsHaveLargerOffsetThanVars() == false) |
| 1855 | { |
| 1856 | offs += emitMaxTmpSize; |
| 1857 | } |
| 1858 | } |
| 1859 | } |
| 1860 | |
| 1861 | assert((int)offs >= 0); |
| 1862 | |
| 1863 | #if !FEATURE_FIXED_OUT_ARGS |
| 1864 | |
| 1865 | /* Are we addressing off of ESP? */ |
| 1866 | |
| 1867 | if (!emitHasFramePtr) |
| 1868 | { |
| 1869 | /* Adjust the effective offset if necessary */ |
| 1870 | |
| 1871 | if (emitCntStackDepth) |
| 1872 | offs += emitCurStackLvl; |
| 1873 | |
| 1874 | // we could (and used to) check for the special case [sp] here but the stack offset |
| 1875 | // estimator was off, and there is very little harm in overestimating for such a |
| 1876 | // rare case. |
| 1877 | } |
| 1878 | |
| 1879 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 1880 | |
| 1881 | // printf("lcl = %04X, tmp = %04X, stk = %04X, offs = %04X\n", |
| 1882 | // emitLclSize, emitMaxTmpSize, emitCurStackLvl, offs); |
| 1883 | |
| 1884 | #ifdef _TARGET_AMD64_ |
| 1885 | bool useSmallEncoding = (SCHAR_MIN <= (int)offs) && ((int)offs <= SCHAR_MAX); |
| 1886 | #else |
| 1887 | bool useSmallEncoding = (offs <= size_t(SCHAR_MAX)); |
| 1888 | #endif |
| 1889 | |
| 1890 | // If it is ESP based, and the offset is zero, we will not encode the disp part. |
| 1891 | if (!EBPbased && offs == 0) |
| 1892 | { |
| 1893 | return size; |
| 1894 | } |
| 1895 | else |
| 1896 | { |
| 1897 | return size + (useSmallEncoding ? sizeof(char) : sizeof(int)); |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | inline UNATIVE_OFFSET emitter::emitInsSizeSV(instrDesc* id, code_t code, int var, int dsp) |
| 1902 | { |
| 1903 | instruction ins = id->idIns(); |
| 1904 | emitAttr attrSize = id->idOpSize(); |
| 1905 | UNATIVE_OFFSET prefix = emitGetVexPrefixAdjustedSize(ins, attrSize, code); |
| 1906 | return prefix + emitInsSizeSV(code, var, dsp); |
| 1907 | } |
| 1908 | |
| 1909 | inline UNATIVE_OFFSET emitter::emitInsSizeSV(instrDesc* id, code_t code, int var, int dsp, int val) |
| 1910 | { |
| 1911 | instruction ins = id->idIns(); |
| 1912 | emitAttr attrSize = id->idOpSize(); |
| 1913 | UNATIVE_OFFSET valSize = EA_SIZE_IN_BYTES(attrSize); |
| 1914 | UNATIVE_OFFSET prefix = emitGetVexPrefixAdjustedSize(ins, attrSize, code); |
| 1915 | bool valInByte = ((signed char)val == val) && (ins != INS_mov) && (ins != INS_test); |
| 1916 | |
| 1917 | #ifdef _TARGET_AMD64_ |
| 1918 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 1919 | // all other opcodes take a sign-extended 4-byte immediate |
| 1920 | noway_assert(valSize <= sizeof(int) || !id->idIsCnsReloc()); |
| 1921 | #endif // _TARGET_AMD64_ |
| 1922 | |
| 1923 | if (valSize > sizeof(int)) |
| 1924 | { |
| 1925 | valSize = sizeof(int); |
| 1926 | } |
| 1927 | |
| 1928 | if (id->idIsCnsReloc()) |
| 1929 | { |
| 1930 | valInByte = false; // relocs can't be placed in a byte |
| 1931 | assert(valSize == sizeof(int)); |
| 1932 | } |
| 1933 | |
| 1934 | if (valInByte) |
| 1935 | { |
| 1936 | valSize = sizeof(char); |
| 1937 | } |
| 1938 | |
| 1939 | // 16-bit operand instructions need a prefix. |
| 1940 | // This referes to 66h size prefix override |
| 1941 | if (id->idOpSize() == EA_2BYTE) |
| 1942 | { |
| 1943 | prefix += 1; |
| 1944 | } |
| 1945 | |
| 1946 | return prefix + valSize + emitInsSizeSV(code, var, dsp); |
| 1947 | } |
| 1948 | |
| 1949 | /*****************************************************************************/ |
| 1950 | |
| 1951 | static bool baseRegisterRequiresSibByte(regNumber base) |
| 1952 | { |
| 1953 | #ifdef _TARGET_AMD64_ |
| 1954 | return base == REG_ESP || base == REG_R12; |
| 1955 | #else |
| 1956 | return base == REG_ESP; |
| 1957 | #endif |
| 1958 | } |
| 1959 | |
| 1960 | static bool baseRegisterRequiresDisplacement(regNumber base) |
| 1961 | { |
| 1962 | #ifdef _TARGET_AMD64_ |
| 1963 | return base == REG_EBP || base == REG_R13; |
| 1964 | #else |
| 1965 | return base == REG_EBP; |
| 1966 | #endif |
| 1967 | } |
| 1968 | |
| 1969 | UNATIVE_OFFSET emitter::emitInsSizeAM(instrDesc* id, code_t code) |
| 1970 | { |
| 1971 | emitAttr attrSize = id->idOpSize(); |
| 1972 | instruction ins = id->idIns(); |
| 1973 | /* The displacement field is in an unusual place for calls */ |
| 1974 | ssize_t dsp = (ins == INS_call) ? emitGetInsCIdisp(id) : emitGetInsAmdAny(id); |
| 1975 | bool dspInByte = ((signed char)dsp == (ssize_t)dsp); |
| 1976 | bool dspIsZero = (dsp == 0); |
| 1977 | UNATIVE_OFFSET size; |
| 1978 | |
| 1979 | // Note that the values in reg and rgx are used in this method to decide |
| 1980 | // how many bytes will be needed by the address [reg+rgx+cns] |
| 1981 | // this includes the prefix bytes when reg or rgx are registers R8-R15 |
| 1982 | regNumber reg; |
| 1983 | regNumber rgx; |
| 1984 | |
| 1985 | // The idAddr field is a union and only some of the instruction formats use the iiaAddrMode variant |
| 1986 | // these are IF_AWR_*, IF_ARD_*, IF_ARW_* and IF_*_ARD |
| 1987 | // ideally these should really be the only idInsFmts that we see here |
| 1988 | // but we have some outliers to deal with: |
| 1989 | // emitIns_R_L adds IF_RWR_LABEL and calls emitInsSizeAM |
| 1990 | // emitInsRMW adds IF_MRW_CNS, IF_MRW_RRD, IF_MRW_SHF, and calls emitInsSizeAM |
| 1991 | |
| 1992 | switch (id->idInsFmt()) |
| 1993 | { |
| 1994 | case IF_RWR_LABEL: |
| 1995 | case IF_MRW_CNS: |
| 1996 | case IF_MRW_RRD: |
| 1997 | case IF_MRW_SHF: |
| 1998 | reg = REG_NA; |
| 1999 | rgx = REG_NA; |
| 2000 | break; |
| 2001 | |
| 2002 | default: |
| 2003 | reg = id->idAddr()->iiaAddrMode.amBaseReg; |
| 2004 | rgx = id->idAddr()->iiaAddrMode.amIndxReg; |
| 2005 | break; |
| 2006 | } |
| 2007 | |
| 2008 | if (id->idIsDspReloc()) |
| 2009 | { |
| 2010 | dspInByte = false; // relocs can't be placed in a byte |
| 2011 | dspIsZero = false; // relocs won't always be zero |
| 2012 | } |
| 2013 | |
| 2014 | if (code & 0xFF000000) |
| 2015 | { |
| 2016 | size = 4; |
| 2017 | } |
| 2018 | else if (code & 0x00FF0000) |
| 2019 | { |
| 2020 | // BT supports 16 bit operands and this code doesn't handle the necessary 66 prefix. |
| 2021 | assert(ins != INS_bt); |
| 2022 | |
| 2023 | assert((attrSize == EA_4BYTE) || (attrSize == EA_PTRSIZE) // Only for x64 |
| 2024 | || (attrSize == EA_16BYTE) || (attrSize == EA_32BYTE) // only for x64 |
| 2025 | || (ins == INS_movzx) || (ins == INS_movsx) |
| 2026 | // The prefetch instructions are always 3 bytes and have part of their modr/m byte hardcoded |
| 2027 | || isPrefetch(ins)); |
| 2028 | size = 3; |
| 2029 | } |
| 2030 | else |
| 2031 | { |
| 2032 | size = 2; |
| 2033 | |
| 2034 | // Most 16-bit operands will require a size prefix. |
| 2035 | // This refers to 66h size prefix override. |
| 2036 | |
| 2037 | if (attrSize == EA_2BYTE) |
| 2038 | { |
| 2039 | size++; |
| 2040 | } |
| 2041 | } |
| 2042 | |
| 2043 | size += emitGetVexPrefixAdjustedSize(ins, attrSize, code); |
| 2044 | |
| 2045 | if (hasRexPrefix(code)) |
| 2046 | { |
| 2047 | // REX prefix |
| 2048 | size += emitGetRexPrefixSize(ins); |
| 2049 | } |
| 2050 | else if (TakesRexWPrefix(ins, attrSize)) |
| 2051 | { |
| 2052 | // REX.W prefix |
| 2053 | size += emitGetRexPrefixSize(ins); |
| 2054 | } |
| 2055 | else if (IsExtendedReg(reg, EA_PTRSIZE) || IsExtendedReg(rgx, EA_PTRSIZE) || |
| 2056 | ((ins != INS_call) && IsExtendedReg(id->idReg1(), attrSize))) |
| 2057 | { |
| 2058 | // Should have a REX byte |
| 2059 | size += emitGetRexPrefixSize(ins); |
| 2060 | } |
| 2061 | |
| 2062 | if (rgx == REG_NA) |
| 2063 | { |
| 2064 | /* The address is of the form "[reg+disp]" */ |
| 2065 | |
| 2066 | if (reg == REG_NA) |
| 2067 | { |
| 2068 | /* The address is of the form "[disp]" */ |
| 2069 | |
| 2070 | size += sizeof(INT32); |
| 2071 | |
| 2072 | #ifdef _TARGET_AMD64_ |
| 2073 | // If id is not marked for reloc, add 1 additional byte for SIB that follows disp32 |
| 2074 | if (!id->idIsDspReloc()) |
| 2075 | { |
| 2076 | size++; |
| 2077 | } |
| 2078 | #endif |
| 2079 | return size; |
| 2080 | } |
| 2081 | |
| 2082 | // If this is just "call reg", we're done. |
| 2083 | if (id->idIsCallRegPtr()) |
| 2084 | { |
| 2085 | assert(ins == INS_call); |
| 2086 | assert(dsp == 0); |
| 2087 | return size; |
| 2088 | } |
| 2089 | |
| 2090 | // If the base register is ESP (or R12 on 64-bit systems), a SIB byte must be used. |
| 2091 | if (baseRegisterRequiresSibByte(reg)) |
| 2092 | { |
| 2093 | size++; |
| 2094 | } |
| 2095 | |
| 2096 | // If the base register is EBP (or R13 on 64-bit systems), a displacement is required. |
| 2097 | // Otherwise, the displacement can be elided if it is zero. |
| 2098 | if (dspIsZero && !baseRegisterRequiresDisplacement(reg)) |
| 2099 | { |
| 2100 | return size; |
| 2101 | } |
| 2102 | |
| 2103 | /* Does the offset fit in a byte? */ |
| 2104 | |
| 2105 | if (dspInByte) |
| 2106 | { |
| 2107 | size += sizeof(char); |
| 2108 | } |
| 2109 | else |
| 2110 | { |
| 2111 | size += sizeof(INT32); |
| 2112 | } |
| 2113 | } |
| 2114 | else |
| 2115 | { |
| 2116 | /* An index register is present */ |
| 2117 | |
| 2118 | size++; |
| 2119 | |
| 2120 | /* Is the index value scaled? */ |
| 2121 | |
| 2122 | if (emitDecodeScale(id->idAddr()->iiaAddrMode.amScale) > 1) |
| 2123 | { |
| 2124 | /* Is there a base register? */ |
| 2125 | |
| 2126 | if (reg != REG_NA) |
| 2127 | { |
| 2128 | /* The address is "[reg + {2/4/8} * rgx + icon]" */ |
| 2129 | |
| 2130 | if (dspIsZero && !baseRegisterRequiresDisplacement(reg)) |
| 2131 | { |
| 2132 | /* The address is "[reg + {2/4/8} * rgx]" */ |
| 2133 | } |
| 2134 | else |
| 2135 | { |
| 2136 | /* The address is "[reg + {2/4/8} * rgx + disp]" */ |
| 2137 | |
| 2138 | if (dspInByte) |
| 2139 | { |
| 2140 | size += sizeof(char); |
| 2141 | } |
| 2142 | else |
| 2143 | { |
| 2144 | size += sizeof(int); |
| 2145 | } |
| 2146 | } |
| 2147 | } |
| 2148 | else |
| 2149 | { |
| 2150 | /* The address is "[{2/4/8} * rgx + icon]" */ |
| 2151 | |
| 2152 | size += sizeof(INT32); |
| 2153 | } |
| 2154 | } |
| 2155 | else |
| 2156 | { |
| 2157 | if (dspIsZero && baseRegisterRequiresDisplacement(reg) && !baseRegisterRequiresDisplacement(rgx)) |
| 2158 | { |
| 2159 | /* Swap reg and rgx, such that reg is not EBP/R13 */ |
| 2160 | regNumber tmp = reg; |
| 2161 | id->idAddr()->iiaAddrMode.amBaseReg = reg = rgx; |
| 2162 | id->idAddr()->iiaAddrMode.amIndxReg = rgx = tmp; |
| 2163 | } |
| 2164 | |
| 2165 | /* The address is "[reg+rgx+dsp]" */ |
| 2166 | |
| 2167 | if (dspIsZero && !baseRegisterRequiresDisplacement(reg)) |
| 2168 | { |
| 2169 | /* This is [reg+rgx]" */ |
| 2170 | } |
| 2171 | else |
| 2172 | { |
| 2173 | /* This is [reg+rgx+dsp]" */ |
| 2174 | |
| 2175 | if (dspInByte) |
| 2176 | { |
| 2177 | size += sizeof(char); |
| 2178 | } |
| 2179 | else |
| 2180 | { |
| 2181 | size += sizeof(int); |
| 2182 | } |
| 2183 | } |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | return size; |
| 2188 | } |
| 2189 | |
| 2190 | inline UNATIVE_OFFSET emitter::emitInsSizeAM(instrDesc* id, code_t code, int val) |
| 2191 | { |
| 2192 | instruction ins = id->idIns(); |
| 2193 | UNATIVE_OFFSET valSize = EA_SIZE_IN_BYTES(id->idOpSize()); |
| 2194 | bool valInByte = ((signed char)val == val) && (ins != INS_mov) && (ins != INS_test); |
| 2195 | |
| 2196 | // We should never generate BT mem,reg because it has poor performance. BT mem,imm might be useful |
| 2197 | // but it requires special handling of the immediate value (it is always encoded in a byte). |
| 2198 | // Let's not complicate things until this is needed. |
| 2199 | assert(ins != INS_bt); |
| 2200 | |
| 2201 | #ifdef _TARGET_AMD64_ |
| 2202 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 2203 | // all other opcodes take a sign-extended 4-byte immediate |
| 2204 | noway_assert(valSize <= sizeof(INT32) || !id->idIsCnsReloc()); |
| 2205 | #endif // _TARGET_AMD64_ |
| 2206 | |
| 2207 | if (valSize > sizeof(INT32)) |
| 2208 | { |
| 2209 | valSize = sizeof(INT32); |
| 2210 | } |
| 2211 | |
| 2212 | if (id->idIsCnsReloc()) |
| 2213 | { |
| 2214 | valInByte = false; // relocs can't be placed in a byte |
| 2215 | assert(valSize == sizeof(INT32)); |
| 2216 | } |
| 2217 | |
| 2218 | if (valInByte) |
| 2219 | { |
| 2220 | valSize = sizeof(char); |
| 2221 | } |
| 2222 | |
| 2223 | return valSize + emitInsSizeAM(id, code); |
| 2224 | } |
| 2225 | |
| 2226 | inline UNATIVE_OFFSET emitter::emitInsSizeCV(instrDesc* id, code_t code) |
| 2227 | { |
| 2228 | instruction ins = id->idIns(); |
| 2229 | |
| 2230 | // fgMorph changes any statics that won't fit into 32-bit addresses |
| 2231 | // into constants with an indir, rather than GT_CLS_VAR |
| 2232 | // so we should only hit this path for statics that are RIP-relative |
| 2233 | UNATIVE_OFFSET size = sizeof(INT32); |
| 2234 | |
| 2235 | size += emitGetVexPrefixAdjustedSize(ins, id->idOpSize(), code); |
| 2236 | |
| 2237 | // Most 16-bit operand instructions will need a prefix. |
| 2238 | // This refers to 66h size prefix override. |
| 2239 | |
| 2240 | if (id->idOpSize() == EA_2BYTE && ins != INS_movzx && ins != INS_movsx) |
| 2241 | { |
| 2242 | size++; |
| 2243 | } |
| 2244 | |
| 2245 | return size + emitInsSize(code); |
| 2246 | } |
| 2247 | |
| 2248 | inline UNATIVE_OFFSET emitter::emitInsSizeCV(instrDesc* id, code_t code, int val) |
| 2249 | { |
| 2250 | instruction ins = id->idIns(); |
| 2251 | UNATIVE_OFFSET valSize = EA_SIZE_IN_BYTES(id->idOpSize()); |
| 2252 | bool valInByte = ((signed char)val == val) && (ins != INS_mov) && (ins != INS_test); |
| 2253 | |
| 2254 | #ifndef _TARGET_AMD64_ |
| 2255 | // occasionally longs get here on x86 |
| 2256 | if (valSize > sizeof(INT32)) |
| 2257 | valSize = sizeof(INT32); |
| 2258 | #endif // !_TARGET_AMD64_ |
| 2259 | |
| 2260 | if (id->idIsCnsReloc()) |
| 2261 | { |
| 2262 | valInByte = false; // relocs can't be placed in a byte |
| 2263 | assert(valSize == sizeof(INT32)); |
| 2264 | } |
| 2265 | |
| 2266 | if (valInByte) |
| 2267 | { |
| 2268 | valSize = sizeof(char); |
| 2269 | } |
| 2270 | |
| 2271 | return valSize + emitInsSizeCV(id, code); |
| 2272 | } |
| 2273 | |
| 2274 | /***************************************************************************** |
| 2275 | * |
| 2276 | * Allocate instruction descriptors for instructions with address modes. |
| 2277 | */ |
| 2278 | |
| 2279 | inline emitter::instrDesc* emitter::emitNewInstrAmd(emitAttr size, ssize_t dsp) |
| 2280 | { |
| 2281 | if (dsp < AM_DISP_MIN || dsp > AM_DISP_MAX) |
| 2282 | { |
| 2283 | instrDescAmd* id = emitAllocInstrAmd(size); |
| 2284 | |
| 2285 | id->idSetIsLargeDsp(); |
| 2286 | #ifdef DEBUG |
| 2287 | id->idAddr()->iiaAddrMode.amDisp = AM_DISP_BIG_VAL; |
| 2288 | #endif |
| 2289 | id->idaAmdVal = dsp; |
| 2290 | |
| 2291 | return id; |
| 2292 | } |
| 2293 | else |
| 2294 | { |
| 2295 | instrDesc* id = emitAllocInstr(size); |
| 2296 | |
| 2297 | id->idAddr()->iiaAddrMode.amDisp = dsp; |
| 2298 | assert(id->idAddr()->iiaAddrMode.amDisp == dsp); // make sure the value fit |
| 2299 | |
| 2300 | return id; |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | /***************************************************************************** |
| 2305 | * |
| 2306 | * Set the displacement field in an instruction. Only handles instrDescAmd type. |
| 2307 | */ |
| 2308 | |
| 2309 | inline void emitter::emitSetAmdDisp(instrDescAmd* id, ssize_t dsp) |
| 2310 | { |
| 2311 | if (dsp < AM_DISP_MIN || dsp > AM_DISP_MAX) |
| 2312 | { |
| 2313 | id->idSetIsLargeDsp(); |
| 2314 | #ifdef DEBUG |
| 2315 | id->idAddr()->iiaAddrMode.amDisp = AM_DISP_BIG_VAL; |
| 2316 | #endif |
| 2317 | id->idaAmdVal = dsp; |
| 2318 | } |
| 2319 | else |
| 2320 | { |
| 2321 | id->idSetIsSmallDsp(); |
| 2322 | id->idAddr()->iiaAddrMode.amDisp = dsp; |
| 2323 | assert(id->idAddr()->iiaAddrMode.amDisp == dsp); // make sure the value fit |
| 2324 | } |
| 2325 | } |
| 2326 | |
| 2327 | /***************************************************************************** |
| 2328 | * |
| 2329 | * Allocate an instruction descriptor for an instruction that uses both |
| 2330 | * an address mode displacement and a constant. |
| 2331 | */ |
| 2332 | |
| 2333 | emitter::instrDesc* emitter::emitNewInstrAmdCns(emitAttr size, ssize_t dsp, int cns) |
| 2334 | { |
| 2335 | if (dsp >= AM_DISP_MIN && dsp <= AM_DISP_MAX) |
| 2336 | { |
| 2337 | if (cns >= ID_MIN_SMALL_CNS && cns <= ID_MAX_SMALL_CNS) |
| 2338 | { |
| 2339 | instrDesc* id = emitAllocInstr(size); |
| 2340 | |
| 2341 | id->idSmallCns(cns); |
| 2342 | |
| 2343 | id->idAddr()->iiaAddrMode.amDisp = dsp; |
| 2344 | assert(id->idAddr()->iiaAddrMode.amDisp == dsp); // make sure the value fit |
| 2345 | |
| 2346 | return id; |
| 2347 | } |
| 2348 | else |
| 2349 | { |
| 2350 | instrDescCns* id = emitAllocInstrCns(size); |
| 2351 | |
| 2352 | id->idSetIsLargeCns(); |
| 2353 | id->idcCnsVal = cns; |
| 2354 | |
| 2355 | id->idAddr()->iiaAddrMode.amDisp = dsp; |
| 2356 | assert(id->idAddr()->iiaAddrMode.amDisp == dsp); // make sure the value fit |
| 2357 | |
| 2358 | return id; |
| 2359 | } |
| 2360 | } |
| 2361 | else |
| 2362 | { |
| 2363 | if (cns >= ID_MIN_SMALL_CNS && cns <= ID_MAX_SMALL_CNS) |
| 2364 | { |
| 2365 | instrDescAmd* id = emitAllocInstrAmd(size); |
| 2366 | |
| 2367 | id->idSetIsLargeDsp(); |
| 2368 | #ifdef DEBUG |
| 2369 | id->idAddr()->iiaAddrMode.amDisp = AM_DISP_BIG_VAL; |
| 2370 | #endif |
| 2371 | id->idaAmdVal = dsp; |
| 2372 | |
| 2373 | id->idSmallCns(cns); |
| 2374 | |
| 2375 | return id; |
| 2376 | } |
| 2377 | else |
| 2378 | { |
| 2379 | instrDescCnsAmd* id = emitAllocInstrCnsAmd(size); |
| 2380 | |
| 2381 | id->idSetIsLargeCns(); |
| 2382 | id->idacCnsVal = cns; |
| 2383 | |
| 2384 | id->idSetIsLargeDsp(); |
| 2385 | #ifdef DEBUG |
| 2386 | id->idAddr()->iiaAddrMode.amDisp = AM_DISP_BIG_VAL; |
| 2387 | #endif |
| 2388 | id->idacAmdVal = dsp; |
| 2389 | |
| 2390 | return id; |
| 2391 | } |
| 2392 | } |
| 2393 | } |
| 2394 | |
| 2395 | /***************************************************************************** |
| 2396 | * |
| 2397 | * The next instruction will be a loop head entry point |
| 2398 | * So insert a dummy instruction here to ensure that |
| 2399 | * the x86 I-cache alignment rule is followed. |
| 2400 | */ |
| 2401 | |
| 2402 | void emitter::emitLoopAlign() |
| 2403 | { |
| 2404 | /* Insert a pseudo-instruction to ensure that we align |
| 2405 | the next instruction properly */ |
| 2406 | |
| 2407 | instrDesc* id = emitNewInstrSmall(EA_1BYTE); |
| 2408 | id->idIns(INS_align); |
| 2409 | id->idCodeSize(15); // We may need to skip up to 15 bytes of code |
| 2410 | emitCurIGsize += 15; |
| 2411 | } |
| 2412 | |
| 2413 | /***************************************************************************** |
| 2414 | * |
| 2415 | * Add a NOP instruction of the given size. |
| 2416 | */ |
| 2417 | |
| 2418 | void emitter::emitIns_Nop(unsigned size) |
| 2419 | { |
| 2420 | assert(size <= 15); |
| 2421 | |
| 2422 | instrDesc* id = emitNewInstr(); |
| 2423 | id->idIns(INS_nop); |
| 2424 | id->idInsFmt(IF_NONE); |
| 2425 | id->idCodeSize(size); |
| 2426 | |
| 2427 | dispIns(id); |
| 2428 | emitCurIGsize += size; |
| 2429 | } |
| 2430 | |
| 2431 | /***************************************************************************** |
| 2432 | * |
| 2433 | * Add an instruction with no operands. |
| 2434 | */ |
| 2435 | void emitter::emitIns(instruction ins) |
| 2436 | { |
| 2437 | UNATIVE_OFFSET sz; |
| 2438 | instrDesc* id = emitNewInstr(); |
| 2439 | code_t code = insCodeMR(ins); |
| 2440 | |
| 2441 | #ifdef DEBUG |
| 2442 | { |
| 2443 | // We cannot have #ifdef inside macro expansion. |
| 2444 | bool assertCond = |
| 2445 | (ins == INS_cdq || ins == INS_int3 || ins == INS_lock || ins == INS_leave || ins == INS_movsb || |
| 2446 | ins == INS_movsd || ins == INS_movsp || ins == INS_nop || ins == INS_r_movsb || ins == INS_r_movsd || |
| 2447 | ins == INS_r_movsp || ins == INS_r_stosb || ins == INS_r_stosd || ins == INS_r_stosp || ins == INS_ret || |
| 2448 | ins == INS_sahf || ins == INS_stosb || ins == INS_stosd || ins == INS_stosp |
| 2449 | // These instructions take zero operands |
| 2450 | || ins == INS_vzeroupper || ins == INS_lfence || ins == INS_mfence || ins == INS_sfence); |
| 2451 | |
| 2452 | assert(assertCond); |
| 2453 | } |
| 2454 | #endif // DEBUG |
| 2455 | |
| 2456 | assert(!hasRexPrefix(code)); // Can't have a REX bit with no operands, right? |
| 2457 | |
| 2458 | if (code & 0xFF000000) |
| 2459 | { |
| 2460 | sz = 2; // TODO-XArch-Bug?: Shouldn't this be 4? Or maybe we should assert that we don't see this case. |
| 2461 | } |
| 2462 | else if (code & 0x00FF0000) |
| 2463 | { |
| 2464 | sz = 3; |
| 2465 | } |
| 2466 | else if (code & 0x0000FF00) |
| 2467 | { |
| 2468 | sz = 2; |
| 2469 | } |
| 2470 | else |
| 2471 | { |
| 2472 | sz = 1; |
| 2473 | } |
| 2474 | |
| 2475 | // vzeroupper includes its 2-byte VEX prefix in its MR code. |
| 2476 | assert((ins != INS_vzeroupper) || (sz == 3)); |
| 2477 | |
| 2478 | insFormat fmt = IF_NONE; |
| 2479 | |
| 2480 | id->idIns(ins); |
| 2481 | id->idInsFmt(fmt); |
| 2482 | id->idCodeSize(sz); |
| 2483 | |
| 2484 | dispIns(id); |
| 2485 | emitCurIGsize += sz; |
| 2486 | } |
| 2487 | |
| 2488 | // Add an instruction with no operands, but whose encoding depends on the size |
| 2489 | // (Only CDQ/CQO currently) |
| 2490 | void emitter::emitIns(instruction ins, emitAttr attr) |
| 2491 | { |
| 2492 | UNATIVE_OFFSET sz; |
| 2493 | instrDesc* id = emitNewInstr(attr); |
| 2494 | code_t code = insCodeMR(ins); |
| 2495 | assert(ins == INS_cdq); |
| 2496 | assert((code & 0xFFFFFF00) == 0); |
| 2497 | sz = 1; |
| 2498 | |
| 2499 | insFormat fmt = IF_NONE; |
| 2500 | |
| 2501 | sz += emitGetVexPrefixAdjustedSize(ins, attr, code); |
| 2502 | if (TakesRexWPrefix(ins, attr)) |
| 2503 | { |
| 2504 | sz += emitGetRexPrefixSize(ins); |
| 2505 | } |
| 2506 | |
| 2507 | id->idIns(ins); |
| 2508 | id->idInsFmt(fmt); |
| 2509 | id->idCodeSize(sz); |
| 2510 | |
| 2511 | dispIns(id); |
| 2512 | emitCurIGsize += sz; |
| 2513 | } |
| 2514 | |
| 2515 | //------------------------------------------------------------------------ |
| 2516 | // emitMapFmtForIns: map the instruction format based on the instruction. |
| 2517 | // Shift-by-a-constant instructions have a special format. |
| 2518 | // |
| 2519 | // Arguments: |
| 2520 | // fmt - the instruction format to map |
| 2521 | // ins - the instruction |
| 2522 | // |
| 2523 | // Returns: |
| 2524 | // The mapped instruction format. |
| 2525 | // |
| 2526 | emitter::insFormat emitter::emitMapFmtForIns(insFormat fmt, instruction ins) |
| 2527 | { |
| 2528 | switch (ins) |
| 2529 | { |
| 2530 | case INS_rol_N: |
| 2531 | case INS_ror_N: |
| 2532 | case INS_rcl_N: |
| 2533 | case INS_rcr_N: |
| 2534 | case INS_shl_N: |
| 2535 | case INS_shr_N: |
| 2536 | case INS_sar_N: |
| 2537 | { |
| 2538 | switch (fmt) |
| 2539 | { |
| 2540 | case IF_RRW_CNS: |
| 2541 | return IF_RRW_SHF; |
| 2542 | case IF_MRW_CNS: |
| 2543 | return IF_MRW_SHF; |
| 2544 | case IF_SRW_CNS: |
| 2545 | return IF_SRW_SHF; |
| 2546 | case IF_ARW_CNS: |
| 2547 | return IF_ARW_SHF; |
| 2548 | default: |
| 2549 | unreached(); |
| 2550 | } |
| 2551 | } |
| 2552 | |
| 2553 | default: |
| 2554 | return fmt; |
| 2555 | } |
| 2556 | } |
| 2557 | |
| 2558 | //------------------------------------------------------------------------ |
| 2559 | // emitMapFmtAtoM: map the address mode formats ARD, ARW, and AWR to their direct address equivalents. |
| 2560 | // |
| 2561 | // Arguments: |
| 2562 | // fmt - the instruction format to map |
| 2563 | // |
| 2564 | // Returns: |
| 2565 | // The mapped instruction format. |
| 2566 | // |
| 2567 | emitter::insFormat emitter::emitMapFmtAtoM(insFormat fmt) |
| 2568 | { |
| 2569 | switch (fmt) |
| 2570 | { |
| 2571 | case IF_ARD: |
| 2572 | return IF_MRD; |
| 2573 | case IF_AWR: |
| 2574 | return IF_MWR; |
| 2575 | case IF_ARW: |
| 2576 | return IF_MRW; |
| 2577 | |
| 2578 | case IF_RRD_ARD: |
| 2579 | return IF_RRD_MRD; |
| 2580 | case IF_RWR_ARD: |
| 2581 | return IF_RWR_MRD; |
| 2582 | case IF_RWR_ARD_CNS: |
| 2583 | return IF_RWR_MRD_CNS; |
| 2584 | case IF_RRW_ARD: |
| 2585 | return IF_RRW_MRD; |
| 2586 | case IF_RRW_ARD_CNS: |
| 2587 | return IF_RRW_MRD_CNS; |
| 2588 | case IF_RWR_RRD_ARD: |
| 2589 | return IF_RWR_RRD_MRD; |
| 2590 | case IF_RWR_RRD_ARD_CNS: |
| 2591 | return IF_RWR_RRD_MRD_CNS; |
| 2592 | case IF_RWR_RRD_ARD_RRD: |
| 2593 | return IF_RWR_RRD_MRD_RRD; |
| 2594 | |
| 2595 | case IF_ARD_RRD: |
| 2596 | return IF_MRD_RRD; |
| 2597 | case IF_AWR_RRD: |
| 2598 | return IF_MWR_RRD; |
| 2599 | case IF_ARW_RRD: |
| 2600 | return IF_MRW_RRD; |
| 2601 | |
| 2602 | case IF_ARD_CNS: |
| 2603 | return IF_MRD_CNS; |
| 2604 | case IF_AWR_CNS: |
| 2605 | return IF_MWR_CNS; |
| 2606 | case IF_ARW_CNS: |
| 2607 | return IF_MRW_CNS; |
| 2608 | |
| 2609 | case IF_AWR_RRD_CNS: |
| 2610 | return IF_MWR_RRD_CNS; |
| 2611 | |
| 2612 | case IF_ARW_SHF: |
| 2613 | return IF_MRW_SHF; |
| 2614 | |
| 2615 | default: |
| 2616 | unreached(); |
| 2617 | } |
| 2618 | } |
| 2619 | |
| 2620 | //------------------------------------------------------------------------ |
| 2621 | // emitHandleMemOp: For a memory operand, fill in the relevant fields of the instrDesc. |
| 2622 | // |
| 2623 | // Arguments: |
| 2624 | // indir - the memory operand. |
| 2625 | // id - the instrDesc to fill in. |
| 2626 | // fmt - the instruction format to use. This must be one of the ARD, AWR, or ARW formats. If necessary (such as for |
| 2627 | // GT_CLS_VAR_ADDR), this function will map it to the correct format. |
| 2628 | // ins - the instruction we are generating. This might affect the instruction format we choose. |
| 2629 | // |
| 2630 | // Assumptions: |
| 2631 | // The correctly sized instrDesc must already be created, e.g., via emitNewInstrAmd() or emitNewInstrAmdCns(); |
| 2632 | // |
| 2633 | // Post-conditions: |
| 2634 | // For base address of int constant: |
| 2635 | // -- the caller must have added the int constant base to the instrDesc when creating it via |
| 2636 | // emitNewInstrAmdCns(). |
| 2637 | // For simple address modes (base + scale * index + offset): |
| 2638 | // -- the base register, index register, and scale factor are set. |
| 2639 | // -- the caller must have added the addressing mode offset int constant to the instrDesc when creating it via |
| 2640 | // emitNewInstrAmdCns(). |
| 2641 | // |
| 2642 | // The instruction format is set. |
| 2643 | // |
| 2644 | // idSetIsDspReloc() is called if necessary. |
| 2645 | // |
| 2646 | void emitter::emitHandleMemOp(GenTreeIndir* indir, instrDesc* id, insFormat fmt, instruction ins) |
| 2647 | { |
| 2648 | assert(fmt != IF_NONE); |
| 2649 | |
| 2650 | GenTree* memBase = indir->Base(); |
| 2651 | |
| 2652 | if ((memBase != nullptr) && memBase->isContained() && (memBase->OperGet() == GT_CLS_VAR_ADDR)) |
| 2653 | { |
| 2654 | CORINFO_FIELD_HANDLE fldHnd = memBase->gtClsVar.gtClsVarHnd; |
| 2655 | |
| 2656 | // Static always need relocs |
| 2657 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 2658 | { |
| 2659 | // Contract: |
| 2660 | // fgMorphField() changes any statics that won't fit into 32-bit addresses into |
| 2661 | // constants with an indir, rather than GT_CLS_VAR, based on reloc type hint given |
| 2662 | // by VM. Hence emitter should always mark GT_CLS_VAR_ADDR as relocatable. |
| 2663 | // |
| 2664 | // Data section constants: these get allocated close to code block of the method and |
| 2665 | // always addressable IP relative. These too should be marked as relocatable. |
| 2666 | |
| 2667 | id->idSetIsDspReloc(); |
| 2668 | } |
| 2669 | |
| 2670 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 2671 | id->idInsFmt(emitMapFmtForIns(emitMapFmtAtoM(fmt), ins)); |
| 2672 | } |
| 2673 | else if ((memBase != nullptr) && memBase->IsCnsIntOrI() && memBase->isContained()) |
| 2674 | { |
| 2675 | // Absolute addresses marked as contained should fit within the base of addr mode. |
| 2676 | assert(memBase->AsIntConCommon()->FitsInAddrBase(emitComp)); |
| 2677 | |
| 2678 | // Either not generating relocatable code, or addr must be an icon handle, or the |
| 2679 | // constant is zero (which we won't generate a relocation for). |
| 2680 | assert(!emitComp->opts.compReloc || memBase->IsIconHandle() || memBase->IsIntegralConst(0)); |
| 2681 | |
| 2682 | if (memBase->AsIntConCommon()->AddrNeedsReloc(emitComp)) |
| 2683 | { |
| 2684 | id->idSetIsDspReloc(); |
| 2685 | } |
| 2686 | |
| 2687 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 2688 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 2689 | id->idAddr()->iiaAddrMode.amScale = emitter::OPSZ1; // for completeness |
| 2690 | |
| 2691 | id->idInsFmt(emitMapFmtForIns(fmt, ins)); |
| 2692 | |
| 2693 | // Absolute address must have already been set in the instrDesc constructor. |
| 2694 | assert(emitGetInsAmdAny(id) == memBase->AsIntConCommon()->IconValue()); |
| 2695 | } |
| 2696 | else |
| 2697 | { |
| 2698 | if (memBase != nullptr) |
| 2699 | { |
| 2700 | id->idAddr()->iiaAddrMode.amBaseReg = memBase->gtRegNum; |
| 2701 | } |
| 2702 | else |
| 2703 | { |
| 2704 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 2705 | } |
| 2706 | |
| 2707 | if (indir->HasIndex()) |
| 2708 | { |
| 2709 | id->idAddr()->iiaAddrMode.amIndxReg = indir->Index()->gtRegNum; |
| 2710 | } |
| 2711 | else |
| 2712 | { |
| 2713 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 2714 | } |
| 2715 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(indir->Scale()); |
| 2716 | |
| 2717 | id->idInsFmt(emitMapFmtForIns(fmt, ins)); |
| 2718 | |
| 2719 | // disp must have already been set in the instrDesc constructor. |
| 2720 | assert(emitGetInsAmdAny(id) == indir->Offset()); // make sure "disp" is stored properly |
| 2721 | } |
| 2722 | } |
| 2723 | |
| 2724 | // Takes care of storing all incoming register parameters |
| 2725 | // into its corresponding shadow space (defined by the x64 ABI) |
| 2726 | void emitter::spillIntArgRegsToShadowSlots() |
| 2727 | { |
| 2728 | unsigned argNum; |
| 2729 | instrDesc* id; |
| 2730 | UNATIVE_OFFSET sz; |
| 2731 | |
| 2732 | assert(emitComp->compGeneratingProlog); |
| 2733 | |
| 2734 | for (argNum = 0; argNum < MAX_REG_ARG; ++argNum) |
| 2735 | { |
| 2736 | regNumber argReg = intArgRegs[argNum]; |
| 2737 | |
| 2738 | // The offsets for the shadow space start at RSP + 8 |
| 2739 | // (right before the caller return address) |
| 2740 | int offset = (argNum + 1) * EA_PTRSIZE; |
| 2741 | |
| 2742 | id = emitNewInstrAmd(EA_PTRSIZE, offset); |
| 2743 | id->idIns(INS_mov); |
| 2744 | id->idInsFmt(IF_AWR_RRD); |
| 2745 | id->idAddr()->iiaAddrMode.amBaseReg = REG_SPBASE; |
| 2746 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 2747 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(1); |
| 2748 | |
| 2749 | // The offset has already been set in the intrDsc ctor, |
| 2750 | // make sure we got it right. |
| 2751 | assert(emitGetInsAmdAny(id) == ssize_t(offset)); |
| 2752 | |
| 2753 | id->idReg1(argReg); |
| 2754 | sz = emitInsSizeAM(id, insCodeMR(INS_mov)); |
| 2755 | id->idCodeSize(sz); |
| 2756 | emitCurIGsize += sz; |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | //------------------------------------------------------------------------ |
| 2761 | // emitInsLoadInd: Emits a "mov reg, [mem]" (or a variant such as "movzx" or "movss") |
| 2762 | // instruction for a GT_IND node. |
| 2763 | // |
| 2764 | // Arguments: |
| 2765 | // ins - the instruction to emit |
| 2766 | // attr - the instruction operand size |
| 2767 | // dstReg - the destination register |
| 2768 | // mem - the GT_IND node |
| 2769 | // |
| 2770 | void emitter::emitInsLoadInd(instruction ins, emitAttr attr, regNumber dstReg, GenTreeIndir* mem) |
| 2771 | { |
| 2772 | assert(mem->OperIs(GT_IND)); |
| 2773 | |
| 2774 | GenTree* addr = mem->Addr(); |
| 2775 | |
| 2776 | if (addr->OperGet() == GT_CLS_VAR_ADDR) |
| 2777 | { |
| 2778 | emitIns_R_C(ins, attr, dstReg, addr->gtClsVar.gtClsVarHnd, 0); |
| 2779 | return; |
| 2780 | } |
| 2781 | |
| 2782 | if (addr->OperGet() == GT_LCL_VAR_ADDR) |
| 2783 | { |
| 2784 | GenTreeLclVarCommon* varNode = addr->AsLclVarCommon(); |
| 2785 | emitIns_R_S(ins, attr, dstReg, varNode->GetLclNum(), 0); |
| 2786 | codeGen->genUpdateLife(varNode); |
| 2787 | return; |
| 2788 | } |
| 2789 | |
| 2790 | assert(addr->OperIsAddrMode() || (addr->IsCnsIntOrI() && addr->isContained()) || !addr->isContained()); |
| 2791 | ssize_t offset = mem->Offset(); |
| 2792 | instrDesc* id = emitNewInstrAmd(attr, offset); |
| 2793 | id->idIns(ins); |
| 2794 | id->idReg1(dstReg); |
| 2795 | emitHandleMemOp(mem, id, IF_RWR_ARD, ins); |
| 2796 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 2797 | id->idCodeSize(sz); |
| 2798 | dispIns(id); |
| 2799 | emitCurIGsize += sz; |
| 2800 | } |
| 2801 | |
| 2802 | //------------------------------------------------------------------------ |
| 2803 | // emitInsStoreInd: Emits a "mov [mem], reg/imm" (or a variant such as "movss") |
| 2804 | // instruction for a GT_STOREIND node. |
| 2805 | // |
| 2806 | // Arguments: |
| 2807 | // ins - the instruction to emit |
| 2808 | // attr - the instruction operand size |
| 2809 | // mem - the GT_STOREIND node |
| 2810 | // |
| 2811 | void emitter::emitInsStoreInd(instruction ins, emitAttr attr, GenTreeStoreInd* mem) |
| 2812 | { |
| 2813 | assert(mem->OperIs(GT_STOREIND)); |
| 2814 | |
| 2815 | GenTree* addr = mem->Addr(); |
| 2816 | GenTree* data = mem->Data(); |
| 2817 | |
| 2818 | if (addr->OperGet() == GT_CLS_VAR_ADDR) |
| 2819 | { |
| 2820 | if (data->isContainedIntOrIImmed()) |
| 2821 | { |
| 2822 | emitIns_C_I(ins, attr, addr->gtClsVar.gtClsVarHnd, 0, (int)data->AsIntConCommon()->IconValue()); |
| 2823 | } |
| 2824 | else |
| 2825 | { |
| 2826 | assert(!data->isContained()); |
| 2827 | emitIns_C_R(ins, attr, addr->gtClsVar.gtClsVarHnd, data->gtRegNum, 0); |
| 2828 | } |
| 2829 | return; |
| 2830 | } |
| 2831 | |
| 2832 | if (addr->OperGet() == GT_LCL_VAR_ADDR) |
| 2833 | { |
| 2834 | GenTreeLclVarCommon* varNode = addr->AsLclVarCommon(); |
| 2835 | if (data->isContainedIntOrIImmed()) |
| 2836 | { |
| 2837 | emitIns_S_I(ins, attr, varNode->GetLclNum(), 0, (int)data->AsIntConCommon()->IconValue()); |
| 2838 | } |
| 2839 | else |
| 2840 | { |
| 2841 | assert(!data->isContained()); |
| 2842 | emitIns_S_R(ins, attr, data->gtRegNum, varNode->GetLclNum(), 0); |
| 2843 | } |
| 2844 | codeGen->genUpdateLife(varNode); |
| 2845 | return; |
| 2846 | } |
| 2847 | |
| 2848 | ssize_t offset = mem->Offset(); |
| 2849 | UNATIVE_OFFSET sz; |
| 2850 | instrDesc* id; |
| 2851 | |
| 2852 | if (data->isContainedIntOrIImmed()) |
| 2853 | { |
| 2854 | int icon = (int)data->AsIntConCommon()->IconValue(); |
| 2855 | id = emitNewInstrAmdCns(attr, offset, icon); |
| 2856 | id->idIns(ins); |
| 2857 | emitHandleMemOp(mem, id, IF_AWR_CNS, ins); |
| 2858 | sz = emitInsSizeAM(id, insCodeMI(ins), icon); |
| 2859 | id->idCodeSize(sz); |
| 2860 | } |
| 2861 | else |
| 2862 | { |
| 2863 | assert(!data->isContained()); |
| 2864 | id = emitNewInstrAmd(attr, offset); |
| 2865 | id->idIns(ins); |
| 2866 | emitHandleMemOp(mem, id, IF_AWR_RRD, ins); |
| 2867 | id->idReg1(data->gtRegNum); |
| 2868 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 2869 | id->idCodeSize(sz); |
| 2870 | } |
| 2871 | |
| 2872 | dispIns(id); |
| 2873 | emitCurIGsize += sz; |
| 2874 | } |
| 2875 | |
| 2876 | //------------------------------------------------------------------------ |
| 2877 | // emitInsStoreLcl: Emits a "mov [mem], reg/imm" (or a variant such as "movss") |
| 2878 | // instruction for a GT_STORE_LCL_VAR node. |
| 2879 | // |
| 2880 | // Arguments: |
| 2881 | // ins - the instruction to emit |
| 2882 | // attr - the instruction operand size |
| 2883 | // varNode - the GT_STORE_LCL_VAR node |
| 2884 | // |
| 2885 | void emitter::emitInsStoreLcl(instruction ins, emitAttr attr, GenTreeLclVarCommon* varNode) |
| 2886 | { |
| 2887 | assert(varNode->OperIs(GT_STORE_LCL_VAR)); |
| 2888 | assert(varNode->gtRegNum == REG_NA); // stack store |
| 2889 | |
| 2890 | GenTree* data = varNode->gtGetOp1(); |
| 2891 | codeGen->inst_set_SV_var(varNode); |
| 2892 | |
| 2893 | if (data->isContainedIntOrIImmed()) |
| 2894 | { |
| 2895 | emitIns_S_I(ins, attr, varNode->GetLclNum(), 0, (int)data->AsIntConCommon()->IconValue()); |
| 2896 | } |
| 2897 | else |
| 2898 | { |
| 2899 | assert(!data->isContained()); |
| 2900 | emitIns_S_R(ins, attr, data->gtRegNum, varNode->GetLclNum(), 0); |
| 2901 | } |
| 2902 | codeGen->genUpdateLife(varNode); |
| 2903 | } |
| 2904 | |
| 2905 | //------------------------------------------------------------------------ |
| 2906 | // emitInsBinary: Emits an instruction for a node which takes two operands |
| 2907 | // |
| 2908 | // Arguments: |
| 2909 | // ins - the instruction to emit |
| 2910 | // attr - the instruction operand size |
| 2911 | // dst - the destination and first source operand |
| 2912 | // src - the second source operand |
| 2913 | // |
| 2914 | // Assumptions: |
| 2915 | // i) caller of this routine needs to call genConsumeReg() |
| 2916 | // ii) caller of this routine needs to call genProduceReg() |
| 2917 | regNumber emitter::emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src) |
| 2918 | { |
| 2919 | // We can only have one memory operand and only src can be a constant operand |
| 2920 | // However, the handling for a given operand type (mem, cns, or other) is fairly |
| 2921 | // consistent regardless of whether they are src or dst. As such, we will find |
| 2922 | // the type of each operand and only check them against src/dst where relevant. |
| 2923 | |
| 2924 | GenTree* memOp = nullptr; |
| 2925 | GenTree* cnsOp = nullptr; |
| 2926 | GenTree* otherOp = nullptr; |
| 2927 | |
| 2928 | if (dst->isContained() || (dst->isLclField() && (dst->gtRegNum == REG_NA)) || dst->isUsedFromSpillTemp()) |
| 2929 | { |
| 2930 | // dst can only be a modrm |
| 2931 | // dst on 3opImul isn't really the dst |
| 2932 | assert(dst->isUsedFromMemory() || (dst->gtRegNum == REG_NA) || instrIs3opImul(ins)); |
| 2933 | assert(!src->isUsedFromMemory()); |
| 2934 | |
| 2935 | memOp = dst; |
| 2936 | |
| 2937 | if (src->isContained()) |
| 2938 | { |
| 2939 | assert(src->IsCnsIntOrI()); |
| 2940 | cnsOp = src; |
| 2941 | } |
| 2942 | else |
| 2943 | { |
| 2944 | otherOp = src; |
| 2945 | } |
| 2946 | } |
| 2947 | else if (src->isContained() || src->isUsedFromSpillTemp()) |
| 2948 | { |
| 2949 | assert(!dst->isUsedFromMemory()); |
| 2950 | otherOp = dst; |
| 2951 | |
| 2952 | if ((src->IsCnsIntOrI() || src->IsCnsFltOrDbl()) && !src->isUsedFromSpillTemp()) |
| 2953 | { |
| 2954 | assert(!src->isUsedFromMemory() || src->IsCnsFltOrDbl()); |
| 2955 | cnsOp = src; |
| 2956 | } |
| 2957 | else |
| 2958 | { |
| 2959 | assert(src->isUsedFromMemory()); |
| 2960 | memOp = src; |
| 2961 | } |
| 2962 | } |
| 2963 | |
| 2964 | // At this point, we either have a memory operand or we don't. |
| 2965 | // |
| 2966 | // If we don't then the logic is very simple and we will either be emitting a |
| 2967 | // `reg, immed` instruction (if src is a cns) or a `reg, reg` instruction otherwise. |
| 2968 | // |
| 2969 | // If we do have a memory operand, the logic is a bit more complicated as we need |
| 2970 | // to do different things depending on the type of memory operand. These types include: |
| 2971 | // * Spill temp |
| 2972 | // * Indirect access |
| 2973 | // * Local variable |
| 2974 | // * Class variable |
| 2975 | // * Addressing mode [base + index * scale + offset] |
| 2976 | // * Local field |
| 2977 | // * Local variable |
| 2978 | // |
| 2979 | // Most of these types (except Indirect: Class variable and Indirect: Addressing mode) |
| 2980 | // give us a a local variable number and an offset and access memory on the stack |
| 2981 | // |
| 2982 | // Indirect: Class variable is used for access static class variables and gives us a handle |
| 2983 | // to the memory location we read from |
| 2984 | // |
| 2985 | // Indirect: Addressing mode is used for the remaining memory accesses and will give us |
| 2986 | // a base address, an index, a scale, and an offset. These are combined to let us easily |
| 2987 | // access the given memory location. |
| 2988 | // |
| 2989 | // In all of the memory access cases, we determine which form to emit (e.g. `reg, [mem]` |
| 2990 | // or `[mem], reg`) by comparing memOp to src to determine which `emitIns_*` method needs |
| 2991 | // to be called. The exception is for the `[mem], immed` case (for Indirect: Class variable) |
| 2992 | // where only src can be the immediate. |
| 2993 | |
| 2994 | if (memOp != nullptr) |
| 2995 | { |
| 2996 | TempDsc* tmpDsc = nullptr; |
| 2997 | unsigned varNum = BAD_VAR_NUM; |
| 2998 | unsigned offset = (unsigned)-1; |
| 2999 | |
| 3000 | if (memOp->isUsedFromSpillTemp()) |
| 3001 | { |
| 3002 | assert(memOp->IsRegOptional()); |
| 3003 | |
| 3004 | tmpDsc = codeGen->getSpillTempDsc(memOp); |
| 3005 | varNum = tmpDsc->tdTempNum(); |
| 3006 | offset = 0; |
| 3007 | |
| 3008 | codeGen->regSet.tmpRlsTemp(tmpDsc); |
| 3009 | } |
| 3010 | else if (memOp->isIndir()) |
| 3011 | { |
| 3012 | GenTreeIndir* memIndir = memOp->AsIndir(); |
| 3013 | GenTree* memBase = memIndir->gtOp1; |
| 3014 | |
| 3015 | switch (memBase->OperGet()) |
| 3016 | { |
| 3017 | case GT_LCL_VAR_ADDR: |
| 3018 | { |
| 3019 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 3020 | offset = 0; |
| 3021 | |
| 3022 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 3023 | assert(!memIndir->HasIndex()); |
| 3024 | assert(memIndir->Scale() == 1); |
| 3025 | assert(memIndir->Offset() == 0); |
| 3026 | |
| 3027 | break; |
| 3028 | } |
| 3029 | |
| 3030 | case GT_CLS_VAR_ADDR: |
| 3031 | { |
| 3032 | if (memOp == src) |
| 3033 | { |
| 3034 | assert(otherOp == dst); |
| 3035 | assert(cnsOp == nullptr); |
| 3036 | |
| 3037 | if (instrHasImplicitRegPairDest(ins)) |
| 3038 | { |
| 3039 | // src is a class static variable |
| 3040 | // dst is implicit - RDX:RAX |
| 3041 | emitIns_C(ins, attr, memBase->gtClsVar.gtClsVarHnd, 0); |
| 3042 | } |
| 3043 | else |
| 3044 | { |
| 3045 | // src is a class static variable |
| 3046 | // dst is a register |
| 3047 | emitIns_R_C(ins, attr, dst->gtRegNum, memBase->gtClsVar.gtClsVarHnd, 0); |
| 3048 | } |
| 3049 | } |
| 3050 | else |
| 3051 | { |
| 3052 | assert(memOp == dst); |
| 3053 | |
| 3054 | if (cnsOp != nullptr) |
| 3055 | { |
| 3056 | assert(cnsOp == src); |
| 3057 | assert(otherOp == nullptr); |
| 3058 | assert(src->IsCnsIntOrI()); |
| 3059 | |
| 3060 | // src is an contained immediate |
| 3061 | // dst is a class static variable |
| 3062 | emitIns_C_I(ins, attr, memBase->gtClsVar.gtClsVarHnd, 0, |
| 3063 | (int)src->gtIntConCommon.IconValue()); |
| 3064 | } |
| 3065 | else |
| 3066 | { |
| 3067 | assert(otherOp == src); |
| 3068 | |
| 3069 | // src is a register |
| 3070 | // dst is a class static variable |
| 3071 | emitIns_C_R(ins, attr, memBase->gtClsVar.gtClsVarHnd, src->gtRegNum, 0); |
| 3072 | } |
| 3073 | } |
| 3074 | |
| 3075 | return dst->gtRegNum; |
| 3076 | } |
| 3077 | |
| 3078 | default: // Addressing mode [base + index * scale + offset] |
| 3079 | { |
| 3080 | instrDesc* id = nullptr; |
| 3081 | |
| 3082 | if (cnsOp != nullptr) |
| 3083 | { |
| 3084 | assert(memOp == dst); |
| 3085 | assert(cnsOp == src); |
| 3086 | assert(otherOp == nullptr); |
| 3087 | assert(src->IsCnsIntOrI()); |
| 3088 | |
| 3089 | id = emitNewInstrAmdCns(attr, memIndir->Offset(), (int)src->gtIntConCommon.IconValue()); |
| 3090 | } |
| 3091 | else |
| 3092 | { |
| 3093 | ssize_t offset = memIndir->Offset(); |
| 3094 | id = emitNewInstrAmd(attr, offset); |
| 3095 | id->idIns(ins); |
| 3096 | |
| 3097 | GenTree* regTree = (memOp == src) ? dst : src; |
| 3098 | |
| 3099 | // there must be one non-contained op |
| 3100 | assert(!regTree->isContained()); |
| 3101 | id->idReg1(regTree->gtRegNum); |
| 3102 | } |
| 3103 | assert(id != nullptr); |
| 3104 | |
| 3105 | id->idIns(ins); // Set the instruction. |
| 3106 | |
| 3107 | // Determine the instruction format |
| 3108 | insFormat fmt = IF_NONE; |
| 3109 | |
| 3110 | if (memOp == src) |
| 3111 | { |
| 3112 | assert(cnsOp == nullptr); |
| 3113 | assert(otherOp == dst); |
| 3114 | |
| 3115 | if (instrHasImplicitRegPairDest(ins)) |
| 3116 | { |
| 3117 | fmt = emitInsModeFormat(ins, IF_ARD); |
| 3118 | } |
| 3119 | else |
| 3120 | { |
| 3121 | fmt = emitInsModeFormat(ins, IF_RRD_ARD); |
| 3122 | } |
| 3123 | } |
| 3124 | else |
| 3125 | { |
| 3126 | assert(memOp == dst); |
| 3127 | |
| 3128 | if (cnsOp != nullptr) |
| 3129 | { |
| 3130 | assert(cnsOp == src); |
| 3131 | assert(otherOp == nullptr); |
| 3132 | assert(src->IsCnsIntOrI()); |
| 3133 | |
| 3134 | fmt = emitInsModeFormat(ins, IF_ARD_CNS); |
| 3135 | } |
| 3136 | else |
| 3137 | { |
| 3138 | assert(otherOp == src); |
| 3139 | fmt = emitInsModeFormat(ins, IF_ARD_RRD); |
| 3140 | } |
| 3141 | } |
| 3142 | assert(fmt != IF_NONE); |
| 3143 | emitHandleMemOp(memIndir, id, fmt, ins); |
| 3144 | |
| 3145 | // Determine the instruction size |
| 3146 | UNATIVE_OFFSET sz = 0; |
| 3147 | |
| 3148 | if (memOp == src) |
| 3149 | { |
| 3150 | assert(otherOp == dst); |
| 3151 | assert(cnsOp == nullptr); |
| 3152 | |
| 3153 | if (instrHasImplicitRegPairDest(ins)) |
| 3154 | { |
| 3155 | sz = emitInsSizeAM(id, insCode(ins)); |
| 3156 | } |
| 3157 | else |
| 3158 | { |
| 3159 | sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 3160 | } |
| 3161 | } |
| 3162 | else |
| 3163 | { |
| 3164 | assert(memOp == dst); |
| 3165 | |
| 3166 | if (cnsOp != nullptr) |
| 3167 | { |
| 3168 | assert(memOp == dst); |
| 3169 | assert(cnsOp == src); |
| 3170 | assert(otherOp == nullptr); |
| 3171 | |
| 3172 | sz = emitInsSizeAM(id, insCodeMI(ins), (int)src->gtIntConCommon.IconValue()); |
| 3173 | } |
| 3174 | else |
| 3175 | { |
| 3176 | assert(otherOp == src); |
| 3177 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 3178 | } |
| 3179 | } |
| 3180 | assert(sz != 0); |
| 3181 | |
| 3182 | id->idCodeSize(sz); |
| 3183 | |
| 3184 | dispIns(id); |
| 3185 | emitCurIGsize += sz; |
| 3186 | |
| 3187 | return (memOp == src) ? dst->gtRegNum : REG_NA; |
| 3188 | } |
| 3189 | } |
| 3190 | } |
| 3191 | else |
| 3192 | { |
| 3193 | switch (memOp->OperGet()) |
| 3194 | { |
| 3195 | case GT_LCL_FLD: |
| 3196 | case GT_STORE_LCL_FLD: |
| 3197 | { |
| 3198 | GenTreeLclFld* lclField = memOp->AsLclFld(); |
| 3199 | varNum = lclField->GetLclNum(); |
| 3200 | offset = lclField->gtLclFld.gtLclOffs; |
| 3201 | break; |
| 3202 | } |
| 3203 | |
| 3204 | case GT_LCL_VAR: |
| 3205 | { |
| 3206 | assert(memOp->IsRegOptional() || !emitComp->lvaTable[memOp->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 3207 | varNum = memOp->AsLclVar()->GetLclNum(); |
| 3208 | offset = 0; |
| 3209 | break; |
| 3210 | } |
| 3211 | |
| 3212 | default: |
| 3213 | unreached(); |
| 3214 | break; |
| 3215 | } |
| 3216 | } |
| 3217 | |
| 3218 | // Ensure we got a good varNum and offset. |
| 3219 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 3220 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 3221 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 3222 | assert(offset != (unsigned)-1); |
| 3223 | |
| 3224 | if (memOp == src) |
| 3225 | { |
| 3226 | assert(otherOp == dst); |
| 3227 | assert(cnsOp == nullptr); |
| 3228 | |
| 3229 | if (instrHasImplicitRegPairDest(ins)) |
| 3230 | { |
| 3231 | // src is a stack based local variable |
| 3232 | // dst is implicit - RDX:RAX |
| 3233 | emitIns_S(ins, attr, varNum, offset); |
| 3234 | } |
| 3235 | else |
| 3236 | { |
| 3237 | // src is a stack based local variable |
| 3238 | // dst is a register |
| 3239 | emitIns_R_S(ins, attr, dst->gtRegNum, varNum, offset); |
| 3240 | } |
| 3241 | } |
| 3242 | else |
| 3243 | { |
| 3244 | assert(memOp == dst); |
| 3245 | assert((dst->gtRegNum == REG_NA) || dst->IsRegOptional()); |
| 3246 | |
| 3247 | if (cnsOp != nullptr) |
| 3248 | { |
| 3249 | assert(cnsOp == src); |
| 3250 | assert(otherOp == nullptr); |
| 3251 | assert(src->IsCnsIntOrI()); |
| 3252 | |
| 3253 | // src is an contained immediate |
| 3254 | // dst is a stack based local variable |
| 3255 | emitIns_S_I(ins, attr, varNum, offset, (int)src->gtIntConCommon.IconValue()); |
| 3256 | } |
| 3257 | else |
| 3258 | { |
| 3259 | assert(otherOp == src); |
| 3260 | assert(!src->isContained()); |
| 3261 | |
| 3262 | // src is a register |
| 3263 | // dst is a stack based local variable |
| 3264 | emitIns_S_R(ins, attr, src->gtRegNum, varNum, offset); |
| 3265 | } |
| 3266 | } |
| 3267 | } |
| 3268 | else if (cnsOp != nullptr) // reg, immed |
| 3269 | { |
| 3270 | assert(cnsOp == src); |
| 3271 | assert(otherOp == dst); |
| 3272 | |
| 3273 | if (src->IsCnsIntOrI()) |
| 3274 | { |
| 3275 | assert(!dst->isContained()); |
| 3276 | GenTreeIntConCommon* intCns = src->AsIntConCommon(); |
| 3277 | emitIns_R_I(ins, attr, dst->gtRegNum, intCns->IconValue()); |
| 3278 | } |
| 3279 | else |
| 3280 | { |
| 3281 | assert(src->IsCnsFltOrDbl()); |
| 3282 | GenTreeDblCon* dblCns = src->AsDblCon(); |
| 3283 | |
| 3284 | CORINFO_FIELD_HANDLE hnd = emitFltOrDblConst(dblCns->gtDconVal, emitTypeSize(dblCns)); |
| 3285 | emitIns_R_C(ins, attr, dst->gtRegNum, hnd, 0); |
| 3286 | } |
| 3287 | } |
| 3288 | else // reg, reg |
| 3289 | { |
| 3290 | assert(otherOp == nullptr); |
| 3291 | assert(!src->isContained() && !dst->isContained()); |
| 3292 | |
| 3293 | if (instrHasImplicitRegPairDest(ins)) |
| 3294 | { |
| 3295 | emitIns_R(ins, attr, src->gtRegNum); |
| 3296 | } |
| 3297 | else |
| 3298 | { |
| 3299 | emitIns_R_R(ins, attr, dst->gtRegNum, src->gtRegNum); |
| 3300 | } |
| 3301 | } |
| 3302 | |
| 3303 | return dst->gtRegNum; |
| 3304 | } |
| 3305 | |
| 3306 | //------------------------------------------------------------------------ |
| 3307 | // emitInsRMW: Emit logic for Read-Modify-Write binary instructions. |
| 3308 | // |
| 3309 | // Responsible for emitting a single instruction that will perform an operation of the form: |
| 3310 | // *addr = *addr <BinOp> src |
| 3311 | // For example: |
| 3312 | // ADD [RAX], RCX |
| 3313 | // |
| 3314 | // Arguments: |
| 3315 | // ins - instruction to generate |
| 3316 | // attr - emitter attribute for instruction |
| 3317 | // storeInd - indir for RMW addressing mode |
| 3318 | // src - source operand of instruction |
| 3319 | // |
| 3320 | // Assumptions: |
| 3321 | // Lowering has taken care of recognizing the StoreInd pattern of: |
| 3322 | // StoreInd( AddressTree, BinOp( Ind ( AddressTree ), Operand ) ) |
| 3323 | // The address to store is already sitting in a register. |
| 3324 | // |
| 3325 | // Notes: |
| 3326 | // This is a no-produce operation, meaning that no register output will |
| 3327 | // be produced for future use in the code stream. |
| 3328 | // |
| 3329 | void emitter::emitInsRMW(instruction ins, emitAttr attr, GenTreeStoreInd* storeInd, GenTree* src) |
| 3330 | { |
| 3331 | GenTree* addr = storeInd->Addr(); |
| 3332 | addr = addr->gtSkipReloadOrCopy(); |
| 3333 | assert(addr->OperGet() == GT_LCL_VAR || addr->OperGet() == GT_LCL_VAR_ADDR || addr->OperGet() == GT_LEA || |
| 3334 | addr->OperGet() == GT_CLS_VAR_ADDR || addr->OperGet() == GT_CNS_INT); |
| 3335 | |
| 3336 | instrDesc* id = nullptr; |
| 3337 | UNATIVE_OFFSET sz; |
| 3338 | |
| 3339 | ssize_t offset = 0; |
| 3340 | if (addr->OperGet() != GT_CLS_VAR_ADDR) |
| 3341 | { |
| 3342 | offset = storeInd->Offset(); |
| 3343 | } |
| 3344 | |
| 3345 | if (src->isContainedIntOrIImmed()) |
| 3346 | { |
| 3347 | GenTreeIntConCommon* intConst = src->AsIntConCommon(); |
| 3348 | int iconVal = (int)intConst->IconValue(); |
| 3349 | switch (ins) |
| 3350 | { |
| 3351 | case INS_rcl_N: |
| 3352 | case INS_rcr_N: |
| 3353 | case INS_rol_N: |
| 3354 | case INS_ror_N: |
| 3355 | case INS_shl_N: |
| 3356 | case INS_shr_N: |
| 3357 | case INS_sar_N: |
| 3358 | iconVal &= 0x7F; |
| 3359 | break; |
| 3360 | default: |
| 3361 | break; |
| 3362 | } |
| 3363 | |
| 3364 | id = emitNewInstrAmdCns(attr, offset, iconVal); |
| 3365 | emitHandleMemOp(storeInd, id, IF_ARW_CNS, ins); |
| 3366 | id->idIns(ins); |
| 3367 | sz = emitInsSizeAM(id, insCodeMI(ins), iconVal); |
| 3368 | } |
| 3369 | else |
| 3370 | { |
| 3371 | assert(!src->isContained()); // there must be one non-contained src |
| 3372 | |
| 3373 | // ind, reg |
| 3374 | id = emitNewInstrAmd(attr, offset); |
| 3375 | emitHandleMemOp(storeInd, id, IF_ARW_RRD, ins); |
| 3376 | id->idReg1(src->gtRegNum); |
| 3377 | id->idIns(ins); |
| 3378 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 3379 | } |
| 3380 | |
| 3381 | id->idCodeSize(sz); |
| 3382 | |
| 3383 | dispIns(id); |
| 3384 | emitCurIGsize += sz; |
| 3385 | } |
| 3386 | |
| 3387 | //------------------------------------------------------------------------ |
| 3388 | // emitInsRMW: Emit logic for Read-Modify-Write unary instructions. |
| 3389 | // |
| 3390 | // Responsible for emitting a single instruction that will perform an operation of the form: |
| 3391 | // *addr = UnaryOp *addr |
| 3392 | // For example: |
| 3393 | // NOT [RAX] |
| 3394 | // |
| 3395 | // Arguments: |
| 3396 | // ins - instruction to generate |
| 3397 | // attr - emitter attribute for instruction |
| 3398 | // storeInd - indir for RMW addressing mode |
| 3399 | // |
| 3400 | // Assumptions: |
| 3401 | // Lowering has taken care of recognizing the StoreInd pattern of: |
| 3402 | // StoreInd( AddressTree, UnaryOp( Ind ( AddressTree ) ) ) |
| 3403 | // The address to store is already sitting in a register. |
| 3404 | // |
| 3405 | // Notes: |
| 3406 | // This is a no-produce operation, meaning that no register output will |
| 3407 | // be produced for future use in the code stream. |
| 3408 | // |
| 3409 | void emitter::emitInsRMW(instruction ins, emitAttr attr, GenTreeStoreInd* storeInd) |
| 3410 | { |
| 3411 | GenTree* addr = storeInd->Addr(); |
| 3412 | addr = addr->gtSkipReloadOrCopy(); |
| 3413 | assert(addr->OperGet() == GT_LCL_VAR || addr->OperGet() == GT_LCL_VAR_ADDR || addr->OperGet() == GT_CLS_VAR_ADDR || |
| 3414 | addr->OperGet() == GT_LEA || addr->OperGet() == GT_CNS_INT); |
| 3415 | |
| 3416 | ssize_t offset = 0; |
| 3417 | if (addr->OperGet() != GT_CLS_VAR_ADDR) |
| 3418 | { |
| 3419 | offset = storeInd->Offset(); |
| 3420 | } |
| 3421 | |
| 3422 | instrDesc* id = emitNewInstrAmd(attr, offset); |
| 3423 | emitHandleMemOp(storeInd, id, IF_ARW, ins); |
| 3424 | id->idIns(ins); |
| 3425 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 3426 | id->idCodeSize(sz); |
| 3427 | |
| 3428 | dispIns(id); |
| 3429 | emitCurIGsize += sz; |
| 3430 | } |
| 3431 | |
| 3432 | /***************************************************************************** |
| 3433 | * |
| 3434 | * Add an instruction referencing a single register. |
| 3435 | */ |
| 3436 | |
| 3437 | void emitter::emitIns_R(instruction ins, emitAttr attr, regNumber reg) |
| 3438 | { |
| 3439 | emitAttr size = EA_SIZE(attr); |
| 3440 | |
| 3441 | assert(size <= EA_PTRSIZE); |
| 3442 | noway_assert(emitVerifyEncodable(ins, size, reg)); |
| 3443 | |
| 3444 | UNATIVE_OFFSET sz; |
| 3445 | instrDesc* id = emitNewInstrSmall(attr); |
| 3446 | |
| 3447 | switch (ins) |
| 3448 | { |
| 3449 | case INS_inc: |
| 3450 | case INS_dec: |
| 3451 | #ifdef _TARGET_AMD64_ |
| 3452 | |
| 3453 | sz = 2; // x64 has no 1-byte opcode (it is the same encoding as the REX prefix) |
| 3454 | |
| 3455 | #else // !_TARGET_AMD64_ |
| 3456 | |
| 3457 | if (size == EA_1BYTE) |
| 3458 | sz = 2; // Use the long form as the small one has no 'w' bit |
| 3459 | else |
| 3460 | sz = 1; // Use short form |
| 3461 | |
| 3462 | #endif // !_TARGET_AMD64_ |
| 3463 | |
| 3464 | break; |
| 3465 | |
| 3466 | case INS_pop: |
| 3467 | case INS_pop_hide: |
| 3468 | case INS_push: |
| 3469 | case INS_push_hide: |
| 3470 | |
| 3471 | /* We don't currently push/pop small values */ |
| 3472 | |
| 3473 | assert(size == EA_PTRSIZE); |
| 3474 | |
| 3475 | sz = 1; |
| 3476 | break; |
| 3477 | |
| 3478 | default: |
| 3479 | |
| 3480 | /* All the sixteen INS_setCCs are contiguous. */ |
| 3481 | |
| 3482 | if (INS_seto <= ins && ins <= INS_setg) |
| 3483 | { |
| 3484 | // Rough check that we used the endpoints for the range check |
| 3485 | |
| 3486 | assert(INS_seto + 0xF == INS_setg); |
| 3487 | |
| 3488 | // The caller must specify EA_1BYTE for 'attr' |
| 3489 | |
| 3490 | assert(attr == EA_1BYTE); |
| 3491 | |
| 3492 | /* We expect this to always be a 'big' opcode */ |
| 3493 | |
| 3494 | assert(insEncodeMRreg(ins, reg, attr, insCodeMR(ins)) & 0x00FF0000); |
| 3495 | |
| 3496 | size = attr; |
| 3497 | |
| 3498 | sz = 3; |
| 3499 | break; |
| 3500 | } |
| 3501 | else |
| 3502 | { |
| 3503 | sz = 2; |
| 3504 | break; |
| 3505 | } |
| 3506 | } |
| 3507 | insFormat fmt = emitInsModeFormat(ins, IF_RRD); |
| 3508 | |
| 3509 | id->idIns(ins); |
| 3510 | id->idInsFmt(fmt); |
| 3511 | id->idReg1(reg); |
| 3512 | |
| 3513 | // 16-bit operand instructions will need a prefix. |
| 3514 | // This refers to 66h size prefix override. |
| 3515 | if (size == EA_2BYTE) |
| 3516 | { |
| 3517 | sz += 1; |
| 3518 | } |
| 3519 | |
| 3520 | // Vex bytes |
| 3521 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insEncodeMRreg(ins, reg, attr, insCodeMR(ins))); |
| 3522 | |
| 3523 | // REX byte |
| 3524 | if (IsExtendedReg(reg, attr) || TakesRexWPrefix(ins, attr)) |
| 3525 | { |
| 3526 | sz += emitGetRexPrefixSize(ins); |
| 3527 | } |
| 3528 | |
| 3529 | id->idCodeSize(sz); |
| 3530 | |
| 3531 | dispIns(id); |
| 3532 | emitCurIGsize += sz; |
| 3533 | |
| 3534 | emitAdjustStackDepthPushPop(ins); |
| 3535 | } |
| 3536 | |
| 3537 | /***************************************************************************** |
| 3538 | * |
| 3539 | * Add an instruction referencing a register and a constant. |
| 3540 | */ |
| 3541 | |
| 3542 | void emitter::emitIns_R_I(instruction ins, emitAttr attr, regNumber reg, ssize_t val) |
| 3543 | { |
| 3544 | emitAttr size = EA_SIZE(attr); |
| 3545 | |
| 3546 | // Allow emitting SSE2/AVX SIMD instructions of R_I form that can specify EA_16BYTE or EA_32BYTE |
| 3547 | assert(size <= EA_PTRSIZE || IsSSEOrAVXInstruction(ins)); |
| 3548 | |
| 3549 | noway_assert(emitVerifyEncodable(ins, size, reg)); |
| 3550 | |
| 3551 | #ifdef _TARGET_AMD64_ |
| 3552 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 3553 | // all other opcodes take a sign-extended 4-byte immediate |
| 3554 | noway_assert(size < EA_8BYTE || ins == INS_mov || ((int)val == val && !EA_IS_CNS_RELOC(attr))); |
| 3555 | #endif |
| 3556 | |
| 3557 | UNATIVE_OFFSET sz; |
| 3558 | instrDesc* id; |
| 3559 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_CNS); |
| 3560 | bool valInByte = ((signed char)val == val) && (ins != INS_mov) && (ins != INS_test); |
| 3561 | |
| 3562 | // BT reg,imm might be useful but it requires special handling of the immediate value |
| 3563 | // (it is always encoded in a byte). Let's not complicate things until this is needed. |
| 3564 | assert(ins != INS_bt); |
| 3565 | |
| 3566 | // Figure out the size of the instruction |
| 3567 | switch (ins) |
| 3568 | { |
| 3569 | case INS_mov: |
| 3570 | #ifdef _TARGET_AMD64_ |
| 3571 | // mov reg, imm64 is equivalent to mov reg, imm32 if the high order bits are all 0 |
| 3572 | // and this isn't a reloc constant. |
| 3573 | if (((size > EA_4BYTE) && (0 == (val & 0xFFFFFFFF00000000LL))) && !EA_IS_CNS_RELOC(attr)) |
| 3574 | { |
| 3575 | attr = size = EA_4BYTE; |
| 3576 | } |
| 3577 | |
| 3578 | if (size > EA_4BYTE) |
| 3579 | { |
| 3580 | sz = 9; // Really it is 10, but we'll add one more later |
| 3581 | break; |
| 3582 | } |
| 3583 | #endif // _TARGET_AMD64_ |
| 3584 | sz = 5; |
| 3585 | break; |
| 3586 | |
| 3587 | case INS_rcl_N: |
| 3588 | case INS_rcr_N: |
| 3589 | case INS_rol_N: |
| 3590 | case INS_ror_N: |
| 3591 | case INS_shl_N: |
| 3592 | case INS_shr_N: |
| 3593 | case INS_sar_N: |
| 3594 | assert(val != 1); |
| 3595 | fmt = IF_RRW_SHF; |
| 3596 | sz = 3; |
| 3597 | val &= 0x7F; |
| 3598 | valInByte = true; // shift amount always placed in a byte |
| 3599 | break; |
| 3600 | |
| 3601 | default: |
| 3602 | |
| 3603 | if (EA_IS_CNS_RELOC(attr)) |
| 3604 | { |
| 3605 | valInByte = false; // relocs can't be placed in a byte |
| 3606 | } |
| 3607 | |
| 3608 | if (valInByte) |
| 3609 | { |
| 3610 | if (IsSSEOrAVXInstruction(ins)) |
| 3611 | { |
| 3612 | sz = 5; |
| 3613 | } |
| 3614 | else if (size == EA_1BYTE && reg == REG_EAX && !instrIs3opImul(ins)) |
| 3615 | { |
| 3616 | sz = 2; |
| 3617 | } |
| 3618 | else |
| 3619 | { |
| 3620 | sz = 3; |
| 3621 | } |
| 3622 | } |
| 3623 | else |
| 3624 | { |
| 3625 | if (reg == REG_EAX && !instrIs3opImul(ins)) |
| 3626 | { |
| 3627 | sz = 1; |
| 3628 | } |
| 3629 | else |
| 3630 | { |
| 3631 | sz = 2; |
| 3632 | } |
| 3633 | |
| 3634 | #ifdef _TARGET_AMD64_ |
| 3635 | if (size > EA_4BYTE) |
| 3636 | { |
| 3637 | // We special-case anything that takes a full 8-byte constant. |
| 3638 | sz += 4; |
| 3639 | } |
| 3640 | else |
| 3641 | #endif // _TARGET_AMD64_ |
| 3642 | { |
| 3643 | sz += EA_SIZE_IN_BYTES(attr); |
| 3644 | } |
| 3645 | } |
| 3646 | break; |
| 3647 | } |
| 3648 | |
| 3649 | // Vex prefix size |
| 3650 | sz += emitGetVexPrefixSize(ins, attr); |
| 3651 | |
| 3652 | // Do we need a REX prefix for AMD64? We need one if we are using any extended register (REX.R), or if we have a |
| 3653 | // 64-bit sized operand (REX.W). Note that IMUL in our encoding is special, with a "built-in", implicit, target |
| 3654 | // register. So we also need to check if that built-in register is an extended register. |
| 3655 | if (IsExtendedReg(reg, attr) || TakesRexWPrefix(ins, size) || instrIsExtendedReg3opImul(ins)) |
| 3656 | { |
| 3657 | sz += emitGetRexPrefixSize(ins); |
| 3658 | } |
| 3659 | |
| 3660 | id = emitNewInstrSC(attr, val); |
| 3661 | id->idIns(ins); |
| 3662 | id->idInsFmt(fmt); |
| 3663 | id->idReg1(reg); |
| 3664 | |
| 3665 | // 16-bit operand instructions will need a prefix |
| 3666 | if (size == EA_2BYTE) |
| 3667 | { |
| 3668 | sz += 1; |
| 3669 | } |
| 3670 | |
| 3671 | id->idCodeSize(sz); |
| 3672 | |
| 3673 | dispIns(id); |
| 3674 | emitCurIGsize += sz; |
| 3675 | |
| 3676 | if (reg == REG_ESP) |
| 3677 | { |
| 3678 | emitAdjustStackDepth(ins, val); |
| 3679 | } |
| 3680 | } |
| 3681 | |
| 3682 | /***************************************************************************** |
| 3683 | * |
| 3684 | * Add an instruction referencing an integer constant. |
| 3685 | */ |
| 3686 | |
| 3687 | void emitter::emitIns_I(instruction ins, emitAttr attr, int val) |
| 3688 | { |
| 3689 | UNATIVE_OFFSET sz; |
| 3690 | instrDesc* id; |
| 3691 | bool valInByte = ((signed char)val == val); |
| 3692 | |
| 3693 | #ifdef _TARGET_AMD64_ |
| 3694 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 3695 | // all other opcodes take a sign-extended 4-byte immediate |
| 3696 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 3697 | #endif |
| 3698 | |
| 3699 | if (EA_IS_CNS_RELOC(attr)) |
| 3700 | { |
| 3701 | valInByte = false; // relocs can't be placed in a byte |
| 3702 | } |
| 3703 | |
| 3704 | switch (ins) |
| 3705 | { |
| 3706 | case INS_loop: |
| 3707 | case INS_jge: |
| 3708 | sz = 2; |
| 3709 | break; |
| 3710 | |
| 3711 | case INS_ret: |
| 3712 | sz = 3; |
| 3713 | break; |
| 3714 | |
| 3715 | case INS_push_hide: |
| 3716 | case INS_push: |
| 3717 | sz = valInByte ? 2 : 5; |
| 3718 | break; |
| 3719 | |
| 3720 | default: |
| 3721 | NO_WAY("unexpected instruction" ); |
| 3722 | } |
| 3723 | |
| 3724 | id = emitNewInstrSC(attr, val); |
| 3725 | id->idIns(ins); |
| 3726 | id->idInsFmt(IF_CNS); |
| 3727 | id->idCodeSize(sz); |
| 3728 | |
| 3729 | dispIns(id); |
| 3730 | emitCurIGsize += sz; |
| 3731 | |
| 3732 | emitAdjustStackDepthPushPop(ins); |
| 3733 | } |
| 3734 | |
| 3735 | /***************************************************************************** |
| 3736 | * |
| 3737 | * Add a "jump through a table" instruction. |
| 3738 | */ |
| 3739 | |
| 3740 | void emitter::emitIns_IJ(emitAttr attr, regNumber reg, unsigned base) |
| 3741 | { |
| 3742 | assert(EA_SIZE(attr) == EA_4BYTE); |
| 3743 | |
| 3744 | UNATIVE_OFFSET sz = 3 + 4; |
| 3745 | const instruction ins = INS_i_jmp; |
| 3746 | |
| 3747 | if (IsExtendedReg(reg, attr)) |
| 3748 | { |
| 3749 | sz += emitGetRexPrefixSize(ins); |
| 3750 | } |
| 3751 | |
| 3752 | instrDesc* id = emitNewInstrAmd(attr, base); |
| 3753 | |
| 3754 | id->idIns(ins); |
| 3755 | id->idInsFmt(IF_ARD); |
| 3756 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 3757 | id->idAddr()->iiaAddrMode.amIndxReg = reg; |
| 3758 | id->idAddr()->iiaAddrMode.amScale = emitter::OPSZP; |
| 3759 | |
| 3760 | #ifdef DEBUG |
| 3761 | id->idDebugOnlyInfo()->idMemCookie = base; |
| 3762 | #endif |
| 3763 | |
| 3764 | id->idCodeSize(sz); |
| 3765 | |
| 3766 | dispIns(id); |
| 3767 | emitCurIGsize += sz; |
| 3768 | } |
| 3769 | |
| 3770 | /***************************************************************************** |
| 3771 | * |
| 3772 | * Add an instruction with a static data member operand. If 'size' is 0, the |
| 3773 | * instruction operates on the address of the static member instead of its |
| 3774 | * value (e.g. "push offset clsvar", rather than "push dword ptr [clsvar]"). |
| 3775 | */ |
| 3776 | |
| 3777 | void emitter::emitIns_C(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, int offs) |
| 3778 | { |
| 3779 | // Static always need relocs |
| 3780 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 3781 | { |
| 3782 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 3783 | } |
| 3784 | |
| 3785 | UNATIVE_OFFSET sz; |
| 3786 | instrDesc* id; |
| 3787 | |
| 3788 | /* Are we pushing the offset of the class variable? */ |
| 3789 | |
| 3790 | if (EA_IS_OFFSET(attr)) |
| 3791 | { |
| 3792 | assert(ins == INS_push); |
| 3793 | sz = 1 + TARGET_POINTER_SIZE; |
| 3794 | |
| 3795 | id = emitNewInstrDsp(EA_1BYTE, offs); |
| 3796 | id->idIns(ins); |
| 3797 | id->idInsFmt(IF_MRD_OFF); |
| 3798 | } |
| 3799 | else |
| 3800 | { |
| 3801 | insFormat fmt = emitInsModeFormat(ins, IF_MRD); |
| 3802 | |
| 3803 | id = emitNewInstrDsp(attr, offs); |
| 3804 | id->idIns(ins); |
| 3805 | id->idInsFmt(fmt); |
| 3806 | sz = emitInsSizeCV(id, insCodeMR(ins)); |
| 3807 | } |
| 3808 | |
| 3809 | // Vex prefix size |
| 3810 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeMR(ins)); |
| 3811 | |
| 3812 | if (TakesRexWPrefix(ins, attr)) |
| 3813 | { |
| 3814 | // REX.W prefix |
| 3815 | sz += emitGetRexPrefixSize(ins); |
| 3816 | } |
| 3817 | |
| 3818 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 3819 | |
| 3820 | id->idCodeSize(sz); |
| 3821 | |
| 3822 | dispIns(id); |
| 3823 | emitCurIGsize += sz; |
| 3824 | |
| 3825 | emitAdjustStackDepthPushPop(ins); |
| 3826 | } |
| 3827 | |
| 3828 | /***************************************************************************** |
| 3829 | * |
| 3830 | * Add an instruction with two register operands. |
| 3831 | */ |
| 3832 | |
| 3833 | void emitter::emitIns_R_R(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2) |
| 3834 | { |
| 3835 | emitAttr size = EA_SIZE(attr); |
| 3836 | |
| 3837 | /* We don't want to generate any useless mov instructions! */ |
| 3838 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 3839 | |
| 3840 | #ifdef _TARGET_AMD64_ |
| 3841 | // Same-reg 4-byte mov can be useful because it performs a |
| 3842 | // zero-extension to 8 bytes. |
| 3843 | assert(ins != INS_mov || reg1 != reg2 || size == EA_4BYTE); |
| 3844 | #else |
| 3845 | assert(ins != INS_mov || reg1 != reg2); |
| 3846 | #endif // _TARGET_AMD64_ |
| 3847 | |
| 3848 | assert(size <= EA_32BYTE); |
| 3849 | noway_assert(emitVerifyEncodable(ins, size, reg1, reg2)); |
| 3850 | |
| 3851 | UNATIVE_OFFSET sz = emitInsSizeRR(ins, reg1, reg2, attr); |
| 3852 | |
| 3853 | if (Is4ByteSSEInstruction(ins)) |
| 3854 | { |
| 3855 | // The 4-Byte SSE instructions require one additional byte |
| 3856 | sz += 1; |
| 3857 | } |
| 3858 | |
| 3859 | /* Special case: "XCHG" uses a different format */ |
| 3860 | insFormat fmt = (ins == INS_xchg) ? IF_RRW_RRW : emitInsModeFormat(ins, IF_RRD_RRD); |
| 3861 | |
| 3862 | instrDesc* id = emitNewInstrSmall(attr); |
| 3863 | id->idIns(ins); |
| 3864 | id->idInsFmt(fmt); |
| 3865 | id->idReg1(reg1); |
| 3866 | id->idReg2(reg2); |
| 3867 | id->idCodeSize(sz); |
| 3868 | |
| 3869 | dispIns(id); |
| 3870 | emitCurIGsize += sz; |
| 3871 | } |
| 3872 | |
| 3873 | /***************************************************************************** |
| 3874 | * |
| 3875 | * Add an instruction with two register operands and an integer constant. |
| 3876 | */ |
| 3877 | |
| 3878 | void emitter::emitIns_R_R_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int ival) |
| 3879 | { |
| 3880 | // SSE2 version requires 5 bytes and some SSE/AVX version 6 bytes |
| 3881 | UNATIVE_OFFSET sz = 4; |
| 3882 | if (IsSSEOrAVXInstruction(ins)) |
| 3883 | { |
| 3884 | // AVX: 3 byte VEX prefix + 1 byte opcode + 1 byte ModR/M + 1 byte immediate |
| 3885 | // SSE: 4 byte opcode + 1 byte ModR/M + 1 byte immediate |
| 3886 | // SSE: 3 byte opcode + 1 byte ModR/M + 1 byte immediate |
| 3887 | sz = (UseVEXEncoding() || Is4ByteSSEInstruction(ins)) ? 6 : 5; |
| 3888 | } |
| 3889 | |
| 3890 | #ifdef _TARGET_AMD64_ |
| 3891 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 3892 | // all other opcodes take a sign-extended 4-byte immediate |
| 3893 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 3894 | #endif |
| 3895 | |
| 3896 | instrDesc* id = emitNewInstrSC(attr, ival); |
| 3897 | |
| 3898 | // REX prefix |
| 3899 | if (IsExtendedReg(reg1, attr) || IsExtendedReg(reg2, attr)) |
| 3900 | { |
| 3901 | sz += emitGetRexPrefixSize(ins); |
| 3902 | } |
| 3903 | |
| 3904 | if ((ins == INS_pextrq || ins == INS_pinsrq) && !UseVEXEncoding()) |
| 3905 | { |
| 3906 | sz += 1; |
| 3907 | } |
| 3908 | |
| 3909 | id->idIns(ins); |
| 3910 | id->idInsFmt(IF_RRW_RRW_CNS); |
| 3911 | id->idReg1(reg1); |
| 3912 | id->idReg2(reg2); |
| 3913 | id->idCodeSize(sz); |
| 3914 | |
| 3915 | dispIns(id); |
| 3916 | emitCurIGsize += sz; |
| 3917 | } |
| 3918 | |
| 3919 | void emitter::emitIns_AR(instruction ins, emitAttr attr, regNumber base, int offs) |
| 3920 | { |
| 3921 | assert(ins == INS_prefetcht0 || ins == INS_prefetcht1 || ins == INS_prefetcht2 || ins == INS_prefetchnta); |
| 3922 | |
| 3923 | instrDesc* id = emitNewInstrAmd(attr, offs); |
| 3924 | |
| 3925 | id->idIns(ins); |
| 3926 | |
| 3927 | id->idInsFmt(IF_ARD); |
| 3928 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 3929 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 3930 | |
| 3931 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 3932 | id->idCodeSize(sz); |
| 3933 | |
| 3934 | dispIns(id); |
| 3935 | emitCurIGsize += sz; |
| 3936 | } |
| 3937 | |
| 3938 | //------------------------------------------------------------------------ |
| 3939 | // emitIns_AR_R_R: emits the code for an instruction that takes a base memory register, two register operands |
| 3940 | // and that does not return a value |
| 3941 | // |
| 3942 | // Arguments: |
| 3943 | // ins -- The instruction being emitted |
| 3944 | // attr -- The emit attribute |
| 3945 | // targetReg -- The target register |
| 3946 | // op2Reg -- The register of the second operand |
| 3947 | // op3Reg -- The register of the third operand |
| 3948 | // base -- The base register used for the memory address (first operand) |
| 3949 | // offs -- The offset from base |
| 3950 | // |
| 3951 | void emitter::emitIns_AR_R_R( |
| 3952 | instruction ins, emitAttr attr, regNumber op2Reg, regNumber op3Reg, regNumber base, int offs) |
| 3953 | { |
| 3954 | assert(IsSSEOrAVXInstruction(ins)); |
| 3955 | assert(IsThreeOperandAVXInstruction(ins)); |
| 3956 | |
| 3957 | instrDesc* id = emitNewInstrAmd(attr, offs); |
| 3958 | |
| 3959 | id->idIns(ins); |
| 3960 | id->idReg1(op2Reg); |
| 3961 | id->idReg2(op3Reg); |
| 3962 | |
| 3963 | id->idInsFmt(IF_AWR_RRD_RRD); |
| 3964 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 3965 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 3966 | |
| 3967 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 3968 | id->idCodeSize(sz); |
| 3969 | |
| 3970 | dispIns(id); |
| 3971 | emitCurIGsize += sz; |
| 3972 | } |
| 3973 | |
| 3974 | void emitter::emitIns_R_A(instruction ins, emitAttr attr, regNumber reg1, GenTreeIndir* indir) |
| 3975 | { |
| 3976 | ssize_t offs = indir->Offset(); |
| 3977 | instrDesc* id = emitNewInstrAmd(attr, offs); |
| 3978 | |
| 3979 | id->idIns(ins); |
| 3980 | id->idReg1(reg1); |
| 3981 | |
| 3982 | emitHandleMemOp(indir, id, IF_RRW_ARD, ins); |
| 3983 | |
| 3984 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 3985 | id->idCodeSize(sz); |
| 3986 | |
| 3987 | dispIns(id); |
| 3988 | emitCurIGsize += sz; |
| 3989 | } |
| 3990 | |
| 3991 | void emitter::emitIns_R_A_I(instruction ins, emitAttr attr, regNumber reg1, GenTreeIndir* indir, int ival) |
| 3992 | { |
| 3993 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), reg1)); |
| 3994 | assert(IsSSEOrAVXInstruction(ins)); |
| 3995 | |
| 3996 | ssize_t offs = indir->Offset(); |
| 3997 | instrDesc* id = emitNewInstrAmdCns(attr, offs, ival); |
| 3998 | |
| 3999 | id->idIns(ins); |
| 4000 | id->idReg1(reg1); |
| 4001 | |
| 4002 | emitHandleMemOp(indir, id, IF_RRW_ARD_CNS, ins); |
| 4003 | |
| 4004 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins), ival); |
| 4005 | |
| 4006 | if (Is4ByteSSEInstruction(ins)) |
| 4007 | { |
| 4008 | // The 4-Byte SSE instructions require two additional bytes |
| 4009 | sz += 2; |
| 4010 | } |
| 4011 | |
| 4012 | id->idCodeSize(sz); |
| 4013 | |
| 4014 | dispIns(id); |
| 4015 | emitCurIGsize += sz; |
| 4016 | } |
| 4017 | |
| 4018 | void emitter::emitIns_R_AR_I(instruction ins, emitAttr attr, regNumber reg1, regNumber base, int offs, int ival) |
| 4019 | { |
| 4020 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), reg1)); |
| 4021 | assert(IsSSEOrAVXInstruction(ins)); |
| 4022 | |
| 4023 | instrDesc* id = emitNewInstrAmdCns(attr, offs, ival); |
| 4024 | |
| 4025 | id->idIns(ins); |
| 4026 | id->idReg1(reg1); |
| 4027 | |
| 4028 | id->idInsFmt(IF_RRW_ARD_CNS); |
| 4029 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 4030 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 4031 | |
| 4032 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins), ival); |
| 4033 | |
| 4034 | if (Is4ByteSSEInstruction(ins)) |
| 4035 | { |
| 4036 | // The 4-Byte SSE instructions require two additional bytes |
| 4037 | sz += 2; |
| 4038 | } |
| 4039 | |
| 4040 | id->idCodeSize(sz); |
| 4041 | |
| 4042 | dispIns(id); |
| 4043 | emitCurIGsize += sz; |
| 4044 | } |
| 4045 | |
| 4046 | void emitter::emitIns_R_C_I( |
| 4047 | instruction ins, emitAttr attr, regNumber reg1, CORINFO_FIELD_HANDLE fldHnd, int offs, int ival) |
| 4048 | { |
| 4049 | // Static always need relocs |
| 4050 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4051 | { |
| 4052 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4053 | } |
| 4054 | |
| 4055 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), reg1)); |
| 4056 | assert(IsSSEOrAVXInstruction(ins)); |
| 4057 | |
| 4058 | instrDesc* id = emitNewInstrCnsDsp(attr, ival, offs); |
| 4059 | |
| 4060 | id->idIns(ins); |
| 4061 | id->idInsFmt(IF_RRW_MRD_CNS); |
| 4062 | id->idReg1(reg1); |
| 4063 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4064 | |
| 4065 | UNATIVE_OFFSET sz = emitInsSizeCV(id, insCodeRM(ins), ival); |
| 4066 | |
| 4067 | if (Is4ByteSSEInstruction(ins)) |
| 4068 | { |
| 4069 | // The 4-Byte SSE instructions require two additional bytes |
| 4070 | sz += 2; |
| 4071 | } |
| 4072 | |
| 4073 | id->idCodeSize(sz); |
| 4074 | |
| 4075 | dispIns(id); |
| 4076 | emitCurIGsize += sz; |
| 4077 | } |
| 4078 | |
| 4079 | void emitter::emitIns_R_S_I(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs, int ival) |
| 4080 | { |
| 4081 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), reg1)); |
| 4082 | assert(IsSSEOrAVXInstruction(ins)); |
| 4083 | |
| 4084 | instrDesc* id = emitNewInstrCns(attr, ival); |
| 4085 | |
| 4086 | id->idIns(ins); |
| 4087 | id->idInsFmt(IF_RRW_SRD_CNS); |
| 4088 | id->idReg1(reg1); |
| 4089 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 4090 | |
| 4091 | #ifdef DEBUG |
| 4092 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 4093 | #endif |
| 4094 | |
| 4095 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeRM(ins), varx, offs, ival); |
| 4096 | |
| 4097 | if (Is4ByteSSEInstruction(ins)) |
| 4098 | { |
| 4099 | // The 4-Byte SSE instructions require two additional bytes |
| 4100 | sz += 2; |
| 4101 | } |
| 4102 | |
| 4103 | id->idCodeSize(sz); |
| 4104 | |
| 4105 | dispIns(id); |
| 4106 | emitCurIGsize += sz; |
| 4107 | } |
| 4108 | |
| 4109 | void emitter::emitIns_R_R_A(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, GenTreeIndir* indir) |
| 4110 | { |
| 4111 | assert(IsSSEOrAVXInstruction(ins)); |
| 4112 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4113 | |
| 4114 | ssize_t offs = indir->Offset(); |
| 4115 | instrDesc* id = emitNewInstrAmd(attr, offs); |
| 4116 | |
| 4117 | id->idIns(ins); |
| 4118 | id->idReg1(reg1); |
| 4119 | id->idReg2(reg2); |
| 4120 | |
| 4121 | emitHandleMemOp(indir, id, IF_RWR_RRD_ARD, ins); |
| 4122 | |
| 4123 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 4124 | id->idCodeSize(sz); |
| 4125 | |
| 4126 | dispIns(id); |
| 4127 | emitCurIGsize += sz; |
| 4128 | } |
| 4129 | |
| 4130 | void emitter::emitIns_R_R_AR(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber base, int offs) |
| 4131 | { |
| 4132 | assert(IsSSEOrAVXInstruction(ins)); |
| 4133 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4134 | |
| 4135 | instrDesc* id = emitNewInstrAmd(attr, offs); |
| 4136 | |
| 4137 | id->idIns(ins); |
| 4138 | id->idReg1(reg1); |
| 4139 | id->idReg2(reg2); |
| 4140 | |
| 4141 | id->idInsFmt(IF_RWR_RRD_ARD); |
| 4142 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 4143 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 4144 | |
| 4145 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 4146 | id->idCodeSize(sz); |
| 4147 | |
| 4148 | dispIns(id); |
| 4149 | emitCurIGsize += sz; |
| 4150 | } |
| 4151 | |
| 4152 | //------------------------------------------------------------------------ |
| 4153 | // IsAVX2GatherInstruction: return true if the instruction is AVX2 Gather |
| 4154 | // |
| 4155 | // Arguments: |
| 4156 | // ins - the instruction to check |
| 4157 | // Return Value: |
| 4158 | // true if the instruction is AVX2 Gather |
| 4159 | // |
| 4160 | bool IsAVX2GatherInstruction(instruction ins) |
| 4161 | { |
| 4162 | switch (ins) |
| 4163 | { |
| 4164 | case INS_vpgatherdd: |
| 4165 | case INS_vpgatherdq: |
| 4166 | case INS_vpgatherqd: |
| 4167 | case INS_vpgatherqq: |
| 4168 | case INS_vgatherdps: |
| 4169 | case INS_vgatherdpd: |
| 4170 | case INS_vgatherqps: |
| 4171 | case INS_vgatherqpd: |
| 4172 | return true; |
| 4173 | default: |
| 4174 | return false; |
| 4175 | } |
| 4176 | } |
| 4177 | |
| 4178 | //------------------------------------------------------------------------ |
| 4179 | // emitIns_R_AR_R: Emits an AVX2 Gather instructions |
| 4180 | // |
| 4181 | // Arguments: |
| 4182 | // ins - the instruction to emit |
| 4183 | // attr - the instruction operand size |
| 4184 | // reg1 - the destination and first source operand |
| 4185 | // reg2 - the mask operand (encoded in VEX.vvvv) |
| 4186 | // base - the base register of address to load |
| 4187 | // index - the index register of VSIB |
| 4188 | // scale - the scale number of VSIB |
| 4189 | // offs - the offset added to the memory address from base |
| 4190 | // |
| 4191 | void emitter::emitIns_R_AR_R(instruction ins, |
| 4192 | emitAttr attr, |
| 4193 | regNumber reg1, |
| 4194 | regNumber reg2, |
| 4195 | regNumber base, |
| 4196 | regNumber index, |
| 4197 | int scale, |
| 4198 | int offs) |
| 4199 | { |
| 4200 | assert(IsAVX2GatherInstruction(ins)); |
| 4201 | |
| 4202 | instrDesc* id = emitNewInstrAmd(attr, offs); |
| 4203 | |
| 4204 | id->idIns(ins); |
| 4205 | id->idReg1(reg1); |
| 4206 | id->idReg2(reg2); |
| 4207 | |
| 4208 | id->idInsFmt(IF_RWR_ARD_RRD); |
| 4209 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 4210 | id->idAddr()->iiaAddrMode.amIndxReg = index; |
| 4211 | id->idAddr()->iiaAddrMode.amScale = emitEncodeSize((emitAttr)scale); |
| 4212 | |
| 4213 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 4214 | id->idCodeSize(sz); |
| 4215 | |
| 4216 | dispIns(id); |
| 4217 | emitCurIGsize += sz; |
| 4218 | } |
| 4219 | |
| 4220 | void emitter::emitIns_R_R_C( |
| 4221 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, CORINFO_FIELD_HANDLE fldHnd, int offs) |
| 4222 | { |
| 4223 | assert(IsSSEOrAVXInstruction(ins)); |
| 4224 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4225 | |
| 4226 | // Static always need relocs |
| 4227 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4228 | { |
| 4229 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4230 | } |
| 4231 | |
| 4232 | instrDesc* id = emitNewInstrDsp(attr, offs); |
| 4233 | |
| 4234 | id->idIns(ins); |
| 4235 | id->idInsFmt(IF_RWR_RRD_MRD); |
| 4236 | id->idReg1(reg1); |
| 4237 | id->idReg2(reg2); |
| 4238 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4239 | |
| 4240 | UNATIVE_OFFSET sz = emitInsSizeCV(id, insCodeRM(ins)); |
| 4241 | id->idCodeSize(sz); |
| 4242 | |
| 4243 | dispIns(id); |
| 4244 | emitCurIGsize += sz; |
| 4245 | } |
| 4246 | |
| 4247 | /***************************************************************************** |
| 4248 | * |
| 4249 | * Add an instruction with three register operands. |
| 4250 | */ |
| 4251 | |
| 4252 | void emitter::emitIns_R_R_R(instruction ins, emitAttr attr, regNumber targetReg, regNumber reg1, regNumber reg2) |
| 4253 | { |
| 4254 | assert(IsSSEOrAVXInstruction(ins)); |
| 4255 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4256 | // Currently vex prefix only use three bytes mode. |
| 4257 | // size = vex + opcode + ModR/M = 3 + 1 + 1 = 5 |
| 4258 | // TODO-XArch-CQ: We should create function which can calculate all kinds of AVX instructions size in future |
| 4259 | UNATIVE_OFFSET sz = 5; |
| 4260 | |
| 4261 | instrDesc* id = emitNewInstr(attr); |
| 4262 | id->idIns(ins); |
| 4263 | id->idInsFmt(IF_RWR_RRD_RRD); |
| 4264 | id->idReg1(targetReg); |
| 4265 | id->idReg2(reg1); |
| 4266 | id->idReg3(reg2); |
| 4267 | |
| 4268 | id->idCodeSize(sz); |
| 4269 | dispIns(id); |
| 4270 | emitCurIGsize += sz; |
| 4271 | } |
| 4272 | |
| 4273 | void emitter::emitIns_R_R_S(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int varx, int offs) |
| 4274 | { |
| 4275 | assert(IsSSEOrAVXInstruction(ins)); |
| 4276 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4277 | |
| 4278 | instrDesc* id = emitNewInstr(attr); |
| 4279 | |
| 4280 | id->idIns(ins); |
| 4281 | id->idInsFmt(IF_RWR_RRD_SRD); |
| 4282 | id->idReg1(reg1); |
| 4283 | id->idReg2(reg2); |
| 4284 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 4285 | |
| 4286 | #ifdef DEBUG |
| 4287 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 4288 | #endif |
| 4289 | |
| 4290 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeRM(ins), varx, offs); |
| 4291 | id->idCodeSize(sz); |
| 4292 | |
| 4293 | dispIns(id); |
| 4294 | emitCurIGsize += sz; |
| 4295 | } |
| 4296 | |
| 4297 | void emitter::emitIns_R_R_A_I( |
| 4298 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, GenTreeIndir* indir, int ival, insFormat fmt) |
| 4299 | { |
| 4300 | assert(IsSSEOrAVXInstruction(ins)); |
| 4301 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4302 | |
| 4303 | ssize_t offs = indir->Offset(); |
| 4304 | instrDesc* id = emitNewInstrAmdCns(attr, offs, ival); |
| 4305 | |
| 4306 | id->idIns(ins); |
| 4307 | id->idReg1(reg1); |
| 4308 | id->idReg2(reg2); |
| 4309 | |
| 4310 | emitHandleMemOp(indir, id, fmt, ins); |
| 4311 | |
| 4312 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins), ival); |
| 4313 | id->idCodeSize(sz); |
| 4314 | |
| 4315 | dispIns(id); |
| 4316 | emitCurIGsize += sz; |
| 4317 | } |
| 4318 | |
| 4319 | void emitter::emitIns_R_R_AR_I( |
| 4320 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber base, int offs, int ival) |
| 4321 | { |
| 4322 | assert(IsSSEOrAVXInstruction(ins)); |
| 4323 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4324 | |
| 4325 | instrDesc* id = emitNewInstrAmdCns(attr, offs, ival); |
| 4326 | |
| 4327 | id->idIns(ins); |
| 4328 | id->idReg1(reg1); |
| 4329 | id->idReg2(reg2); |
| 4330 | |
| 4331 | id->idInsFmt(IF_RWR_RRD_ARD_CNS); |
| 4332 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 4333 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 4334 | |
| 4335 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins), ival); |
| 4336 | id->idCodeSize(sz); |
| 4337 | |
| 4338 | dispIns(id); |
| 4339 | emitCurIGsize += sz; |
| 4340 | } |
| 4341 | |
| 4342 | void emitter::emitIns_R_R_C_I( |
| 4343 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, CORINFO_FIELD_HANDLE fldHnd, int offs, int ival) |
| 4344 | { |
| 4345 | assert(IsSSEOrAVXInstruction(ins)); |
| 4346 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4347 | |
| 4348 | // Static always need relocs |
| 4349 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4350 | { |
| 4351 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4352 | } |
| 4353 | |
| 4354 | instrDesc* id = emitNewInstrCnsDsp(attr, ival, offs); |
| 4355 | |
| 4356 | id->idIns(ins); |
| 4357 | id->idInsFmt(IF_RWR_RRD_MRD_CNS); |
| 4358 | id->idReg1(reg1); |
| 4359 | id->idReg2(reg2); |
| 4360 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4361 | |
| 4362 | UNATIVE_OFFSET sz = emitInsSizeCV(id, insCodeRM(ins), ival); |
| 4363 | id->idCodeSize(sz); |
| 4364 | |
| 4365 | dispIns(id); |
| 4366 | emitCurIGsize += sz; |
| 4367 | } |
| 4368 | |
| 4369 | /********************************************************************************** |
| 4370 | * emitIns_R_R_R_I: Add an instruction with three register operands and an immediate. |
| 4371 | * |
| 4372 | * Arguments: |
| 4373 | * ins - the instruction to add |
| 4374 | * attr - the emitter attribute for instruction |
| 4375 | * targetReg - the target (destination) register |
| 4376 | * reg1 - the first source register |
| 4377 | * reg2 - the second source register |
| 4378 | * ival - the immediate value |
| 4379 | */ |
| 4380 | |
| 4381 | void emitter::emitIns_R_R_R_I( |
| 4382 | instruction ins, emitAttr attr, regNumber targetReg, regNumber reg1, regNumber reg2, int ival) |
| 4383 | { |
| 4384 | assert(IsSSEOrAVXInstruction(ins)); |
| 4385 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4386 | // Currently vex prefix only use three bytes mode. |
| 4387 | // size = vex + opcode + ModR/M + 1-byte-cns = 3 + 1 + 1 + 1 = 6 |
| 4388 | // TODO-XArch-CQ: We should create function which can calculate all kinds of AVX instructions size in future |
| 4389 | UNATIVE_OFFSET sz = 6; |
| 4390 | |
| 4391 | instrDesc* id = emitNewInstrCns(attr, ival); |
| 4392 | id->idIns(ins); |
| 4393 | id->idInsFmt(IF_RWR_RRD_RRD_CNS); |
| 4394 | id->idReg1(targetReg); |
| 4395 | id->idReg2(reg1); |
| 4396 | id->idReg3(reg2); |
| 4397 | |
| 4398 | id->idCodeSize(sz); |
| 4399 | dispIns(id); |
| 4400 | emitCurIGsize += sz; |
| 4401 | } |
| 4402 | |
| 4403 | void emitter::emitIns_R_R_S_I( |
| 4404 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int varx, int offs, int ival) |
| 4405 | { |
| 4406 | assert(IsSSEOrAVXInstruction(ins)); |
| 4407 | assert(IsThreeOperandAVXInstruction(ins)); |
| 4408 | |
| 4409 | instrDesc* id = emitNewInstrCns(attr, ival); |
| 4410 | |
| 4411 | id->idIns(ins); |
| 4412 | id->idInsFmt(IF_RWR_RRD_SRD_CNS); |
| 4413 | id->idReg1(reg1); |
| 4414 | id->idReg2(reg2); |
| 4415 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 4416 | |
| 4417 | #ifdef DEBUG |
| 4418 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 4419 | #endif |
| 4420 | |
| 4421 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeRM(ins), varx, offs, ival); |
| 4422 | id->idCodeSize(sz); |
| 4423 | |
| 4424 | dispIns(id); |
| 4425 | emitCurIGsize += sz; |
| 4426 | } |
| 4427 | |
| 4428 | //------------------------------------------------------------------------ |
| 4429 | // encodeXmmRegAsIval: Encodes a XMM register into imm[7:4] for use by a SIMD instruction |
| 4430 | // |
| 4431 | // Arguments |
| 4432 | // opReg -- The register being encoded |
| 4433 | // |
| 4434 | // Returns: |
| 4435 | // opReg encoded in imm[7:4] |
| 4436 | static int encodeXmmRegAsIval(regNumber opReg) |
| 4437 | { |
| 4438 | // AVX/AVX2 supports 4-reg format for vblendvps/vblendvpd/vpblendvb, |
| 4439 | // which encodes the fourth register into imm8[7:4] |
| 4440 | assert(opReg >= XMMBASE); |
| 4441 | int ival = (opReg - XMMBASE) << 4; |
| 4442 | |
| 4443 | assert((ival >= 0) && (ival <= 255)); |
| 4444 | return (int8_t)ival; |
| 4445 | } |
| 4446 | |
| 4447 | //------------------------------------------------------------------------ |
| 4448 | // emitIns_R_R_A_R: emits the code for an instruction that takes a register operand, a GenTreeIndir address, |
| 4449 | // another register operand, and that returns a value in register |
| 4450 | // |
| 4451 | // Arguments: |
| 4452 | // ins -- The instruction being emitted |
| 4453 | // attr -- The emit attribute |
| 4454 | // targetReg -- The target register |
| 4455 | // op1Reg -- The register of the first operand |
| 4456 | // op3Reg -- The register of the third operand |
| 4457 | // indir -- The GenTreeIndir used for the memory address |
| 4458 | // |
| 4459 | // Remarks: |
| 4460 | // op2 is built from indir |
| 4461 | // |
| 4462 | void emitter::emitIns_R_R_A_R( |
| 4463 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op3Reg, GenTreeIndir* indir) |
| 4464 | { |
| 4465 | assert(isAvxBlendv(ins)); |
| 4466 | assert(UseVEXEncoding()); |
| 4467 | |
| 4468 | int ival = encodeXmmRegAsIval(op3Reg); |
| 4469 | ssize_t offs = indir->Offset(); |
| 4470 | instrDesc* id = emitNewInstrAmdCns(attr, offs, ival); |
| 4471 | |
| 4472 | id->idIns(ins); |
| 4473 | id->idReg1(targetReg); |
| 4474 | id->idReg2(op1Reg); |
| 4475 | |
| 4476 | emitHandleMemOp(indir, id, IF_RWR_RRD_ARD_RRD, ins); |
| 4477 | |
| 4478 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins), ival); |
| 4479 | id->idCodeSize(sz); |
| 4480 | |
| 4481 | dispIns(id); |
| 4482 | emitCurIGsize += sz; |
| 4483 | } |
| 4484 | |
| 4485 | //------------------------------------------------------------------------ |
| 4486 | // emitIns_R_R_AR_R: emits the code for an instruction that takes a register operand, a base memory |
| 4487 | // register, another register operand, and that returns a value in register |
| 4488 | // |
| 4489 | // Arguments: |
| 4490 | // ins -- The instruction being emitted |
| 4491 | // attr -- The emit attribute |
| 4492 | // targetReg -- The target register |
| 4493 | // op1Reg -- The register of the first operands |
| 4494 | // op3Reg -- The register of the third operand |
| 4495 | // base -- The base register used for the memory address |
| 4496 | // offs -- The offset added to the memory address from base |
| 4497 | // |
| 4498 | // Remarks: |
| 4499 | // op2 is built from base + offs |
| 4500 | // |
| 4501 | void emitter::emitIns_R_R_AR_R( |
| 4502 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op3Reg, regNumber base, int offs) |
| 4503 | { |
| 4504 | assert(isAvxBlendv(ins)); |
| 4505 | assert(UseVEXEncoding()); |
| 4506 | |
| 4507 | int ival = encodeXmmRegAsIval(op3Reg); |
| 4508 | instrDesc* id = emitNewInstrAmdCns(attr, offs, ival); |
| 4509 | |
| 4510 | id->idIns(ins); |
| 4511 | id->idReg1(targetReg); |
| 4512 | id->idReg2(op1Reg); |
| 4513 | |
| 4514 | id->idInsFmt(IF_RWR_RRD_ARD_RRD); |
| 4515 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 4516 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 4517 | |
| 4518 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins), ival); |
| 4519 | id->idCodeSize(sz); |
| 4520 | |
| 4521 | dispIns(id); |
| 4522 | emitCurIGsize += sz; |
| 4523 | } |
| 4524 | |
| 4525 | //------------------------------------------------------------------------ |
| 4526 | // emitIns_R_R_C_R: emits the code for an instruction that takes a register operand, a field handle + |
| 4527 | // offset, another register operand, and that returns a value in register |
| 4528 | // |
| 4529 | // Arguments: |
| 4530 | // ins -- The instruction being emitted |
| 4531 | // attr -- The emit attribute |
| 4532 | // targetReg -- The target register |
| 4533 | // op1Reg -- The register of the first operand |
| 4534 | // op3Reg -- The register of the third operand |
| 4535 | // fldHnd -- The CORINFO_FIELD_HANDLE used for the memory address |
| 4536 | // offs -- The offset added to the memory address from fldHnd |
| 4537 | // |
| 4538 | // Remarks: |
| 4539 | // op2 is built from fldHnd + offs |
| 4540 | // |
| 4541 | void emitter::emitIns_R_R_C_R(instruction ins, |
| 4542 | emitAttr attr, |
| 4543 | regNumber targetReg, |
| 4544 | regNumber op1Reg, |
| 4545 | regNumber op3Reg, |
| 4546 | CORINFO_FIELD_HANDLE fldHnd, |
| 4547 | int offs) |
| 4548 | { |
| 4549 | assert(isAvxBlendv(ins)); |
| 4550 | assert(UseVEXEncoding()); |
| 4551 | |
| 4552 | // Static always need relocs |
| 4553 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4554 | { |
| 4555 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4556 | } |
| 4557 | |
| 4558 | int ival = encodeXmmRegAsIval(op3Reg); |
| 4559 | instrDesc* id = emitNewInstrCnsDsp(attr, ival, offs); |
| 4560 | |
| 4561 | id->idIns(ins); |
| 4562 | id->idReg1(targetReg); |
| 4563 | id->idReg2(op1Reg); |
| 4564 | |
| 4565 | id->idInsFmt(IF_RWR_RRD_MRD_RRD); |
| 4566 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4567 | |
| 4568 | UNATIVE_OFFSET sz = emitInsSizeCV(id, insCodeRM(ins), ival); |
| 4569 | id->idCodeSize(sz); |
| 4570 | |
| 4571 | dispIns(id); |
| 4572 | emitCurIGsize += sz; |
| 4573 | } |
| 4574 | |
| 4575 | //------------------------------------------------------------------------ |
| 4576 | // emitIns_R_R_R_S: emits the code for a instruction that takes a register operand, a variable index + |
| 4577 | // offset, another register operand, and that returns a value in register |
| 4578 | // |
| 4579 | // Arguments: |
| 4580 | // ins -- The instruction being emitted |
| 4581 | // attr -- The emit attribute |
| 4582 | // targetReg -- The target register |
| 4583 | // op1Reg -- The register of the first operand |
| 4584 | // op3Reg -- The register of the third operand |
| 4585 | // varx -- The variable index used for the memory address |
| 4586 | // offs -- The offset added to the memory address from varx |
| 4587 | // |
| 4588 | // Remarks: |
| 4589 | // op2 is built from varx + offs |
| 4590 | // |
| 4591 | void emitter::emitIns_R_R_S_R( |
| 4592 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op3Reg, int varx, int offs) |
| 4593 | { |
| 4594 | assert(isAvxBlendv(ins)); |
| 4595 | assert(UseVEXEncoding()); |
| 4596 | |
| 4597 | int ival = encodeXmmRegAsIval(op3Reg); |
| 4598 | instrDesc* id = emitNewInstrCns(attr, ival); |
| 4599 | |
| 4600 | id->idIns(ins); |
| 4601 | id->idReg1(targetReg); |
| 4602 | id->idReg2(op1Reg); |
| 4603 | |
| 4604 | id->idInsFmt(IF_RWR_RRD_SRD_RRD); |
| 4605 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 4606 | |
| 4607 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeRM(ins), varx, offs, ival); |
| 4608 | id->idCodeSize(sz); |
| 4609 | |
| 4610 | dispIns(id); |
| 4611 | emitCurIGsize += sz; |
| 4612 | } |
| 4613 | |
| 4614 | void emitter::emitIns_R_R_R_R( |
| 4615 | instruction ins, emitAttr attr, regNumber targetReg, regNumber reg1, regNumber reg2, regNumber reg3) |
| 4616 | { |
| 4617 | assert(isAvxBlendv(ins)); |
| 4618 | assert(UseVEXEncoding()); |
| 4619 | // Currently vex prefix only use three bytes mode. |
| 4620 | // size = vex + opcode + ModR/M + 1-byte-cns(Reg) = 3 + 1 + 1 + 1 = 6 |
| 4621 | // TODO-XArch-CQ: We should create function which can calculate all kinds of AVX instructions size in future |
| 4622 | UNATIVE_OFFSET sz = 6; |
| 4623 | |
| 4624 | int ival = encodeXmmRegAsIval(reg3); |
| 4625 | instrDesc* id = emitNewInstrCns(attr, ival); |
| 4626 | |
| 4627 | id->idIns(ins); |
| 4628 | id->idInsFmt(IF_RWR_RRD_RRD_RRD); |
| 4629 | id->idReg1(targetReg); |
| 4630 | id->idReg2(reg1); |
| 4631 | id->idReg3(reg2); |
| 4632 | id->idReg4(reg3); |
| 4633 | |
| 4634 | id->idCodeSize(sz); |
| 4635 | dispIns(id); |
| 4636 | emitCurIGsize += sz; |
| 4637 | } |
| 4638 | |
| 4639 | /***************************************************************************** |
| 4640 | * |
| 4641 | * Add an instruction with a register + static member operands. |
| 4642 | */ |
| 4643 | void emitter::emitIns_R_C(instruction ins, emitAttr attr, regNumber reg, CORINFO_FIELD_HANDLE fldHnd, int offs) |
| 4644 | { |
| 4645 | // Static always need relocs |
| 4646 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4647 | { |
| 4648 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4649 | } |
| 4650 | |
| 4651 | emitAttr size = EA_SIZE(attr); |
| 4652 | |
| 4653 | assert(size <= EA_32BYTE); |
| 4654 | noway_assert(emitVerifyEncodable(ins, size, reg)); |
| 4655 | |
| 4656 | UNATIVE_OFFSET sz; |
| 4657 | instrDesc* id; |
| 4658 | |
| 4659 | // Are we MOV'ing the offset of the class variable into EAX? |
| 4660 | if (EA_IS_OFFSET(attr)) |
| 4661 | { |
| 4662 | id = emitNewInstrDsp(EA_1BYTE, offs); |
| 4663 | id->idIns(ins); |
| 4664 | id->idInsFmt(IF_RWR_MRD_OFF); |
| 4665 | |
| 4666 | assert(ins == INS_mov && reg == REG_EAX); |
| 4667 | |
| 4668 | // Special case: "mov eax, [addr]" is smaller |
| 4669 | sz = 1 + TARGET_POINTER_SIZE; |
| 4670 | } |
| 4671 | else |
| 4672 | { |
| 4673 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_MRD); |
| 4674 | |
| 4675 | id = emitNewInstrDsp(attr, offs); |
| 4676 | id->idIns(ins); |
| 4677 | id->idInsFmt(fmt); |
| 4678 | |
| 4679 | #ifdef _TARGET_X86_ |
| 4680 | // Special case: "mov eax, [addr]" is smaller. |
| 4681 | // This case is not enabled for amd64 as it always uses RIP relative addressing |
| 4682 | // and it results in smaller instruction size than encoding 64-bit addr in the |
| 4683 | // instruction. |
| 4684 | if (ins == INS_mov && reg == REG_EAX) |
| 4685 | { |
| 4686 | sz = 1 + TARGET_POINTER_SIZE; |
| 4687 | if (size == EA_2BYTE) |
| 4688 | sz += 1; |
| 4689 | } |
| 4690 | else |
| 4691 | #endif //_TARGET_X86_ |
| 4692 | { |
| 4693 | sz = emitInsSizeCV(id, insCodeRM(ins)); |
| 4694 | } |
| 4695 | |
| 4696 | // Special case: mov reg, fs:[ddd] |
| 4697 | if (fldHnd == FLD_GLOBAL_FS) |
| 4698 | { |
| 4699 | sz += 1; |
| 4700 | } |
| 4701 | } |
| 4702 | |
| 4703 | // VEX prefix |
| 4704 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeRM(ins)); |
| 4705 | |
| 4706 | // REX prefix |
| 4707 | if (TakesRexWPrefix(ins, attr) || IsExtendedReg(reg, attr)) |
| 4708 | { |
| 4709 | sz += emitGetRexPrefixSize(ins); |
| 4710 | } |
| 4711 | |
| 4712 | id->idReg1(reg); |
| 4713 | id->idCodeSize(sz); |
| 4714 | |
| 4715 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4716 | |
| 4717 | dispIns(id); |
| 4718 | emitCurIGsize += sz; |
| 4719 | } |
| 4720 | |
| 4721 | /***************************************************************************** |
| 4722 | * |
| 4723 | * Add an instruction with a static member + register operands. |
| 4724 | */ |
| 4725 | |
| 4726 | void emitter::emitIns_C_R(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, regNumber reg, int offs) |
| 4727 | { |
| 4728 | // Static always need relocs |
| 4729 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4730 | { |
| 4731 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4732 | } |
| 4733 | |
| 4734 | emitAttr size = EA_SIZE(attr); |
| 4735 | |
| 4736 | #if defined(_TARGET_X86_) |
| 4737 | // For x86 it is valid to storeind a double sized operand in an xmm reg to memory |
| 4738 | assert(size <= EA_8BYTE); |
| 4739 | #else |
| 4740 | assert(size <= EA_PTRSIZE); |
| 4741 | #endif |
| 4742 | |
| 4743 | noway_assert(emitVerifyEncodable(ins, size, reg)); |
| 4744 | |
| 4745 | instrDesc* id = emitNewInstrDsp(attr, offs); |
| 4746 | insFormat fmt = emitInsModeFormat(ins, IF_MRD_RRD); |
| 4747 | |
| 4748 | id->idIns(ins); |
| 4749 | id->idInsFmt(fmt); |
| 4750 | |
| 4751 | UNATIVE_OFFSET sz; |
| 4752 | |
| 4753 | #ifdef _TARGET_X86_ |
| 4754 | // Special case: "mov [addr], EAX" is smaller. |
| 4755 | // This case is not enable for amd64 as it always uses RIP relative addressing |
| 4756 | // and it will result in smaller instruction size than encoding 64-bit addr in |
| 4757 | // the instruction. |
| 4758 | if (ins == INS_mov && reg == REG_EAX) |
| 4759 | { |
| 4760 | sz = 1 + TARGET_POINTER_SIZE; |
| 4761 | if (size == EA_2BYTE) |
| 4762 | sz += 1; |
| 4763 | } |
| 4764 | else |
| 4765 | #endif //_TARGET_X86_ |
| 4766 | { |
| 4767 | sz = emitInsSizeCV(id, insCodeMR(ins)); |
| 4768 | } |
| 4769 | |
| 4770 | // Special case: mov reg, fs:[ddd] |
| 4771 | if (fldHnd == FLD_GLOBAL_FS) |
| 4772 | { |
| 4773 | sz += 1; |
| 4774 | } |
| 4775 | |
| 4776 | // VEX prefix |
| 4777 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeMR(ins)); |
| 4778 | |
| 4779 | // REX prefix |
| 4780 | if (TakesRexWPrefix(ins, attr) || IsExtendedReg(reg, attr)) |
| 4781 | { |
| 4782 | sz += emitGetRexPrefixSize(ins); |
| 4783 | } |
| 4784 | |
| 4785 | id->idReg1(reg); |
| 4786 | id->idCodeSize(sz); |
| 4787 | |
| 4788 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4789 | |
| 4790 | dispIns(id); |
| 4791 | emitCurIGsize += sz; |
| 4792 | } |
| 4793 | |
| 4794 | /***************************************************************************** |
| 4795 | * |
| 4796 | * Add an instruction with a static member + constant. |
| 4797 | */ |
| 4798 | |
| 4799 | void emitter::emitIns_C_I(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, int offs, int val) |
| 4800 | { |
| 4801 | // Static always need relocs |
| 4802 | if (!jitStaticFldIsGlobAddr(fldHnd)) |
| 4803 | { |
| 4804 | attr = EA_SET_FLG(attr, EA_DSP_RELOC_FLG); |
| 4805 | } |
| 4806 | |
| 4807 | insFormat fmt; |
| 4808 | |
| 4809 | switch (ins) |
| 4810 | { |
| 4811 | case INS_rcl_N: |
| 4812 | case INS_rcr_N: |
| 4813 | case INS_rol_N: |
| 4814 | case INS_ror_N: |
| 4815 | case INS_shl_N: |
| 4816 | case INS_shr_N: |
| 4817 | case INS_sar_N: |
| 4818 | assert(val != 1); |
| 4819 | fmt = IF_MRW_SHF; |
| 4820 | val &= 0x7F; |
| 4821 | break; |
| 4822 | |
| 4823 | default: |
| 4824 | fmt = emitInsModeFormat(ins, IF_MRD_CNS); |
| 4825 | break; |
| 4826 | } |
| 4827 | |
| 4828 | instrDesc* id = emitNewInstrCnsDsp(attr, val, offs); |
| 4829 | id->idIns(ins); |
| 4830 | id->idInsFmt(fmt); |
| 4831 | |
| 4832 | code_t code = insCodeMI(ins); |
| 4833 | UNATIVE_OFFSET sz = emitInsSizeCV(id, code, val); |
| 4834 | |
| 4835 | // Vex prefix |
| 4836 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeMI(ins)); |
| 4837 | |
| 4838 | // REX prefix, if not already included in "code" |
| 4839 | if (TakesRexWPrefix(ins, attr) && !hasRexPrefix(code)) |
| 4840 | { |
| 4841 | sz += emitGetRexPrefixSize(ins); |
| 4842 | } |
| 4843 | |
| 4844 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 4845 | id->idCodeSize(sz); |
| 4846 | |
| 4847 | dispIns(id); |
| 4848 | emitCurIGsize += sz; |
| 4849 | } |
| 4850 | |
| 4851 | void emitter::emitIns_J_S(instruction ins, emitAttr attr, BasicBlock* dst, int varx, int offs) |
| 4852 | { |
| 4853 | assert(ins == INS_mov); |
| 4854 | assert(dst->bbFlags & BBF_JMP_TARGET); |
| 4855 | |
| 4856 | instrDescLbl* id = emitNewInstrLbl(); |
| 4857 | |
| 4858 | id->idIns(ins); |
| 4859 | id->idInsFmt(IF_SWR_LABEL); |
| 4860 | id->idAddr()->iiaBBlabel = dst; |
| 4861 | |
| 4862 | /* The label reference is always long */ |
| 4863 | |
| 4864 | id->idjShort = 0; |
| 4865 | id->idjKeepLong = 1; |
| 4866 | |
| 4867 | /* Record the current IG and offset within it */ |
| 4868 | |
| 4869 | id->idjIG = emitCurIG; |
| 4870 | id->idjOffs = emitCurIGsize; |
| 4871 | |
| 4872 | /* Append this instruction to this IG's jump list */ |
| 4873 | |
| 4874 | id->idjNext = emitCurIGjmpList; |
| 4875 | emitCurIGjmpList = id; |
| 4876 | |
| 4877 | UNATIVE_OFFSET sz = sizeof(INT32) + emitInsSizeSV(id, insCodeMI(ins), varx, offs); |
| 4878 | id->dstLclVar.initLclVarAddr(varx, offs); |
| 4879 | #ifdef DEBUG |
| 4880 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 4881 | #endif |
| 4882 | |
| 4883 | #if EMITTER_STATS |
| 4884 | emitTotalIGjmps++; |
| 4885 | #endif |
| 4886 | |
| 4887 | #ifndef _TARGET_AMD64_ |
| 4888 | // Storing the address of a basicBlock will need a reloc |
| 4889 | // as the instruction uses the absolute address, |
| 4890 | // not a relative address. |
| 4891 | // |
| 4892 | // On Amd64, Absolute code addresses should always go through a reloc to |
| 4893 | // to be encoded as RIP rel32 offset. |
| 4894 | if (emitComp->opts.compReloc) |
| 4895 | #endif |
| 4896 | { |
| 4897 | id->idSetIsDspReloc(); |
| 4898 | } |
| 4899 | |
| 4900 | id->idCodeSize(sz); |
| 4901 | |
| 4902 | dispIns(id); |
| 4903 | emitCurIGsize += sz; |
| 4904 | } |
| 4905 | |
| 4906 | /***************************************************************************** |
| 4907 | * |
| 4908 | * Add a label instruction. |
| 4909 | */ |
| 4910 | void emitter::emitIns_R_L(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg) |
| 4911 | { |
| 4912 | assert(ins == INS_lea); |
| 4913 | assert(dst->bbFlags & BBF_JMP_TARGET); |
| 4914 | |
| 4915 | instrDescJmp* id = emitNewInstrJmp(); |
| 4916 | |
| 4917 | id->idIns(ins); |
| 4918 | id->idReg1(reg); |
| 4919 | id->idInsFmt(IF_RWR_LABEL); |
| 4920 | id->idOpSize(EA_SIZE(attr)); // emitNewInstrJmp() sets the size (incorrectly) to EA_1BYTE |
| 4921 | id->idAddr()->iiaBBlabel = dst; |
| 4922 | |
| 4923 | /* The label reference is always long */ |
| 4924 | |
| 4925 | id->idjShort = 0; |
| 4926 | id->idjKeepLong = 1; |
| 4927 | |
| 4928 | /* Record the current IG and offset within it */ |
| 4929 | |
| 4930 | id->idjIG = emitCurIG; |
| 4931 | id->idjOffs = emitCurIGsize; |
| 4932 | |
| 4933 | /* Append this instruction to this IG's jump list */ |
| 4934 | |
| 4935 | id->idjNext = emitCurIGjmpList; |
| 4936 | emitCurIGjmpList = id; |
| 4937 | |
| 4938 | #ifdef DEBUG |
| 4939 | // Mark the catch return |
| 4940 | if (emitComp->compCurBB->bbJumpKind == BBJ_EHCATCHRET) |
| 4941 | { |
| 4942 | id->idDebugOnlyInfo()->idCatchRet = true; |
| 4943 | } |
| 4944 | #endif // DEBUG |
| 4945 | |
| 4946 | #if EMITTER_STATS |
| 4947 | emitTotalIGjmps++; |
| 4948 | #endif |
| 4949 | |
| 4950 | // Set the relocation flags - these give hint to zap to perform |
| 4951 | // relocation of the specified 32bit address. |
| 4952 | // |
| 4953 | // Note the relocation flags influence the size estimate. |
| 4954 | id->idSetRelocFlags(attr); |
| 4955 | |
| 4956 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 4957 | id->idCodeSize(sz); |
| 4958 | |
| 4959 | dispIns(id); |
| 4960 | emitCurIGsize += sz; |
| 4961 | } |
| 4962 | |
| 4963 | /***************************************************************************** |
| 4964 | * |
| 4965 | * The following adds instructions referencing address modes. |
| 4966 | */ |
| 4967 | |
| 4968 | void emitter::emitIns_I_AR(instruction ins, emitAttr attr, int val, regNumber reg, int disp) |
| 4969 | { |
| 4970 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 4971 | |
| 4972 | #ifdef _TARGET_AMD64_ |
| 4973 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 4974 | // all other opcodes take a sign-extended 4-byte immediate |
| 4975 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 4976 | #endif |
| 4977 | |
| 4978 | insFormat fmt; |
| 4979 | |
| 4980 | switch (ins) |
| 4981 | { |
| 4982 | case INS_rcl_N: |
| 4983 | case INS_rcr_N: |
| 4984 | case INS_rol_N: |
| 4985 | case INS_ror_N: |
| 4986 | case INS_shl_N: |
| 4987 | case INS_shr_N: |
| 4988 | case INS_sar_N: |
| 4989 | assert(val != 1); |
| 4990 | fmt = IF_ARW_SHF; |
| 4991 | val &= 0x7F; |
| 4992 | break; |
| 4993 | |
| 4994 | default: |
| 4995 | fmt = emitInsModeFormat(ins, IF_ARD_CNS); |
| 4996 | break; |
| 4997 | } |
| 4998 | |
| 4999 | /* |
| 5000 | Useful if you want to trap moves with 0 constant |
| 5001 | if (ins == INS_mov && val == 0 && EA_SIZE(attr) >= EA_4BYTE) |
| 5002 | { |
| 5003 | printf("MOV 0\n"); |
| 5004 | } |
| 5005 | */ |
| 5006 | |
| 5007 | UNATIVE_OFFSET sz; |
| 5008 | instrDesc* id = emitNewInstrAmdCns(attr, disp, val); |
| 5009 | id->idIns(ins); |
| 5010 | id->idInsFmt(fmt); |
| 5011 | |
| 5012 | id->idAddr()->iiaAddrMode.amBaseReg = reg; |
| 5013 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5014 | |
| 5015 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5016 | |
| 5017 | sz = emitInsSizeAM(id, insCodeMI(ins), val); |
| 5018 | id->idCodeSize(sz); |
| 5019 | |
| 5020 | dispIns(id); |
| 5021 | emitCurIGsize += sz; |
| 5022 | } |
| 5023 | |
| 5024 | void emitter::emitIns_I_AI(instruction ins, emitAttr attr, int val, ssize_t disp) |
| 5025 | { |
| 5026 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5027 | |
| 5028 | #ifdef _TARGET_AMD64_ |
| 5029 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 5030 | // all other opcodes take a sign-extended 4-byte immediate |
| 5031 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 5032 | #endif |
| 5033 | |
| 5034 | insFormat fmt; |
| 5035 | |
| 5036 | switch (ins) |
| 5037 | { |
| 5038 | case INS_rcl_N: |
| 5039 | case INS_rcr_N: |
| 5040 | case INS_rol_N: |
| 5041 | case INS_ror_N: |
| 5042 | case INS_shl_N: |
| 5043 | case INS_shr_N: |
| 5044 | case INS_sar_N: |
| 5045 | assert(val != 1); |
| 5046 | fmt = IF_ARW_SHF; |
| 5047 | val &= 0x7F; |
| 5048 | break; |
| 5049 | |
| 5050 | default: |
| 5051 | fmt = emitInsModeFormat(ins, IF_ARD_CNS); |
| 5052 | break; |
| 5053 | } |
| 5054 | |
| 5055 | /* |
| 5056 | Useful if you want to trap moves with 0 constant |
| 5057 | if (ins == INS_mov && val == 0 && EA_SIZE(attr) >= EA_4BYTE) |
| 5058 | { |
| 5059 | printf("MOV 0\n"); |
| 5060 | } |
| 5061 | */ |
| 5062 | |
| 5063 | UNATIVE_OFFSET sz; |
| 5064 | instrDesc* id = emitNewInstrAmdCns(attr, disp, val); |
| 5065 | id->idIns(ins); |
| 5066 | id->idInsFmt(fmt); |
| 5067 | |
| 5068 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 5069 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5070 | |
| 5071 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5072 | |
| 5073 | sz = emitInsSizeAM(id, insCodeMI(ins), val); |
| 5074 | id->idCodeSize(sz); |
| 5075 | |
| 5076 | dispIns(id); |
| 5077 | emitCurIGsize += sz; |
| 5078 | } |
| 5079 | |
| 5080 | void emitter::emitIns_R_AR(instruction ins, emitAttr attr, regNumber ireg, regNumber base, int disp) |
| 5081 | { |
| 5082 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_32BYTE) && (ireg != REG_NA)); |
| 5083 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5084 | |
| 5085 | if (ins == INS_lea) |
| 5086 | { |
| 5087 | if (ireg == base && disp == 0) |
| 5088 | { |
| 5089 | // Maybe the emitter is not the common place for this optimization, but it's a better choke point |
| 5090 | // for all the emitIns(ins, tree), we would have to be analyzing at each call site |
| 5091 | // |
| 5092 | return; |
| 5093 | } |
| 5094 | } |
| 5095 | |
| 5096 | UNATIVE_OFFSET sz; |
| 5097 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5098 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_ARD); |
| 5099 | |
| 5100 | id->idIns(ins); |
| 5101 | id->idInsFmt(fmt); |
| 5102 | id->idReg1(ireg); |
| 5103 | |
| 5104 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 5105 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5106 | |
| 5107 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5108 | |
| 5109 | sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 5110 | |
| 5111 | if (Is4ByteSSEInstruction(ins)) |
| 5112 | { |
| 5113 | // The 4-Byte SSE instructions require two additional bytes |
| 5114 | sz += 2; |
| 5115 | } |
| 5116 | |
| 5117 | id->idCodeSize(sz); |
| 5118 | |
| 5119 | dispIns(id); |
| 5120 | emitCurIGsize += sz; |
| 5121 | } |
| 5122 | |
| 5123 | void emitter::emitIns_R_AI(instruction ins, emitAttr attr, regNumber ireg, ssize_t disp) |
| 5124 | { |
| 5125 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE) && (ireg != REG_NA)); |
| 5126 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5127 | |
| 5128 | UNATIVE_OFFSET sz; |
| 5129 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5130 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_ARD); |
| 5131 | |
| 5132 | id->idIns(ins); |
| 5133 | id->idInsFmt(fmt); |
| 5134 | id->idReg1(ireg); |
| 5135 | |
| 5136 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 5137 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5138 | |
| 5139 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5140 | |
| 5141 | sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 5142 | id->idCodeSize(sz); |
| 5143 | |
| 5144 | dispIns(id); |
| 5145 | emitCurIGsize += sz; |
| 5146 | } |
| 5147 | |
| 5148 | void emitter::emitIns_AR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber base, int disp) |
| 5149 | { |
| 5150 | UNATIVE_OFFSET sz; |
| 5151 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5152 | insFormat fmt; |
| 5153 | |
| 5154 | if (ireg == REG_NA) |
| 5155 | { |
| 5156 | fmt = emitInsModeFormat(ins, IF_ARD); |
| 5157 | } |
| 5158 | else |
| 5159 | { |
| 5160 | fmt = emitInsModeFormat(ins, IF_ARD_RRD); |
| 5161 | |
| 5162 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_32BYTE)); |
| 5163 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5164 | |
| 5165 | id->idReg1(ireg); |
| 5166 | } |
| 5167 | |
| 5168 | id->idIns(ins); |
| 5169 | id->idInsFmt(fmt); |
| 5170 | |
| 5171 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 5172 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5173 | |
| 5174 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5175 | |
| 5176 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 5177 | id->idCodeSize(sz); |
| 5178 | |
| 5179 | dispIns(id); |
| 5180 | emitCurIGsize += sz; |
| 5181 | |
| 5182 | emitAdjustStackDepthPushPop(ins); |
| 5183 | } |
| 5184 | |
| 5185 | void emitter::emitIns_AR_R_I(instruction ins, emitAttr attr, regNumber base, int disp, regNumber ireg, int ival) |
| 5186 | { |
| 5187 | assert(ins == INS_vextracti128 || ins == INS_vextractf128); |
| 5188 | assert(base != REG_NA); |
| 5189 | assert(ireg != REG_NA); |
| 5190 | instrDesc* id = emitNewInstrAmdCns(attr, disp, ival); |
| 5191 | |
| 5192 | id->idIns(ins); |
| 5193 | id->idInsFmt(IF_AWR_RRD_CNS); |
| 5194 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 5195 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5196 | id->idReg1(ireg); |
| 5197 | |
| 5198 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5199 | |
| 5200 | UNATIVE_OFFSET sz = emitInsSizeAM(id, insCodeMR(ins), ival); |
| 5201 | id->idCodeSize(sz); |
| 5202 | |
| 5203 | dispIns(id); |
| 5204 | emitCurIGsize += sz; |
| 5205 | } |
| 5206 | |
| 5207 | void emitter::emitIns_AI_R(instruction ins, emitAttr attr, regNumber ireg, ssize_t disp) |
| 5208 | { |
| 5209 | UNATIVE_OFFSET sz; |
| 5210 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5211 | insFormat fmt; |
| 5212 | |
| 5213 | if (ireg == REG_NA) |
| 5214 | { |
| 5215 | fmt = emitInsModeFormat(ins, IF_ARD); |
| 5216 | } |
| 5217 | else |
| 5218 | { |
| 5219 | fmt = emitInsModeFormat(ins, IF_ARD_RRD); |
| 5220 | |
| 5221 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5222 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5223 | |
| 5224 | id->idReg1(ireg); |
| 5225 | } |
| 5226 | |
| 5227 | id->idIns(ins); |
| 5228 | id->idInsFmt(fmt); |
| 5229 | |
| 5230 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 5231 | id->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 5232 | |
| 5233 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5234 | |
| 5235 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 5236 | id->idCodeSize(sz); |
| 5237 | |
| 5238 | dispIns(id); |
| 5239 | emitCurIGsize += sz; |
| 5240 | |
| 5241 | emitAdjustStackDepthPushPop(ins); |
| 5242 | } |
| 5243 | |
| 5244 | void emitter::emitIns_I_ARR(instruction ins, emitAttr attr, int val, regNumber reg, regNumber rg2, int disp) |
| 5245 | { |
| 5246 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5247 | |
| 5248 | #ifdef _TARGET_AMD64_ |
| 5249 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 5250 | // all other opcodes take a sign-extended 4-byte immediate |
| 5251 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 5252 | #endif |
| 5253 | |
| 5254 | insFormat fmt; |
| 5255 | |
| 5256 | switch (ins) |
| 5257 | { |
| 5258 | case INS_rcl_N: |
| 5259 | case INS_rcr_N: |
| 5260 | case INS_rol_N: |
| 5261 | case INS_ror_N: |
| 5262 | case INS_shl_N: |
| 5263 | case INS_shr_N: |
| 5264 | case INS_sar_N: |
| 5265 | assert(val != 1); |
| 5266 | fmt = IF_ARW_SHF; |
| 5267 | val &= 0x7F; |
| 5268 | break; |
| 5269 | |
| 5270 | default: |
| 5271 | fmt = emitInsModeFormat(ins, IF_ARD_CNS); |
| 5272 | break; |
| 5273 | } |
| 5274 | |
| 5275 | UNATIVE_OFFSET sz; |
| 5276 | instrDesc* id = emitNewInstrAmdCns(attr, disp, val); |
| 5277 | id->idIns(ins); |
| 5278 | id->idInsFmt(fmt); |
| 5279 | |
| 5280 | id->idAddr()->iiaAddrMode.amBaseReg = reg; |
| 5281 | id->idAddr()->iiaAddrMode.amIndxReg = rg2; |
| 5282 | id->idAddr()->iiaAddrMode.amScale = emitter::OPSZ1; |
| 5283 | |
| 5284 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5285 | |
| 5286 | sz = emitInsSizeAM(id, insCodeMI(ins), val); |
| 5287 | id->idCodeSize(sz); |
| 5288 | |
| 5289 | dispIns(id); |
| 5290 | emitCurIGsize += sz; |
| 5291 | } |
| 5292 | |
| 5293 | void emitter::emitIns_R_ARR(instruction ins, emitAttr attr, regNumber ireg, regNumber base, regNumber index, int disp) |
| 5294 | { |
| 5295 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE) && (ireg != REG_NA)); |
| 5296 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5297 | |
| 5298 | UNATIVE_OFFSET sz; |
| 5299 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5300 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_ARD); |
| 5301 | |
| 5302 | id->idIns(ins); |
| 5303 | id->idInsFmt(fmt); |
| 5304 | id->idReg1(ireg); |
| 5305 | |
| 5306 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 5307 | id->idAddr()->iiaAddrMode.amIndxReg = index; |
| 5308 | id->idAddr()->iiaAddrMode.amScale = emitter::OPSZ1; |
| 5309 | |
| 5310 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5311 | |
| 5312 | sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 5313 | id->idCodeSize(sz); |
| 5314 | |
| 5315 | dispIns(id); |
| 5316 | emitCurIGsize += sz; |
| 5317 | } |
| 5318 | |
| 5319 | void emitter::emitIns_ARR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber index, int disp) |
| 5320 | { |
| 5321 | UNATIVE_OFFSET sz; |
| 5322 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5323 | insFormat fmt; |
| 5324 | |
| 5325 | if (ireg == REG_NA) |
| 5326 | { |
| 5327 | fmt = emitInsModeFormat(ins, IF_ARD); |
| 5328 | } |
| 5329 | else |
| 5330 | { |
| 5331 | fmt = emitInsModeFormat(ins, IF_ARD_RRD); |
| 5332 | |
| 5333 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5334 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5335 | |
| 5336 | id->idReg1(ireg); |
| 5337 | } |
| 5338 | |
| 5339 | id->idIns(ins); |
| 5340 | id->idInsFmt(fmt); |
| 5341 | |
| 5342 | id->idAddr()->iiaAddrMode.amBaseReg = reg; |
| 5343 | id->idAddr()->iiaAddrMode.amIndxReg = index; |
| 5344 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(1); |
| 5345 | |
| 5346 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5347 | |
| 5348 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 5349 | id->idCodeSize(sz); |
| 5350 | |
| 5351 | dispIns(id); |
| 5352 | emitCurIGsize += sz; |
| 5353 | |
| 5354 | emitAdjustStackDepthPushPop(ins); |
| 5355 | } |
| 5356 | |
| 5357 | void emitter::emitIns_I_ARX( |
| 5358 | instruction ins, emitAttr attr, int val, regNumber reg, regNumber rg2, unsigned mul, int disp) |
| 5359 | { |
| 5360 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5361 | |
| 5362 | #ifdef _TARGET_AMD64_ |
| 5363 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 5364 | // all other opcodes take a sign-extended 4-byte immediate |
| 5365 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 5366 | #endif |
| 5367 | |
| 5368 | insFormat fmt; |
| 5369 | |
| 5370 | switch (ins) |
| 5371 | { |
| 5372 | case INS_rcl_N: |
| 5373 | case INS_rcr_N: |
| 5374 | case INS_rol_N: |
| 5375 | case INS_ror_N: |
| 5376 | case INS_shl_N: |
| 5377 | case INS_shr_N: |
| 5378 | case INS_sar_N: |
| 5379 | assert(val != 1); |
| 5380 | fmt = IF_ARW_SHF; |
| 5381 | val &= 0x7F; |
| 5382 | break; |
| 5383 | |
| 5384 | default: |
| 5385 | fmt = emitInsModeFormat(ins, IF_ARD_CNS); |
| 5386 | break; |
| 5387 | } |
| 5388 | |
| 5389 | UNATIVE_OFFSET sz; |
| 5390 | instrDesc* id = emitNewInstrAmdCns(attr, disp, val); |
| 5391 | |
| 5392 | id->idIns(ins); |
| 5393 | id->idInsFmt(fmt); |
| 5394 | |
| 5395 | id->idAddr()->iiaAddrMode.amBaseReg = reg; |
| 5396 | id->idAddr()->iiaAddrMode.amIndxReg = rg2; |
| 5397 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(mul); |
| 5398 | |
| 5399 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5400 | |
| 5401 | sz = emitInsSizeAM(id, insCodeMI(ins), val); |
| 5402 | id->idCodeSize(sz); |
| 5403 | |
| 5404 | dispIns(id); |
| 5405 | emitCurIGsize += sz; |
| 5406 | } |
| 5407 | |
| 5408 | void emitter::emitIns_R_ARX( |
| 5409 | instruction ins, emitAttr attr, regNumber ireg, regNumber base, regNumber index, unsigned mul, int disp) |
| 5410 | { |
| 5411 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE) && (ireg != REG_NA)); |
| 5412 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5413 | |
| 5414 | UNATIVE_OFFSET sz; |
| 5415 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5416 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_ARD); |
| 5417 | |
| 5418 | id->idIns(ins); |
| 5419 | id->idInsFmt(fmt); |
| 5420 | id->idReg1(ireg); |
| 5421 | |
| 5422 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 5423 | id->idAddr()->iiaAddrMode.amIndxReg = index; |
| 5424 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(mul); |
| 5425 | |
| 5426 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5427 | |
| 5428 | sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 5429 | id->idCodeSize(sz); |
| 5430 | |
| 5431 | dispIns(id); |
| 5432 | emitCurIGsize += sz; |
| 5433 | } |
| 5434 | |
| 5435 | void emitter::emitIns_ARX_R( |
| 5436 | instruction ins, emitAttr attr, regNumber ireg, regNumber base, regNumber index, unsigned mul, int disp) |
| 5437 | { |
| 5438 | UNATIVE_OFFSET sz; |
| 5439 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5440 | insFormat fmt; |
| 5441 | |
| 5442 | if (ireg == REG_NA) |
| 5443 | { |
| 5444 | fmt = emitInsModeFormat(ins, IF_ARD); |
| 5445 | } |
| 5446 | else |
| 5447 | { |
| 5448 | fmt = emitInsModeFormat(ins, IF_ARD_RRD); |
| 5449 | |
| 5450 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5451 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5452 | |
| 5453 | id->idReg1(ireg); |
| 5454 | } |
| 5455 | |
| 5456 | id->idIns(ins); |
| 5457 | id->idInsFmt(fmt); |
| 5458 | |
| 5459 | id->idAddr()->iiaAddrMode.amBaseReg = base; |
| 5460 | id->idAddr()->iiaAddrMode.amIndxReg = index; |
| 5461 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(mul); |
| 5462 | |
| 5463 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5464 | |
| 5465 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 5466 | id->idCodeSize(sz); |
| 5467 | |
| 5468 | dispIns(id); |
| 5469 | emitCurIGsize += sz; |
| 5470 | |
| 5471 | emitAdjustStackDepthPushPop(ins); |
| 5472 | } |
| 5473 | |
| 5474 | void emitter::emitIns_I_AX(instruction ins, emitAttr attr, int val, regNumber reg, unsigned mul, int disp) |
| 5475 | { |
| 5476 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5477 | |
| 5478 | #ifdef _TARGET_AMD64_ |
| 5479 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 5480 | // all other opcodes take a sign-extended 4-byte immediate |
| 5481 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 5482 | #endif |
| 5483 | |
| 5484 | insFormat fmt; |
| 5485 | |
| 5486 | switch (ins) |
| 5487 | { |
| 5488 | case INS_rcl_N: |
| 5489 | case INS_rcr_N: |
| 5490 | case INS_rol_N: |
| 5491 | case INS_ror_N: |
| 5492 | case INS_shl_N: |
| 5493 | case INS_shr_N: |
| 5494 | case INS_sar_N: |
| 5495 | assert(val != 1); |
| 5496 | fmt = IF_ARW_SHF; |
| 5497 | val &= 0x7F; |
| 5498 | break; |
| 5499 | |
| 5500 | default: |
| 5501 | fmt = emitInsModeFormat(ins, IF_ARD_CNS); |
| 5502 | break; |
| 5503 | } |
| 5504 | |
| 5505 | UNATIVE_OFFSET sz; |
| 5506 | instrDesc* id = emitNewInstrAmdCns(attr, disp, val); |
| 5507 | id->idIns(ins); |
| 5508 | id->idInsFmt(fmt); |
| 5509 | |
| 5510 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 5511 | id->idAddr()->iiaAddrMode.amIndxReg = reg; |
| 5512 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(mul); |
| 5513 | |
| 5514 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5515 | |
| 5516 | sz = emitInsSizeAM(id, insCodeMI(ins), val); |
| 5517 | id->idCodeSize(sz); |
| 5518 | |
| 5519 | dispIns(id); |
| 5520 | emitCurIGsize += sz; |
| 5521 | } |
| 5522 | |
| 5523 | void emitter::emitIns_R_AX(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, unsigned mul, int disp) |
| 5524 | { |
| 5525 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE) && (ireg != REG_NA)); |
| 5526 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5527 | |
| 5528 | UNATIVE_OFFSET sz; |
| 5529 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5530 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_ARD); |
| 5531 | |
| 5532 | id->idIns(ins); |
| 5533 | id->idInsFmt(fmt); |
| 5534 | id->idReg1(ireg); |
| 5535 | |
| 5536 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 5537 | id->idAddr()->iiaAddrMode.amIndxReg = reg; |
| 5538 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(mul); |
| 5539 | |
| 5540 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5541 | |
| 5542 | sz = emitInsSizeAM(id, insCodeRM(ins)); |
| 5543 | id->idCodeSize(sz); |
| 5544 | |
| 5545 | dispIns(id); |
| 5546 | emitCurIGsize += sz; |
| 5547 | } |
| 5548 | |
| 5549 | void emitter::emitIns_AX_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, unsigned mul, int disp) |
| 5550 | { |
| 5551 | UNATIVE_OFFSET sz; |
| 5552 | instrDesc* id = emitNewInstrAmd(attr, disp); |
| 5553 | insFormat fmt; |
| 5554 | |
| 5555 | if (ireg == REG_NA) |
| 5556 | { |
| 5557 | fmt = emitInsModeFormat(ins, IF_ARD); |
| 5558 | } |
| 5559 | else |
| 5560 | { |
| 5561 | fmt = emitInsModeFormat(ins, IF_ARD_RRD); |
| 5562 | noway_assert(emitVerifyEncodable(ins, EA_SIZE(attr), ireg)); |
| 5563 | assert((CodeGen::instIsFP(ins) == false) && (EA_SIZE(attr) <= EA_8BYTE)); |
| 5564 | |
| 5565 | id->idReg1(ireg); |
| 5566 | } |
| 5567 | |
| 5568 | id->idIns(ins); |
| 5569 | id->idInsFmt(fmt); |
| 5570 | |
| 5571 | id->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 5572 | id->idAddr()->iiaAddrMode.amIndxReg = reg; |
| 5573 | id->idAddr()->iiaAddrMode.amScale = emitEncodeScale(mul); |
| 5574 | |
| 5575 | assert(emitGetInsAmdAny(id) == disp); // make sure "disp" is stored properly |
| 5576 | |
| 5577 | sz = emitInsSizeAM(id, insCodeMR(ins)); |
| 5578 | id->idCodeSize(sz); |
| 5579 | |
| 5580 | dispIns(id); |
| 5581 | emitCurIGsize += sz; |
| 5582 | |
| 5583 | emitAdjustStackDepthPushPop(ins); |
| 5584 | } |
| 5585 | |
| 5586 | #ifdef FEATURE_HW_INTRINSICS |
| 5587 | //------------------------------------------------------------------------ |
| 5588 | // emitIns_SIMD_R_R_I: emits the code for a SIMD instruction that takes a register operand, an immediate operand |
| 5589 | // and that returns a value in register |
| 5590 | // |
| 5591 | // Arguments: |
| 5592 | // ins -- The instruction being emitted |
| 5593 | // attr -- The emit attribute |
| 5594 | // targetReg -- The target register |
| 5595 | // op1Reg -- The register of the first operand |
| 5596 | // ival -- The immediate value |
| 5597 | // |
| 5598 | void emitter::emitIns_SIMD_R_R_I(instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, int ival) |
| 5599 | { |
| 5600 | if (UseVEXEncoding() || IsDstSrcImmAvxInstruction(ins)) |
| 5601 | { |
| 5602 | emitIns_R_R_I(ins, attr, targetReg, op1Reg, ival); |
| 5603 | } |
| 5604 | else |
| 5605 | { |
| 5606 | if (op1Reg != targetReg) |
| 5607 | { |
| 5608 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5609 | } |
| 5610 | emitIns_R_I(ins, attr, targetReg, ival); |
| 5611 | } |
| 5612 | } |
| 5613 | |
| 5614 | //------------------------------------------------------------------------ |
| 5615 | // emitIns_SIMD_R_R_A: emits the code for a SIMD instruction that takes a register operand, a GenTreeIndir address, |
| 5616 | // and that returns a value in register |
| 5617 | // |
| 5618 | // Arguments: |
| 5619 | // ins -- The instruction being emitted |
| 5620 | // attr -- The emit attribute |
| 5621 | // targetReg -- The target register |
| 5622 | // op1Reg -- The register of the first operand |
| 5623 | // indir -- The GenTreeIndir used for the memory address |
| 5624 | // |
| 5625 | void emitter::emitIns_SIMD_R_R_A( |
| 5626 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, GenTreeIndir* indir) |
| 5627 | { |
| 5628 | if (UseVEXEncoding()) |
| 5629 | { |
| 5630 | emitIns_R_R_A(ins, attr, targetReg, op1Reg, indir); |
| 5631 | } |
| 5632 | else |
| 5633 | { |
| 5634 | if (op1Reg != targetReg) |
| 5635 | { |
| 5636 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5637 | } |
| 5638 | emitIns_R_A(ins, attr, targetReg, indir); |
| 5639 | } |
| 5640 | } |
| 5641 | |
| 5642 | //------------------------------------------------------------------------ |
| 5643 | // emitIns_SIMD_R_R_AR: emits the code for a SIMD instruction that takes a register operand, a base memory register, |
| 5644 | // and that returns a value in register |
| 5645 | // |
| 5646 | // Arguments: |
| 5647 | // ins -- The instruction being emitted |
| 5648 | // attr -- The emit attribute |
| 5649 | // targetReg -- The target register |
| 5650 | // op1Reg -- The register of the first operand |
| 5651 | // base -- The base register used for the memory address |
| 5652 | // |
| 5653 | void emitter::emitIns_SIMD_R_R_AR(instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber base) |
| 5654 | { |
| 5655 | if (UseVEXEncoding()) |
| 5656 | { |
| 5657 | emitIns_R_R_AR(ins, attr, targetReg, op1Reg, base, 0); |
| 5658 | } |
| 5659 | else |
| 5660 | { |
| 5661 | if (op1Reg != targetReg) |
| 5662 | { |
| 5663 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5664 | } |
| 5665 | emitIns_R_AR(ins, attr, targetReg, base, 0); |
| 5666 | } |
| 5667 | } |
| 5668 | |
| 5669 | //------------------------------------------------------------------------ |
| 5670 | // emitIns_SIMD_R_R_C: emits the code for a SIMD instruction that takes a register operand, a field handle + offset, |
| 5671 | // and that returns a value in register |
| 5672 | // |
| 5673 | // Arguments: |
| 5674 | // ins -- The instruction being emitted |
| 5675 | // attr -- The emit attribute |
| 5676 | // targetReg -- The target register |
| 5677 | // op1Reg -- The register of the first operand |
| 5678 | // fldHnd -- The CORINFO_FIELD_HANDLE used for the memory address |
| 5679 | // offs -- The offset added to the memory address from fldHnd |
| 5680 | // |
| 5681 | void emitter::emitIns_SIMD_R_R_C( |
| 5682 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, CORINFO_FIELD_HANDLE fldHnd, int offs) |
| 5683 | { |
| 5684 | if (UseVEXEncoding()) |
| 5685 | { |
| 5686 | emitIns_R_R_C(ins, attr, targetReg, op1Reg, fldHnd, offs); |
| 5687 | } |
| 5688 | else |
| 5689 | { |
| 5690 | if (op1Reg != targetReg) |
| 5691 | { |
| 5692 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5693 | } |
| 5694 | emitIns_R_C(ins, attr, targetReg, fldHnd, offs); |
| 5695 | } |
| 5696 | } |
| 5697 | |
| 5698 | //------------------------------------------------------------------------ |
| 5699 | // emitIns_SIMD_R_R_R: emits the code for a SIMD instruction that takes two register operands, and that returns a |
| 5700 | // value in register |
| 5701 | // |
| 5702 | // Arguments: |
| 5703 | // ins -- The instruction being emitted |
| 5704 | // attr -- The emit attribute |
| 5705 | // targetReg -- The target register |
| 5706 | // op1Reg -- The register of the first operand |
| 5707 | // op2Reg -- The register of the second operand |
| 5708 | // |
| 5709 | void emitter::emitIns_SIMD_R_R_R( |
| 5710 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg) |
| 5711 | { |
| 5712 | if (UseVEXEncoding()) |
| 5713 | { |
| 5714 | emitIns_R_R_R(ins, attr, targetReg, op1Reg, op2Reg); |
| 5715 | } |
| 5716 | else |
| 5717 | { |
| 5718 | if (op1Reg != targetReg) |
| 5719 | { |
| 5720 | // Ensure we aren't overwriting op2 |
| 5721 | assert(op2Reg != targetReg); |
| 5722 | |
| 5723 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5724 | } |
| 5725 | emitIns_R_R(ins, attr, targetReg, op2Reg); |
| 5726 | } |
| 5727 | } |
| 5728 | |
| 5729 | //------------------------------------------------------------------------ |
| 5730 | // emitIns_SIMD_R_R_S: emits the code for a SIMD instruction that takes a register operand, a variable index + offset, |
| 5731 | // and that returns a value in register |
| 5732 | // |
| 5733 | // Arguments: |
| 5734 | // ins -- The instruction being emitted |
| 5735 | // attr -- The emit attribute |
| 5736 | // targetReg -- The target register |
| 5737 | // op1Reg -- The register of the first operand |
| 5738 | // varx -- The variable index used for the memory address |
| 5739 | // offs -- The offset added to the memory address from varx |
| 5740 | // |
| 5741 | void emitter::emitIns_SIMD_R_R_S( |
| 5742 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, int varx, int offs) |
| 5743 | { |
| 5744 | if (UseVEXEncoding()) |
| 5745 | { |
| 5746 | emitIns_R_R_S(ins, attr, targetReg, op1Reg, varx, offs); |
| 5747 | } |
| 5748 | else |
| 5749 | { |
| 5750 | if (op1Reg != targetReg) |
| 5751 | { |
| 5752 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5753 | } |
| 5754 | emitIns_R_S(ins, attr, targetReg, varx, offs); |
| 5755 | } |
| 5756 | } |
| 5757 | |
| 5758 | //------------------------------------------------------------------------ |
| 5759 | // emitIns_SIMD_R_R_A_I: emits the code for a SIMD instruction that takes a register operand, a GenTreeIndir address, |
| 5760 | // an immediate operand, and that returns a value in register |
| 5761 | // |
| 5762 | // Arguments: |
| 5763 | // ins -- The instruction being emitted |
| 5764 | // attr -- The emit attribute |
| 5765 | // targetReg -- The target register |
| 5766 | // op1Reg -- The register of the first operand |
| 5767 | // indir -- The GenTreeIndir used for the memory address |
| 5768 | // ival -- The immediate value |
| 5769 | // |
| 5770 | void emitter::emitIns_SIMD_R_R_A_I( |
| 5771 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, GenTreeIndir* indir, int ival) |
| 5772 | { |
| 5773 | if (UseVEXEncoding()) |
| 5774 | { |
| 5775 | emitIns_R_R_A_I(ins, attr, targetReg, op1Reg, indir, ival, IF_RWR_RRD_ARD_CNS); |
| 5776 | } |
| 5777 | else |
| 5778 | { |
| 5779 | if (op1Reg != targetReg) |
| 5780 | { |
| 5781 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5782 | } |
| 5783 | emitIns_R_A_I(ins, attr, targetReg, indir, ival); |
| 5784 | } |
| 5785 | } |
| 5786 | |
| 5787 | //------------------------------------------------------------------------ |
| 5788 | // emitIns_SIMD_R_R_AR_I: emits the code for a SIMD instruction that takes a register operand, a base memory register, |
| 5789 | // an immediate operand, and that returns a value in register |
| 5790 | // |
| 5791 | // Arguments: |
| 5792 | // ins -- The instruction being emitted |
| 5793 | // attr -- The emit attribute |
| 5794 | // targetReg -- The target register |
| 5795 | // op1Reg -- The register of the first operand |
| 5796 | // base -- The base register used for the memory address |
| 5797 | // ival -- The immediate value |
| 5798 | // |
| 5799 | void emitter::emitIns_SIMD_R_R_AR_I( |
| 5800 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber base, int ival) |
| 5801 | { |
| 5802 | if (UseVEXEncoding()) |
| 5803 | { |
| 5804 | emitIns_R_R_AR_I(ins, attr, targetReg, op1Reg, base, 0, ival); |
| 5805 | } |
| 5806 | else |
| 5807 | { |
| 5808 | if (op1Reg != targetReg) |
| 5809 | { |
| 5810 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5811 | } |
| 5812 | emitIns_R_AR_I(ins, attr, targetReg, base, 0, ival); |
| 5813 | } |
| 5814 | } |
| 5815 | |
| 5816 | //------------------------------------------------------------------------ |
| 5817 | // emitIns_SIMD_R_R_C_I: emits the code for a SIMD instruction that takes a register operand, a field handle + offset, |
| 5818 | // an immediate operand, and that returns a value in register |
| 5819 | // |
| 5820 | // Arguments: |
| 5821 | // ins -- The instruction being emitted |
| 5822 | // attr -- The emit attribute |
| 5823 | // targetReg -- The target register |
| 5824 | // op1Reg -- The register of the first operand |
| 5825 | // fldHnd -- The CORINFO_FIELD_HANDLE used for the memory address |
| 5826 | // offs -- The offset added to the memory address from fldHnd |
| 5827 | // ival -- The immediate value |
| 5828 | // |
| 5829 | void emitter::emitIns_SIMD_R_R_C_I(instruction ins, |
| 5830 | emitAttr attr, |
| 5831 | regNumber targetReg, |
| 5832 | regNumber op1Reg, |
| 5833 | CORINFO_FIELD_HANDLE fldHnd, |
| 5834 | int offs, |
| 5835 | int ival) |
| 5836 | { |
| 5837 | if (UseVEXEncoding()) |
| 5838 | { |
| 5839 | emitIns_R_R_C_I(ins, attr, targetReg, op1Reg, fldHnd, offs, ival); |
| 5840 | } |
| 5841 | else |
| 5842 | { |
| 5843 | if (op1Reg != targetReg) |
| 5844 | { |
| 5845 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5846 | } |
| 5847 | emitIns_R_C_I(ins, attr, targetReg, fldHnd, offs, ival); |
| 5848 | } |
| 5849 | } |
| 5850 | |
| 5851 | //------------------------------------------------------------------------ |
| 5852 | // emitIns_SIMD_R_R_R_I: emits the code for a SIMD instruction that takes two register operands, an immediate operand, |
| 5853 | // and that returns a value in register |
| 5854 | // |
| 5855 | // Arguments: |
| 5856 | // ins -- The instruction being emitted |
| 5857 | // attr -- The emit attribute |
| 5858 | // targetReg -- The target register |
| 5859 | // op1Reg -- The register of the first operand |
| 5860 | // op2Reg -- The register of the second operand |
| 5861 | // ival -- The immediate value |
| 5862 | // |
| 5863 | void emitter::emitIns_SIMD_R_R_R_I( |
| 5864 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, int ival) |
| 5865 | { |
| 5866 | if (UseVEXEncoding()) |
| 5867 | { |
| 5868 | emitIns_R_R_R_I(ins, attr, targetReg, op1Reg, op2Reg, ival); |
| 5869 | } |
| 5870 | else |
| 5871 | { |
| 5872 | if (op1Reg != targetReg) |
| 5873 | { |
| 5874 | // Ensure we aren't overwriting op2 |
| 5875 | assert(op2Reg != targetReg); |
| 5876 | |
| 5877 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5878 | } |
| 5879 | emitIns_R_R_I(ins, attr, targetReg, op2Reg, ival); |
| 5880 | } |
| 5881 | } |
| 5882 | |
| 5883 | //------------------------------------------------------------------------ |
| 5884 | // emitIns_SIMD_R_R_S_I: emits the code for a SIMD instruction that takes a register operand, a variable index + offset, |
| 5885 | // an imediate operand, and that returns a value in register |
| 5886 | // |
| 5887 | // Arguments: |
| 5888 | // ins -- The instruction being emitted |
| 5889 | // attr -- The emit attribute |
| 5890 | // targetReg -- The target register |
| 5891 | // op1Reg -- The register of the first operand |
| 5892 | // varx -- The variable index used for the memory address |
| 5893 | // offs -- The offset added to the memory address from varx |
| 5894 | // ival -- The immediate value |
| 5895 | // |
| 5896 | void emitter::emitIns_SIMD_R_R_S_I( |
| 5897 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, int varx, int offs, int ival) |
| 5898 | { |
| 5899 | if (UseVEXEncoding()) |
| 5900 | { |
| 5901 | emitIns_R_R_S_I(ins, attr, targetReg, op1Reg, varx, offs, ival); |
| 5902 | } |
| 5903 | else |
| 5904 | { |
| 5905 | if (op1Reg != targetReg) |
| 5906 | { |
| 5907 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5908 | } |
| 5909 | emitIns_R_S_I(ins, attr, targetReg, varx, offs, ival); |
| 5910 | } |
| 5911 | } |
| 5912 | |
| 5913 | //------------------------------------------------------------------------ |
| 5914 | // emitIns_SIMD_R_R_R_A: emits the code for a SIMD instruction that takes two register operands, a GenTreeIndir address, |
| 5915 | // and that returns a value in register |
| 5916 | // |
| 5917 | // Arguments: |
| 5918 | // ins -- The instruction being emitted |
| 5919 | // attr -- The emit attribute |
| 5920 | // targetReg -- The target register |
| 5921 | // op1Reg -- The register of the first operand |
| 5922 | // op2Reg -- The register of the second operand |
| 5923 | // indir -- The GenTreeIndir used for the memory address |
| 5924 | // |
| 5925 | void emitter::emitIns_SIMD_R_R_R_A( |
| 5926 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, GenTreeIndir* indir) |
| 5927 | { |
| 5928 | assert(IsFMAInstruction(ins)); |
| 5929 | assert(UseVEXEncoding()); |
| 5930 | |
| 5931 | if (op1Reg != targetReg) |
| 5932 | { |
| 5933 | // Ensure we aren't overwriting op2 |
| 5934 | assert(op2Reg != targetReg); |
| 5935 | |
| 5936 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5937 | } |
| 5938 | |
| 5939 | emitIns_R_R_A(ins, attr, targetReg, op2Reg, indir); |
| 5940 | } |
| 5941 | |
| 5942 | //------------------------------------------------------------------------ |
| 5943 | // emitIns_SIMD_R_R_R_AR: emits the code for a SIMD instruction that takes two register operands, a base memory |
| 5944 | // register, and that returns a value in register |
| 5945 | // |
| 5946 | // Arguments: |
| 5947 | // ins -- The instruction being emitted |
| 5948 | // attr -- The emit attribute |
| 5949 | // targetReg -- The target register |
| 5950 | // op1Reg -- The register of the first operands |
| 5951 | // op2Reg -- The register of the second operand |
| 5952 | // base -- The base register used for the memory address |
| 5953 | // |
| 5954 | void emitter::emitIns_SIMD_R_R_R_AR( |
| 5955 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, regNumber base) |
| 5956 | { |
| 5957 | assert(IsFMAInstruction(ins)); |
| 5958 | assert(UseVEXEncoding()); |
| 5959 | |
| 5960 | if (op1Reg != targetReg) |
| 5961 | { |
| 5962 | // Ensure we aren't overwriting op2 |
| 5963 | assert(op2Reg != targetReg); |
| 5964 | |
| 5965 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 5966 | } |
| 5967 | |
| 5968 | emitIns_R_R_AR(ins, attr, targetReg, op2Reg, base, 0); |
| 5969 | } |
| 5970 | |
| 5971 | //------------------------------------------------------------------------ |
| 5972 | // emitIns_SIMD_R_R_R_C: emits the code for a SIMD instruction that takes two register operands, a field handle + |
| 5973 | // offset, and that returns a value in register |
| 5974 | // |
| 5975 | // Arguments: |
| 5976 | // ins -- The instruction being emitted |
| 5977 | // attr -- The emit attribute |
| 5978 | // targetReg -- The target register |
| 5979 | // op1Reg -- The register of the first operand |
| 5980 | // op2Reg -- The register of the second operand |
| 5981 | // fldHnd -- The CORINFO_FIELD_HANDLE used for the memory address |
| 5982 | // offs -- The offset added to the memory address from fldHnd |
| 5983 | // |
| 5984 | void emitter::emitIns_SIMD_R_R_R_C(instruction ins, |
| 5985 | emitAttr attr, |
| 5986 | regNumber targetReg, |
| 5987 | regNumber op1Reg, |
| 5988 | regNumber op2Reg, |
| 5989 | CORINFO_FIELD_HANDLE fldHnd, |
| 5990 | int offs) |
| 5991 | { |
| 5992 | assert(IsFMAInstruction(ins)); |
| 5993 | assert(UseVEXEncoding()); |
| 5994 | |
| 5995 | if (op1Reg != targetReg) |
| 5996 | { |
| 5997 | // Ensure we aren't overwriting op2 |
| 5998 | assert(op2Reg != targetReg); |
| 5999 | |
| 6000 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6001 | } |
| 6002 | |
| 6003 | emitIns_R_R_C(ins, attr, targetReg, op2Reg, fldHnd, offs); |
| 6004 | } |
| 6005 | |
| 6006 | //------------------------------------------------------------------------ |
| 6007 | // emitIns_SIMD_R_R_R_R: emits the code for a SIMD instruction that takes three register operands, and that returns a |
| 6008 | // value in register |
| 6009 | // |
| 6010 | // Arguments: |
| 6011 | // ins -- The instruction being emitted |
| 6012 | // attr -- The emit attribute |
| 6013 | // targetReg -- The target register |
| 6014 | // op1Reg -- The register of the first operand |
| 6015 | // op2Reg -- The register of the second operand |
| 6016 | // op3Reg -- The register of the second operand |
| 6017 | // |
| 6018 | void emitter::emitIns_SIMD_R_R_R_R( |
| 6019 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, regNumber op3Reg) |
| 6020 | { |
| 6021 | if (IsFMAInstruction(ins)) |
| 6022 | { |
| 6023 | assert(UseVEXEncoding()); |
| 6024 | |
| 6025 | if (op1Reg != targetReg) |
| 6026 | { |
| 6027 | // Ensure we aren't overwriting op2 or op3 |
| 6028 | |
| 6029 | assert(op2Reg != targetReg); |
| 6030 | assert(op3Reg != targetReg); |
| 6031 | |
| 6032 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6033 | } |
| 6034 | |
| 6035 | emitIns_R_R_R(ins, attr, targetReg, op2Reg, op3Reg); |
| 6036 | } |
| 6037 | else if (UseVEXEncoding()) |
| 6038 | { |
| 6039 | assert(isAvxBlendv(ins) || isSse41Blendv(ins)); |
| 6040 | |
| 6041 | // convert SSE encoding of SSE4.1 instructions to VEX encoding |
| 6042 | switch (ins) |
| 6043 | { |
| 6044 | case INS_blendvps: |
| 6045 | ins = INS_vblendvps; |
| 6046 | break; |
| 6047 | case INS_blendvpd: |
| 6048 | ins = INS_vblendvpd; |
| 6049 | break; |
| 6050 | case INS_pblendvb: |
| 6051 | ins = INS_vpblendvb; |
| 6052 | break; |
| 6053 | default: |
| 6054 | break; |
| 6055 | } |
| 6056 | emitIns_R_R_R_R(ins, attr, targetReg, op1Reg, op2Reg, op3Reg); |
| 6057 | } |
| 6058 | else |
| 6059 | { |
| 6060 | assert(isSse41Blendv(ins)); |
| 6061 | // SSE4.1 blendv* hardcode the mask vector (op3) in XMM0 |
| 6062 | if (op3Reg != REG_XMM0) |
| 6063 | { |
| 6064 | // Ensure we aren't overwriting op1 or op2 |
| 6065 | assert(op1Reg != REG_XMM0); |
| 6066 | assert(op2Reg != REG_XMM0); |
| 6067 | |
| 6068 | emitIns_R_R(INS_movaps, attr, REG_XMM0, op3Reg); |
| 6069 | } |
| 6070 | if (op1Reg != targetReg) |
| 6071 | { |
| 6072 | // Ensure we aren't overwriting op2 or oop3 (which should be REG_XMM0) |
| 6073 | assert(op2Reg != targetReg); |
| 6074 | assert(targetReg != REG_XMM0); |
| 6075 | |
| 6076 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6077 | } |
| 6078 | emitIns_R_R(ins, attr, targetReg, op2Reg); |
| 6079 | } |
| 6080 | } |
| 6081 | |
| 6082 | //------------------------------------------------------------------------ |
| 6083 | // emitIns_SIMD_R_R_R_S: emits the code for a SIMD instruction that takes two register operands, a variable index + |
| 6084 | // offset, and that returns a value in register |
| 6085 | // |
| 6086 | // Arguments: |
| 6087 | // ins -- The instruction being emitted |
| 6088 | // attr -- The emit attribute |
| 6089 | // targetReg -- The target register |
| 6090 | // op1Reg -- The register of the first operand |
| 6091 | // op2Reg -- The register of the second operand |
| 6092 | // varx -- The variable index used for the memory address |
| 6093 | // offs -- The offset added to the memory address from varx |
| 6094 | // |
| 6095 | void emitter::emitIns_SIMD_R_R_R_S( |
| 6096 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, int varx, int offs) |
| 6097 | { |
| 6098 | assert(IsFMAInstruction(ins)); |
| 6099 | assert(UseVEXEncoding()); |
| 6100 | |
| 6101 | if (op1Reg != targetReg) |
| 6102 | { |
| 6103 | // Ensure we aren't overwriting op2 |
| 6104 | assert(op2Reg != targetReg); |
| 6105 | |
| 6106 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6107 | } |
| 6108 | |
| 6109 | emitIns_R_R_S(ins, attr, targetReg, op2Reg, varx, offs); |
| 6110 | } |
| 6111 | |
| 6112 | //------------------------------------------------------------------------ |
| 6113 | // emitIns_SIMD_R_R_A_R: emits the code for a SIMD instruction that takes a register operand, a GenTreeIndir address, |
| 6114 | // another register operand, and that returns a value in register |
| 6115 | // |
| 6116 | // Arguments: |
| 6117 | // ins -- The instruction being emitted |
| 6118 | // attr -- The emit attribute |
| 6119 | // targetReg -- The target register |
| 6120 | // op1Reg -- The register of the first operand |
| 6121 | // op3Reg -- The register of the third operand |
| 6122 | // indir -- The GenTreeIndir used for the memory address |
| 6123 | // |
| 6124 | void emitter::emitIns_SIMD_R_R_A_R( |
| 6125 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op3Reg, GenTreeIndir* indir) |
| 6126 | { |
| 6127 | if (UseVEXEncoding()) |
| 6128 | { |
| 6129 | assert(isAvxBlendv(ins) || isSse41Blendv(ins)); |
| 6130 | |
| 6131 | // convert SSE encoding of SSE4.1 instructions to VEX encoding |
| 6132 | switch (ins) |
| 6133 | { |
| 6134 | case INS_blendvps: |
| 6135 | { |
| 6136 | ins = INS_vblendvps; |
| 6137 | break; |
| 6138 | } |
| 6139 | |
| 6140 | case INS_blendvpd: |
| 6141 | { |
| 6142 | ins = INS_vblendvpd; |
| 6143 | break; |
| 6144 | } |
| 6145 | |
| 6146 | case INS_pblendvb: |
| 6147 | { |
| 6148 | ins = INS_vpblendvb; |
| 6149 | break; |
| 6150 | } |
| 6151 | |
| 6152 | default: |
| 6153 | { |
| 6154 | break; |
| 6155 | } |
| 6156 | } |
| 6157 | |
| 6158 | emitIns_R_R_A_R(ins, attr, targetReg, op1Reg, op3Reg, indir); |
| 6159 | } |
| 6160 | else |
| 6161 | { |
| 6162 | assert(isSse41Blendv(ins)); |
| 6163 | |
| 6164 | // SSE4.1 blendv* hardcode the mask vector (op3) in XMM0 |
| 6165 | if (op3Reg != REG_XMM0) |
| 6166 | { |
| 6167 | // Ensure we aren't overwriting op1 |
| 6168 | assert(op1Reg != REG_XMM0); |
| 6169 | |
| 6170 | emitIns_R_R(INS_movaps, attr, REG_XMM0, op3Reg); |
| 6171 | } |
| 6172 | if (op1Reg != targetReg) |
| 6173 | { |
| 6174 | // Ensure we aren't overwriting op3 (which should be REG_XMM0) |
| 6175 | assert(targetReg != REG_XMM0); |
| 6176 | |
| 6177 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6178 | } |
| 6179 | |
| 6180 | emitIns_R_A(ins, attr, targetReg, indir); |
| 6181 | } |
| 6182 | } |
| 6183 | |
| 6184 | //------------------------------------------------------------------------ |
| 6185 | // emitIns_SIMD_R_R_AR_R: emits the code for a SIMD instruction that takes a register operand, a base memory |
| 6186 | // register, another register operand, and that returns a value in register |
| 6187 | // |
| 6188 | // Arguments: |
| 6189 | // ins -- The instruction being emitted |
| 6190 | // attr -- The emit attribute |
| 6191 | // targetReg -- The target register |
| 6192 | // op1Reg -- The register of the first operands |
| 6193 | // op3Reg -- The register of the third operand |
| 6194 | // base -- The base register used for the memory address |
| 6195 | // |
| 6196 | void emitter::emitIns_SIMD_R_R_AR_R( |
| 6197 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op3Reg, regNumber base) |
| 6198 | { |
| 6199 | if (UseVEXEncoding()) |
| 6200 | { |
| 6201 | assert(isAvxBlendv(ins) || isSse41Blendv(ins)); |
| 6202 | |
| 6203 | // convert SSE encoding of SSE4.1 instructions to VEX encoding |
| 6204 | switch (ins) |
| 6205 | { |
| 6206 | case INS_blendvps: |
| 6207 | { |
| 6208 | ins = INS_vblendvps; |
| 6209 | break; |
| 6210 | } |
| 6211 | |
| 6212 | case INS_blendvpd: |
| 6213 | { |
| 6214 | ins = INS_vblendvpd; |
| 6215 | break; |
| 6216 | } |
| 6217 | |
| 6218 | case INS_pblendvb: |
| 6219 | { |
| 6220 | ins = INS_vpblendvb; |
| 6221 | break; |
| 6222 | } |
| 6223 | |
| 6224 | default: |
| 6225 | { |
| 6226 | break; |
| 6227 | } |
| 6228 | } |
| 6229 | |
| 6230 | emitIns_R_R_AR_R(ins, attr, targetReg, op1Reg, op3Reg, base, 0); |
| 6231 | } |
| 6232 | else |
| 6233 | { |
| 6234 | assert(isSse41Blendv(ins)); |
| 6235 | |
| 6236 | // SSE4.1 blendv* hardcode the mask vector (op3) in XMM0 |
| 6237 | if (op3Reg != REG_XMM0) |
| 6238 | { |
| 6239 | // Ensure we aren't overwriting op1 |
| 6240 | assert(op1Reg != REG_XMM0); |
| 6241 | |
| 6242 | emitIns_R_R(INS_movaps, attr, REG_XMM0, op3Reg); |
| 6243 | } |
| 6244 | if (op1Reg != targetReg) |
| 6245 | { |
| 6246 | // Ensure we aren't overwriting op3 (which should be REG_XMM0) |
| 6247 | assert(targetReg != REG_XMM0); |
| 6248 | |
| 6249 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6250 | } |
| 6251 | |
| 6252 | emitIns_R_AR(ins, attr, targetReg, base, 0); |
| 6253 | } |
| 6254 | } |
| 6255 | |
| 6256 | //------------------------------------------------------------------------ |
| 6257 | // emitIns_SIMD_R_R_C_R: emits the code for a SIMD instruction that takes a register operand, a field handle + |
| 6258 | // offset, another register operand, and that returns a value in register |
| 6259 | // |
| 6260 | // Arguments: |
| 6261 | // ins -- The instruction being emitted |
| 6262 | // attr -- The emit attribute |
| 6263 | // targetReg -- The target register |
| 6264 | // op1Reg -- The register of the first operand |
| 6265 | // op3Reg -- The register of the third operand |
| 6266 | // fldHnd -- The CORINFO_FIELD_HANDLE used for the memory address |
| 6267 | // offs -- The offset added to the memory address from fldHnd |
| 6268 | // |
| 6269 | void emitter::emitIns_SIMD_R_R_C_R(instruction ins, |
| 6270 | emitAttr attr, |
| 6271 | regNumber targetReg, |
| 6272 | regNumber op1Reg, |
| 6273 | regNumber op3Reg, |
| 6274 | CORINFO_FIELD_HANDLE fldHnd, |
| 6275 | int offs) |
| 6276 | { |
| 6277 | if (UseVEXEncoding()) |
| 6278 | { |
| 6279 | assert(isAvxBlendv(ins) || isSse41Blendv(ins)); |
| 6280 | |
| 6281 | // convert SSE encoding of SSE4.1 instructions to VEX encoding |
| 6282 | switch (ins) |
| 6283 | { |
| 6284 | case INS_blendvps: |
| 6285 | { |
| 6286 | ins = INS_vblendvps; |
| 6287 | break; |
| 6288 | } |
| 6289 | |
| 6290 | case INS_blendvpd: |
| 6291 | { |
| 6292 | ins = INS_vblendvpd; |
| 6293 | break; |
| 6294 | } |
| 6295 | |
| 6296 | case INS_pblendvb: |
| 6297 | { |
| 6298 | ins = INS_vpblendvb; |
| 6299 | break; |
| 6300 | } |
| 6301 | |
| 6302 | default: |
| 6303 | { |
| 6304 | break; |
| 6305 | } |
| 6306 | } |
| 6307 | |
| 6308 | emitIns_R_R_C_R(ins, attr, targetReg, op1Reg, op3Reg, fldHnd, offs); |
| 6309 | } |
| 6310 | else |
| 6311 | { |
| 6312 | assert(isSse41Blendv(ins)); |
| 6313 | |
| 6314 | // SSE4.1 blendv* hardcode the mask vector (op3) in XMM0 |
| 6315 | if (op3Reg != REG_XMM0) |
| 6316 | { |
| 6317 | // Ensure we aren't overwriting op1 |
| 6318 | assert(op1Reg != REG_XMM0); |
| 6319 | |
| 6320 | emitIns_R_R(INS_movaps, attr, REG_XMM0, op3Reg); |
| 6321 | } |
| 6322 | if (op1Reg != targetReg) |
| 6323 | { |
| 6324 | // Ensure we aren't overwriting op3 (which should be REG_XMM0) |
| 6325 | assert(targetReg != REG_XMM0); |
| 6326 | |
| 6327 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6328 | } |
| 6329 | |
| 6330 | emitIns_R_C(ins, attr, targetReg, fldHnd, offs); |
| 6331 | } |
| 6332 | } |
| 6333 | |
| 6334 | //------------------------------------------------------------------------ |
| 6335 | // emitIns_SIMD_R_R_S_R: emits the code for a SIMD instruction that takes a register operand, a variable index + |
| 6336 | // offset, another register operand, and that returns a value in register |
| 6337 | // |
| 6338 | // Arguments: |
| 6339 | // ins -- The instruction being emitted |
| 6340 | // attr -- The emit attribute |
| 6341 | // targetReg -- The target register |
| 6342 | // op1Reg -- The register of the first operand |
| 6343 | // op3Reg -- The register of the third operand |
| 6344 | // varx -- The variable index used for the memory address |
| 6345 | // offs -- The offset added to the memory address from varx |
| 6346 | // |
| 6347 | void emitter::emitIns_SIMD_R_R_S_R( |
| 6348 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op3Reg, int varx, int offs) |
| 6349 | { |
| 6350 | if (UseVEXEncoding()) |
| 6351 | { |
| 6352 | assert(isAvxBlendv(ins) || isSse41Blendv(ins)); |
| 6353 | |
| 6354 | // convert SSE encoding of SSE4.1 instructions to VEX encoding |
| 6355 | switch (ins) |
| 6356 | { |
| 6357 | case INS_blendvps: |
| 6358 | { |
| 6359 | ins = INS_vblendvps; |
| 6360 | break; |
| 6361 | } |
| 6362 | |
| 6363 | case INS_blendvpd: |
| 6364 | { |
| 6365 | ins = INS_vblendvpd; |
| 6366 | break; |
| 6367 | } |
| 6368 | |
| 6369 | case INS_pblendvb: |
| 6370 | { |
| 6371 | ins = INS_vpblendvb; |
| 6372 | break; |
| 6373 | } |
| 6374 | |
| 6375 | default: |
| 6376 | { |
| 6377 | break; |
| 6378 | } |
| 6379 | } |
| 6380 | |
| 6381 | emitIns_R_R_S_R(ins, attr, targetReg, op1Reg, op3Reg, varx, offs); |
| 6382 | } |
| 6383 | else |
| 6384 | { |
| 6385 | assert(isSse41Blendv(ins)); |
| 6386 | |
| 6387 | // SSE4.1 blendv* hardcode the mask vector (op3) in XMM0 |
| 6388 | if (op3Reg != REG_XMM0) |
| 6389 | { |
| 6390 | // Ensure we aren't overwriting op1 |
| 6391 | assert(op1Reg != REG_XMM0); |
| 6392 | |
| 6393 | emitIns_R_R(INS_movaps, attr, REG_XMM0, op3Reg); |
| 6394 | } |
| 6395 | if (op1Reg != targetReg) |
| 6396 | { |
| 6397 | // Ensure we aren't overwriting op3 (which should be REG_XMM0) |
| 6398 | assert(targetReg != REG_XMM0); |
| 6399 | |
| 6400 | emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 6401 | } |
| 6402 | |
| 6403 | emitIns_R_S(ins, attr, targetReg, varx, offs); |
| 6404 | } |
| 6405 | } |
| 6406 | #endif // FEATURE_HW_INTRINSICS |
| 6407 | |
| 6408 | /***************************************************************************** |
| 6409 | * |
| 6410 | * The following add instructions referencing stack-based local variables. |
| 6411 | */ |
| 6412 | |
| 6413 | void emitter::emitIns_S(instruction ins, emitAttr attr, int varx, int offs) |
| 6414 | { |
| 6415 | instrDesc* id = emitNewInstr(attr); |
| 6416 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeMR(ins), varx, offs); |
| 6417 | insFormat fmt = emitInsModeFormat(ins, IF_SRD); |
| 6418 | |
| 6419 | // 16-bit operand instructions will need a prefix |
| 6420 | if (EA_SIZE(attr) == EA_2BYTE) |
| 6421 | { |
| 6422 | sz += 1; |
| 6423 | } |
| 6424 | |
| 6425 | // VEX prefix |
| 6426 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeMR(ins)); |
| 6427 | |
| 6428 | // 64-bit operand instructions will need a REX.W prefix |
| 6429 | if (TakesRexWPrefix(ins, attr)) |
| 6430 | { |
| 6431 | sz += emitGetRexPrefixSize(ins); |
| 6432 | } |
| 6433 | |
| 6434 | id->idIns(ins); |
| 6435 | id->idInsFmt(fmt); |
| 6436 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6437 | id->idCodeSize(sz); |
| 6438 | |
| 6439 | #ifdef DEBUG |
| 6440 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6441 | #endif |
| 6442 | dispIns(id); |
| 6443 | emitCurIGsize += sz; |
| 6444 | |
| 6445 | emitAdjustStackDepthPushPop(ins); |
| 6446 | } |
| 6447 | |
| 6448 | void emitter::emitIns_S_R(instruction ins, emitAttr attr, regNumber ireg, int varx, int offs) |
| 6449 | { |
| 6450 | instrDesc* id = emitNewInstr(attr); |
| 6451 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeMR(ins), varx, offs); |
| 6452 | insFormat fmt = emitInsModeFormat(ins, IF_SRD_RRD); |
| 6453 | |
| 6454 | #ifdef _TARGET_X86_ |
| 6455 | if (attr == EA_1BYTE) |
| 6456 | { |
| 6457 | assert(isByteReg(ireg)); |
| 6458 | } |
| 6459 | #endif |
| 6460 | // 16-bit operand instructions will need a prefix |
| 6461 | if (EA_SIZE(attr) == EA_2BYTE) |
| 6462 | { |
| 6463 | sz++; |
| 6464 | } |
| 6465 | |
| 6466 | // VEX prefix |
| 6467 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeMR(ins)); |
| 6468 | |
| 6469 | // 64-bit operand instructions will need a REX.W prefix |
| 6470 | if (TakesRexWPrefix(ins, attr) || IsExtendedReg(ireg, attr)) |
| 6471 | { |
| 6472 | sz += emitGetRexPrefixSize(ins); |
| 6473 | } |
| 6474 | |
| 6475 | id->idIns(ins); |
| 6476 | id->idInsFmt(fmt); |
| 6477 | id->idReg1(ireg); |
| 6478 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6479 | id->idCodeSize(sz); |
| 6480 | #ifdef DEBUG |
| 6481 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6482 | #endif |
| 6483 | dispIns(id); |
| 6484 | emitCurIGsize += sz; |
| 6485 | } |
| 6486 | |
| 6487 | void emitter::emitIns_R_S(instruction ins, emitAttr attr, regNumber ireg, int varx, int offs) |
| 6488 | { |
| 6489 | emitAttr size = EA_SIZE(attr); |
| 6490 | noway_assert(emitVerifyEncodable(ins, size, ireg)); |
| 6491 | |
| 6492 | instrDesc* id = emitNewInstr(attr); |
| 6493 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeRM(ins), varx, offs); |
| 6494 | insFormat fmt = emitInsModeFormat(ins, IF_RRD_SRD); |
| 6495 | |
| 6496 | // Most 16-bit operand instructions need a prefix |
| 6497 | if (size == EA_2BYTE && ins != INS_movsx && ins != INS_movzx) |
| 6498 | { |
| 6499 | sz++; |
| 6500 | } |
| 6501 | |
| 6502 | // VEX prefix |
| 6503 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeRM(ins)); |
| 6504 | |
| 6505 | // 64-bit operand instructions will need a REX.W prefix |
| 6506 | if (TakesRexWPrefix(ins, attr) || IsExtendedReg(ireg, attr)) |
| 6507 | { |
| 6508 | sz += emitGetRexPrefixSize(ins); |
| 6509 | } |
| 6510 | |
| 6511 | if (ins == INS_crc32) |
| 6512 | { |
| 6513 | sz += 1; |
| 6514 | } |
| 6515 | |
| 6516 | id->idIns(ins); |
| 6517 | id->idInsFmt(fmt); |
| 6518 | id->idReg1(ireg); |
| 6519 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6520 | id->idCodeSize(sz); |
| 6521 | #ifdef DEBUG |
| 6522 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6523 | #endif |
| 6524 | dispIns(id); |
| 6525 | emitCurIGsize += sz; |
| 6526 | } |
| 6527 | |
| 6528 | void emitter::emitIns_S_I(instruction ins, emitAttr attr, int varx, int offs, int val) |
| 6529 | { |
| 6530 | #ifdef _TARGET_AMD64_ |
| 6531 | // mov reg, imm64 is the only opcode which takes a full 8 byte immediate |
| 6532 | // all other opcodes take a sign-extended 4-byte immediate |
| 6533 | noway_assert(EA_SIZE(attr) < EA_8BYTE || !EA_IS_CNS_RELOC(attr)); |
| 6534 | #endif |
| 6535 | |
| 6536 | insFormat fmt; |
| 6537 | |
| 6538 | switch (ins) |
| 6539 | { |
| 6540 | case INS_rcl_N: |
| 6541 | case INS_rcr_N: |
| 6542 | case INS_rol_N: |
| 6543 | case INS_ror_N: |
| 6544 | case INS_shl_N: |
| 6545 | case INS_shr_N: |
| 6546 | case INS_sar_N: |
| 6547 | assert(val != 1); |
| 6548 | fmt = IF_SRW_SHF; |
| 6549 | val &= 0x7F; |
| 6550 | break; |
| 6551 | |
| 6552 | default: |
| 6553 | fmt = emitInsModeFormat(ins, IF_SRD_CNS); |
| 6554 | break; |
| 6555 | } |
| 6556 | |
| 6557 | instrDesc* id = emitNewInstrCns(attr, val); |
| 6558 | id->idIns(ins); |
| 6559 | id->idInsFmt(fmt); |
| 6560 | UNATIVE_OFFSET sz = emitInsSizeSV(id, insCodeMI(ins), varx, offs, val); |
| 6561 | |
| 6562 | // VEX prefix |
| 6563 | sz += emitGetVexPrefixAdjustedSize(ins, attr, insCodeMI(ins)); |
| 6564 | |
| 6565 | // 64-bit operand instructions will need a REX.W prefix |
| 6566 | if (TakesRexWPrefix(ins, attr)) |
| 6567 | { |
| 6568 | sz += emitGetRexPrefixSize(ins); |
| 6569 | } |
| 6570 | |
| 6571 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6572 | id->idCodeSize(sz); |
| 6573 | #ifdef DEBUG |
| 6574 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6575 | #endif |
| 6576 | dispIns(id); |
| 6577 | emitCurIGsize += sz; |
| 6578 | } |
| 6579 | |
| 6580 | /***************************************************************************** |
| 6581 | * |
| 6582 | * Record that a jump instruction uses the short encoding |
| 6583 | * |
| 6584 | */ |
| 6585 | void emitter::emitSetShortJump(instrDescJmp* id) |
| 6586 | { |
| 6587 | if (id->idjKeepLong) |
| 6588 | { |
| 6589 | return; |
| 6590 | } |
| 6591 | |
| 6592 | id->idjShort = true; |
| 6593 | } |
| 6594 | |
| 6595 | /***************************************************************************** |
| 6596 | * |
| 6597 | * Add a jmp instruction. |
| 6598 | */ |
| 6599 | |
| 6600 | void emitter::emitIns_J(instruction ins, BasicBlock* dst, int instrCount /* = 0 */) |
| 6601 | { |
| 6602 | UNATIVE_OFFSET sz; |
| 6603 | instrDescJmp* id = emitNewInstrJmp(); |
| 6604 | |
| 6605 | assert(dst->bbFlags & BBF_JMP_TARGET); |
| 6606 | |
| 6607 | id->idIns(ins); |
| 6608 | id->idInsFmt(IF_LABEL); |
| 6609 | id->idAddr()->iiaBBlabel = dst; |
| 6610 | |
| 6611 | #ifdef DEBUG |
| 6612 | // Mark the finally call |
| 6613 | if (ins == INS_call && emitComp->compCurBB->bbJumpKind == BBJ_CALLFINALLY) |
| 6614 | { |
| 6615 | id->idDebugOnlyInfo()->idFinallyCall = true; |
| 6616 | } |
| 6617 | #endif // DEBUG |
| 6618 | |
| 6619 | /* Assume the jump will be long */ |
| 6620 | |
| 6621 | id->idjShort = 0; |
| 6622 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
| 6623 | |
| 6624 | /* Record the jump's IG and offset within it */ |
| 6625 | |
| 6626 | id->idjIG = emitCurIG; |
| 6627 | id->idjOffs = emitCurIGsize; |
| 6628 | |
| 6629 | /* Append this jump to this IG's jump list */ |
| 6630 | |
| 6631 | id->idjNext = emitCurIGjmpList; |
| 6632 | emitCurIGjmpList = id; |
| 6633 | |
| 6634 | #if EMITTER_STATS |
| 6635 | emitTotalIGjmps++; |
| 6636 | #endif |
| 6637 | |
| 6638 | /* Figure out the max. size of the jump/call instruction */ |
| 6639 | |
| 6640 | if (ins == INS_call) |
| 6641 | { |
| 6642 | sz = CALL_INST_SIZE; |
| 6643 | } |
| 6644 | else if (ins == INS_push || ins == INS_push_hide) |
| 6645 | { |
| 6646 | // Pushing the address of a basicBlock will need a reloc |
| 6647 | // as the instruction uses the absolute address, |
| 6648 | // not a relative address |
| 6649 | if (emitComp->opts.compReloc) |
| 6650 | { |
| 6651 | id->idSetIsDspReloc(); |
| 6652 | } |
| 6653 | sz = PUSH_INST_SIZE; |
| 6654 | } |
| 6655 | else |
| 6656 | { |
| 6657 | insGroup* tgt; |
| 6658 | |
| 6659 | /* This is a jump - assume the worst */ |
| 6660 | |
| 6661 | sz = (ins == INS_jmp) ? JMP_SIZE_LARGE : JCC_SIZE_LARGE; |
| 6662 | |
| 6663 | /* Can we guess at the jump distance? */ |
| 6664 | |
| 6665 | tgt = (insGroup*)emitCodeGetCookie(dst); |
| 6666 | |
| 6667 | if (tgt) |
| 6668 | { |
| 6669 | int ; |
| 6670 | UNATIVE_OFFSET srcOffs; |
| 6671 | int jmpDist; |
| 6672 | |
| 6673 | assert(JMP_SIZE_SMALL == JCC_SIZE_SMALL); |
| 6674 | |
| 6675 | /* This is a backward jump - figure out the distance */ |
| 6676 | |
| 6677 | srcOffs = emitCurCodeOffset + emitCurIGsize + JMP_SIZE_SMALL; |
| 6678 | |
| 6679 | /* Compute the distance estimate */ |
| 6680 | |
| 6681 | jmpDist = srcOffs - tgt->igOffs; |
| 6682 | assert((int)jmpDist > 0); |
| 6683 | |
| 6684 | /* How much beyond the max. short distance does the jump go? */ |
| 6685 | |
| 6686 | extra = jmpDist + JMP_DIST_SMALL_MAX_NEG; |
| 6687 | |
| 6688 | #if DEBUG_EMIT |
| 6689 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
| 6690 | { |
| 6691 | if (INTERESTING_JUMP_NUM == 0) |
| 6692 | { |
| 6693 | printf("[0] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
| 6694 | } |
| 6695 | printf("[0] Jump source is at %08X\n" , srcOffs); |
| 6696 | printf("[0] Label block is at %08X\n" , tgt->igOffs); |
| 6697 | printf("[0] Jump distance - %04X\n" , jmpDist); |
| 6698 | if (extra > 0) |
| 6699 | { |
| 6700 | printf("[0] Distance excess = %d \n" , extra); |
| 6701 | } |
| 6702 | } |
| 6703 | #endif |
| 6704 | |
| 6705 | if (extra <= 0 && !id->idjKeepLong) |
| 6706 | { |
| 6707 | /* Wonderful - this jump surely will be short */ |
| 6708 | |
| 6709 | emitSetShortJump(id); |
| 6710 | sz = JMP_SIZE_SMALL; |
| 6711 | } |
| 6712 | } |
| 6713 | #if DEBUG_EMIT |
| 6714 | else |
| 6715 | { |
| 6716 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
| 6717 | { |
| 6718 | if (INTERESTING_JUMP_NUM == 0) |
| 6719 | { |
| 6720 | printf("[0] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
| 6721 | } |
| 6722 | printf("[0] Jump source is at %04X/%08X\n" , emitCurIGsize, |
| 6723 | emitCurCodeOffset + emitCurIGsize + JMP_SIZE_SMALL); |
| 6724 | printf("[0] Label block is unknown\n" ); |
| 6725 | } |
| 6726 | } |
| 6727 | #endif |
| 6728 | } |
| 6729 | |
| 6730 | id->idCodeSize(sz); |
| 6731 | |
| 6732 | dispIns(id); |
| 6733 | emitCurIGsize += sz; |
| 6734 | |
| 6735 | emitAdjustStackDepthPushPop(ins); |
| 6736 | } |
| 6737 | |
| 6738 | #if !FEATURE_FIXED_OUT_ARGS |
| 6739 | |
| 6740 | //------------------------------------------------------------------------ |
| 6741 | // emitAdjustStackDepthPushPop: Adjust the current and maximum stack depth. |
| 6742 | // |
| 6743 | // Arguments: |
| 6744 | // ins - the instruction. Only INS_push and INS_pop adjust the stack depth. |
| 6745 | // |
| 6746 | // Notes: |
| 6747 | // 1. Alters emitCurStackLvl and possibly emitMaxStackDepth. |
| 6748 | // 2. emitCntStackDepth must be set (0 in prolog/epilog, one DWORD elsewhere) |
| 6749 | // |
| 6750 | void emitter::emitAdjustStackDepthPushPop(instruction ins) |
| 6751 | { |
| 6752 | if (ins == INS_push) |
| 6753 | { |
| 6754 | emitCurStackLvl += emitCntStackDepth; |
| 6755 | |
| 6756 | if (emitMaxStackDepth < emitCurStackLvl) |
| 6757 | { |
| 6758 | JITDUMP("Upping emitMaxStackDepth from %d to %d\n" , emitMaxStackDepth, emitCurStackLvl); |
| 6759 | emitMaxStackDepth = emitCurStackLvl; |
| 6760 | } |
| 6761 | } |
| 6762 | else if (ins == INS_pop) |
| 6763 | { |
| 6764 | emitCurStackLvl -= emitCntStackDepth; |
| 6765 | assert((int)emitCurStackLvl >= 0); |
| 6766 | } |
| 6767 | } |
| 6768 | |
| 6769 | //------------------------------------------------------------------------ |
| 6770 | // emitAdjustStackDepth: Adjust the current and maximum stack depth. |
| 6771 | // |
| 6772 | // Arguments: |
| 6773 | // ins - the instruction. Only INS_add and INS_sub adjust the stack depth. |
| 6774 | // It is assumed that the add/sub is on the stack pointer. |
| 6775 | // val - the number of bytes to add to or subtract from the stack pointer. |
| 6776 | // |
| 6777 | // Notes: |
| 6778 | // 1. Alters emitCurStackLvl and possibly emitMaxStackDepth. |
| 6779 | // 2. emitCntStackDepth must be set (0 in prolog/epilog, one DWORD elsewhere) |
| 6780 | // |
| 6781 | void emitter::emitAdjustStackDepth(instruction ins, ssize_t val) |
| 6782 | { |
| 6783 | // If we're in the prolog or epilog, or otherwise not tracking the stack depth, just return. |
| 6784 | if (emitCntStackDepth == 0) |
| 6785 | return; |
| 6786 | |
| 6787 | if (ins == INS_sub) |
| 6788 | { |
| 6789 | S_UINT32 newStackLvl(emitCurStackLvl); |
| 6790 | newStackLvl += S_UINT32(val); |
| 6791 | noway_assert(!newStackLvl.IsOverflow()); |
| 6792 | |
| 6793 | emitCurStackLvl = newStackLvl.Value(); |
| 6794 | |
| 6795 | if (emitMaxStackDepth < emitCurStackLvl) |
| 6796 | { |
| 6797 | JITDUMP("Upping emitMaxStackDepth from %d to %d\n" , emitMaxStackDepth, emitCurStackLvl); |
| 6798 | emitMaxStackDepth = emitCurStackLvl; |
| 6799 | } |
| 6800 | } |
| 6801 | else if (ins == INS_add) |
| 6802 | { |
| 6803 | S_UINT32 newStackLvl = S_UINT32(emitCurStackLvl) - S_UINT32(val); |
| 6804 | noway_assert(!newStackLvl.IsOverflow()); |
| 6805 | |
| 6806 | emitCurStackLvl = newStackLvl.Value(); |
| 6807 | } |
| 6808 | } |
| 6809 | |
| 6810 | #endif // EMIT_TRACK_STACK_DEPTH |
| 6811 | |
| 6812 | /***************************************************************************** |
| 6813 | * |
| 6814 | * Add a call instruction (direct or indirect). |
| 6815 | * argSize<0 means that the caller will pop the arguments |
| 6816 | * |
| 6817 | * The other arguments are interpreted depending on callType as shown: |
| 6818 | * Unless otherwise specified, ireg,xreg,xmul,disp should have default values. |
| 6819 | * |
| 6820 | * EC_FUNC_TOKEN : addr is the method address |
| 6821 | * EC_FUNC_TOKEN_INDIR : addr is the indirect method address |
| 6822 | * EC_FUNC_ADDR : addr is the absolute address of the function |
| 6823 | * EC_FUNC_VIRTUAL : "call [ireg+disp]" |
| 6824 | * |
| 6825 | * If callType is one of these emitCallTypes, addr has to be NULL. |
| 6826 | * EC_INDIR_R : "call ireg". |
| 6827 | * EC_INDIR_SR : "call lcl<disp>" (eg. call [ebp-8]). |
| 6828 | * EC_INDIR_C : "call clsVar<disp>" (eg. call [clsVarAddr]) |
| 6829 | * EC_INDIR_ARD : "call [ireg+xreg*xmul+disp]" |
| 6830 | * |
| 6831 | */ |
| 6832 | |
| 6833 | // clang-format off |
| 6834 | void emitter::emitIns_Call(EmitCallType callType, |
| 6835 | CORINFO_METHOD_HANDLE methHnd, |
| 6836 | INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) // used to report call sites to the EE |
| 6837 | void* addr, |
| 6838 | ssize_t argSize, |
| 6839 | emitAttr retSize |
| 6840 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(emitAttr secondRetSize), |
| 6841 | VARSET_VALARG_TP ptrVars, |
| 6842 | regMaskTP gcrefRegs, |
| 6843 | regMaskTP byrefRegs, |
| 6844 | IL_OFFSETX ilOffset, // = BAD_IL_OFFSET |
| 6845 | regNumber ireg, // = REG_NA |
| 6846 | regNumber xreg, // = REG_NA |
| 6847 | unsigned xmul, // = 0 |
| 6848 | ssize_t disp, // = 0 |
| 6849 | bool isJump) // = false |
| 6850 | // clang-format on |
| 6851 | { |
| 6852 | /* Sanity check the arguments depending on callType */ |
| 6853 | |
| 6854 | assert(callType < EC_COUNT); |
| 6855 | assert((callType != EC_FUNC_TOKEN && callType != EC_FUNC_TOKEN_INDIR && callType != EC_FUNC_ADDR) || |
| 6856 | (ireg == REG_NA && xreg == REG_NA && xmul == 0 && disp == 0)); |
| 6857 | assert(callType != EC_FUNC_VIRTUAL || (ireg < REG_COUNT && xreg == REG_NA && xmul == 0)); |
| 6858 | assert(callType < EC_INDIR_R || callType == EC_INDIR_ARD || callType == EC_INDIR_C || addr == nullptr); |
| 6859 | assert(callType != EC_INDIR_R || (ireg < REG_COUNT && xreg == REG_NA && xmul == 0 && disp == 0)); |
| 6860 | assert(callType != EC_INDIR_SR || |
| 6861 | (ireg == REG_NA && xreg == REG_NA && xmul == 0 && disp < (int)emitComp->lvaCount)); |
| 6862 | assert(callType != EC_INDIR_C || (ireg == REG_NA && xreg == REG_NA && xmul == 0 && disp != 0)); |
| 6863 | |
| 6864 | // Our stack level should be always greater than the bytes of arguments we push. Just |
| 6865 | // a sanity test. |
| 6866 | assert((unsigned)abs((signed)argSize) <= codeGen->genStackLevel); |
| 6867 | |
| 6868 | #if STACK_PROBES |
| 6869 | if (emitComp->opts.compNeedStackProbes) |
| 6870 | { |
| 6871 | // If we've pushed more than JIT_RESERVED_STACK allows, do an additional stack probe |
| 6872 | // Else, just make sure the prolog does a probe for us. Invariant we're trying |
| 6873 | // to get is that at any point we go out to unmanaged code, there is at least |
| 6874 | // CORINFO_STACKPROBE_DEPTH bytes of stack available. |
| 6875 | // |
| 6876 | // The reason why we are not doing one probe for the max size at the prolog |
| 6877 | // is that when don't have the max depth precomputed (it can depend on codegen), |
| 6878 | // and we need it at the time we generate locallocs |
| 6879 | // |
| 6880 | // Compiler::lvaAssignFrameOffsets sets up compLclFrameSize, which takes in |
| 6881 | // account everything except for the arguments of a callee. |
| 6882 | // |
| 6883 | // |
| 6884 | // |
| 6885 | if ((TARGET_POINTER_SIZE + // return address for call |
| 6886 | emitComp->genStackLevel + |
| 6887 | // Current stack level. This gets resetted on every |
| 6888 | // localloc and on the prolog (invariant is that |
| 6889 | // genStackLevel is 0 on basic block entry and exit and |
| 6890 | // after any alloca). genStackLevel will include any arguments |
| 6891 | // to the call, so we will insert an additional probe if |
| 6892 | // we've consumed more than JIT_RESERVED_STACK bytes |
| 6893 | // of stack, which is what the prolog probe covers (in |
| 6894 | // addition to the EE requested size) |
| 6895 | (emitComp->compHndBBtabCount * TARGET_POINTER_SIZE) |
| 6896 | // Hidden slots for calling finallys |
| 6897 | ) >= JIT_RESERVED_STACK) |
| 6898 | { |
| 6899 | // This happens when you have a call with a lot of arguments or a call is done |
| 6900 | // when there's a lot of stuff pushed on the stack (for example a call whos returned |
| 6901 | // value is an argument of another call that has pushed stuff on the stack) |
| 6902 | // This should't be very frequent. |
| 6903 | // For different values of JIT_RESERVED_STACK |
| 6904 | // |
| 6905 | // For mscorlib (109605 calls) |
| 6906 | // |
| 6907 | // 14190 probes in prologs (56760 bytes of code) |
| 6908 | // |
| 6909 | // JIT_RESERVED_STACK = 16 : 5452 extra probes |
| 6910 | // JIT_RESERVED_STACK = 32 : 1084 extra probes |
| 6911 | // JIT_RESERVED_STACK = 64 : 1 extra probes |
| 6912 | // JIT_RESERVED_STACK = 96 : 0 extra probes |
| 6913 | emitComp->genGenerateStackProbe(); |
| 6914 | } |
| 6915 | else |
| 6916 | { |
| 6917 | if (emitComp->compGeneratingProlog || emitComp->compGeneratingEpilog) |
| 6918 | { |
| 6919 | if (emitComp->compStackProbePrologDone) |
| 6920 | { |
| 6921 | // We already generated a probe and this call is not happening |
| 6922 | // at a depth >= JIT_RESERVED_STACK, so nothing to do here |
| 6923 | } |
| 6924 | else |
| 6925 | { |
| 6926 | // 3 possible ways to get here: |
| 6927 | // - We are in an epilog and haven't generated a probe in the prolog. |
| 6928 | // This shouldn't happen as we don't generate any calls in epilog. |
| 6929 | // - We are in the prolog, but doing a call before generating the probe. |
| 6930 | // This shouldn't happen at all. |
| 6931 | // - We are in the prolog, did not generate a probe but now we need |
| 6932 | // to generate a probe because we need a call (eg: profiler). We'll |
| 6933 | // need a probe. |
| 6934 | // |
| 6935 | // In any case, we need a probe |
| 6936 | |
| 6937 | // Ignore the profiler callback for now. |
| 6938 | if (!emitComp->compIsProfilerHookNeeded()) |
| 6939 | { |
| 6940 | assert(!"We do not expect to get here" ); |
| 6941 | emitComp->genGenerateStackProbe(); |
| 6942 | } |
| 6943 | } |
| 6944 | } |
| 6945 | else |
| 6946 | { |
| 6947 | // We will need a probe and will generate it in the prolog |
| 6948 | emitComp->genNeedPrologStackProbe = true; |
| 6949 | } |
| 6950 | } |
| 6951 | } |
| 6952 | #endif // STACK_PROBES |
| 6953 | |
| 6954 | // Trim out any callee-trashed registers from the live set. |
| 6955 | regMaskTP savedSet = emitGetGCRegsSavedOrModified(methHnd); |
| 6956 | gcrefRegs &= savedSet; |
| 6957 | byrefRegs &= savedSet; |
| 6958 | |
| 6959 | #ifdef DEBUG |
| 6960 | if (EMIT_GC_VERBOSE) |
| 6961 | { |
| 6962 | printf("\t\t\t\t\t\t\tCall: GCvars=%s " , VarSetOps::ToString(emitComp, ptrVars)); |
| 6963 | dumpConvertedVarSet(emitComp, ptrVars); |
| 6964 | printf(", gcrefRegs=" ); |
| 6965 | printRegMaskInt(gcrefRegs); |
| 6966 | emitDispRegSet(gcrefRegs); |
| 6967 | printf(", byrefRegs=" ); |
| 6968 | printRegMaskInt(byrefRegs); |
| 6969 | emitDispRegSet(byrefRegs); |
| 6970 | printf("\n" ); |
| 6971 | } |
| 6972 | #endif |
| 6973 | |
| 6974 | /* Managed RetVal: emit sequence point for the call */ |
| 6975 | if (emitComp->opts.compDbgInfo && ilOffset != BAD_IL_OFFSET) |
| 6976 | { |
| 6977 | codeGen->genIPmappingAdd(ilOffset, false); |
| 6978 | } |
| 6979 | |
| 6980 | /* |
| 6981 | We need to allocate the appropriate instruction descriptor based |
| 6982 | on whether this is a direct/indirect call, and whether we need to |
| 6983 | record an updated set of live GC variables. |
| 6984 | |
| 6985 | The stats for a ton of classes is as follows: |
| 6986 | |
| 6987 | Direct call w/o GC vars 220,216 |
| 6988 | Indir. call w/o GC vars 144,781 |
| 6989 | |
| 6990 | Direct call with GC vars 9,440 |
| 6991 | Indir. call with GC vars 5,768 |
| 6992 | */ |
| 6993 | |
| 6994 | instrDesc* id; |
| 6995 | |
| 6996 | assert(argSize % REGSIZE_BYTES == 0); |
| 6997 | int argCnt = (int)(argSize / (int)REGSIZE_BYTES); // we need a signed-divide |
| 6998 | |
| 6999 | if (callType >= EC_FUNC_VIRTUAL) |
| 7000 | { |
| 7001 | /* Indirect call, virtual calls */ |
| 7002 | |
| 7003 | assert(callType == EC_FUNC_VIRTUAL || callType == EC_INDIR_R || callType == EC_INDIR_SR || |
| 7004 | callType == EC_INDIR_C || callType == EC_INDIR_ARD); |
| 7005 | |
| 7006 | id = emitNewInstrCallInd(argCnt, disp, ptrVars, gcrefRegs, byrefRegs, |
| 7007 | retSize MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize)); |
| 7008 | } |
| 7009 | else |
| 7010 | { |
| 7011 | // Helper/static/nonvirtual/function calls (direct or through handle), |
| 7012 | // and calls to an absolute addr. |
| 7013 | |
| 7014 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_TOKEN_INDIR || callType == EC_FUNC_ADDR); |
| 7015 | |
| 7016 | id = emitNewInstrCallDir(argCnt, ptrVars, gcrefRegs, byrefRegs, |
| 7017 | retSize MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize)); |
| 7018 | } |
| 7019 | |
| 7020 | /* Update the emitter's live GC ref sets */ |
| 7021 | |
| 7022 | VarSetOps::Assign(emitComp, emitThisGCrefVars, ptrVars); |
| 7023 | emitThisGCrefRegs = gcrefRegs; |
| 7024 | emitThisByrefRegs = byrefRegs; |
| 7025 | |
| 7026 | /* Set the instruction - special case jumping a function */ |
| 7027 | instruction ins = INS_call; |
| 7028 | |
| 7029 | if (isJump) |
| 7030 | { |
| 7031 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_TOKEN_INDIR); |
| 7032 | if (callType == EC_FUNC_TOKEN) |
| 7033 | { |
| 7034 | ins = INS_l_jmp; |
| 7035 | } |
| 7036 | else |
| 7037 | { |
| 7038 | ins = INS_i_jmp; |
| 7039 | } |
| 7040 | } |
| 7041 | id->idIns(ins); |
| 7042 | |
| 7043 | id->idSetIsNoGC(emitNoGChelper(methHnd)); |
| 7044 | |
| 7045 | UNATIVE_OFFSET sz; |
| 7046 | |
| 7047 | // Record the address: method, indirection, or funcptr |
| 7048 | if (callType >= EC_FUNC_VIRTUAL) |
| 7049 | { |
| 7050 | // This is an indirect call (either a virtual call or func ptr call) |
| 7051 | |
| 7052 | switch (callType) |
| 7053 | { |
| 7054 | case EC_INDIR_C: |
| 7055 | // Indirect call using an absolute code address. |
| 7056 | // Must be marked as relocatable and is done at the |
| 7057 | // branch target location. |
| 7058 | goto CALL_ADDR_MODE; |
| 7059 | |
| 7060 | case EC_INDIR_R: // the address is in a register |
| 7061 | |
| 7062 | id->idSetIsCallRegPtr(); |
| 7063 | |
| 7064 | __fallthrough; |
| 7065 | |
| 7066 | case EC_INDIR_ARD: // the address is an indirection |
| 7067 | |
| 7068 | goto CALL_ADDR_MODE; |
| 7069 | |
| 7070 | case EC_INDIR_SR: // the address is in a lcl var |
| 7071 | |
| 7072 | id->idInsFmt(IF_SRD); |
| 7073 | // disp is really a lclVarNum |
| 7074 | noway_assert((unsigned)disp == (size_t)disp); |
| 7075 | id->idAddr()->iiaLclVar.initLclVarAddr((unsigned)disp, 0); |
| 7076 | sz = emitInsSizeSV(id, insCodeMR(INS_call), (unsigned)disp, 0); |
| 7077 | |
| 7078 | break; |
| 7079 | |
| 7080 | case EC_FUNC_VIRTUAL: |
| 7081 | |
| 7082 | CALL_ADDR_MODE: |
| 7083 | |
| 7084 | // fall-through |
| 7085 | |
| 7086 | // The function is "ireg" if id->idIsCallRegPtr(), |
| 7087 | // else [ireg+xmul*xreg+disp] |
| 7088 | |
| 7089 | id->idInsFmt(IF_ARD); |
| 7090 | |
| 7091 | id->idAddr()->iiaAddrMode.amBaseReg = ireg; |
| 7092 | id->idAddr()->iiaAddrMode.amIndxReg = xreg; |
| 7093 | id->idAddr()->iiaAddrMode.amScale = xmul ? emitEncodeScale(xmul) : emitter::OPSZ1; |
| 7094 | |
| 7095 | sz = emitInsSizeAM(id, insCodeMR(INS_call)); |
| 7096 | |
| 7097 | if (ireg == REG_NA && xreg == REG_NA) |
| 7098 | { |
| 7099 | if (codeGen->genCodeIndirAddrNeedsReloc(disp)) |
| 7100 | { |
| 7101 | id->idSetIsDspReloc(); |
| 7102 | } |
| 7103 | #ifdef _TARGET_AMD64_ |
| 7104 | else |
| 7105 | { |
| 7106 | // An absolute indir address that doesn't need reloc should fit within 32-bits |
| 7107 | // to be encoded as offset relative to zero. This addr mode requires an extra |
| 7108 | // SIB byte |
| 7109 | noway_assert(static_cast<int>(reinterpret_cast<intptr_t>(addr)) == (size_t)addr); |
| 7110 | sz++; |
| 7111 | } |
| 7112 | #endif //_TARGET_AMD64_ |
| 7113 | } |
| 7114 | |
| 7115 | break; |
| 7116 | |
| 7117 | default: |
| 7118 | NO_WAY("unexpected instruction" ); |
| 7119 | break; |
| 7120 | } |
| 7121 | } |
| 7122 | else if (callType == EC_FUNC_TOKEN_INDIR) |
| 7123 | { |
| 7124 | /* "call [method_addr]" */ |
| 7125 | |
| 7126 | assert(addr != nullptr); |
| 7127 | |
| 7128 | id->idInsFmt(IF_METHPTR); |
| 7129 | id->idAddr()->iiaAddr = (BYTE*)addr; |
| 7130 | sz = 6; |
| 7131 | |
| 7132 | // Since this is an indirect call through a pointer and we don't |
| 7133 | // currently pass in emitAttr into this function, we query codegen |
| 7134 | // whether addr needs a reloc. |
| 7135 | if (codeGen->genCodeIndirAddrNeedsReloc((size_t)addr)) |
| 7136 | { |
| 7137 | id->idSetIsDspReloc(); |
| 7138 | } |
| 7139 | #ifdef _TARGET_AMD64_ |
| 7140 | else |
| 7141 | { |
| 7142 | // An absolute indir address that doesn't need reloc should fit within 32-bits |
| 7143 | // to be encoded as offset relative to zero. This addr mode requires an extra |
| 7144 | // SIB byte |
| 7145 | noway_assert(static_cast<int>(reinterpret_cast<intptr_t>(addr)) == (size_t)addr); |
| 7146 | sz++; |
| 7147 | } |
| 7148 | #endif //_TARGET_AMD64_ |
| 7149 | } |
| 7150 | else |
| 7151 | { |
| 7152 | /* This is a simple direct call: "call helper/method/addr" */ |
| 7153 | |
| 7154 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR); |
| 7155 | |
| 7156 | assert(addr != nullptr); |
| 7157 | |
| 7158 | id->idInsFmt(IF_METHOD); |
| 7159 | sz = 5; |
| 7160 | |
| 7161 | id->idAddr()->iiaAddr = (BYTE*)addr; |
| 7162 | |
| 7163 | if (callType == EC_FUNC_ADDR) |
| 7164 | { |
| 7165 | id->idSetIsCallAddr(); |
| 7166 | } |
| 7167 | |
| 7168 | // Direct call to a method and no addr indirection is needed. |
| 7169 | if (codeGen->genCodeAddrNeedsReloc((size_t)addr)) |
| 7170 | { |
| 7171 | id->idSetIsDspReloc(); |
| 7172 | } |
| 7173 | } |
| 7174 | |
| 7175 | #ifdef DEBUG |
| 7176 | if (emitComp->verbose && 0) |
| 7177 | { |
| 7178 | if (id->idIsLargeCall()) |
| 7179 | { |
| 7180 | if (callType >= EC_FUNC_VIRTUAL) |
| 7181 | { |
| 7182 | printf("[%02u] Rec call GC vars = %s\n" , id->idDebugOnlyInfo()->idNum, |
| 7183 | VarSetOps::ToString(emitComp, ((instrDescCGCA*)id)->idcGCvars)); |
| 7184 | } |
| 7185 | else |
| 7186 | { |
| 7187 | printf("[%02u] Rec call GC vars = %s\n" , id->idDebugOnlyInfo()->idNum, |
| 7188 | VarSetOps::ToString(emitComp, ((instrDescCGCA*)id)->idcGCvars)); |
| 7189 | } |
| 7190 | } |
| 7191 | } |
| 7192 | |
| 7193 | id->idDebugOnlyInfo()->idMemCookie = (size_t)methHnd; // method token |
| 7194 | id->idDebugOnlyInfo()->idCallSig = sigInfo; |
| 7195 | #endif // DEBUG |
| 7196 | |
| 7197 | #ifdef LATE_DISASM |
| 7198 | if (addr != nullptr) |
| 7199 | { |
| 7200 | codeGen->getDisAssembler().disSetMethod((size_t)addr, methHnd); |
| 7201 | } |
| 7202 | #endif // LATE_DISASM |
| 7203 | |
| 7204 | id->idCodeSize(sz); |
| 7205 | |
| 7206 | dispIns(id); |
| 7207 | emitCurIGsize += sz; |
| 7208 | |
| 7209 | #if !FEATURE_FIXED_OUT_ARGS |
| 7210 | |
| 7211 | /* The call will pop the arguments */ |
| 7212 | |
| 7213 | if (emitCntStackDepth && argSize > 0) |
| 7214 | { |
| 7215 | noway_assert((ssize_t)emitCurStackLvl >= argSize); |
| 7216 | emitCurStackLvl -= (int)argSize; |
| 7217 | assert((int)emitCurStackLvl >= 0); |
| 7218 | } |
| 7219 | |
| 7220 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 7221 | } |
| 7222 | |
| 7223 | #ifdef DEBUG |
| 7224 | /***************************************************************************** |
| 7225 | * |
| 7226 | * The following called for each recorded instruction -- use for debugging. |
| 7227 | */ |
| 7228 | void emitter::emitInsSanityCheck(instrDesc* id) |
| 7229 | { |
| 7230 | // make certain you only try to put relocs on things that can have them. |
| 7231 | ID_OPS idOp = (ID_OPS)emitFmtToOps[id->idInsFmt()]; |
| 7232 | if ((idOp == ID_OP_SCNS) && id->idIsLargeCns()) |
| 7233 | { |
| 7234 | idOp = ID_OP_CNS; |
| 7235 | } |
| 7236 | |
| 7237 | if (id->idIsDspReloc()) |
| 7238 | { |
| 7239 | assert(idOp == ID_OP_NONE || idOp == ID_OP_AMD || idOp == ID_OP_DSP || idOp == ID_OP_DSP_CNS || |
| 7240 | idOp == ID_OP_AMD_CNS || idOp == ID_OP_SPEC || idOp == ID_OP_CALL || idOp == ID_OP_JMP || |
| 7241 | idOp == ID_OP_LBL); |
| 7242 | } |
| 7243 | |
| 7244 | if (id->idIsCnsReloc()) |
| 7245 | { |
| 7246 | assert(idOp == ID_OP_CNS || idOp == ID_OP_AMD_CNS || idOp == ID_OP_DSP_CNS || idOp == ID_OP_SPEC || |
| 7247 | idOp == ID_OP_CALL || idOp == ID_OP_JMP); |
| 7248 | } |
| 7249 | } |
| 7250 | #endif |
| 7251 | |
| 7252 | /***************************************************************************** |
| 7253 | * |
| 7254 | * Return the allocated size (in bytes) of the given instruction descriptor. |
| 7255 | */ |
| 7256 | |
| 7257 | size_t emitter::emitSizeOfInsDsc(instrDesc* id) |
| 7258 | { |
| 7259 | if (emitIsScnsInsDsc(id)) |
| 7260 | { |
| 7261 | return SMALL_IDSC_SIZE; |
| 7262 | } |
| 7263 | |
| 7264 | assert((unsigned)id->idInsFmt() < emitFmtCount); |
| 7265 | |
| 7266 | ID_OPS idOp = (ID_OPS)emitFmtToOps[id->idInsFmt()]; |
| 7267 | |
| 7268 | // An INS_call instruction may use a "fat" direct/indirect call descriptor |
| 7269 | // except for a local call to a label (i.e. call to a finally) |
| 7270 | // Only ID_OP_CALL and ID_OP_SPEC check for this, so we enforce that the |
| 7271 | // INS_call instruction always uses one of these idOps |
| 7272 | |
| 7273 | if (id->idIns() == INS_call) |
| 7274 | { |
| 7275 | assert(idOp == ID_OP_CALL || // is a direct call |
| 7276 | idOp == ID_OP_SPEC || // is a indirect call |
| 7277 | idOp == ID_OP_JMP); // is a local call to finally clause |
| 7278 | } |
| 7279 | |
| 7280 | switch (idOp) |
| 7281 | { |
| 7282 | case ID_OP_NONE: |
| 7283 | break; |
| 7284 | |
| 7285 | case ID_OP_LBL: |
| 7286 | return sizeof(instrDescLbl); |
| 7287 | |
| 7288 | case ID_OP_JMP: |
| 7289 | return sizeof(instrDescJmp); |
| 7290 | |
| 7291 | case ID_OP_CALL: |
| 7292 | case ID_OP_SPEC: |
| 7293 | if (id->idIsLargeCall()) |
| 7294 | { |
| 7295 | /* Must be a "fat" indirect call descriptor */ |
| 7296 | return sizeof(instrDescCGCA); |
| 7297 | } |
| 7298 | |
| 7299 | __fallthrough; |
| 7300 | |
| 7301 | case ID_OP_SCNS: |
| 7302 | case ID_OP_CNS: |
| 7303 | case ID_OP_DSP: |
| 7304 | case ID_OP_DSP_CNS: |
| 7305 | case ID_OP_AMD: |
| 7306 | case ID_OP_AMD_CNS: |
| 7307 | if (id->idIsLargeCns()) |
| 7308 | { |
| 7309 | if (id->idIsLargeDsp()) |
| 7310 | { |
| 7311 | return sizeof(instrDescCnsDsp); |
| 7312 | } |
| 7313 | else |
| 7314 | { |
| 7315 | return sizeof(instrDescCns); |
| 7316 | } |
| 7317 | } |
| 7318 | else |
| 7319 | { |
| 7320 | if (id->idIsLargeDsp()) |
| 7321 | { |
| 7322 | return sizeof(instrDescDsp); |
| 7323 | } |
| 7324 | else |
| 7325 | { |
| 7326 | return sizeof(instrDesc); |
| 7327 | } |
| 7328 | } |
| 7329 | |
| 7330 | default: |
| 7331 | NO_WAY("unexpected instruction descriptor format" ); |
| 7332 | break; |
| 7333 | } |
| 7334 | |
| 7335 | return sizeof(instrDesc); |
| 7336 | } |
| 7337 | |
| 7338 | /*****************************************************************************/ |
| 7339 | #ifdef DEBUG |
| 7340 | /***************************************************************************** |
| 7341 | * |
| 7342 | * Return a string that represents the given register. |
| 7343 | */ |
| 7344 | |
| 7345 | const char* emitter::emitRegName(regNumber reg, emitAttr attr, bool varName) |
| 7346 | { |
| 7347 | static char rb[2][128]; |
| 7348 | static unsigned char rbc = 0; |
| 7349 | |
| 7350 | const char* rn = emitComp->compRegVarName(reg, varName); |
| 7351 | |
| 7352 | #ifdef _TARGET_AMD64_ |
| 7353 | char suffix = '\0'; |
| 7354 | |
| 7355 | switch (EA_SIZE(attr)) |
| 7356 | { |
| 7357 | case EA_32BYTE: |
| 7358 | return emitYMMregName(reg); |
| 7359 | |
| 7360 | case EA_16BYTE: |
| 7361 | return emitXMMregName(reg); |
| 7362 | |
| 7363 | case EA_8BYTE: |
| 7364 | if ((REG_XMM0 <= reg) && (reg <= REG_XMM15)) |
| 7365 | { |
| 7366 | return emitXMMregName(reg); |
| 7367 | } |
| 7368 | break; |
| 7369 | |
| 7370 | case EA_4BYTE: |
| 7371 | if ((REG_XMM0 <= reg) && (reg <= REG_XMM15)) |
| 7372 | { |
| 7373 | return emitXMMregName(reg); |
| 7374 | } |
| 7375 | |
| 7376 | if (reg > REG_R15) |
| 7377 | { |
| 7378 | break; |
| 7379 | } |
| 7380 | |
| 7381 | if (reg > REG_RDI) |
| 7382 | { |
| 7383 | suffix = 'd'; |
| 7384 | goto APPEND_SUFFIX; |
| 7385 | } |
| 7386 | rbc = (rbc + 1) % 2; |
| 7387 | rb[rbc][0] = 'e'; |
| 7388 | rb[rbc][1] = rn[1]; |
| 7389 | rb[rbc][2] = rn[2]; |
| 7390 | rb[rbc][3] = 0; |
| 7391 | rn = rb[rbc]; |
| 7392 | break; |
| 7393 | |
| 7394 | case EA_2BYTE: |
| 7395 | if (reg > REG_RDI) |
| 7396 | { |
| 7397 | suffix = 'w'; |
| 7398 | goto APPEND_SUFFIX; |
| 7399 | } |
| 7400 | rn++; |
| 7401 | break; |
| 7402 | |
| 7403 | case EA_1BYTE: |
| 7404 | if (reg > REG_RDI) |
| 7405 | { |
| 7406 | suffix = 'b'; |
| 7407 | APPEND_SUFFIX: |
| 7408 | rbc = (rbc + 1) % 2; |
| 7409 | rb[rbc][0] = rn[0]; |
| 7410 | rb[rbc][1] = rn[1]; |
| 7411 | if (rn[2]) |
| 7412 | { |
| 7413 | assert(rn[3] == 0); |
| 7414 | rb[rbc][2] = rn[2]; |
| 7415 | rb[rbc][3] = suffix; |
| 7416 | rb[rbc][4] = 0; |
| 7417 | } |
| 7418 | else |
| 7419 | { |
| 7420 | rb[rbc][2] = suffix; |
| 7421 | rb[rbc][3] = 0; |
| 7422 | } |
| 7423 | } |
| 7424 | else |
| 7425 | { |
| 7426 | rbc = (rbc + 1) % 2; |
| 7427 | rb[rbc][0] = rn[1]; |
| 7428 | if (reg < 4) |
| 7429 | { |
| 7430 | rb[rbc][1] = 'l'; |
| 7431 | rb[rbc][2] = 0; |
| 7432 | } |
| 7433 | else |
| 7434 | { |
| 7435 | rb[rbc][1] = rn[2]; |
| 7436 | rb[rbc][2] = 'l'; |
| 7437 | rb[rbc][3] = 0; |
| 7438 | } |
| 7439 | } |
| 7440 | |
| 7441 | rn = rb[rbc]; |
| 7442 | break; |
| 7443 | |
| 7444 | default: |
| 7445 | break; |
| 7446 | } |
| 7447 | #endif // _TARGET_AMD64_ |
| 7448 | |
| 7449 | #ifdef _TARGET_X86_ |
| 7450 | assert(strlen(rn) >= 3); |
| 7451 | |
| 7452 | switch (EA_SIZE(attr)) |
| 7453 | { |
| 7454 | case EA_32BYTE: |
| 7455 | return emitYMMregName(reg); |
| 7456 | |
| 7457 | case EA_16BYTE: |
| 7458 | return emitXMMregName(reg); |
| 7459 | |
| 7460 | case EA_8BYTE: |
| 7461 | if ((REG_XMM0 <= reg) && (reg <= REG_XMM7)) |
| 7462 | { |
| 7463 | return emitXMMregName(reg); |
| 7464 | } |
| 7465 | break; |
| 7466 | |
| 7467 | case EA_4BYTE: |
| 7468 | if ((REG_XMM0 <= reg) && (reg <= REG_XMM7)) |
| 7469 | { |
| 7470 | return emitXMMregName(reg); |
| 7471 | } |
| 7472 | break; |
| 7473 | |
| 7474 | case EA_2BYTE: |
| 7475 | rn++; |
| 7476 | break; |
| 7477 | |
| 7478 | case EA_1BYTE: |
| 7479 | rbc = (rbc + 1) % 2; |
| 7480 | rb[rbc][0] = rn[1]; |
| 7481 | rb[rbc][1] = 'l'; |
| 7482 | strcpy_s(&rb[rbc][2], sizeof(rb[0]) - 2, rn + 3); |
| 7483 | |
| 7484 | rn = rb[rbc]; |
| 7485 | break; |
| 7486 | |
| 7487 | default: |
| 7488 | break; |
| 7489 | } |
| 7490 | #endif // _TARGET_X86_ |
| 7491 | |
| 7492 | #if 0 |
| 7493 | // The following is useful if you want register names to be tagged with * or ^ representing gcref or byref, respectively, |
| 7494 | // however it's possibly not interesting most of the time. |
| 7495 | if (EA_IS_GCREF(attr) || EA_IS_BYREF(attr)) |
| 7496 | { |
| 7497 | if (rn != rb[rbc]) |
| 7498 | { |
| 7499 | rbc = (rbc+1)%2; |
| 7500 | strcpy_s(rb[rbc], sizeof(rb[rbc]), rn); |
| 7501 | rn = rb[rbc]; |
| 7502 | } |
| 7503 | |
| 7504 | if (EA_IS_GCREF(attr)) |
| 7505 | { |
| 7506 | strcat_s(rb[rbc], sizeof(rb[rbc]), "*" ); |
| 7507 | } |
| 7508 | else if (EA_IS_BYREF(attr)) |
| 7509 | { |
| 7510 | strcat_s(rb[rbc], sizeof(rb[rbc]), "^" ); |
| 7511 | } |
| 7512 | } |
| 7513 | #endif // 0 |
| 7514 | |
| 7515 | return rn; |
| 7516 | } |
| 7517 | |
| 7518 | /***************************************************************************** |
| 7519 | * |
| 7520 | * Return a string that represents the given FP register. |
| 7521 | */ |
| 7522 | |
| 7523 | const char* emitter::emitFPregName(unsigned reg, bool varName) |
| 7524 | { |
| 7525 | assert(reg < REG_COUNT); |
| 7526 | |
| 7527 | return emitComp->compFPregVarName((regNumber)(reg), varName); |
| 7528 | } |
| 7529 | |
| 7530 | /***************************************************************************** |
| 7531 | * |
| 7532 | * Return a string that represents the given XMM register. |
| 7533 | */ |
| 7534 | |
| 7535 | const char* emitter::emitXMMregName(unsigned reg) |
| 7536 | { |
| 7537 | static const char* const regNames[] = { |
| 7538 | #define REGDEF(name, rnum, mask, sname) "x" sname, |
| 7539 | #include "register.h" |
| 7540 | }; |
| 7541 | |
| 7542 | assert(reg < REG_COUNT); |
| 7543 | assert(reg < _countof(regNames)); |
| 7544 | |
| 7545 | return regNames[reg]; |
| 7546 | } |
| 7547 | |
| 7548 | /***************************************************************************** |
| 7549 | * |
| 7550 | * Return a string that represents the given YMM register. |
| 7551 | */ |
| 7552 | |
| 7553 | const char* emitter::emitYMMregName(unsigned reg) |
| 7554 | { |
| 7555 | static const char* const regNames[] = { |
| 7556 | #define REGDEF(name, rnum, mask, sname) "y" sname, |
| 7557 | #include "register.h" |
| 7558 | }; |
| 7559 | |
| 7560 | assert(reg < REG_COUNT); |
| 7561 | assert(reg < _countof(regNames)); |
| 7562 | |
| 7563 | return regNames[reg]; |
| 7564 | } |
| 7565 | |
| 7566 | /***************************************************************************** |
| 7567 | * |
| 7568 | * Display a static data member reference. |
| 7569 | */ |
| 7570 | |
| 7571 | void emitter::emitDispClsVar(CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, bool reloc /* = false */) |
| 7572 | { |
| 7573 | int doffs; |
| 7574 | |
| 7575 | /* Filter out the special case of fs:[offs] */ |
| 7576 | |
| 7577 | // Munge any pointers if we want diff-able disassembly |
| 7578 | if (emitComp->opts.disDiffable) |
| 7579 | { |
| 7580 | ssize_t top12bits = (offs >> 20); |
| 7581 | if ((top12bits != 0) && (top12bits != -1)) |
| 7582 | { |
| 7583 | offs = 0xD1FFAB1E; |
| 7584 | } |
| 7585 | } |
| 7586 | |
| 7587 | if (fldHnd == FLD_GLOBAL_FS) |
| 7588 | { |
| 7589 | printf("FS:[0x%04X]" , offs); |
| 7590 | return; |
| 7591 | } |
| 7592 | |
| 7593 | if (fldHnd == FLD_GLOBAL_DS) |
| 7594 | { |
| 7595 | printf("[0x%04X]" , offs); |
| 7596 | return; |
| 7597 | } |
| 7598 | |
| 7599 | printf("[" ); |
| 7600 | |
| 7601 | doffs = Compiler::eeGetJitDataOffs(fldHnd); |
| 7602 | |
| 7603 | if (reloc) |
| 7604 | { |
| 7605 | printf("reloc " ); |
| 7606 | } |
| 7607 | |
| 7608 | if (doffs >= 0) |
| 7609 | { |
| 7610 | if (doffs & 1) |
| 7611 | { |
| 7612 | printf("@CNS%02u" , doffs - 1); |
| 7613 | } |
| 7614 | else |
| 7615 | { |
| 7616 | printf("@RWD%02u" , doffs); |
| 7617 | } |
| 7618 | |
| 7619 | if (offs) |
| 7620 | { |
| 7621 | printf("%+Id" , offs); |
| 7622 | } |
| 7623 | } |
| 7624 | else |
| 7625 | { |
| 7626 | printf("classVar[%#x]" , emitComp->dspPtr(fldHnd)); |
| 7627 | |
| 7628 | if (offs) |
| 7629 | { |
| 7630 | printf("%+Id" , offs); |
| 7631 | } |
| 7632 | } |
| 7633 | |
| 7634 | printf("]" ); |
| 7635 | |
| 7636 | if (emitComp->opts.varNames && offs < 0) |
| 7637 | { |
| 7638 | printf("'%s" , emitComp->eeGetFieldName(fldHnd)); |
| 7639 | if (offs) |
| 7640 | { |
| 7641 | printf("%+Id" , offs); |
| 7642 | } |
| 7643 | printf("'" ); |
| 7644 | } |
| 7645 | } |
| 7646 | |
| 7647 | /***************************************************************************** |
| 7648 | * |
| 7649 | * Display a stack frame reference. |
| 7650 | */ |
| 7651 | |
| 7652 | void emitter::emitDispFrameRef(int varx, int disp, int offs, bool asmfm) |
| 7653 | { |
| 7654 | int addr; |
| 7655 | bool bEBP; |
| 7656 | |
| 7657 | printf("[" ); |
| 7658 | |
| 7659 | if (!asmfm || emitComp->lvaDoneFrameLayout == Compiler::NO_FRAME_LAYOUT) |
| 7660 | { |
| 7661 | if (varx < 0) |
| 7662 | { |
| 7663 | printf("TEMP_%02u" , -varx); |
| 7664 | } |
| 7665 | else |
| 7666 | { |
| 7667 | printf("V%02u" , +varx); |
| 7668 | } |
| 7669 | |
| 7670 | if (disp < 0) |
| 7671 | { |
| 7672 | printf("-0x%X" , -disp); |
| 7673 | } |
| 7674 | else if (disp > 0) |
| 7675 | { |
| 7676 | printf("+0x%X" , +disp); |
| 7677 | } |
| 7678 | } |
| 7679 | |
| 7680 | if (emitComp->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT) |
| 7681 | { |
| 7682 | if (!asmfm) |
| 7683 | { |
| 7684 | printf(" " ); |
| 7685 | } |
| 7686 | |
| 7687 | addr = emitComp->lvaFrameAddress(varx, &bEBP) + disp; |
| 7688 | |
| 7689 | if (bEBP) |
| 7690 | { |
| 7691 | printf(STR_FPBASE); |
| 7692 | |
| 7693 | if (addr < 0) |
| 7694 | { |
| 7695 | printf("-%02XH" , -addr); |
| 7696 | } |
| 7697 | else if (addr > 0) |
| 7698 | { |
| 7699 | printf("+%02XH" , addr); |
| 7700 | } |
| 7701 | } |
| 7702 | else |
| 7703 | { |
| 7704 | /* Adjust the offset by amount currently pushed on the stack */ |
| 7705 | |
| 7706 | printf(STR_SPBASE); |
| 7707 | |
| 7708 | if (addr < 0) |
| 7709 | { |
| 7710 | printf("-%02XH" , -addr); |
| 7711 | } |
| 7712 | else if (addr > 0) |
| 7713 | { |
| 7714 | printf("+%02XH" , addr); |
| 7715 | } |
| 7716 | |
| 7717 | #if !FEATURE_FIXED_OUT_ARGS |
| 7718 | |
| 7719 | if (emitCurStackLvl) |
| 7720 | printf("+%02XH" , emitCurStackLvl); |
| 7721 | |
| 7722 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 7723 | } |
| 7724 | } |
| 7725 | |
| 7726 | printf("]" ); |
| 7727 | |
| 7728 | if (varx >= 0 && emitComp->opts.varNames) |
| 7729 | { |
| 7730 | LclVarDsc* varDsc; |
| 7731 | const char* varName; |
| 7732 | |
| 7733 | assert((unsigned)varx < emitComp->lvaCount); |
| 7734 | varDsc = emitComp->lvaTable + varx; |
| 7735 | varName = emitComp->compLocalVarName(varx, offs); |
| 7736 | |
| 7737 | if (varName) |
| 7738 | { |
| 7739 | printf("'%s" , varName); |
| 7740 | |
| 7741 | if (disp < 0) |
| 7742 | { |
| 7743 | printf("-%d" , -disp); |
| 7744 | } |
| 7745 | else if (disp > 0) |
| 7746 | { |
| 7747 | printf("+%d" , +disp); |
| 7748 | } |
| 7749 | |
| 7750 | printf("'" ); |
| 7751 | } |
| 7752 | } |
| 7753 | } |
| 7754 | |
| 7755 | /***************************************************************************** |
| 7756 | * |
| 7757 | * Display an reloc value |
| 7758 | * If we are formatting for an assembly listing don't print the hex value |
| 7759 | * since it will prevent us from doing assembly diffs |
| 7760 | */ |
| 7761 | void emitter::emitDispReloc(ssize_t value) |
| 7762 | { |
| 7763 | if (emitComp->opts.disAsm) |
| 7764 | { |
| 7765 | printf("(reloc)" ); |
| 7766 | } |
| 7767 | else |
| 7768 | { |
| 7769 | printf("(reloc 0x%Ix)" , emitComp->dspPtr(value)); |
| 7770 | } |
| 7771 | } |
| 7772 | |
| 7773 | /***************************************************************************** |
| 7774 | * |
| 7775 | * Display an address mode. |
| 7776 | */ |
| 7777 | |
| 7778 | void emitter::emitDispAddrMode(instrDesc* id, bool noDetail) |
| 7779 | { |
| 7780 | bool nsep = false; |
| 7781 | ssize_t disp; |
| 7782 | |
| 7783 | unsigned jtno = 0; |
| 7784 | dataSection* jdsc = nullptr; |
| 7785 | |
| 7786 | /* The displacement field is in an unusual place for calls */ |
| 7787 | |
| 7788 | disp = (id->idIns() == INS_call) ? emitGetInsCIdisp(id) : emitGetInsAmdAny(id); |
| 7789 | |
| 7790 | /* Display a jump table label if this is a switch table jump */ |
| 7791 | |
| 7792 | if (id->idIns() == INS_i_jmp) |
| 7793 | { |
| 7794 | UNATIVE_OFFSET offs = 0; |
| 7795 | |
| 7796 | /* Find the appropriate entry in the data section list */ |
| 7797 | |
| 7798 | for (jdsc = emitConsDsc.dsdList, jtno = 0; jdsc; jdsc = jdsc->dsNext) |
| 7799 | { |
| 7800 | UNATIVE_OFFSET size = jdsc->dsSize; |
| 7801 | |
| 7802 | /* Is this a label table? */ |
| 7803 | |
| 7804 | if (size & 1) |
| 7805 | { |
| 7806 | size--; |
| 7807 | jtno++; |
| 7808 | |
| 7809 | if (offs == id->idDebugOnlyInfo()->idMemCookie) |
| 7810 | { |
| 7811 | break; |
| 7812 | } |
| 7813 | } |
| 7814 | |
| 7815 | offs += size; |
| 7816 | } |
| 7817 | |
| 7818 | /* If we've found a matching entry then is a table jump */ |
| 7819 | |
| 7820 | if (jdsc) |
| 7821 | { |
| 7822 | if (id->idIsDspReloc()) |
| 7823 | { |
| 7824 | printf("reloc " ); |
| 7825 | } |
| 7826 | printf("J_M%03u_DS%02u" , Compiler::s_compMethodsCount, id->idDebugOnlyInfo()->idMemCookie); |
| 7827 | } |
| 7828 | |
| 7829 | disp -= id->idDebugOnlyInfo()->idMemCookie; |
| 7830 | } |
| 7831 | |
| 7832 | bool frameRef = false; |
| 7833 | |
| 7834 | printf("[" ); |
| 7835 | |
| 7836 | if (id->idAddr()->iiaAddrMode.amBaseReg != REG_NA) |
| 7837 | { |
| 7838 | printf("%s" , emitRegName(id->idAddr()->iiaAddrMode.amBaseReg)); |
| 7839 | nsep = true; |
| 7840 | if (id->idAddr()->iiaAddrMode.amBaseReg == REG_ESP) |
| 7841 | { |
| 7842 | frameRef = true; |
| 7843 | } |
| 7844 | else if (emitComp->isFramePointerUsed() && id->idAddr()->iiaAddrMode.amBaseReg == REG_EBP) |
| 7845 | { |
| 7846 | frameRef = true; |
| 7847 | } |
| 7848 | } |
| 7849 | |
| 7850 | if (id->idAddr()->iiaAddrMode.amIndxReg != REG_NA) |
| 7851 | { |
| 7852 | size_t scale = emitDecodeScale(id->idAddr()->iiaAddrMode.amScale); |
| 7853 | |
| 7854 | if (nsep) |
| 7855 | { |
| 7856 | printf("+" ); |
| 7857 | } |
| 7858 | if (scale > 1) |
| 7859 | { |
| 7860 | printf("%u*" , scale); |
| 7861 | } |
| 7862 | printf("%s" , emitRegName(id->idAddr()->iiaAddrMode.amIndxReg)); |
| 7863 | nsep = true; |
| 7864 | } |
| 7865 | |
| 7866 | if ((id->idIsDspReloc()) && (id->idIns() != INS_i_jmp)) |
| 7867 | { |
| 7868 | if (nsep) |
| 7869 | { |
| 7870 | printf("+" ); |
| 7871 | } |
| 7872 | emitDispReloc(disp); |
| 7873 | } |
| 7874 | else |
| 7875 | { |
| 7876 | // Munge any pointers if we want diff-able disassembly |
| 7877 | // It's assumed to be a pointer when disp is outside of the range (-1M, +1M); top bits are not 0 or -1 |
| 7878 | if (!frameRef && emitComp->opts.disDiffable && (static_cast<size_t>((disp >> 20) + 1) > 1)) |
| 7879 | { |
| 7880 | if (nsep) |
| 7881 | { |
| 7882 | printf("+" ); |
| 7883 | } |
| 7884 | printf("D1FFAB1EH" ); |
| 7885 | } |
| 7886 | else if (disp > 0) |
| 7887 | { |
| 7888 | if (nsep) |
| 7889 | { |
| 7890 | printf("+" ); |
| 7891 | } |
| 7892 | if (frameRef) |
| 7893 | { |
| 7894 | printf("%02XH" , disp); |
| 7895 | } |
| 7896 | else if (disp < 1000) |
| 7897 | { |
| 7898 | printf("%d" , disp); |
| 7899 | } |
| 7900 | else if (disp <= 0xFFFF) |
| 7901 | { |
| 7902 | printf("%04XH" , disp); |
| 7903 | } |
| 7904 | else |
| 7905 | { |
| 7906 | printf("%08XH" , disp); |
| 7907 | } |
| 7908 | } |
| 7909 | else if (disp < 0) |
| 7910 | { |
| 7911 | if (frameRef) |
| 7912 | { |
| 7913 | printf("-%02XH" , -disp); |
| 7914 | } |
| 7915 | else if (disp > -1000) |
| 7916 | { |
| 7917 | printf("-%d" , -disp); |
| 7918 | } |
| 7919 | else if (disp >= -0xFFFF) |
| 7920 | { |
| 7921 | printf("-%04XH" , -disp); |
| 7922 | } |
| 7923 | else if (disp < -0xFFFFFF) |
| 7924 | { |
| 7925 | if (nsep) |
| 7926 | { |
| 7927 | printf("+" ); |
| 7928 | } |
| 7929 | printf("%08XH" , disp); |
| 7930 | } |
| 7931 | else |
| 7932 | { |
| 7933 | printf("-%08XH" , -disp); |
| 7934 | } |
| 7935 | } |
| 7936 | else if (!nsep) |
| 7937 | { |
| 7938 | printf("%04XH" , disp); |
| 7939 | } |
| 7940 | } |
| 7941 | |
| 7942 | printf("]" ); |
| 7943 | |
| 7944 | // pretty print string if it looks like one |
| 7945 | if ((id->idGCref() == GCT_GCREF) && (id->idIns() == INS_mov) && (id->idAddr()->iiaAddrMode.amBaseReg == REG_NA)) |
| 7946 | { |
| 7947 | const wchar_t* str = emitComp->eeGetCPString(disp); |
| 7948 | if (str != nullptr) |
| 7949 | { |
| 7950 | printf(" '%S'" , str); |
| 7951 | } |
| 7952 | } |
| 7953 | |
| 7954 | if (jdsc && !noDetail) |
| 7955 | { |
| 7956 | unsigned cnt = (jdsc->dsSize - 1) / TARGET_POINTER_SIZE; |
| 7957 | BasicBlock** bbp = (BasicBlock**)jdsc->dsCont; |
| 7958 | |
| 7959 | #ifdef _TARGET_AMD64_ |
| 7960 | #define SIZE_LETTER "Q" |
| 7961 | #else |
| 7962 | #define SIZE_LETTER "D" |
| 7963 | #endif |
| 7964 | printf("\n\n J_M%03u_DS%02u LABEL " SIZE_LETTER "WORD" , Compiler::s_compMethodsCount, jtno); |
| 7965 | |
| 7966 | /* Display the label table (it's stored as "BasicBlock*" values) */ |
| 7967 | |
| 7968 | do |
| 7969 | { |
| 7970 | insGroup* lab; |
| 7971 | |
| 7972 | /* Convert the BasicBlock* value to an IG address */ |
| 7973 | |
| 7974 | lab = (insGroup*)emitCodeGetCookie(*bbp++); |
| 7975 | assert(lab); |
| 7976 | |
| 7977 | printf("\n D" SIZE_LETTER " G_M%03u_IG%02u" , Compiler::s_compMethodsCount, lab->igNum); |
| 7978 | } while (--cnt); |
| 7979 | } |
| 7980 | } |
| 7981 | |
| 7982 | /***************************************************************************** |
| 7983 | * |
| 7984 | * If the given instruction is a shift, display the 2nd operand. |
| 7985 | */ |
| 7986 | |
| 7987 | void emitter::emitDispShift(instruction ins, int cnt) |
| 7988 | { |
| 7989 | switch (ins) |
| 7990 | { |
| 7991 | case INS_rcl_1: |
| 7992 | case INS_rcr_1: |
| 7993 | case INS_rol_1: |
| 7994 | case INS_ror_1: |
| 7995 | case INS_shl_1: |
| 7996 | case INS_shr_1: |
| 7997 | case INS_sar_1: |
| 7998 | printf(", 1" ); |
| 7999 | break; |
| 8000 | |
| 8001 | case INS_rcl: |
| 8002 | case INS_rcr: |
| 8003 | case INS_rol: |
| 8004 | case INS_ror: |
| 8005 | case INS_shl: |
| 8006 | case INS_shr: |
| 8007 | case INS_sar: |
| 8008 | printf(", cl" ); |
| 8009 | break; |
| 8010 | |
| 8011 | case INS_rcl_N: |
| 8012 | case INS_rcr_N: |
| 8013 | case INS_rol_N: |
| 8014 | case INS_ror_N: |
| 8015 | case INS_shl_N: |
| 8016 | case INS_shr_N: |
| 8017 | case INS_sar_N: |
| 8018 | printf(", %d" , cnt); |
| 8019 | break; |
| 8020 | |
| 8021 | default: |
| 8022 | break; |
| 8023 | } |
| 8024 | } |
| 8025 | |
| 8026 | /***************************************************************************** |
| 8027 | * |
| 8028 | * Display (optionally) the bytes for the instruction encoding in hex |
| 8029 | */ |
| 8030 | |
| 8031 | void emitter::emitDispInsHex(BYTE* code, size_t sz) |
| 8032 | { |
| 8033 | // We do not display the instruction hex if we want diff-able disassembly |
| 8034 | if (!emitComp->opts.disDiffable) |
| 8035 | { |
| 8036 | #ifdef _TARGET_AMD64_ |
| 8037 | // how many bytes per instruction we format for |
| 8038 | const size_t digits = 10; |
| 8039 | #else // _TARGET_X86 |
| 8040 | const size_t digits = 6; |
| 8041 | #endif |
| 8042 | printf(" " ); |
| 8043 | for (unsigned i = 0; i < sz; i++) |
| 8044 | { |
| 8045 | printf("%02X" , (*((BYTE*)(code + i)))); |
| 8046 | } |
| 8047 | |
| 8048 | if (sz < digits) |
| 8049 | { |
| 8050 | printf("%.*s" , 2 * (digits - sz), " " ); |
| 8051 | } |
| 8052 | } |
| 8053 | } |
| 8054 | |
| 8055 | /***************************************************************************** |
| 8056 | * |
| 8057 | * Display the given instruction. |
| 8058 | */ |
| 8059 | |
| 8060 | void emitter::emitDispIns( |
| 8061 | instrDesc* id, bool isNew, bool doffs, bool asmfm, unsigned offset, BYTE* code, size_t sz, insGroup* ig) |
| 8062 | { |
| 8063 | emitAttr attr; |
| 8064 | const char* sstr; |
| 8065 | |
| 8066 | instruction ins = id->idIns(); |
| 8067 | |
| 8068 | if (emitComp->verbose) |
| 8069 | { |
| 8070 | unsigned idNum = id->idDebugOnlyInfo()->idNum; |
| 8071 | printf("IN%04x: " , idNum); |
| 8072 | } |
| 8073 | |
| 8074 | #define ID_INFO_DSP_RELOC ((bool)(id->idIsDspReloc())) |
| 8075 | |
| 8076 | /* Display a constant value if the instruction references one */ |
| 8077 | |
| 8078 | if (!isNew) |
| 8079 | { |
| 8080 | switch (id->idInsFmt()) |
| 8081 | { |
| 8082 | int offs; |
| 8083 | |
| 8084 | case IF_MRD_RRD: |
| 8085 | case IF_MWR_RRD: |
| 8086 | case IF_MRW_RRD: |
| 8087 | |
| 8088 | case IF_RRD_MRD: |
| 8089 | case IF_RWR_MRD: |
| 8090 | case IF_RRW_MRD: |
| 8091 | |
| 8092 | case IF_MRD_CNS: |
| 8093 | case IF_MWR_CNS: |
| 8094 | case IF_MRW_CNS: |
| 8095 | case IF_MRW_SHF: |
| 8096 | |
| 8097 | case IF_MRD: |
| 8098 | case IF_MWR: |
| 8099 | case IF_MRW: |
| 8100 | |
| 8101 | case IF_MRD_OFF: |
| 8102 | |
| 8103 | /* Is this actually a reference to a data section? */ |
| 8104 | |
| 8105 | offs = Compiler::eeGetJitDataOffs(id->idAddr()->iiaFieldHnd); |
| 8106 | |
| 8107 | if (offs >= 0) |
| 8108 | { |
| 8109 | void* addr; |
| 8110 | |
| 8111 | /* Display a data section reference */ |
| 8112 | |
| 8113 | assert((unsigned)offs < emitConsDsc.dsdOffs); |
| 8114 | addr = emitConsBlock ? emitConsBlock + offs : nullptr; |
| 8115 | |
| 8116 | #if 0 |
| 8117 | // TODO-XArch-Cleanup: Fix or remove this code. |
| 8118 | /* Is the operand an integer or floating-point value? */ |
| 8119 | |
| 8120 | bool isFP = false; |
| 8121 | |
| 8122 | if (CodeGen::instIsFP(id->idIns())) |
| 8123 | { |
| 8124 | switch (id->idIns()) |
| 8125 | { |
| 8126 | case INS_fild: |
| 8127 | case INS_fildl: |
| 8128 | break; |
| 8129 | |
| 8130 | default: |
| 8131 | isFP = true; |
| 8132 | break; |
| 8133 | } |
| 8134 | } |
| 8135 | |
| 8136 | if (offs & 1) |
| 8137 | printf("@CNS%02u" , offs); |
| 8138 | else |
| 8139 | printf("@RWD%02u" , offs); |
| 8140 | |
| 8141 | printf(" " ); |
| 8142 | |
| 8143 | if (addr) |
| 8144 | { |
| 8145 | addr = 0; |
| 8146 | // TODO-XArch-Bug?: |
| 8147 | // This was busted by switching the order |
| 8148 | // in which we output the code block vs. |
| 8149 | // the data blocks -- when we get here, |
| 8150 | // the data block has not been filled in |
| 8151 | // yet, so we'll display garbage. |
| 8152 | |
| 8153 | if (isFP) |
| 8154 | { |
| 8155 | if (id->idOpSize() == EA_4BYTE) |
| 8156 | printf("DF %f \n" , addr ? *(float *)addr : 0); |
| 8157 | else |
| 8158 | printf("DQ %lf\n" , addr ? *(double *)addr : 0); |
| 8159 | } |
| 8160 | else |
| 8161 | { |
| 8162 | if (id->idOpSize() <= EA_4BYTE) |
| 8163 | printf("DD %d \n" , addr ? *(int *)addr : 0); |
| 8164 | else |
| 8165 | printf("DQ %D \n" , addr ? *(__int64 *)addr : 0); |
| 8166 | } |
| 8167 | } |
| 8168 | #endif |
| 8169 | } |
| 8170 | break; |
| 8171 | |
| 8172 | default: |
| 8173 | break; |
| 8174 | } |
| 8175 | } |
| 8176 | |
| 8177 | // printf("[F=%s] " , emitIfName(id->idInsFmt())); |
| 8178 | // printf("INS#%03u: ", id->idDebugOnlyInfo()->idNum); |
| 8179 | // printf("[S=%02u] " , emitCurStackLvl); if (isNew) printf("[M=%02u] ", emitMaxStackDepth); |
| 8180 | // printf("[S=%02u] " , emitCurStackLvl/sizeof(INT32)); |
| 8181 | // printf("[A=%08X] " , emitSimpleStkMask); |
| 8182 | // printf("[A=%08X] " , emitSimpleByrefStkMask); |
| 8183 | // printf("[L=%02u] " , id->idCodeSize()); |
| 8184 | |
| 8185 | if (!emitComp->opts.dspEmit && !isNew && !asmfm) |
| 8186 | { |
| 8187 | doffs = true; |
| 8188 | } |
| 8189 | |
| 8190 | /* Display the instruction offset */ |
| 8191 | |
| 8192 | emitDispInsOffs(offset, doffs); |
| 8193 | |
| 8194 | if (code != nullptr) |
| 8195 | { |
| 8196 | /* Display the instruction hex code */ |
| 8197 | |
| 8198 | emitDispInsHex(code, sz); |
| 8199 | } |
| 8200 | |
| 8201 | /* Display the instruction name */ |
| 8202 | |
| 8203 | sstr = codeGen->genInsName(ins); |
| 8204 | |
| 8205 | if (IsAVXInstruction(ins) && !IsBMIInstruction(ins)) |
| 8206 | { |
| 8207 | printf(" v%-8s" , sstr); |
| 8208 | } |
| 8209 | else |
| 8210 | { |
| 8211 | printf(" %-9s" , sstr); |
| 8212 | } |
| 8213 | #ifndef FEATURE_PAL |
| 8214 | if (strnlen_s(sstr, 10) >= 8) |
| 8215 | #else // FEATURE_PAL |
| 8216 | if (strnlen(sstr, 10) >= 8) |
| 8217 | #endif // FEATURE_PAL |
| 8218 | { |
| 8219 | printf(" " ); |
| 8220 | } |
| 8221 | |
| 8222 | /* By now the size better be set to something */ |
| 8223 | |
| 8224 | assert(emitInstCodeSz(id) || emitInstHasNoCode(ins)); |
| 8225 | |
| 8226 | /* Figure out the operand size */ |
| 8227 | |
| 8228 | if (id->idGCref() == GCT_GCREF) |
| 8229 | { |
| 8230 | attr = EA_GCREF; |
| 8231 | sstr = "gword ptr " ; |
| 8232 | } |
| 8233 | else if (id->idGCref() == GCT_BYREF) |
| 8234 | { |
| 8235 | attr = EA_BYREF; |
| 8236 | sstr = "bword ptr " ; |
| 8237 | } |
| 8238 | else |
| 8239 | { |
| 8240 | attr = id->idOpSize(); |
| 8241 | sstr = codeGen->genSizeStr(attr); |
| 8242 | |
| 8243 | if (ins == INS_lea) |
| 8244 | { |
| 8245 | #ifdef _TARGET_AMD64_ |
| 8246 | assert((attr == EA_4BYTE) || (attr == EA_8BYTE)); |
| 8247 | #else |
| 8248 | assert(attr == EA_4BYTE); |
| 8249 | #endif |
| 8250 | sstr = "" ; |
| 8251 | } |
| 8252 | } |
| 8253 | |
| 8254 | /* Now see what instruction format we've got */ |
| 8255 | |
| 8256 | // First print the implicit register usage |
| 8257 | if (instrHasImplicitRegPairDest(ins)) |
| 8258 | { |
| 8259 | printf("%s:%s, " , emitRegName(REG_EDX, id->idOpSize()), emitRegName(REG_EAX, id->idOpSize())); |
| 8260 | } |
| 8261 | else if (instrIs3opImul(ins)) |
| 8262 | { |
| 8263 | regNumber tgtReg = inst3opImulReg(ins); |
| 8264 | printf("%s, " , emitRegName(tgtReg, id->idOpSize())); |
| 8265 | } |
| 8266 | |
| 8267 | switch (id->idInsFmt()) |
| 8268 | { |
| 8269 | ssize_t val; |
| 8270 | ssize_t offs; |
| 8271 | CnsVal cnsVal; |
| 8272 | const char* methodName; |
| 8273 | |
| 8274 | case IF_CNS: |
| 8275 | val = emitGetInsSC(id); |
| 8276 | #ifdef _TARGET_AMD64_ |
| 8277 | // no 8-byte immediates allowed here! |
| 8278 | assert((val >= (ssize_t)0xFFFFFFFF80000000LL) && (val <= 0x000000007FFFFFFFLL)); |
| 8279 | #endif |
| 8280 | if (id->idIsCnsReloc()) |
| 8281 | { |
| 8282 | emitDispReloc(val); |
| 8283 | } |
| 8284 | else |
| 8285 | { |
| 8286 | PRINT_CONSTANT: |
| 8287 | // Munge any pointers if we want diff-able disassembly |
| 8288 | if (emitComp->opts.disDiffable) |
| 8289 | { |
| 8290 | ssize_t top14bits = (val >> 18); |
| 8291 | if ((top14bits != 0) && (top14bits != -1)) |
| 8292 | { |
| 8293 | val = 0xD1FFAB1E; |
| 8294 | } |
| 8295 | } |
| 8296 | if ((val > -1000) && (val < 1000)) |
| 8297 | { |
| 8298 | printf("%d" , val); |
| 8299 | } |
| 8300 | else if ((val > 0) || (val < -0xFFFFFF)) |
| 8301 | { |
| 8302 | printf("0x%IX" , val); |
| 8303 | } |
| 8304 | else |
| 8305 | { // (val < 0) |
| 8306 | printf("-0x%IX" , -val); |
| 8307 | } |
| 8308 | } |
| 8309 | break; |
| 8310 | |
| 8311 | case IF_ARD: |
| 8312 | case IF_AWR: |
| 8313 | case IF_ARW: |
| 8314 | |
| 8315 | if (ins == INS_call && id->idIsCallRegPtr()) |
| 8316 | { |
| 8317 | printf("%s" , emitRegName(id->idAddr()->iiaAddrMode.amBaseReg)); |
| 8318 | break; |
| 8319 | } |
| 8320 | |
| 8321 | printf("%s" , sstr); |
| 8322 | emitDispAddrMode(id, isNew); |
| 8323 | emitDispShift(ins); |
| 8324 | |
| 8325 | if (ins == INS_call) |
| 8326 | { |
| 8327 | assert(id->idInsFmt() == IF_ARD); |
| 8328 | |
| 8329 | /* Ignore indirect calls */ |
| 8330 | |
| 8331 | if (id->idDebugOnlyInfo()->idMemCookie == 0) |
| 8332 | { |
| 8333 | break; |
| 8334 | } |
| 8335 | |
| 8336 | assert(id->idDebugOnlyInfo()->idMemCookie); |
| 8337 | |
| 8338 | /* This is a virtual call */ |
| 8339 | |
| 8340 | methodName = emitComp->eeGetMethodFullName((CORINFO_METHOD_HANDLE)id->idDebugOnlyInfo()->idMemCookie); |
| 8341 | printf("%s" , methodName); |
| 8342 | } |
| 8343 | break; |
| 8344 | |
| 8345 | case IF_RRD_ARD: |
| 8346 | case IF_RWR_ARD: |
| 8347 | case IF_RRW_ARD: |
| 8348 | #ifdef _TARGET_AMD64_ |
| 8349 | if (ins == INS_movsxd) |
| 8350 | { |
| 8351 | printf("%s, %s" , emitRegName(id->idReg1(), EA_8BYTE), sstr); |
| 8352 | } |
| 8353 | else |
| 8354 | #endif |
| 8355 | if (ins == INS_movsx || ins == INS_movzx) |
| 8356 | { |
| 8357 | printf("%s, %s" , emitRegName(id->idReg1(), EA_PTRSIZE), sstr); |
| 8358 | } |
| 8359 | else if ((ins == INS_crc32) && (attr != EA_8BYTE)) |
| 8360 | { |
| 8361 | // The idReg1 is always 4 bytes, but the size of idReg2 can vary. |
| 8362 | // This logic ensures that we print `crc32 eax, bx` instead of `crc32 ax, bx` |
| 8363 | printf("%s, %s" , emitRegName(id->idReg1(), EA_4BYTE), emitRegName(id->idReg2(), attr)); |
| 8364 | } |
| 8365 | else |
| 8366 | { |
| 8367 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8368 | } |
| 8369 | emitDispAddrMode(id); |
| 8370 | break; |
| 8371 | |
| 8372 | case IF_RRW_ARD_CNS: |
| 8373 | case IF_RWR_ARD_CNS: |
| 8374 | { |
| 8375 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8376 | emitDispAddrMode(id); |
| 8377 | emitGetInsAmdCns(id, &cnsVal); |
| 8378 | |
| 8379 | val = cnsVal.cnsVal; |
| 8380 | printf(", " ); |
| 8381 | |
| 8382 | if (cnsVal.cnsReloc) |
| 8383 | { |
| 8384 | emitDispReloc(val); |
| 8385 | } |
| 8386 | else |
| 8387 | { |
| 8388 | goto PRINT_CONSTANT; |
| 8389 | } |
| 8390 | |
| 8391 | break; |
| 8392 | } |
| 8393 | |
| 8394 | case IF_AWR_RRD_CNS: |
| 8395 | { |
| 8396 | assert(ins == INS_vextracti128 || ins == INS_vextractf128); |
| 8397 | // vextracti/f128 extracts 128-bit data, so we fix sstr as "xmm ptr" |
| 8398 | sstr = codeGen->genSizeStr(EA_ATTR(16)); |
| 8399 | printf(sstr); |
| 8400 | emitDispAddrMode(id); |
| 8401 | printf(", %s" , emitRegName(id->idReg1(), attr)); |
| 8402 | |
| 8403 | emitGetInsAmdCns(id, &cnsVal); |
| 8404 | |
| 8405 | val = cnsVal.cnsVal; |
| 8406 | printf(", " ); |
| 8407 | |
| 8408 | if (cnsVal.cnsReloc) |
| 8409 | { |
| 8410 | emitDispReloc(val); |
| 8411 | } |
| 8412 | else |
| 8413 | { |
| 8414 | goto PRINT_CONSTANT; |
| 8415 | } |
| 8416 | |
| 8417 | break; |
| 8418 | } |
| 8419 | |
| 8420 | case IF_RWR_RRD_ARD: |
| 8421 | printf("%s, %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr), sstr); |
| 8422 | emitDispAddrMode(id); |
| 8423 | break; |
| 8424 | |
| 8425 | case IF_RWR_ARD_RRD: |
| 8426 | if (ins == INS_vpgatherqd || ins == INS_vgatherqps) |
| 8427 | { |
| 8428 | attr = EA_16BYTE; |
| 8429 | } |
| 8430 | sstr = codeGen->genSizeStr(EA_ATTR(4)); |
| 8431 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8432 | emitDispAddrMode(id); |
| 8433 | printf(", %s" , emitRegName(id->idReg2(), attr)); |
| 8434 | break; |
| 8435 | |
| 8436 | case IF_RWR_RRD_ARD_CNS: |
| 8437 | { |
| 8438 | printf("%s, %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr), sstr); |
| 8439 | emitDispAddrMode(id); |
| 8440 | emitGetInsAmdCns(id, &cnsVal); |
| 8441 | |
| 8442 | val = cnsVal.cnsVal; |
| 8443 | printf(", " ); |
| 8444 | |
| 8445 | if (cnsVal.cnsReloc) |
| 8446 | { |
| 8447 | emitDispReloc(val); |
| 8448 | } |
| 8449 | else |
| 8450 | { |
| 8451 | goto PRINT_CONSTANT; |
| 8452 | } |
| 8453 | |
| 8454 | break; |
| 8455 | } |
| 8456 | |
| 8457 | case IF_RWR_RRD_ARD_RRD: |
| 8458 | { |
| 8459 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8460 | printf("%s, " , emitRegName(id->idReg2(), attr)); |
| 8461 | emitDispAddrMode(id); |
| 8462 | |
| 8463 | emitGetInsAmdCns(id, &cnsVal); |
| 8464 | val = (cnsVal.cnsVal >> 4) + XMMBASE; |
| 8465 | printf(", %s" , emitRegName((regNumber)val, attr)); |
| 8466 | break; |
| 8467 | } |
| 8468 | |
| 8469 | case IF_ARD_RRD: |
| 8470 | case IF_AWR_RRD: |
| 8471 | case IF_ARW_RRD: |
| 8472 | |
| 8473 | printf("%s" , sstr); |
| 8474 | emitDispAddrMode(id); |
| 8475 | printf(", %s" , emitRegName(id->idReg1(), attr)); |
| 8476 | break; |
| 8477 | |
| 8478 | case IF_AWR_RRD_RRD: |
| 8479 | { |
| 8480 | printf("%s" , sstr); |
| 8481 | emitDispAddrMode(id); |
| 8482 | printf(", %s" , emitRegName(id->idReg1(), attr)); |
| 8483 | printf(", %s" , emitRegName(id->idReg2(), attr)); |
| 8484 | break; |
| 8485 | } |
| 8486 | |
| 8487 | case IF_ARD_CNS: |
| 8488 | case IF_AWR_CNS: |
| 8489 | case IF_ARW_CNS: |
| 8490 | case IF_ARW_SHF: |
| 8491 | |
| 8492 | printf("%s" , sstr); |
| 8493 | emitDispAddrMode(id); |
| 8494 | emitGetInsAmdCns(id, &cnsVal); |
| 8495 | val = cnsVal.cnsVal; |
| 8496 | #ifdef _TARGET_AMD64_ |
| 8497 | // no 8-byte immediates allowed here! |
| 8498 | assert((val >= (ssize_t)0xFFFFFFFF80000000LL) && (val <= 0x000000007FFFFFFFLL)); |
| 8499 | #endif |
| 8500 | if (id->idInsFmt() == IF_ARW_SHF) |
| 8501 | { |
| 8502 | emitDispShift(ins, (BYTE)val); |
| 8503 | } |
| 8504 | else |
| 8505 | { |
| 8506 | printf(", " ); |
| 8507 | if (cnsVal.cnsReloc) |
| 8508 | { |
| 8509 | emitDispReloc(val); |
| 8510 | } |
| 8511 | else |
| 8512 | { |
| 8513 | goto PRINT_CONSTANT; |
| 8514 | } |
| 8515 | } |
| 8516 | break; |
| 8517 | |
| 8518 | case IF_SRD: |
| 8519 | case IF_SWR: |
| 8520 | case IF_SRW: |
| 8521 | |
| 8522 | printf("%s" , sstr); |
| 8523 | |
| 8524 | #if !FEATURE_FIXED_OUT_ARGS |
| 8525 | if (ins == INS_pop) |
| 8526 | emitCurStackLvl -= sizeof(int); |
| 8527 | #endif |
| 8528 | |
| 8529 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8530 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8531 | |
| 8532 | #if !FEATURE_FIXED_OUT_ARGS |
| 8533 | if (ins == INS_pop) |
| 8534 | emitCurStackLvl += sizeof(int); |
| 8535 | #endif |
| 8536 | |
| 8537 | emitDispShift(ins); |
| 8538 | break; |
| 8539 | |
| 8540 | case IF_SRD_RRD: |
| 8541 | case IF_SWR_RRD: |
| 8542 | case IF_SRW_RRD: |
| 8543 | |
| 8544 | printf("%s" , sstr); |
| 8545 | |
| 8546 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8547 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8548 | |
| 8549 | printf(", %s" , emitRegName(id->idReg1(), attr)); |
| 8550 | break; |
| 8551 | |
| 8552 | case IF_SRD_CNS: |
| 8553 | case IF_SWR_CNS: |
| 8554 | case IF_SRW_CNS: |
| 8555 | case IF_SRW_SHF: |
| 8556 | |
| 8557 | printf("%s" , sstr); |
| 8558 | |
| 8559 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8560 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8561 | |
| 8562 | emitGetInsCns(id, &cnsVal); |
| 8563 | val = cnsVal.cnsVal; |
| 8564 | #ifdef _TARGET_AMD64_ |
| 8565 | // no 8-byte immediates allowed here! |
| 8566 | assert((val >= (ssize_t)0xFFFFFFFF80000000LL) && (val <= 0x000000007FFFFFFFLL)); |
| 8567 | #endif |
| 8568 | if (id->idInsFmt() == IF_SRW_SHF) |
| 8569 | { |
| 8570 | emitDispShift(ins, (BYTE)val); |
| 8571 | } |
| 8572 | else |
| 8573 | { |
| 8574 | printf(", " ); |
| 8575 | if (cnsVal.cnsReloc) |
| 8576 | { |
| 8577 | emitDispReloc(val); |
| 8578 | } |
| 8579 | else |
| 8580 | { |
| 8581 | goto PRINT_CONSTANT; |
| 8582 | } |
| 8583 | } |
| 8584 | break; |
| 8585 | |
| 8586 | case IF_RRD_SRD: |
| 8587 | case IF_RWR_SRD: |
| 8588 | case IF_RRW_SRD: |
| 8589 | #ifdef _TARGET_AMD64_ |
| 8590 | if (ins == INS_movsxd) |
| 8591 | { |
| 8592 | printf("%s, %s" , emitRegName(id->idReg1(), EA_8BYTE), sstr); |
| 8593 | } |
| 8594 | else |
| 8595 | #endif |
| 8596 | if (ins == INS_movsx || ins == INS_movzx) |
| 8597 | { |
| 8598 | printf("%s, %s" , emitRegName(id->idReg1(), EA_PTRSIZE), sstr); |
| 8599 | } |
| 8600 | else if ((ins == INS_crc32) && (attr != EA_8BYTE)) |
| 8601 | { |
| 8602 | // The idReg1 is always 4 bytes, but the size of idReg2 can vary. |
| 8603 | // This logic ensures that we print `crc32 eax, bx` instead of `crc32 ax, bx` |
| 8604 | printf("%s, %s" , emitRegName(id->idReg1(), EA_4BYTE), emitRegName(id->idReg2(), attr)); |
| 8605 | } |
| 8606 | else |
| 8607 | { |
| 8608 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8609 | } |
| 8610 | |
| 8611 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8612 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8613 | |
| 8614 | break; |
| 8615 | |
| 8616 | case IF_RRW_SRD_CNS: |
| 8617 | case IF_RWR_SRD_CNS: |
| 8618 | { |
| 8619 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8620 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8621 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8622 | emitGetInsCns(id, &cnsVal); |
| 8623 | |
| 8624 | val = cnsVal.cnsVal; |
| 8625 | printf(", " ); |
| 8626 | |
| 8627 | if (cnsVal.cnsReloc) |
| 8628 | { |
| 8629 | emitDispReloc(val); |
| 8630 | } |
| 8631 | else |
| 8632 | { |
| 8633 | goto PRINT_CONSTANT; |
| 8634 | } |
| 8635 | break; |
| 8636 | } |
| 8637 | |
| 8638 | case IF_RWR_RRD_SRD: |
| 8639 | printf("%s, %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr), sstr); |
| 8640 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8641 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8642 | break; |
| 8643 | |
| 8644 | case IF_RWR_RRD_SRD_CNS: |
| 8645 | { |
| 8646 | printf("%s, %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr), sstr); |
| 8647 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8648 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8649 | emitGetInsCns(id, &cnsVal); |
| 8650 | |
| 8651 | val = cnsVal.cnsVal; |
| 8652 | printf(", " ); |
| 8653 | |
| 8654 | if (cnsVal.cnsReloc) |
| 8655 | { |
| 8656 | emitDispReloc(val); |
| 8657 | } |
| 8658 | else |
| 8659 | { |
| 8660 | goto PRINT_CONSTANT; |
| 8661 | } |
| 8662 | break; |
| 8663 | } |
| 8664 | |
| 8665 | case IF_RWR_RRD_SRD_RRD: |
| 8666 | { |
| 8667 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8668 | printf("%s, " , emitRegName(id->idReg2(), attr)); |
| 8669 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 8670 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 8671 | |
| 8672 | emitGetInsCns(id, &cnsVal); |
| 8673 | val = (cnsVal.cnsVal >> 4) + XMMBASE; |
| 8674 | printf(", %s" , emitRegName((regNumber)val, attr)); |
| 8675 | break; |
| 8676 | } |
| 8677 | |
| 8678 | case IF_RRD_RRD: |
| 8679 | case IF_RWR_RRD: |
| 8680 | case IF_RRW_RRD: |
| 8681 | if (ins == INS_mov_i2xmm) |
| 8682 | { |
| 8683 | printf("%s, %s" , emitRegName(id->idReg1(), EA_16BYTE), emitRegName(id->idReg2(), attr)); |
| 8684 | } |
| 8685 | else if (ins == INS_mov_xmm2i) |
| 8686 | { |
| 8687 | printf("%s, %s" , emitRegName(id->idReg2(), attr), emitRegName(id->idReg1(), EA_16BYTE)); |
| 8688 | } |
| 8689 | else if (ins == INS_pmovmskb) |
| 8690 | { |
| 8691 | printf("%s, %s" , emitRegName(id->idReg1(), EA_4BYTE), emitRegName(id->idReg2(), attr)); |
| 8692 | } |
| 8693 | else if ((ins == INS_cvtsi2ss) || (ins == INS_cvtsi2sd)) |
| 8694 | { |
| 8695 | printf(" %s, %s" , emitRegName(id->idReg1(), EA_16BYTE), emitRegName(id->idReg2(), attr)); |
| 8696 | } |
| 8697 | else if ((ins == INS_cvttsd2si) || (ins == INS_cvtss2si) || (ins == INS_cvtsd2si) || (ins == INS_cvttss2si)) |
| 8698 | { |
| 8699 | printf(" %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), EA_16BYTE)); |
| 8700 | } |
| 8701 | #ifdef _TARGET_AMD64_ |
| 8702 | else if (ins == INS_movsxd) |
| 8703 | { |
| 8704 | printf("%s, %s" , emitRegName(id->idReg1(), EA_8BYTE), emitRegName(id->idReg2(), EA_4BYTE)); |
| 8705 | } |
| 8706 | #endif // _TARGET_AMD64_ |
| 8707 | else if (ins == INS_movsx || ins == INS_movzx) |
| 8708 | { |
| 8709 | printf("%s, %s" , emitRegName(id->idReg1(), EA_PTRSIZE), emitRegName(id->idReg2(), attr)); |
| 8710 | } |
| 8711 | else if (ins == INS_bt) |
| 8712 | { |
| 8713 | // INS_bt operands are reversed. Display them in the normal order. |
| 8714 | printf("%s, %s" , emitRegName(id->idReg2(), attr), emitRegName(id->idReg1(), attr)); |
| 8715 | } |
| 8716 | #ifdef FEATURE_HW_INTRINSICS |
| 8717 | else if (ins == INS_crc32 && attr != EA_8BYTE) |
| 8718 | { |
| 8719 | // The idReg1 is always 4 bytes, but the size of idReg2 can vary. |
| 8720 | // This logic ensures that we print `crc32 eax, bx` instead of `crc32 ax, bx` |
| 8721 | printf("%s, %s" , emitRegName(id->idReg1(), EA_4BYTE), emitRegName(id->idReg2(), attr)); |
| 8722 | } |
| 8723 | #endif // FEATURE_HW_INTRINSICS |
| 8724 | else |
| 8725 | { |
| 8726 | printf("%s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr)); |
| 8727 | } |
| 8728 | break; |
| 8729 | |
| 8730 | case IF_RRW_RRW: |
| 8731 | assert(ins == INS_xchg); |
| 8732 | printf("%s," , emitRegName(id->idReg1(), attr)); |
| 8733 | printf(" %s" , emitRegName(id->idReg2(), attr)); |
| 8734 | break; |
| 8735 | |
| 8736 | case IF_RWR_RRD_RRD: |
| 8737 | { |
| 8738 | assert(IsAVXInstruction(ins)); |
| 8739 | assert(IsThreeOperandAVXInstruction(ins)); |
| 8740 | regNumber reg2 = id->idReg2(); |
| 8741 | regNumber reg3 = id->idReg3(); |
| 8742 | if (ins == INS_bextr || ins == INS_bzhi) |
| 8743 | { |
| 8744 | // BMI bextr and bzhi encodes the reg2 in VEX.vvvv and reg3 in modRM, |
| 8745 | // which is different from most of other instructions |
| 8746 | regNumber tmp = reg2; |
| 8747 | reg2 = reg3; |
| 8748 | reg3 = tmp; |
| 8749 | } |
| 8750 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8751 | printf("%s, " , emitRegName(reg2, attr)); |
| 8752 | printf("%s" , emitRegName(reg3, attr)); |
| 8753 | break; |
| 8754 | } |
| 8755 | |
| 8756 | case IF_RWR_RRD_RRD_CNS: |
| 8757 | assert(IsAVXInstruction(ins)); |
| 8758 | assert(IsThreeOperandAVXInstruction(ins)); |
| 8759 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8760 | printf("%s, " , emitRegName(id->idReg2(), attr)); |
| 8761 | printf("%s, " , emitRegName(id->idReg3(), attr)); |
| 8762 | val = emitGetInsSC(id); |
| 8763 | goto PRINT_CONSTANT; |
| 8764 | break; |
| 8765 | case IF_RWR_RRD_RRD_RRD: |
| 8766 | assert(IsAVXOnlyInstruction(ins)); |
| 8767 | assert(UseVEXEncoding()); |
| 8768 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8769 | printf("%s, " , emitRegName(id->idReg2(), attr)); |
| 8770 | printf("%s, " , emitRegName(id->idReg3(), attr)); |
| 8771 | printf("%s" , emitRegName(id->idReg4(), attr)); |
| 8772 | break; |
| 8773 | case IF_RRW_RRW_CNS: |
| 8774 | printf("%s," , emitRegName(id->idReg1(), attr)); |
| 8775 | printf(" %s" , emitRegName(id->idReg2(), attr)); |
| 8776 | val = emitGetInsSC(id); |
| 8777 | #ifdef _TARGET_AMD64_ |
| 8778 | // no 8-byte immediates allowed here! |
| 8779 | assert((val >= (ssize_t)0xFFFFFFFF80000000LL) && (val <= 0x000000007FFFFFFFLL)); |
| 8780 | #endif |
| 8781 | printf(", " ); |
| 8782 | if (id->idIsCnsReloc()) |
| 8783 | { |
| 8784 | emitDispReloc(val); |
| 8785 | } |
| 8786 | else |
| 8787 | { |
| 8788 | goto PRINT_CONSTANT; |
| 8789 | } |
| 8790 | break; |
| 8791 | |
| 8792 | case IF_RRD: |
| 8793 | case IF_RWR: |
| 8794 | case IF_RRW: |
| 8795 | printf("%s" , emitRegName(id->idReg1(), attr)); |
| 8796 | emitDispShift(ins); |
| 8797 | break; |
| 8798 | |
| 8799 | case IF_RRW_SHF: |
| 8800 | printf("%s" , emitRegName(id->idReg1(), attr)); |
| 8801 | emitDispShift(ins, (BYTE)emitGetInsSC(id)); |
| 8802 | break; |
| 8803 | |
| 8804 | case IF_RRD_MRD: |
| 8805 | case IF_RWR_MRD: |
| 8806 | case IF_RRW_MRD: |
| 8807 | |
| 8808 | if (ins == INS_movsx || ins == INS_movzx) |
| 8809 | { |
| 8810 | attr = EA_PTRSIZE; |
| 8811 | } |
| 8812 | #ifdef _TARGET_AMD64_ |
| 8813 | else if (ins == INS_movsxd) |
| 8814 | { |
| 8815 | attr = EA_PTRSIZE; |
| 8816 | } |
| 8817 | #endif |
| 8818 | else if ((ins == INS_crc32) && (attr != EA_8BYTE)) |
| 8819 | { |
| 8820 | // The idReg1 is always 4 bytes, but the size of idReg2 can vary. |
| 8821 | // This logic ensures that we print `crc32 eax, bx` instead of `crc32 ax, bx` |
| 8822 | printf("%s, %s" , emitRegName(id->idReg1(), EA_4BYTE), emitRegName(id->idReg2(), attr)); |
| 8823 | } |
| 8824 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8825 | offs = emitGetInsDsp(id); |
| 8826 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8827 | break; |
| 8828 | |
| 8829 | case IF_RRW_MRD_CNS: |
| 8830 | case IF_RWR_MRD_CNS: |
| 8831 | { |
| 8832 | printf("%s, %s" , emitRegName(id->idReg1(), attr), sstr); |
| 8833 | offs = emitGetInsDsp(id); |
| 8834 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8835 | emitGetInsDcmCns(id, &cnsVal); |
| 8836 | |
| 8837 | val = cnsVal.cnsVal; |
| 8838 | printf(", " ); |
| 8839 | |
| 8840 | if (cnsVal.cnsReloc) |
| 8841 | { |
| 8842 | emitDispReloc(val); |
| 8843 | } |
| 8844 | else |
| 8845 | { |
| 8846 | goto PRINT_CONSTANT; |
| 8847 | } |
| 8848 | break; |
| 8849 | } |
| 8850 | |
| 8851 | case IF_MWR_RRD_CNS: |
| 8852 | { |
| 8853 | assert(ins == INS_vextracti128 || ins == INS_vextractf128); |
| 8854 | // vextracti/f128 extracts 128-bit data, so we fix sstr as "xmm ptr" |
| 8855 | sstr = codeGen->genSizeStr(EA_ATTR(16)); |
| 8856 | printf(sstr); |
| 8857 | offs = emitGetInsDsp(id); |
| 8858 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8859 | printf(", %s" , emitRegName(id->idReg1(), attr)); |
| 8860 | emitGetInsDcmCns(id, &cnsVal); |
| 8861 | |
| 8862 | val = cnsVal.cnsVal; |
| 8863 | printf(", " ); |
| 8864 | |
| 8865 | if (cnsVal.cnsReloc) |
| 8866 | { |
| 8867 | emitDispReloc(val); |
| 8868 | } |
| 8869 | else |
| 8870 | { |
| 8871 | goto PRINT_CONSTANT; |
| 8872 | } |
| 8873 | |
| 8874 | break; |
| 8875 | } |
| 8876 | |
| 8877 | case IF_RWR_RRD_MRD: |
| 8878 | printf("%s, %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr), sstr); |
| 8879 | offs = emitGetInsDsp(id); |
| 8880 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8881 | break; |
| 8882 | |
| 8883 | case IF_RWR_RRD_MRD_CNS: |
| 8884 | { |
| 8885 | printf("%s, %s, %s" , emitRegName(id->idReg1(), attr), emitRegName(id->idReg2(), attr), sstr); |
| 8886 | offs = emitGetInsDsp(id); |
| 8887 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8888 | emitGetInsDcmCns(id, &cnsVal); |
| 8889 | |
| 8890 | val = cnsVal.cnsVal; |
| 8891 | printf(", " ); |
| 8892 | |
| 8893 | if (cnsVal.cnsReloc) |
| 8894 | { |
| 8895 | emitDispReloc(val); |
| 8896 | } |
| 8897 | else |
| 8898 | { |
| 8899 | goto PRINT_CONSTANT; |
| 8900 | } |
| 8901 | break; |
| 8902 | } |
| 8903 | |
| 8904 | case IF_RWR_RRD_MRD_RRD: |
| 8905 | { |
| 8906 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8907 | printf("%s, " , emitRegName(id->idReg2(), attr)); |
| 8908 | |
| 8909 | offs = emitGetInsDsp(id); |
| 8910 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8911 | |
| 8912 | emitGetInsDcmCns(id, &cnsVal); |
| 8913 | val = (cnsVal.cnsVal >> 4) + XMMBASE; |
| 8914 | printf(", %s" , emitRegName((regNumber)val, attr)); |
| 8915 | break; |
| 8916 | } |
| 8917 | |
| 8918 | case IF_RWR_MRD_OFF: |
| 8919 | |
| 8920 | printf("%s, %s" , emitRegName(id->idReg1(), attr), "offset" ); |
| 8921 | offs = emitGetInsDsp(id); |
| 8922 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8923 | break; |
| 8924 | |
| 8925 | case IF_MRD_RRD: |
| 8926 | case IF_MWR_RRD: |
| 8927 | case IF_MRW_RRD: |
| 8928 | |
| 8929 | printf("%s" , sstr); |
| 8930 | offs = emitGetInsDsp(id); |
| 8931 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8932 | printf(", %s" , emitRegName(id->idReg1(), attr)); |
| 8933 | break; |
| 8934 | |
| 8935 | case IF_MRD_CNS: |
| 8936 | case IF_MWR_CNS: |
| 8937 | case IF_MRW_CNS: |
| 8938 | case IF_MRW_SHF: |
| 8939 | |
| 8940 | printf("%s" , sstr); |
| 8941 | offs = emitGetInsDsp(id); |
| 8942 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8943 | emitGetInsDcmCns(id, &cnsVal); |
| 8944 | val = cnsVal.cnsVal; |
| 8945 | #ifdef _TARGET_AMD64_ |
| 8946 | // no 8-byte immediates allowed here! |
| 8947 | assert((val >= (ssize_t)0xFFFFFFFF80000000LL) && (val <= 0x000000007FFFFFFFLL)); |
| 8948 | #endif |
| 8949 | if (cnsVal.cnsReloc) |
| 8950 | { |
| 8951 | emitDispReloc(val); |
| 8952 | } |
| 8953 | else if (id->idInsFmt() == IF_MRW_SHF) |
| 8954 | { |
| 8955 | emitDispShift(ins, (BYTE)val); |
| 8956 | } |
| 8957 | else |
| 8958 | { |
| 8959 | printf(", " ); |
| 8960 | goto PRINT_CONSTANT; |
| 8961 | } |
| 8962 | break; |
| 8963 | |
| 8964 | case IF_MRD: |
| 8965 | case IF_MWR: |
| 8966 | case IF_MRW: |
| 8967 | |
| 8968 | printf("%s" , sstr); |
| 8969 | offs = emitGetInsDsp(id); |
| 8970 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8971 | emitDispShift(ins); |
| 8972 | break; |
| 8973 | |
| 8974 | case IF_MRD_OFF: |
| 8975 | |
| 8976 | printf("offset " ); |
| 8977 | offs = emitGetInsDsp(id); |
| 8978 | emitDispClsVar(id->idAddr()->iiaFieldHnd, offs, ID_INFO_DSP_RELOC); |
| 8979 | break; |
| 8980 | |
| 8981 | case IF_RRD_CNS: |
| 8982 | case IF_RWR_CNS: |
| 8983 | case IF_RRW_CNS: |
| 8984 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 8985 | val = emitGetInsSC(id); |
| 8986 | if (id->idIsCnsReloc()) |
| 8987 | { |
| 8988 | emitDispReloc(val); |
| 8989 | } |
| 8990 | else |
| 8991 | { |
| 8992 | goto PRINT_CONSTANT; |
| 8993 | } |
| 8994 | break; |
| 8995 | |
| 8996 | case IF_LABEL: |
| 8997 | case IF_RWR_LABEL: |
| 8998 | case IF_SWR_LABEL: |
| 8999 | |
| 9000 | if (ins == INS_lea) |
| 9001 | { |
| 9002 | printf("%s, " , emitRegName(id->idReg1(), attr)); |
| 9003 | } |
| 9004 | else if (ins == INS_mov) |
| 9005 | { |
| 9006 | /* mov dword ptr [frame.callSiteReturnAddress], label */ |
| 9007 | assert(id->idInsFmt() == IF_SWR_LABEL); |
| 9008 | instrDescLbl* idlbl = (instrDescLbl*)id; |
| 9009 | |
| 9010 | emitDispFrameRef(idlbl->dstLclVar.lvaVarNum(), idlbl->dstLclVar.lvaOffset(), 0, asmfm); |
| 9011 | |
| 9012 | printf(", " ); |
| 9013 | } |
| 9014 | |
| 9015 | if (((instrDescJmp*)id)->idjShort) |
| 9016 | { |
| 9017 | printf("SHORT " ); |
| 9018 | } |
| 9019 | |
| 9020 | if (id->idIsBound()) |
| 9021 | { |
| 9022 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
| 9023 | } |
| 9024 | else |
| 9025 | { |
| 9026 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
| 9027 | } |
| 9028 | break; |
| 9029 | |
| 9030 | case IF_METHOD: |
| 9031 | case IF_METHPTR: |
| 9032 | if (id->idIsCallAddr()) |
| 9033 | { |
| 9034 | offs = (ssize_t)id->idAddr()->iiaAddr; |
| 9035 | methodName = "" ; |
| 9036 | } |
| 9037 | else |
| 9038 | { |
| 9039 | offs = 0; |
| 9040 | methodName = emitComp->eeGetMethodFullName((CORINFO_METHOD_HANDLE)id->idDebugOnlyInfo()->idMemCookie); |
| 9041 | } |
| 9042 | |
| 9043 | if (id->idInsFmt() == IF_METHPTR) |
| 9044 | { |
| 9045 | printf("[" ); |
| 9046 | } |
| 9047 | |
| 9048 | if (offs) |
| 9049 | { |
| 9050 | if (id->idIsDspReloc()) |
| 9051 | { |
| 9052 | printf("reloc " ); |
| 9053 | } |
| 9054 | printf("%08X" , offs); |
| 9055 | } |
| 9056 | else |
| 9057 | { |
| 9058 | printf("%s" , methodName); |
| 9059 | } |
| 9060 | |
| 9061 | if (id->idInsFmt() == IF_METHPTR) |
| 9062 | { |
| 9063 | printf("]" ); |
| 9064 | } |
| 9065 | |
| 9066 | break; |
| 9067 | |
| 9068 | case IF_NONE: |
| 9069 | break; |
| 9070 | |
| 9071 | default: |
| 9072 | printf("unexpected format %s" , emitIfName(id->idInsFmt())); |
| 9073 | assert(!"unexpectedFormat" ); |
| 9074 | break; |
| 9075 | } |
| 9076 | |
| 9077 | if (sz != 0 && sz != id->idCodeSize() && (!asmfm || emitComp->verbose)) |
| 9078 | { |
| 9079 | // Code size in the instrDesc is different from the actual code size we've been given! |
| 9080 | printf(" (ECS:%d, ACS:%d)" , id->idCodeSize(), sz); |
| 9081 | } |
| 9082 | |
| 9083 | printf("\n" ); |
| 9084 | } |
| 9085 | |
| 9086 | /*****************************************************************************/ |
| 9087 | #endif |
| 9088 | |
| 9089 | /***************************************************************************** |
| 9090 | * |
| 9091 | * Output nBytes bytes of NOP instructions |
| 9092 | */ |
| 9093 | |
| 9094 | static BYTE* emitOutputNOP(BYTE* dst, size_t nBytes) |
| 9095 | { |
| 9096 | assert(nBytes <= 15); |
| 9097 | |
| 9098 | #ifndef _TARGET_AMD64_ |
| 9099 | // TODO-X86-CQ: when VIA C3 CPU's are out of circulation, switch to the |
| 9100 | // more efficient real NOP: 0x0F 0x1F +modR/M |
| 9101 | // Also can't use AMD recommended, multiple size prefixes (i.e. 0x66 0x66 0x90 for 3 byte NOP) |
| 9102 | // because debugger and msdis don't like it, so maybe VIA doesn't either |
| 9103 | // So instead just stick to repeating single byte nops |
| 9104 | |
| 9105 | switch (nBytes) |
| 9106 | { |
| 9107 | case 15: |
| 9108 | *dst++ = 0x90; |
| 9109 | __fallthrough; |
| 9110 | case 14: |
| 9111 | *dst++ = 0x90; |
| 9112 | __fallthrough; |
| 9113 | case 13: |
| 9114 | *dst++ = 0x90; |
| 9115 | __fallthrough; |
| 9116 | case 12: |
| 9117 | *dst++ = 0x90; |
| 9118 | __fallthrough; |
| 9119 | case 11: |
| 9120 | *dst++ = 0x90; |
| 9121 | __fallthrough; |
| 9122 | case 10: |
| 9123 | *dst++ = 0x90; |
| 9124 | __fallthrough; |
| 9125 | case 9: |
| 9126 | *dst++ = 0x90; |
| 9127 | __fallthrough; |
| 9128 | case 8: |
| 9129 | *dst++ = 0x90; |
| 9130 | __fallthrough; |
| 9131 | case 7: |
| 9132 | *dst++ = 0x90; |
| 9133 | __fallthrough; |
| 9134 | case 6: |
| 9135 | *dst++ = 0x90; |
| 9136 | __fallthrough; |
| 9137 | case 5: |
| 9138 | *dst++ = 0x90; |
| 9139 | __fallthrough; |
| 9140 | case 4: |
| 9141 | *dst++ = 0x90; |
| 9142 | __fallthrough; |
| 9143 | case 3: |
| 9144 | *dst++ = 0x90; |
| 9145 | __fallthrough; |
| 9146 | case 2: |
| 9147 | *dst++ = 0x90; |
| 9148 | __fallthrough; |
| 9149 | case 1: |
| 9150 | *dst++ = 0x90; |
| 9151 | break; |
| 9152 | case 0: |
| 9153 | break; |
| 9154 | } |
| 9155 | #else // _TARGET_AMD64_ |
| 9156 | switch (nBytes) |
| 9157 | { |
| 9158 | case 2: |
| 9159 | *dst++ = 0x66; |
| 9160 | __fallthrough; |
| 9161 | case 1: |
| 9162 | *dst++ = 0x90; |
| 9163 | break; |
| 9164 | case 0: |
| 9165 | break; |
| 9166 | case 3: |
| 9167 | *dst++ = 0x0F; |
| 9168 | *dst++ = 0x1F; |
| 9169 | *dst++ = 0x00; |
| 9170 | break; |
| 9171 | case 4: |
| 9172 | *dst++ = 0x0F; |
| 9173 | *dst++ = 0x1F; |
| 9174 | *dst++ = 0x40; |
| 9175 | *dst++ = 0x00; |
| 9176 | break; |
| 9177 | case 6: |
| 9178 | *dst++ = 0x66; |
| 9179 | __fallthrough; |
| 9180 | case 5: |
| 9181 | *dst++ = 0x0F; |
| 9182 | *dst++ = 0x1F; |
| 9183 | *dst++ = 0x44; |
| 9184 | *dst++ = 0x00; |
| 9185 | *dst++ = 0x00; |
| 9186 | break; |
| 9187 | case 7: |
| 9188 | *dst++ = 0x0F; |
| 9189 | *dst++ = 0x1F; |
| 9190 | *dst++ = 0x80; |
| 9191 | *dst++ = 0x00; |
| 9192 | *dst++ = 0x00; |
| 9193 | *dst++ = 0x00; |
| 9194 | *dst++ = 0x00; |
| 9195 | break; |
| 9196 | case 15: |
| 9197 | // More than 3 prefixes is slower than just 2 NOPs |
| 9198 | dst = emitOutputNOP(emitOutputNOP(dst, 7), 8); |
| 9199 | break; |
| 9200 | case 14: |
| 9201 | // More than 3 prefixes is slower than just 2 NOPs |
| 9202 | dst = emitOutputNOP(emitOutputNOP(dst, 7), 7); |
| 9203 | break; |
| 9204 | case 13: |
| 9205 | // More than 3 prefixes is slower than just 2 NOPs |
| 9206 | dst = emitOutputNOP(emitOutputNOP(dst, 5), 8); |
| 9207 | break; |
| 9208 | case 12: |
| 9209 | // More than 3 prefixes is slower than just 2 NOPs |
| 9210 | dst = emitOutputNOP(emitOutputNOP(dst, 4), 8); |
| 9211 | break; |
| 9212 | case 11: |
| 9213 | *dst++ = 0x66; |
| 9214 | __fallthrough; |
| 9215 | case 10: |
| 9216 | *dst++ = 0x66; |
| 9217 | __fallthrough; |
| 9218 | case 9: |
| 9219 | *dst++ = 0x66; |
| 9220 | __fallthrough; |
| 9221 | case 8: |
| 9222 | *dst++ = 0x0F; |
| 9223 | *dst++ = 0x1F; |
| 9224 | *dst++ = 0x84; |
| 9225 | *dst++ = 0x00; |
| 9226 | *dst++ = 0x00; |
| 9227 | *dst++ = 0x00; |
| 9228 | *dst++ = 0x00; |
| 9229 | *dst++ = 0x00; |
| 9230 | break; |
| 9231 | } |
| 9232 | #endif // _TARGET_AMD64_ |
| 9233 | |
| 9234 | return dst; |
| 9235 | } |
| 9236 | |
| 9237 | /***************************************************************************** |
| 9238 | * |
| 9239 | * Output an instruction involving an address mode. |
| 9240 | */ |
| 9241 | |
| 9242 | BYTE* emitter::emitOutputAM(BYTE* dst, instrDesc* id, code_t code, CnsVal* addc) |
| 9243 | { |
| 9244 | regNumber reg; |
| 9245 | regNumber rgx; |
| 9246 | ssize_t dsp; |
| 9247 | bool dspInByte; |
| 9248 | bool dspIsZero; |
| 9249 | |
| 9250 | instruction ins = id->idIns(); |
| 9251 | emitAttr size = id->idOpSize(); |
| 9252 | size_t opsz = EA_SIZE_IN_BYTES(size); |
| 9253 | |
| 9254 | // Get the base/index registers |
| 9255 | reg = id->idAddr()->iiaAddrMode.amBaseReg; |
| 9256 | rgx = id->idAddr()->iiaAddrMode.amIndxReg; |
| 9257 | |
| 9258 | // For INS_call the instruction size is actually the return value size |
| 9259 | if (ins == INS_call) |
| 9260 | { |
| 9261 | // Special case: call via a register |
| 9262 | if (id->idIsCallRegPtr()) |
| 9263 | { |
| 9264 | code_t opcode = insEncodeMRreg(INS_call, reg, EA_PTRSIZE, insCodeMR(INS_call)); |
| 9265 | |
| 9266 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, opcode); |
| 9267 | dst += emitOutputWord(dst, opcode); |
| 9268 | goto DONE; |
| 9269 | } |
| 9270 | |
| 9271 | // The displacement field is in an unusual place for calls |
| 9272 | dsp = emitGetInsCIdisp(id); |
| 9273 | |
| 9274 | #ifdef _TARGET_AMD64_ |
| 9275 | |
| 9276 | // Compute the REX prefix if it exists |
| 9277 | if (IsExtendedReg(reg, EA_PTRSIZE)) |
| 9278 | { |
| 9279 | insEncodeReg012(ins, reg, EA_PTRSIZE, &code); |
| 9280 | // TODO-Cleanup: stop casting RegEncoding() back to a regNumber. |
| 9281 | reg = (regNumber)RegEncoding(reg); |
| 9282 | } |
| 9283 | |
| 9284 | if (IsExtendedReg(rgx, EA_PTRSIZE)) |
| 9285 | { |
| 9286 | insEncodeRegSIB(ins, rgx, &code); |
| 9287 | // TODO-Cleanup: stop casting RegEncoding() back to a regNumber. |
| 9288 | rgx = (regNumber)RegEncoding(rgx); |
| 9289 | } |
| 9290 | |
| 9291 | // And emit the REX prefix |
| 9292 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 9293 | |
| 9294 | #endif // _TARGET_AMD64_ |
| 9295 | |
| 9296 | goto GOT_DSP; |
| 9297 | } |
| 9298 | |
| 9299 | // Is there a large constant operand? |
| 9300 | if (addc && (size > EA_1BYTE)) |
| 9301 | { |
| 9302 | ssize_t cval = addc->cnsVal; |
| 9303 | |
| 9304 | // Does the constant fit in a byte? |
| 9305 | if ((signed char)cval == cval && addc->cnsReloc == false && ins != INS_mov && ins != INS_test) |
| 9306 | { |
| 9307 | if (id->idInsFmt() != IF_ARW_SHF) |
| 9308 | { |
| 9309 | code |= 2; |
| 9310 | } |
| 9311 | |
| 9312 | opsz = 1; |
| 9313 | } |
| 9314 | } |
| 9315 | |
| 9316 | // Emit VEX prefix if required |
| 9317 | // There are some callers who already add VEX prefix and call this routine. |
| 9318 | // Therefore, add VEX prefix is one is not already present. |
| 9319 | code = AddVexPrefixIfNeededAndNotPresent(ins, code, size); |
| 9320 | |
| 9321 | // For this format, moves do not support a third operand, so we only need to handle the binary ops. |
| 9322 | if (TakesVexPrefix(ins)) |
| 9323 | { |
| 9324 | if (IsDstDstSrcAVXInstruction(ins)) |
| 9325 | { |
| 9326 | regNumber src1 = REG_NA; |
| 9327 | |
| 9328 | switch (id->idInsFmt()) |
| 9329 | { |
| 9330 | case IF_RWR_RRD_ARD: |
| 9331 | case IF_RWR_ARD_RRD: |
| 9332 | case IF_RWR_RRD_ARD_CNS: |
| 9333 | case IF_RWR_RRD_ARD_RRD: |
| 9334 | { |
| 9335 | src1 = id->idReg2(); |
| 9336 | break; |
| 9337 | } |
| 9338 | |
| 9339 | default: |
| 9340 | { |
| 9341 | src1 = id->idReg1(); |
| 9342 | break; |
| 9343 | } |
| 9344 | } |
| 9345 | |
| 9346 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 9347 | code = insEncodeReg3456(ins, src1, size, code); |
| 9348 | } |
| 9349 | else if (IsDstSrcSrcAVXInstruction(ins)) |
| 9350 | { |
| 9351 | code = insEncodeReg3456(ins, id->idReg2(), size, code); |
| 9352 | } |
| 9353 | } |
| 9354 | |
| 9355 | // Emit the REX prefix if required |
| 9356 | if (TakesRexWPrefix(ins, size)) |
| 9357 | { |
| 9358 | code = AddRexWPrefix(ins, code); |
| 9359 | } |
| 9360 | |
| 9361 | if (IsExtendedReg(reg, EA_PTRSIZE)) |
| 9362 | { |
| 9363 | insEncodeReg012(ins, reg, EA_PTRSIZE, &code); |
| 9364 | // TODO-Cleanup: stop casting RegEncoding() back to a regNumber. |
| 9365 | reg = (regNumber)RegEncoding(reg); |
| 9366 | } |
| 9367 | |
| 9368 | if (IsExtendedReg(rgx, EA_PTRSIZE)) |
| 9369 | { |
| 9370 | insEncodeRegSIB(ins, rgx, &code); |
| 9371 | // TODO-Cleanup: stop casting RegEncoding() back to a regNumber. |
| 9372 | rgx = (regNumber)RegEncoding(rgx); |
| 9373 | } |
| 9374 | |
| 9375 | // Special case emitting AVX instructions |
| 9376 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9377 | { |
| 9378 | if ((ins == INS_crc32) && (size > EA_1BYTE)) |
| 9379 | { |
| 9380 | code |= 0x0100; |
| 9381 | |
| 9382 | if (size == EA_2BYTE) |
| 9383 | { |
| 9384 | dst += emitOutputByte(dst, 0x66); |
| 9385 | } |
| 9386 | } |
| 9387 | |
| 9388 | regNumber reg345 = REG_NA; |
| 9389 | if (IsBMIInstruction(ins)) |
| 9390 | { |
| 9391 | reg345 = getBmiRegNumber(ins); |
| 9392 | } |
| 9393 | if (reg345 == REG_NA) |
| 9394 | { |
| 9395 | switch (id->idInsFmt()) |
| 9396 | { |
| 9397 | case IF_AWR_RRD_RRD: |
| 9398 | { |
| 9399 | reg345 = id->idReg2(); |
| 9400 | break; |
| 9401 | } |
| 9402 | |
| 9403 | default: |
| 9404 | { |
| 9405 | reg345 = id->idReg1(); |
| 9406 | break; |
| 9407 | } |
| 9408 | } |
| 9409 | } |
| 9410 | unsigned regcode = insEncodeReg345(ins, reg345, size, &code); |
| 9411 | |
| 9412 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 9413 | |
| 9414 | if (UseVEXEncoding() && (ins != INS_crc32)) |
| 9415 | { |
| 9416 | // Emit last opcode byte |
| 9417 | // TODO-XArch-CQ: Right now support 4-byte opcode instructions only |
| 9418 | assert((code & 0xFF) == 0); |
| 9419 | dst += emitOutputByte(dst, (code >> 8) & 0xFF); |
| 9420 | } |
| 9421 | else |
| 9422 | { |
| 9423 | dst += emitOutputWord(dst, code >> 16); |
| 9424 | dst += emitOutputWord(dst, code & 0xFFFF); |
| 9425 | } |
| 9426 | |
| 9427 | code = regcode; |
| 9428 | } |
| 9429 | // Is this a 'big' opcode? |
| 9430 | else if (code & 0xFF000000) |
| 9431 | { |
| 9432 | // Output the REX prefix |
| 9433 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 9434 | |
| 9435 | // Output the highest word of the opcode |
| 9436 | // We need to check again as in case of AVX instructions leading opcode bytes are stripped off |
| 9437 | // and encoded as part of VEX prefix. |
| 9438 | if (code & 0xFF000000) |
| 9439 | { |
| 9440 | dst += emitOutputWord(dst, code >> 16); |
| 9441 | code &= 0x0000FFFF; |
| 9442 | } |
| 9443 | } |
| 9444 | else if (code & 0x00FF0000) |
| 9445 | { |
| 9446 | // BT supports 16 bit operands and this code doesn't handle the necessary 66 prefix. |
| 9447 | assert(ins != INS_bt); |
| 9448 | |
| 9449 | // Output the REX prefix |
| 9450 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 9451 | |
| 9452 | // Output the highest byte of the opcode |
| 9453 | if (code & 0x00FF0000) |
| 9454 | { |
| 9455 | dst += emitOutputByte(dst, code >> 16); |
| 9456 | code &= 0x0000FFFF; |
| 9457 | } |
| 9458 | |
| 9459 | // Use the large version if this is not a byte. This trick will not |
| 9460 | // work in case of SSE2 and AVX instructions. |
| 9461 | if ((size != EA_1BYTE) && (ins != INS_imul) && !IsSSEInstruction(ins) && !IsAVXInstruction(ins)) |
| 9462 | { |
| 9463 | code++; |
| 9464 | } |
| 9465 | } |
| 9466 | else if (CodeGen::instIsFP(ins)) |
| 9467 | { |
| 9468 | assert(size == EA_4BYTE || size == EA_8BYTE); |
| 9469 | if (size == EA_8BYTE) |
| 9470 | { |
| 9471 | code += 4; |
| 9472 | } |
| 9473 | } |
| 9474 | else if (!IsSSEInstruction(ins) && !IsAVXInstruction(ins)) |
| 9475 | { |
| 9476 | /* Is the operand size larger than a byte? */ |
| 9477 | |
| 9478 | switch (size) |
| 9479 | { |
| 9480 | case EA_1BYTE: |
| 9481 | break; |
| 9482 | |
| 9483 | case EA_2BYTE: |
| 9484 | |
| 9485 | /* Output a size prefix for a 16-bit operand */ |
| 9486 | |
| 9487 | dst += emitOutputByte(dst, 0x66); |
| 9488 | |
| 9489 | __fallthrough; |
| 9490 | |
| 9491 | case EA_4BYTE: |
| 9492 | #ifdef _TARGET_AMD64_ |
| 9493 | case EA_8BYTE: |
| 9494 | #endif |
| 9495 | |
| 9496 | /* Set the 'w' bit to get the large version */ |
| 9497 | |
| 9498 | code |= 0x1; |
| 9499 | break; |
| 9500 | |
| 9501 | #ifdef _TARGET_X86_ |
| 9502 | case EA_8BYTE: |
| 9503 | |
| 9504 | /* Double operand - set the appropriate bit */ |
| 9505 | |
| 9506 | code |= 0x04; |
| 9507 | break; |
| 9508 | |
| 9509 | #endif // _TARGET_X86_ |
| 9510 | |
| 9511 | default: |
| 9512 | NO_WAY("unexpected size" ); |
| 9513 | break; |
| 9514 | } |
| 9515 | } |
| 9516 | |
| 9517 | // Output the REX prefix |
| 9518 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 9519 | |
| 9520 | // Get the displacement value |
| 9521 | dsp = emitGetInsAmdAny(id); |
| 9522 | |
| 9523 | GOT_DSP: |
| 9524 | |
| 9525 | dspInByte = ((signed char)dsp == (ssize_t)dsp); |
| 9526 | dspIsZero = (dsp == 0); |
| 9527 | |
| 9528 | if (id->idIsDspReloc()) |
| 9529 | { |
| 9530 | dspInByte = false; // relocs can't be placed in a byte |
| 9531 | } |
| 9532 | |
| 9533 | // Is there a [scaled] index component? |
| 9534 | if (rgx == REG_NA) |
| 9535 | { |
| 9536 | // The address is of the form "[reg+disp]" |
| 9537 | switch (reg) |
| 9538 | { |
| 9539 | case REG_NA: |
| 9540 | { |
| 9541 | if (id->idIsDspReloc()) |
| 9542 | { |
| 9543 | INT32 addlDelta = 0; |
| 9544 | |
| 9545 | // The address is of the form "[disp]" |
| 9546 | // On x86 - disp is relative to zero |
| 9547 | // On Amd64 - disp is relative to RIP |
| 9548 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9549 | { |
| 9550 | dst += emitOutputByte(dst, code | 0x05); |
| 9551 | } |
| 9552 | else |
| 9553 | { |
| 9554 | dst += emitOutputWord(dst, code | 0x0500); |
| 9555 | } |
| 9556 | |
| 9557 | if (addc) |
| 9558 | { |
| 9559 | // It is of the form "ins [disp], immed" |
| 9560 | // For emitting relocation, we also need to take into account of the |
| 9561 | // additional bytes of code emitted for immed val. |
| 9562 | |
| 9563 | ssize_t cval = addc->cnsVal; |
| 9564 | |
| 9565 | #ifdef _TARGET_AMD64_ |
| 9566 | // all these opcodes only take a sign-extended 4-byte immediate |
| 9567 | noway_assert(opsz < 8 || ((int)cval == cval && !addc->cnsReloc)); |
| 9568 | #else //_TARGET_X86_ |
| 9569 | noway_assert(opsz <= 4); |
| 9570 | #endif //_TARGET_X86_ |
| 9571 | |
| 9572 | switch (opsz) |
| 9573 | { |
| 9574 | case 0: |
| 9575 | case 4: |
| 9576 | case 8: |
| 9577 | addlDelta = -4; |
| 9578 | break; |
| 9579 | case 2: |
| 9580 | addlDelta = -2; |
| 9581 | break; |
| 9582 | case 1: |
| 9583 | addlDelta = -1; |
| 9584 | break; |
| 9585 | |
| 9586 | default: |
| 9587 | assert(!"unexpected operand size" ); |
| 9588 | unreached(); |
| 9589 | } |
| 9590 | } |
| 9591 | |
| 9592 | #ifdef _TARGET_AMD64_ |
| 9593 | // We emit zero on Amd64, to avoid the assert in emitOutputLong() |
| 9594 | dst += emitOutputLong(dst, 0); |
| 9595 | #else |
| 9596 | dst += emitOutputLong(dst, dsp); |
| 9597 | #endif |
| 9598 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_DISP32, 0, |
| 9599 | addlDelta); |
| 9600 | } |
| 9601 | else |
| 9602 | { |
| 9603 | #ifdef _TARGET_X86_ |
| 9604 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9605 | { |
| 9606 | dst += emitOutputByte(dst, code | 0x05); |
| 9607 | } |
| 9608 | else |
| 9609 | { |
| 9610 | dst += emitOutputWord(dst, code | 0x0500); |
| 9611 | } |
| 9612 | #else //_TARGET_AMD64_ |
| 9613 | // Amd64: addr fits within 32-bits and can be encoded as a displacement relative to zero. |
| 9614 | // This addr mode should never be used while generating relocatable ngen code nor if |
| 9615 | // the addr can be encoded as pc-relative address. |
| 9616 | noway_assert(!emitComp->opts.compReloc); |
| 9617 | noway_assert(codeGen->genAddrRelocTypeHint((size_t)dsp) != IMAGE_REL_BASED_REL32); |
| 9618 | noway_assert((int)dsp == dsp); |
| 9619 | |
| 9620 | // This requires, specifying a SIB byte after ModRM byte. |
| 9621 | if (EncodedBySSE38orSSE3A(ins)) |
| 9622 | { |
| 9623 | dst += emitOutputByte(dst, code | 0x04); |
| 9624 | } |
| 9625 | else |
| 9626 | { |
| 9627 | dst += emitOutputWord(dst, code | 0x0400); |
| 9628 | } |
| 9629 | dst += emitOutputByte(dst, 0x25); |
| 9630 | #endif //_TARGET_AMD64_ |
| 9631 | dst += emitOutputLong(dst, dsp); |
| 9632 | } |
| 9633 | break; |
| 9634 | } |
| 9635 | |
| 9636 | case REG_EBP: |
| 9637 | { |
| 9638 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9639 | { |
| 9640 | // Does the offset fit in a byte? |
| 9641 | if (dspInByte) |
| 9642 | { |
| 9643 | dst += emitOutputByte(dst, code | 0x45); |
| 9644 | dst += emitOutputByte(dst, dsp); |
| 9645 | } |
| 9646 | else |
| 9647 | { |
| 9648 | dst += emitOutputByte(dst, code | 0x85); |
| 9649 | dst += emitOutputLong(dst, dsp); |
| 9650 | |
| 9651 | if (id->idIsDspReloc()) |
| 9652 | { |
| 9653 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9654 | } |
| 9655 | } |
| 9656 | } |
| 9657 | else |
| 9658 | { |
| 9659 | // Does the offset fit in a byte? |
| 9660 | if (dspInByte) |
| 9661 | { |
| 9662 | dst += emitOutputWord(dst, code | 0x4500); |
| 9663 | dst += emitOutputByte(dst, dsp); |
| 9664 | } |
| 9665 | else |
| 9666 | { |
| 9667 | dst += emitOutputWord(dst, code | 0x8500); |
| 9668 | dst += emitOutputLong(dst, dsp); |
| 9669 | |
| 9670 | if (id->idIsDspReloc()) |
| 9671 | { |
| 9672 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9673 | } |
| 9674 | } |
| 9675 | } |
| 9676 | break; |
| 9677 | } |
| 9678 | |
| 9679 | case REG_ESP: |
| 9680 | { |
| 9681 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9682 | { |
| 9683 | // Is the offset 0 or does it at least fit in a byte? |
| 9684 | if (dspIsZero) |
| 9685 | { |
| 9686 | dst += emitOutputByte(dst, code | 0x04); |
| 9687 | dst += emitOutputByte(dst, 0x24); |
| 9688 | } |
| 9689 | else if (dspInByte) |
| 9690 | { |
| 9691 | dst += emitOutputByte(dst, code | 0x44); |
| 9692 | dst += emitOutputByte(dst, 0x24); |
| 9693 | dst += emitOutputByte(dst, dsp); |
| 9694 | } |
| 9695 | else |
| 9696 | { |
| 9697 | dst += emitOutputByte(dst, code | 0x84); |
| 9698 | dst += emitOutputByte(dst, 0x24); |
| 9699 | dst += emitOutputLong(dst, dsp); |
| 9700 | if (id->idIsDspReloc()) |
| 9701 | { |
| 9702 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9703 | } |
| 9704 | } |
| 9705 | } |
| 9706 | else |
| 9707 | { |
| 9708 | // Is the offset 0 or does it at least fit in a byte? |
| 9709 | if (dspIsZero) |
| 9710 | { |
| 9711 | dst += emitOutputWord(dst, code | 0x0400); |
| 9712 | dst += emitOutputByte(dst, 0x24); |
| 9713 | } |
| 9714 | else if (dspInByte) |
| 9715 | { |
| 9716 | dst += emitOutputWord(dst, code | 0x4400); |
| 9717 | dst += emitOutputByte(dst, 0x24); |
| 9718 | dst += emitOutputByte(dst, dsp); |
| 9719 | } |
| 9720 | else |
| 9721 | { |
| 9722 | dst += emitOutputWord(dst, code | 0x8400); |
| 9723 | dst += emitOutputByte(dst, 0x24); |
| 9724 | dst += emitOutputLong(dst, dsp); |
| 9725 | if (id->idIsDspReloc()) |
| 9726 | { |
| 9727 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9728 | } |
| 9729 | } |
| 9730 | } |
| 9731 | break; |
| 9732 | } |
| 9733 | |
| 9734 | default: |
| 9735 | { |
| 9736 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9737 | { |
| 9738 | // Put the register in the opcode |
| 9739 | code |= insEncodeReg012(ins, reg, EA_PTRSIZE, nullptr); |
| 9740 | |
| 9741 | // Is there a displacement? |
| 9742 | if (dspIsZero) |
| 9743 | { |
| 9744 | // This is simply "[reg]" |
| 9745 | dst += emitOutputByte(dst, code); |
| 9746 | } |
| 9747 | else |
| 9748 | { |
| 9749 | // This is [reg + dsp]" -- does the offset fit in a byte? |
| 9750 | if (dspInByte) |
| 9751 | { |
| 9752 | dst += emitOutputByte(dst, code | 0x40); |
| 9753 | dst += emitOutputByte(dst, dsp); |
| 9754 | } |
| 9755 | else |
| 9756 | { |
| 9757 | dst += emitOutputByte(dst, code | 0x80); |
| 9758 | dst += emitOutputLong(dst, dsp); |
| 9759 | if (id->idIsDspReloc()) |
| 9760 | { |
| 9761 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9762 | } |
| 9763 | } |
| 9764 | } |
| 9765 | } |
| 9766 | else |
| 9767 | { |
| 9768 | // Put the register in the opcode |
| 9769 | code |= insEncodeReg012(ins, reg, EA_PTRSIZE, nullptr) << 8; |
| 9770 | |
| 9771 | // Is there a displacement? |
| 9772 | if (dspIsZero) |
| 9773 | { |
| 9774 | // This is simply "[reg]" |
| 9775 | dst += emitOutputWord(dst, code); |
| 9776 | } |
| 9777 | else |
| 9778 | { |
| 9779 | // This is [reg + dsp]" -- does the offset fit in a byte? |
| 9780 | if (dspInByte) |
| 9781 | { |
| 9782 | dst += emitOutputWord(dst, code | 0x4000); |
| 9783 | dst += emitOutputByte(dst, dsp); |
| 9784 | } |
| 9785 | else |
| 9786 | { |
| 9787 | dst += emitOutputWord(dst, code | 0x8000); |
| 9788 | dst += emitOutputLong(dst, dsp); |
| 9789 | if (id->idIsDspReloc()) |
| 9790 | { |
| 9791 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9792 | } |
| 9793 | } |
| 9794 | } |
| 9795 | } |
| 9796 | |
| 9797 | break; |
| 9798 | } |
| 9799 | } |
| 9800 | } |
| 9801 | else |
| 9802 | { |
| 9803 | unsigned regByte; |
| 9804 | |
| 9805 | // We have a scaled index operand |
| 9806 | unsigned mul = emitDecodeScale(id->idAddr()->iiaAddrMode.amScale); |
| 9807 | |
| 9808 | // Is the index operand scaled? |
| 9809 | if (mul > 1) |
| 9810 | { |
| 9811 | // Is there a base register? |
| 9812 | if (reg != REG_NA) |
| 9813 | { |
| 9814 | // The address is "[reg + {2/4/8} * rgx + icon]" |
| 9815 | regByte = insEncodeReg012(ins, reg, EA_PTRSIZE, nullptr) | |
| 9816 | insEncodeReg345(ins, rgx, EA_PTRSIZE, nullptr) | insSSval(mul); |
| 9817 | |
| 9818 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9819 | { |
| 9820 | // Emit [ebp + {2/4/8} * rgz] as [ebp + {2/4/8} * rgx + 0] |
| 9821 | if (dspIsZero && reg != REG_EBP) |
| 9822 | { |
| 9823 | // The address is "[reg + {2/4/8} * rgx]" |
| 9824 | dst += emitOutputByte(dst, code | 0x04); |
| 9825 | dst += emitOutputByte(dst, regByte); |
| 9826 | } |
| 9827 | else |
| 9828 | { |
| 9829 | // The address is "[reg + {2/4/8} * rgx + disp]" |
| 9830 | if (dspInByte) |
| 9831 | { |
| 9832 | dst += emitOutputByte(dst, code | 0x44); |
| 9833 | dst += emitOutputByte(dst, regByte); |
| 9834 | dst += emitOutputByte(dst, dsp); |
| 9835 | } |
| 9836 | else |
| 9837 | { |
| 9838 | dst += emitOutputByte(dst, code | 0x84); |
| 9839 | dst += emitOutputByte(dst, regByte); |
| 9840 | dst += emitOutputLong(dst, dsp); |
| 9841 | if (id->idIsDspReloc()) |
| 9842 | { |
| 9843 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9844 | } |
| 9845 | } |
| 9846 | } |
| 9847 | } |
| 9848 | else |
| 9849 | { |
| 9850 | // Emit [ebp + {2/4/8} * rgz] as [ebp + {2/4/8} * rgx + 0] |
| 9851 | if (dspIsZero && reg != REG_EBP) |
| 9852 | { |
| 9853 | // The address is "[reg + {2/4/8} * rgx]" |
| 9854 | dst += emitOutputWord(dst, code | 0x0400); |
| 9855 | dst += emitOutputByte(dst, regByte); |
| 9856 | } |
| 9857 | else |
| 9858 | { |
| 9859 | // The address is "[reg + {2/4/8} * rgx + disp]" |
| 9860 | if (dspInByte) |
| 9861 | { |
| 9862 | dst += emitOutputWord(dst, code | 0x4400); |
| 9863 | dst += emitOutputByte(dst, regByte); |
| 9864 | dst += emitOutputByte(dst, dsp); |
| 9865 | } |
| 9866 | else |
| 9867 | { |
| 9868 | dst += emitOutputWord(dst, code | 0x8400); |
| 9869 | dst += emitOutputByte(dst, regByte); |
| 9870 | dst += emitOutputLong(dst, dsp); |
| 9871 | if (id->idIsDspReloc()) |
| 9872 | { |
| 9873 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9874 | } |
| 9875 | } |
| 9876 | } |
| 9877 | } |
| 9878 | } |
| 9879 | else |
| 9880 | { |
| 9881 | // The address is "[{2/4/8} * rgx + icon]" |
| 9882 | regByte = insEncodeReg012(ins, REG_EBP, EA_PTRSIZE, nullptr) | |
| 9883 | insEncodeReg345(ins, rgx, EA_PTRSIZE, nullptr) | insSSval(mul); |
| 9884 | |
| 9885 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9886 | { |
| 9887 | dst += emitOutputByte(dst, code | 0x04); |
| 9888 | } |
| 9889 | else |
| 9890 | { |
| 9891 | dst += emitOutputWord(dst, code | 0x0400); |
| 9892 | } |
| 9893 | |
| 9894 | dst += emitOutputByte(dst, regByte); |
| 9895 | |
| 9896 | // Special case: jump through a jump table |
| 9897 | if (ins == INS_i_jmp) |
| 9898 | { |
| 9899 | dsp += (size_t)emitConsBlock; |
| 9900 | } |
| 9901 | |
| 9902 | dst += emitOutputLong(dst, dsp); |
| 9903 | if (id->idIsDspReloc()) |
| 9904 | { |
| 9905 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9906 | } |
| 9907 | } |
| 9908 | } |
| 9909 | else |
| 9910 | { |
| 9911 | // The address is "[reg+rgx+dsp]" |
| 9912 | regByte = insEncodeReg012(ins, reg, EA_PTRSIZE, nullptr) | insEncodeReg345(ins, rgx, EA_PTRSIZE, nullptr); |
| 9913 | |
| 9914 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 9915 | { |
| 9916 | if (dspIsZero && reg != REG_EBP) |
| 9917 | { |
| 9918 | // This is [reg+rgx]" |
| 9919 | dst += emitOutputByte(dst, code | 0x04); |
| 9920 | dst += emitOutputByte(dst, regByte); |
| 9921 | } |
| 9922 | else |
| 9923 | { |
| 9924 | // This is [reg+rgx+dsp]" -- does the offset fit in a byte? |
| 9925 | if (dspInByte) |
| 9926 | { |
| 9927 | dst += emitOutputByte(dst, code | 0x44); |
| 9928 | dst += emitOutputByte(dst, regByte); |
| 9929 | dst += emitOutputByte(dst, dsp); |
| 9930 | } |
| 9931 | else |
| 9932 | { |
| 9933 | dst += emitOutputByte(dst, code | 0x84); |
| 9934 | dst += emitOutputByte(dst, regByte); |
| 9935 | dst += emitOutputLong(dst, dsp); |
| 9936 | if (id->idIsDspReloc()) |
| 9937 | { |
| 9938 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9939 | } |
| 9940 | } |
| 9941 | } |
| 9942 | } |
| 9943 | else |
| 9944 | { |
| 9945 | if (dspIsZero && reg != REG_EBP) |
| 9946 | { |
| 9947 | // This is [reg+rgx]" |
| 9948 | dst += emitOutputWord(dst, code | 0x0400); |
| 9949 | dst += emitOutputByte(dst, regByte); |
| 9950 | } |
| 9951 | else |
| 9952 | { |
| 9953 | // This is [reg+rgx+dsp]" -- does the offset fit in a byte? |
| 9954 | if (dspInByte) |
| 9955 | { |
| 9956 | dst += emitOutputWord(dst, code | 0x4400); |
| 9957 | dst += emitOutputByte(dst, regByte); |
| 9958 | dst += emitOutputByte(dst, dsp); |
| 9959 | } |
| 9960 | else |
| 9961 | { |
| 9962 | dst += emitOutputWord(dst, code | 0x8400); |
| 9963 | dst += emitOutputByte(dst, regByte); |
| 9964 | dst += emitOutputLong(dst, dsp); |
| 9965 | if (id->idIsDspReloc()) |
| 9966 | { |
| 9967 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)dsp, IMAGE_REL_BASED_HIGHLOW); |
| 9968 | } |
| 9969 | } |
| 9970 | } |
| 9971 | } |
| 9972 | } |
| 9973 | } |
| 9974 | |
| 9975 | // Now generate the constant value, if present |
| 9976 | if (addc) |
| 9977 | { |
| 9978 | ssize_t cval = addc->cnsVal; |
| 9979 | |
| 9980 | #ifdef _TARGET_AMD64_ |
| 9981 | // all these opcodes only take a sign-extended 4-byte immediate |
| 9982 | noway_assert(opsz < 8 || ((int)cval == cval && !addc->cnsReloc)); |
| 9983 | #endif |
| 9984 | |
| 9985 | switch (opsz) |
| 9986 | { |
| 9987 | case 0: |
| 9988 | case 4: |
| 9989 | case 8: |
| 9990 | dst += emitOutputLong(dst, cval); |
| 9991 | break; |
| 9992 | case 2: |
| 9993 | dst += emitOutputWord(dst, cval); |
| 9994 | break; |
| 9995 | case 1: |
| 9996 | dst += emitOutputByte(dst, cval); |
| 9997 | break; |
| 9998 | |
| 9999 | default: |
| 10000 | assert(!"unexpected operand size" ); |
| 10001 | } |
| 10002 | |
| 10003 | if (addc->cnsReloc) |
| 10004 | { |
| 10005 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)(size_t)cval, IMAGE_REL_BASED_HIGHLOW); |
| 10006 | assert(opsz == 4); |
| 10007 | } |
| 10008 | } |
| 10009 | |
| 10010 | DONE: |
| 10011 | |
| 10012 | // Does this instruction operate on a GC ref value? |
| 10013 | if (id->idGCref()) |
| 10014 | { |
| 10015 | switch (id->idInsFmt()) |
| 10016 | { |
| 10017 | case IF_ARD: |
| 10018 | case IF_AWR: |
| 10019 | case IF_ARW: |
| 10020 | break; |
| 10021 | |
| 10022 | case IF_RRD_ARD: |
| 10023 | break; |
| 10024 | |
| 10025 | case IF_RWR_ARD: |
| 10026 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 10027 | break; |
| 10028 | |
| 10029 | case IF_RRW_ARD: |
| 10030 | // Mark the destination register as holding a GCT_BYREF |
| 10031 | assert(id->idGCref() == GCT_BYREF && (ins == INS_add || ins == INS_sub)); |
| 10032 | emitGCregLiveUpd(GCT_BYREF, id->idReg1(), dst); |
| 10033 | break; |
| 10034 | |
| 10035 | case IF_ARD_RRD: |
| 10036 | case IF_AWR_RRD: |
| 10037 | break; |
| 10038 | |
| 10039 | case IF_AWR_RRD_RRD: |
| 10040 | break; |
| 10041 | |
| 10042 | case IF_ARD_CNS: |
| 10043 | case IF_AWR_CNS: |
| 10044 | break; |
| 10045 | |
| 10046 | case IF_ARW_RRD: |
| 10047 | case IF_ARW_CNS: |
| 10048 | assert(id->idGCref() == GCT_BYREF && (ins == INS_add || ins == INS_sub)); |
| 10049 | break; |
| 10050 | |
| 10051 | default: |
| 10052 | #ifdef DEBUG |
| 10053 | emitDispIns(id, false, false, false); |
| 10054 | #endif |
| 10055 | assert(!"unexpected GC ref instruction format" ); |
| 10056 | } |
| 10057 | |
| 10058 | // mul can never produce a GC ref |
| 10059 | assert(!instrIs3opImul(ins)); |
| 10060 | assert(ins != INS_mulEAX && ins != INS_imulEAX); |
| 10061 | } |
| 10062 | else |
| 10063 | { |
| 10064 | if (!emitInsCanOnlyWriteSSE2OrAVXReg(id)) |
| 10065 | { |
| 10066 | switch (id->idInsFmt()) |
| 10067 | { |
| 10068 | case IF_RWR_ARD: |
| 10069 | case IF_RRW_ARD: |
| 10070 | case IF_RWR_RRD_ARD: |
| 10071 | emitGCregDeadUpd(id->idReg1(), dst); |
| 10072 | break; |
| 10073 | default: |
| 10074 | break; |
| 10075 | } |
| 10076 | |
| 10077 | if (ins == INS_mulEAX || ins == INS_imulEAX) |
| 10078 | { |
| 10079 | emitGCregDeadUpd(REG_EAX, dst); |
| 10080 | emitGCregDeadUpd(REG_EDX, dst); |
| 10081 | } |
| 10082 | |
| 10083 | // For the three operand imul instruction the target register |
| 10084 | // is encoded in the opcode |
| 10085 | |
| 10086 | if (instrIs3opImul(ins)) |
| 10087 | { |
| 10088 | regNumber tgtReg = inst3opImulReg(ins); |
| 10089 | emitGCregDeadUpd(tgtReg, dst); |
| 10090 | } |
| 10091 | } |
| 10092 | } |
| 10093 | |
| 10094 | return dst; |
| 10095 | } |
| 10096 | |
| 10097 | /***************************************************************************** |
| 10098 | * |
| 10099 | * Output an instruction involving a stack frame value. |
| 10100 | */ |
| 10101 | |
| 10102 | BYTE* emitter::emitOutputSV(BYTE* dst, instrDesc* id, code_t code, CnsVal* addc) |
| 10103 | { |
| 10104 | int adr; |
| 10105 | int dsp; |
| 10106 | bool EBPbased; |
| 10107 | bool dspInByte; |
| 10108 | bool dspIsZero; |
| 10109 | |
| 10110 | instruction ins = id->idIns(); |
| 10111 | emitAttr size = id->idOpSize(); |
| 10112 | size_t opsz = EA_SIZE_IN_BYTES(size); |
| 10113 | |
| 10114 | assert(ins != INS_imul || id->idReg1() == REG_EAX || size == EA_4BYTE || size == EA_8BYTE); |
| 10115 | |
| 10116 | // Is there a large constant operand? |
| 10117 | if (addc && (size > EA_1BYTE)) |
| 10118 | { |
| 10119 | ssize_t cval = addc->cnsVal; |
| 10120 | |
| 10121 | // Does the constant fit in a byte? |
| 10122 | if ((signed char)cval == cval && addc->cnsReloc == false && ins != INS_mov && ins != INS_test) |
| 10123 | { |
| 10124 | if ((id->idInsFmt() != IF_SRW_SHF) && (id->idInsFmt() != IF_RRW_SRD_CNS) && |
| 10125 | (id->idInsFmt() != IF_RWR_RRD_SRD_CNS)) |
| 10126 | { |
| 10127 | code |= 2; |
| 10128 | } |
| 10129 | |
| 10130 | opsz = 1; |
| 10131 | } |
| 10132 | } |
| 10133 | |
| 10134 | // Add VEX prefix if required. |
| 10135 | // There are some callers who already add VEX prefix and call this routine. |
| 10136 | // Therefore, add VEX prefix is one is not already present. |
| 10137 | code = AddVexPrefixIfNeededAndNotPresent(ins, code, size); |
| 10138 | |
| 10139 | // Compute the REX prefix |
| 10140 | if (TakesRexWPrefix(ins, size)) |
| 10141 | { |
| 10142 | code = AddRexWPrefix(ins, code); |
| 10143 | } |
| 10144 | |
| 10145 | // Special case emitting AVX instructions |
| 10146 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 10147 | { |
| 10148 | if ((ins == INS_crc32) && (size > EA_1BYTE)) |
| 10149 | { |
| 10150 | code |= 0x0100; |
| 10151 | |
| 10152 | if (size == EA_2BYTE) |
| 10153 | { |
| 10154 | dst += emitOutputByte(dst, 0x66); |
| 10155 | } |
| 10156 | } |
| 10157 | |
| 10158 | regNumber reg345 = REG_NA; |
| 10159 | if (IsBMIInstruction(ins)) |
| 10160 | { |
| 10161 | reg345 = getBmiRegNumber(ins); |
| 10162 | } |
| 10163 | if (reg345 == REG_NA) |
| 10164 | { |
| 10165 | reg345 = id->idReg1(); |
| 10166 | } |
| 10167 | else |
| 10168 | { |
| 10169 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 10170 | } |
| 10171 | unsigned regcode = insEncodeReg345(ins, reg345, size, &code); |
| 10172 | |
| 10173 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10174 | |
| 10175 | if (UseVEXEncoding() && (ins != INS_crc32)) |
| 10176 | { |
| 10177 | // Emit last opcode byte |
| 10178 | // TODO-XArch-CQ: Right now support 4-byte opcode instructions only |
| 10179 | assert((code & 0xFF) == 0); |
| 10180 | dst += emitOutputByte(dst, (code >> 8) & 0xFF); |
| 10181 | } |
| 10182 | else |
| 10183 | { |
| 10184 | dst += emitOutputWord(dst, code >> 16); |
| 10185 | dst += emitOutputWord(dst, code & 0xFFFF); |
| 10186 | } |
| 10187 | |
| 10188 | code = regcode; |
| 10189 | } |
| 10190 | // Is this a 'big' opcode? |
| 10191 | else if (code & 0xFF000000) |
| 10192 | { |
| 10193 | // Output the REX prefix |
| 10194 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10195 | |
| 10196 | // Output the highest word of the opcode |
| 10197 | // We need to check again because in case of AVX instructions the leading |
| 10198 | // escape byte(s) (e.g. 0x0F) will be encoded as part of VEX prefix. |
| 10199 | if (code & 0xFF000000) |
| 10200 | { |
| 10201 | dst += emitOutputWord(dst, code >> 16); |
| 10202 | code &= 0x0000FFFF; |
| 10203 | } |
| 10204 | } |
| 10205 | else if (code & 0x00FF0000) |
| 10206 | { |
| 10207 | // BT supports 16 bit operands and this code doesn't add the necessary 66 prefix. |
| 10208 | assert(ins != INS_bt); |
| 10209 | |
| 10210 | // Output the REX prefix |
| 10211 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10212 | |
| 10213 | // Output the highest byte of the opcode. |
| 10214 | // We need to check again because in case of AVX instructions the leading |
| 10215 | // escape byte(s) (e.g. 0x0F) will be encoded as part of VEX prefix. |
| 10216 | if (code & 0x00FF0000) |
| 10217 | { |
| 10218 | dst += emitOutputByte(dst, code >> 16); |
| 10219 | code &= 0x0000FFFF; |
| 10220 | } |
| 10221 | |
| 10222 | // Use the large version if this is not a byte |
| 10223 | if ((size != EA_1BYTE) && (ins != INS_imul) && (!insIsCMOV(ins)) && !IsSSEInstruction(ins) && |
| 10224 | !IsAVXInstruction(ins)) |
| 10225 | { |
| 10226 | code |= 0x1; |
| 10227 | } |
| 10228 | } |
| 10229 | else if (CodeGen::instIsFP(ins)) |
| 10230 | { |
| 10231 | assert(size == EA_4BYTE || size == EA_8BYTE); |
| 10232 | |
| 10233 | if (size == EA_8BYTE) |
| 10234 | { |
| 10235 | code += 4; |
| 10236 | } |
| 10237 | } |
| 10238 | else if (!IsSSEInstruction(ins) && !IsAVXInstruction(ins)) |
| 10239 | { |
| 10240 | // Is the operand size larger than a byte? |
| 10241 | switch (size) |
| 10242 | { |
| 10243 | case EA_1BYTE: |
| 10244 | break; |
| 10245 | |
| 10246 | case EA_2BYTE: |
| 10247 | // Output a size prefix for a 16-bit operand |
| 10248 | dst += emitOutputByte(dst, 0x66); |
| 10249 | __fallthrough; |
| 10250 | |
| 10251 | case EA_4BYTE: |
| 10252 | #ifdef _TARGET_AMD64_ |
| 10253 | case EA_8BYTE: |
| 10254 | #endif // _TARGET_AMD64_ |
| 10255 | |
| 10256 | /* Set the 'w' size bit to indicate 32-bit operation |
| 10257 | * Note that incrementing "code" for INS_call (0xFF) would |
| 10258 | * overflow, whereas setting the lower bit to 1 just works out |
| 10259 | */ |
| 10260 | |
| 10261 | code |= 0x01; |
| 10262 | break; |
| 10263 | |
| 10264 | #ifdef _TARGET_X86_ |
| 10265 | case EA_8BYTE: |
| 10266 | |
| 10267 | // Double operand - set the appropriate bit. |
| 10268 | // I don't know what a legitimate reason to end up in this case would be |
| 10269 | // considering that FP is taken care of above... |
| 10270 | // what is an instruction that takes a double which is not covered by the |
| 10271 | // above instIsFP? Of the list in instrsxarch, only INS_fprem |
| 10272 | code |= 0x04; |
| 10273 | NO_WAY("bad 8 byte op" ); |
| 10274 | break; |
| 10275 | #endif // _TARGET_X86_ |
| 10276 | |
| 10277 | default: |
| 10278 | NO_WAY("unexpected size" ); |
| 10279 | break; |
| 10280 | } |
| 10281 | } |
| 10282 | |
| 10283 | // Output the REX prefix |
| 10284 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10285 | |
| 10286 | // Figure out the variable's frame position |
| 10287 | int varNum = id->idAddr()->iiaLclVar.lvaVarNum(); |
| 10288 | |
| 10289 | adr = emitComp->lvaFrameAddress(varNum, &EBPbased); |
| 10290 | dsp = adr + id->idAddr()->iiaLclVar.lvaOffset(); |
| 10291 | |
| 10292 | dspInByte = ((signed char)dsp == (int)dsp); |
| 10293 | dspIsZero = (dsp == 0); |
| 10294 | |
| 10295 | // for stack varaibles the dsp should never be a reloc |
| 10296 | assert(id->idIsDspReloc() == 0); |
| 10297 | |
| 10298 | if (EBPbased) |
| 10299 | { |
| 10300 | // EBP-based variable: does the offset fit in a byte? |
| 10301 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 10302 | { |
| 10303 | if (dspInByte) |
| 10304 | { |
| 10305 | dst += emitOutputByte(dst, code | 0x45); |
| 10306 | dst += emitOutputByte(dst, dsp); |
| 10307 | } |
| 10308 | else |
| 10309 | { |
| 10310 | dst += emitOutputByte(dst, code | 0x85); |
| 10311 | dst += emitOutputLong(dst, dsp); |
| 10312 | } |
| 10313 | } |
| 10314 | else |
| 10315 | { |
| 10316 | if (dspInByte) |
| 10317 | { |
| 10318 | dst += emitOutputWord(dst, code | 0x4500); |
| 10319 | dst += emitOutputByte(dst, dsp); |
| 10320 | } |
| 10321 | else |
| 10322 | { |
| 10323 | dst += emitOutputWord(dst, code | 0x8500); |
| 10324 | dst += emitOutputLong(dst, dsp); |
| 10325 | } |
| 10326 | } |
| 10327 | } |
| 10328 | else |
| 10329 | { |
| 10330 | |
| 10331 | #if !FEATURE_FIXED_OUT_ARGS |
| 10332 | // Adjust the offset by the amount currently pushed on the CPU stack |
| 10333 | dsp += emitCurStackLvl; |
| 10334 | #endif |
| 10335 | |
| 10336 | dspInByte = ((signed char)dsp == (int)dsp); |
| 10337 | dspIsZero = (dsp == 0); |
| 10338 | |
| 10339 | // Does the offset fit in a byte? |
| 10340 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 10341 | { |
| 10342 | if (dspInByte) |
| 10343 | { |
| 10344 | if (dspIsZero) |
| 10345 | { |
| 10346 | dst += emitOutputByte(dst, code | 0x04); |
| 10347 | dst += emitOutputByte(dst, 0x24); |
| 10348 | } |
| 10349 | else |
| 10350 | { |
| 10351 | dst += emitOutputByte(dst, code | 0x44); |
| 10352 | dst += emitOutputByte(dst, 0x24); |
| 10353 | dst += emitOutputByte(dst, dsp); |
| 10354 | } |
| 10355 | } |
| 10356 | else |
| 10357 | { |
| 10358 | dst += emitOutputByte(dst, code | 0x84); |
| 10359 | dst += emitOutputByte(dst, 0x24); |
| 10360 | dst += emitOutputLong(dst, dsp); |
| 10361 | } |
| 10362 | } |
| 10363 | else |
| 10364 | { |
| 10365 | if (dspInByte) |
| 10366 | { |
| 10367 | if (dspIsZero) |
| 10368 | { |
| 10369 | dst += emitOutputWord(dst, code | 0x0400); |
| 10370 | dst += emitOutputByte(dst, 0x24); |
| 10371 | } |
| 10372 | else |
| 10373 | { |
| 10374 | dst += emitOutputWord(dst, code | 0x4400); |
| 10375 | dst += emitOutputByte(dst, 0x24); |
| 10376 | dst += emitOutputByte(dst, dsp); |
| 10377 | } |
| 10378 | } |
| 10379 | else |
| 10380 | { |
| 10381 | dst += emitOutputWord(dst, code | 0x8400); |
| 10382 | dst += emitOutputByte(dst, 0x24); |
| 10383 | dst += emitOutputLong(dst, dsp); |
| 10384 | } |
| 10385 | } |
| 10386 | } |
| 10387 | |
| 10388 | // Now generate the constant value, if present |
| 10389 | if (addc) |
| 10390 | { |
| 10391 | ssize_t cval = addc->cnsVal; |
| 10392 | |
| 10393 | #ifdef _TARGET_AMD64_ |
| 10394 | // all these opcodes only take a sign-extended 4-byte immediate |
| 10395 | noway_assert(opsz < 8 || ((int)cval == cval && !addc->cnsReloc)); |
| 10396 | #endif |
| 10397 | |
| 10398 | switch (opsz) |
| 10399 | { |
| 10400 | case 0: |
| 10401 | case 4: |
| 10402 | case 8: |
| 10403 | dst += emitOutputLong(dst, cval); |
| 10404 | break; |
| 10405 | case 2: |
| 10406 | dst += emitOutputWord(dst, cval); |
| 10407 | break; |
| 10408 | case 1: |
| 10409 | dst += emitOutputByte(dst, cval); |
| 10410 | break; |
| 10411 | |
| 10412 | default: |
| 10413 | assert(!"unexpected operand size" ); |
| 10414 | } |
| 10415 | |
| 10416 | if (addc->cnsReloc) |
| 10417 | { |
| 10418 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)(size_t)cval, IMAGE_REL_BASED_HIGHLOW); |
| 10419 | assert(opsz == 4); |
| 10420 | } |
| 10421 | } |
| 10422 | |
| 10423 | // Does this instruction operate on a GC ref value? |
| 10424 | if (id->idGCref()) |
| 10425 | { |
| 10426 | // Factor in the sub-variable offset |
| 10427 | adr += AlignDown(id->idAddr()->iiaLclVar.lvaOffset(), TARGET_POINTER_SIZE); |
| 10428 | |
| 10429 | switch (id->idInsFmt()) |
| 10430 | { |
| 10431 | case IF_SRD: |
| 10432 | // Read stack -- no change |
| 10433 | break; |
| 10434 | |
| 10435 | case IF_SWR: // Stack Write (So we need to update GC live for stack var) |
| 10436 | // Write stack -- GC var may be born |
| 10437 | emitGCvarLiveUpd(adr, varNum, id->idGCref(), dst); |
| 10438 | break; |
| 10439 | |
| 10440 | case IF_SRD_CNS: |
| 10441 | // Read stack -- no change |
| 10442 | break; |
| 10443 | |
| 10444 | case IF_SWR_CNS: |
| 10445 | // Write stack -- no change |
| 10446 | break; |
| 10447 | |
| 10448 | case IF_SRD_RRD: |
| 10449 | case IF_RRD_SRD: |
| 10450 | // Read stack , read register -- no change |
| 10451 | break; |
| 10452 | |
| 10453 | case IF_RWR_SRD: // Register Write, Stack Read (So we need to update GC live for register) |
| 10454 | |
| 10455 | // Read stack , write register -- GC reg may be born |
| 10456 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 10457 | break; |
| 10458 | |
| 10459 | case IF_SWR_RRD: // Stack Write, Register Read (So we need to update GC live for stack var) |
| 10460 | // Read register, write stack -- GC var may be born |
| 10461 | emitGCvarLiveUpd(adr, varNum, id->idGCref(), dst); |
| 10462 | break; |
| 10463 | |
| 10464 | case IF_RRW_SRD: // Register Read/Write, Stack Read (So we need to update GC live for register) |
| 10465 | |
| 10466 | // reg could have been a GCREF as GCREF + int=BYREF |
| 10467 | // or BYREF+/-int=BYREF |
| 10468 | assert(id->idGCref() == GCT_BYREF && (ins == INS_add || ins == INS_sub)); |
| 10469 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 10470 | break; |
| 10471 | |
| 10472 | case IF_SRW_CNS: |
| 10473 | case IF_SRW_RRD: |
| 10474 | // += -= of a byref, no change |
| 10475 | |
| 10476 | case IF_SRW: |
| 10477 | break; |
| 10478 | |
| 10479 | default: |
| 10480 | #ifdef DEBUG |
| 10481 | emitDispIns(id, false, false, false); |
| 10482 | #endif |
| 10483 | assert(!"unexpected GC ref instruction format" ); |
| 10484 | } |
| 10485 | } |
| 10486 | else |
| 10487 | { |
| 10488 | if (!emitInsCanOnlyWriteSSE2OrAVXReg(id)) |
| 10489 | { |
| 10490 | switch (id->idInsFmt()) |
| 10491 | { |
| 10492 | case IF_RWR_SRD: // Register Write, Stack Read |
| 10493 | case IF_RRW_SRD: // Register Read/Write, Stack Read |
| 10494 | case IF_RWR_RRD_SRD: |
| 10495 | emitGCregDeadUpd(id->idReg1(), dst); |
| 10496 | break; |
| 10497 | default: |
| 10498 | break; |
| 10499 | } |
| 10500 | |
| 10501 | if (ins == INS_mulEAX || ins == INS_imulEAX) |
| 10502 | { |
| 10503 | emitGCregDeadUpd(REG_EAX, dst); |
| 10504 | emitGCregDeadUpd(REG_EDX, dst); |
| 10505 | } |
| 10506 | |
| 10507 | // For the three operand imul instruction the target register |
| 10508 | // is encoded in the opcode |
| 10509 | |
| 10510 | if (instrIs3opImul(ins)) |
| 10511 | { |
| 10512 | regNumber tgtReg = inst3opImulReg(ins); |
| 10513 | emitGCregDeadUpd(tgtReg, dst); |
| 10514 | } |
| 10515 | } |
| 10516 | } |
| 10517 | |
| 10518 | return dst; |
| 10519 | } |
| 10520 | |
| 10521 | /***************************************************************************** |
| 10522 | * |
| 10523 | * Output an instruction with a static data member (class variable). |
| 10524 | */ |
| 10525 | |
| 10526 | BYTE* emitter::emitOutputCV(BYTE* dst, instrDesc* id, code_t code, CnsVal* addc) |
| 10527 | { |
| 10528 | BYTE* addr; |
| 10529 | CORINFO_FIELD_HANDLE fldh; |
| 10530 | ssize_t offs; |
| 10531 | int doff; |
| 10532 | |
| 10533 | emitAttr size = id->idOpSize(); |
| 10534 | size_t opsz = EA_SIZE_IN_BYTES(size); |
| 10535 | instruction ins = id->idIns(); |
| 10536 | bool isMoffset = false; |
| 10537 | |
| 10538 | // Get hold of the field handle and offset |
| 10539 | fldh = id->idAddr()->iiaFieldHnd; |
| 10540 | offs = emitGetInsDsp(id); |
| 10541 | |
| 10542 | // Special case: mov reg, fs:[ddd] |
| 10543 | if (fldh == FLD_GLOBAL_FS) |
| 10544 | { |
| 10545 | dst += emitOutputByte(dst, 0x64); |
| 10546 | } |
| 10547 | |
| 10548 | // Compute VEX prefix |
| 10549 | // Some of its callers already add VEX prefix and then call this routine. |
| 10550 | // Therefore add VEX prefix is not already present. |
| 10551 | code = AddVexPrefixIfNeededAndNotPresent(ins, code, size); |
| 10552 | |
| 10553 | // Compute the REX prefix |
| 10554 | if (TakesRexWPrefix(ins, size)) |
| 10555 | { |
| 10556 | code = AddRexWPrefix(ins, code); |
| 10557 | } |
| 10558 | |
| 10559 | // Is there a large constant operand? |
| 10560 | if (addc && (size > EA_1BYTE)) |
| 10561 | { |
| 10562 | ssize_t cval = addc->cnsVal; |
| 10563 | // Does the constant fit in a byte? |
| 10564 | if ((signed char)cval == cval && addc->cnsReloc == false && ins != INS_mov && ins != INS_test) |
| 10565 | { |
| 10566 | if (id->idInsFmt() != IF_MRW_SHF) |
| 10567 | { |
| 10568 | code |= 2; |
| 10569 | } |
| 10570 | |
| 10571 | opsz = 1; |
| 10572 | } |
| 10573 | } |
| 10574 | #ifdef _TARGET_X86_ |
| 10575 | else |
| 10576 | { |
| 10577 | // Special case: "mov eax, [addr]" and "mov [addr], eax" |
| 10578 | // Amd64: this is one case where addr can be 64-bit in size. This is |
| 10579 | // currently unused or not enabled on amd64 as it always uses RIP |
| 10580 | // relative addressing which results in smaller instruction size. |
| 10581 | if (ins == INS_mov && id->idReg1() == REG_EAX) |
| 10582 | { |
| 10583 | switch (id->idInsFmt()) |
| 10584 | { |
| 10585 | case IF_RWR_MRD: |
| 10586 | |
| 10587 | assert(code == (insCodeRM(ins) | (insEncodeReg345(ins, REG_EAX, EA_PTRSIZE, NULL) << 8) | 0x0500)); |
| 10588 | |
| 10589 | code &= ~((code_t)0xFFFFFFFF); |
| 10590 | code |= 0xA0; |
| 10591 | isMoffset = true; |
| 10592 | break; |
| 10593 | |
| 10594 | case IF_MWR_RRD: |
| 10595 | |
| 10596 | assert(code == (insCodeMR(ins) | (insEncodeReg345(ins, REG_EAX, EA_PTRSIZE, NULL) << 8) | 0x0500)); |
| 10597 | |
| 10598 | code &= ~((code_t)0xFFFFFFFF); |
| 10599 | code |= 0xA2; |
| 10600 | isMoffset = true; |
| 10601 | break; |
| 10602 | |
| 10603 | default: |
| 10604 | break; |
| 10605 | } |
| 10606 | } |
| 10607 | } |
| 10608 | #endif //_TARGET_X86_ |
| 10609 | |
| 10610 | // Special case emitting AVX instructions |
| 10611 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 10612 | { |
| 10613 | if ((ins == INS_crc32) && (size > EA_1BYTE)) |
| 10614 | { |
| 10615 | code |= 0x0100; |
| 10616 | |
| 10617 | if (size == EA_2BYTE) |
| 10618 | { |
| 10619 | dst += emitOutputByte(dst, 0x66); |
| 10620 | } |
| 10621 | } |
| 10622 | |
| 10623 | regNumber reg345 = REG_NA; |
| 10624 | if (IsBMIInstruction(ins)) |
| 10625 | { |
| 10626 | reg345 = getBmiRegNumber(ins); |
| 10627 | } |
| 10628 | if (reg345 == REG_NA) |
| 10629 | { |
| 10630 | reg345 = id->idReg1(); |
| 10631 | } |
| 10632 | else |
| 10633 | { |
| 10634 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 10635 | } |
| 10636 | unsigned regcode = insEncodeReg345(ins, reg345, size, &code); |
| 10637 | |
| 10638 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10639 | |
| 10640 | if (UseVEXEncoding() && (ins != INS_crc32)) |
| 10641 | { |
| 10642 | // Emit last opcode byte |
| 10643 | // TODO-XArch-CQ: Right now support 4-byte opcode instructions only |
| 10644 | assert((code & 0xFF) == 0); |
| 10645 | dst += emitOutputByte(dst, (code >> 8) & 0xFF); |
| 10646 | } |
| 10647 | else |
| 10648 | { |
| 10649 | dst += emitOutputWord(dst, code >> 16); |
| 10650 | dst += emitOutputWord(dst, code & 0xFFFF); |
| 10651 | } |
| 10652 | |
| 10653 | // Emit Mod,R/M byte |
| 10654 | dst += emitOutputByte(dst, regcode | 0x05); |
| 10655 | code = 0; |
| 10656 | } |
| 10657 | // Is this a 'big' opcode? |
| 10658 | else if (code & 0xFF000000) |
| 10659 | { |
| 10660 | // Output the REX prefix |
| 10661 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10662 | |
| 10663 | // Output the highest word of the opcode. |
| 10664 | // Check again since AVX instructions encode leading opcode bytes as part of VEX prefix. |
| 10665 | if (code & 0xFF000000) |
| 10666 | { |
| 10667 | dst += emitOutputWord(dst, code >> 16); |
| 10668 | } |
| 10669 | code &= 0x0000FFFF; |
| 10670 | } |
| 10671 | else if (code & 0x00FF0000) |
| 10672 | { |
| 10673 | // Output the REX prefix |
| 10674 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10675 | |
| 10676 | // Check again as VEX prefix would have encoded leading opcode byte |
| 10677 | if (code & 0x00FF0000) |
| 10678 | { |
| 10679 | dst += emitOutputByte(dst, code >> 16); |
| 10680 | code &= 0x0000FFFF; |
| 10681 | } |
| 10682 | |
| 10683 | if ((ins == INS_movsx || ins == INS_movzx || ins == INS_cmpxchg || ins == INS_xchg || ins == INS_xadd || |
| 10684 | insIsCMOV(ins)) && |
| 10685 | size != EA_1BYTE) |
| 10686 | { |
| 10687 | // movsx and movzx are 'big' opcodes but also have the 'w' bit |
| 10688 | code++; |
| 10689 | } |
| 10690 | } |
| 10691 | else if (CodeGen::instIsFP(ins)) |
| 10692 | { |
| 10693 | assert(size == EA_4BYTE || size == EA_8BYTE); |
| 10694 | |
| 10695 | if (size == EA_8BYTE) |
| 10696 | { |
| 10697 | code += 4; |
| 10698 | } |
| 10699 | } |
| 10700 | else |
| 10701 | { |
| 10702 | // Is the operand size larger than a byte? |
| 10703 | switch (size) |
| 10704 | { |
| 10705 | case EA_1BYTE: |
| 10706 | break; |
| 10707 | |
| 10708 | case EA_2BYTE: |
| 10709 | // Output a size prefix for a 16-bit operand |
| 10710 | dst += emitOutputByte(dst, 0x66); |
| 10711 | __fallthrough; |
| 10712 | |
| 10713 | case EA_4BYTE: |
| 10714 | #ifdef _TARGET_AMD64_ |
| 10715 | case EA_8BYTE: |
| 10716 | #endif |
| 10717 | // Set the 'w' bit to get the large version |
| 10718 | code |= 0x1; |
| 10719 | break; |
| 10720 | |
| 10721 | #ifdef _TARGET_X86_ |
| 10722 | case EA_8BYTE: |
| 10723 | // Double operand - set the appropriate bit |
| 10724 | code |= 0x04; |
| 10725 | break; |
| 10726 | #endif // _TARGET_X86_ |
| 10727 | |
| 10728 | default: |
| 10729 | assert(!"unexpected size" ); |
| 10730 | } |
| 10731 | } |
| 10732 | |
| 10733 | // Output the REX prefix |
| 10734 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 10735 | |
| 10736 | if (code) |
| 10737 | { |
| 10738 | if (id->idInsFmt() == IF_MRD_OFF || id->idInsFmt() == IF_RWR_MRD_OFF || isMoffset) |
| 10739 | { |
| 10740 | dst += emitOutputByte(dst, code); |
| 10741 | } |
| 10742 | else |
| 10743 | { |
| 10744 | dst += emitOutputWord(dst, code); |
| 10745 | } |
| 10746 | } |
| 10747 | |
| 10748 | // Do we have a constant or a static data member? |
| 10749 | doff = Compiler::eeGetJitDataOffs(fldh); |
| 10750 | if (doff >= 0) |
| 10751 | { |
| 10752 | addr = emitConsBlock + doff; |
| 10753 | |
| 10754 | int byteSize = EA_SIZE_IN_BYTES(size); |
| 10755 | |
| 10756 | // this instruction has a fixed size (4) src. |
| 10757 | if (ins == INS_cvttss2si || ins == INS_cvtss2sd || ins == INS_vbroadcastss) |
| 10758 | { |
| 10759 | byteSize = 4; |
| 10760 | } |
| 10761 | // This has a fixed size (8) source. |
| 10762 | if (ins == INS_vbroadcastsd) |
| 10763 | { |
| 10764 | byteSize = 8; |
| 10765 | } |
| 10766 | |
| 10767 | // Check that the offset is properly aligned (i.e. the ddd in [ddd]) |
| 10768 | assert((emitChkAlign == false) || (ins == INS_lea) || (((size_t)addr & (byteSize - 1)) == 0)); |
| 10769 | } |
| 10770 | else |
| 10771 | { |
| 10772 | // Special case: mov reg, fs:[ddd] or mov reg, [ddd] |
| 10773 | if (jitStaticFldIsGlobAddr(fldh)) |
| 10774 | { |
| 10775 | addr = nullptr; |
| 10776 | } |
| 10777 | else |
| 10778 | { |
| 10779 | addr = (BYTE*)emitComp->info.compCompHnd->getFieldAddress(fldh, nullptr); |
| 10780 | if (addr == nullptr) |
| 10781 | { |
| 10782 | NO_WAY("could not obtain address of static field" ); |
| 10783 | } |
| 10784 | } |
| 10785 | } |
| 10786 | |
| 10787 | BYTE* target = (addr + offs); |
| 10788 | |
| 10789 | if (!isMoffset) |
| 10790 | { |
| 10791 | INT32 addlDelta = 0; |
| 10792 | |
| 10793 | if (addc) |
| 10794 | { |
| 10795 | // It is of the form "ins [disp], immed" |
| 10796 | // For emitting relocation, we also need to take into account of the |
| 10797 | // additional bytes of code emitted for immed val. |
| 10798 | |
| 10799 | ssize_t cval = addc->cnsVal; |
| 10800 | |
| 10801 | #ifdef _TARGET_AMD64_ |
| 10802 | // all these opcodes only take a sign-extended 4-byte immediate |
| 10803 | noway_assert(opsz < 8 || ((int)cval == cval && !addc->cnsReloc)); |
| 10804 | #else //_TARGET_X86_ |
| 10805 | noway_assert(opsz <= 4); |
| 10806 | #endif //_TARGET_X86_ |
| 10807 | |
| 10808 | switch (opsz) |
| 10809 | { |
| 10810 | case 0: |
| 10811 | case 4: |
| 10812 | case 8: |
| 10813 | addlDelta = -4; |
| 10814 | break; |
| 10815 | case 2: |
| 10816 | addlDelta = -2; |
| 10817 | break; |
| 10818 | case 1: |
| 10819 | addlDelta = -1; |
| 10820 | break; |
| 10821 | |
| 10822 | default: |
| 10823 | assert(!"unexpected operand size" ); |
| 10824 | unreached(); |
| 10825 | } |
| 10826 | } |
| 10827 | |
| 10828 | #ifdef _TARGET_AMD64_ |
| 10829 | // All static field and data section constant accesses should be marked as relocatable |
| 10830 | noway_assert(id->idIsDspReloc()); |
| 10831 | dst += emitOutputLong(dst, 0); |
| 10832 | #else //_TARGET_X86_ |
| 10833 | dst += emitOutputLong(dst, (int)target); |
| 10834 | #endif //_TARGET_X86_ |
| 10835 | |
| 10836 | if (id->idIsDspReloc()) |
| 10837 | { |
| 10838 | emitRecordRelocation((void*)(dst - sizeof(int)), target, IMAGE_REL_BASED_DISP32, 0, addlDelta); |
| 10839 | } |
| 10840 | } |
| 10841 | else |
| 10842 | { |
| 10843 | #ifdef _TARGET_AMD64_ |
| 10844 | // This code path should never be hit on amd64 since it always uses RIP relative addressing. |
| 10845 | // In future if ever there is a need to enable this special case, also enable the logic |
| 10846 | // that sets isMoffset to true on amd64. |
| 10847 | unreached(); |
| 10848 | #else //_TARGET_X86_ |
| 10849 | |
| 10850 | dst += emitOutputSizeT(dst, (ssize_t)target); |
| 10851 | |
| 10852 | if (id->idIsDspReloc()) |
| 10853 | { |
| 10854 | emitRecordRelocation((void*)(dst - TARGET_POINTER_SIZE), target, IMAGE_REL_BASED_MOFFSET); |
| 10855 | } |
| 10856 | |
| 10857 | #endif //_TARGET_X86_ |
| 10858 | } |
| 10859 | |
| 10860 | // Now generate the constant value, if present |
| 10861 | if (addc) |
| 10862 | { |
| 10863 | ssize_t cval = addc->cnsVal; |
| 10864 | |
| 10865 | #ifdef _TARGET_AMD64_ |
| 10866 | // all these opcodes only take a sign-extended 4-byte immediate |
| 10867 | noway_assert(opsz < 8 || ((int)cval == cval && !addc->cnsReloc)); |
| 10868 | #endif |
| 10869 | |
| 10870 | switch (opsz) |
| 10871 | { |
| 10872 | case 0: |
| 10873 | case 4: |
| 10874 | case 8: |
| 10875 | dst += emitOutputLong(dst, cval); |
| 10876 | break; |
| 10877 | case 2: |
| 10878 | dst += emitOutputWord(dst, cval); |
| 10879 | break; |
| 10880 | case 1: |
| 10881 | dst += emitOutputByte(dst, cval); |
| 10882 | break; |
| 10883 | |
| 10884 | default: |
| 10885 | assert(!"unexpected operand size" ); |
| 10886 | } |
| 10887 | if (addc->cnsReloc) |
| 10888 | { |
| 10889 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)(size_t)cval, IMAGE_REL_BASED_HIGHLOW); |
| 10890 | assert(opsz == 4); |
| 10891 | } |
| 10892 | } |
| 10893 | |
| 10894 | // Does this instruction operate on a GC ref value? |
| 10895 | if (id->idGCref()) |
| 10896 | { |
| 10897 | switch (id->idInsFmt()) |
| 10898 | { |
| 10899 | case IF_MRD: |
| 10900 | case IF_MRW: |
| 10901 | case IF_MWR: |
| 10902 | break; |
| 10903 | |
| 10904 | case IF_RRD_MRD: |
| 10905 | break; |
| 10906 | |
| 10907 | case IF_RWR_MRD: |
| 10908 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 10909 | break; |
| 10910 | |
| 10911 | case IF_MRD_RRD: |
| 10912 | case IF_MWR_RRD: |
| 10913 | case IF_MRW_RRD: |
| 10914 | break; |
| 10915 | |
| 10916 | case IF_MRD_CNS: |
| 10917 | case IF_MWR_CNS: |
| 10918 | case IF_MRW_CNS: |
| 10919 | break; |
| 10920 | |
| 10921 | case IF_RRW_MRD: |
| 10922 | |
| 10923 | assert(id->idGCref() == GCT_BYREF); |
| 10924 | assert(ins == INS_add || ins == INS_sub); |
| 10925 | |
| 10926 | // Mark it as holding a GCT_BYREF |
| 10927 | emitGCregLiveUpd(GCT_BYREF, id->idReg1(), dst); |
| 10928 | break; |
| 10929 | |
| 10930 | default: |
| 10931 | #ifdef DEBUG |
| 10932 | emitDispIns(id, false, false, false); |
| 10933 | #endif |
| 10934 | assert(!"unexpected GC ref instruction format" ); |
| 10935 | } |
| 10936 | } |
| 10937 | else |
| 10938 | { |
| 10939 | if (!emitInsCanOnlyWriteSSE2OrAVXReg(id)) |
| 10940 | { |
| 10941 | switch (id->idInsFmt()) |
| 10942 | { |
| 10943 | case IF_RWR_MRD: |
| 10944 | case IF_RRW_MRD: |
| 10945 | case IF_RWR_RRD_MRD: |
| 10946 | emitGCregDeadUpd(id->idReg1(), dst); |
| 10947 | break; |
| 10948 | default: |
| 10949 | break; |
| 10950 | } |
| 10951 | |
| 10952 | if (ins == INS_mulEAX || ins == INS_imulEAX) |
| 10953 | { |
| 10954 | emitGCregDeadUpd(REG_EAX, dst); |
| 10955 | emitGCregDeadUpd(REG_EDX, dst); |
| 10956 | } |
| 10957 | |
| 10958 | // For the three operand imul instruction the target register |
| 10959 | // is encoded in the opcode |
| 10960 | |
| 10961 | if (instrIs3opImul(ins)) |
| 10962 | { |
| 10963 | regNumber tgtReg = inst3opImulReg(ins); |
| 10964 | emitGCregDeadUpd(tgtReg, dst); |
| 10965 | } |
| 10966 | } |
| 10967 | } |
| 10968 | |
| 10969 | return dst; |
| 10970 | } |
| 10971 | |
| 10972 | /***************************************************************************** |
| 10973 | * |
| 10974 | * Output an instruction with one register operand. |
| 10975 | */ |
| 10976 | |
| 10977 | BYTE* emitter::emitOutputR(BYTE* dst, instrDesc* id) |
| 10978 | { |
| 10979 | code_t code; |
| 10980 | |
| 10981 | instruction ins = id->idIns(); |
| 10982 | regNumber reg = id->idReg1(); |
| 10983 | emitAttr size = id->idOpSize(); |
| 10984 | |
| 10985 | // We would to update GC info correctly |
| 10986 | assert(!IsSSEInstruction(ins)); |
| 10987 | assert(!IsAVXInstruction(ins)); |
| 10988 | |
| 10989 | // Get the 'base' opcode |
| 10990 | switch (ins) |
| 10991 | { |
| 10992 | case INS_inc: |
| 10993 | case INS_dec: |
| 10994 | |
| 10995 | #ifdef _TARGET_AMD64_ |
| 10996 | if (true) |
| 10997 | #else |
| 10998 | if (size == EA_1BYTE) |
| 10999 | #endif |
| 11000 | { |
| 11001 | assert(INS_inc_l == INS_inc + 1); |
| 11002 | assert(INS_dec_l == INS_dec + 1); |
| 11003 | |
| 11004 | // Can't use the compact form, use the long form |
| 11005 | ins = (instruction)(ins + 1); |
| 11006 | if (size == EA_2BYTE) |
| 11007 | { |
| 11008 | // Output a size prefix for a 16-bit operand |
| 11009 | dst += emitOutputByte(dst, 0x66); |
| 11010 | } |
| 11011 | |
| 11012 | code = insCodeRR(ins); |
| 11013 | if (size != EA_1BYTE) |
| 11014 | { |
| 11015 | // Set the 'w' bit to get the large version |
| 11016 | code |= 0x1; |
| 11017 | } |
| 11018 | |
| 11019 | if (TakesRexWPrefix(ins, size)) |
| 11020 | { |
| 11021 | code = AddRexWPrefix(ins, code); |
| 11022 | } |
| 11023 | |
| 11024 | // Register... |
| 11025 | unsigned regcode = insEncodeReg012(ins, reg, size, &code); |
| 11026 | |
| 11027 | // Output the REX prefix |
| 11028 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11029 | |
| 11030 | dst += emitOutputWord(dst, code | (regcode << 8)); |
| 11031 | } |
| 11032 | else |
| 11033 | { |
| 11034 | if (size == EA_2BYTE) |
| 11035 | { |
| 11036 | // Output a size prefix for a 16-bit operand |
| 11037 | dst += emitOutputByte(dst, 0x66); |
| 11038 | } |
| 11039 | dst += emitOutputByte(dst, insCodeRR(ins) | insEncodeReg012(ins, reg, size, nullptr)); |
| 11040 | } |
| 11041 | break; |
| 11042 | |
| 11043 | case INS_pop: |
| 11044 | case INS_pop_hide: |
| 11045 | case INS_push: |
| 11046 | case INS_push_hide: |
| 11047 | |
| 11048 | assert(size == EA_PTRSIZE); |
| 11049 | code = insEncodeOpreg(ins, reg, size); |
| 11050 | |
| 11051 | assert(!TakesVexPrefix(ins)); |
| 11052 | assert(!TakesRexWPrefix(ins, size)); |
| 11053 | |
| 11054 | // Output the REX prefix |
| 11055 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11056 | |
| 11057 | dst += emitOutputByte(dst, code); |
| 11058 | break; |
| 11059 | |
| 11060 | case INS_bswap: |
| 11061 | { |
| 11062 | assert(size >= EA_4BYTE && size <= EA_PTRSIZE); // 16-bit BSWAP is undefined |
| 11063 | |
| 11064 | // The Intel instruction set reference for BSWAP states that extended registers |
| 11065 | // should be enabled via REX.R, but per Vol. 2A, Sec. 2.2.1.2 (see also Figure 2-7), |
| 11066 | // REX.B should instead be used if the register is encoded in the opcode byte itself. |
| 11067 | // Therefore the default logic of insEncodeReg012 is correct for this case. |
| 11068 | |
| 11069 | code = insCodeRR(ins); |
| 11070 | |
| 11071 | if (TakesRexWPrefix(ins, size)) |
| 11072 | { |
| 11073 | code = AddRexWPrefix(ins, code); |
| 11074 | } |
| 11075 | |
| 11076 | // Register... |
| 11077 | unsigned regcode = insEncodeReg012(ins, reg, size, &code); |
| 11078 | |
| 11079 | // Output the REX prefix |
| 11080 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11081 | |
| 11082 | dst += emitOutputWord(dst, code | (regcode << 8)); |
| 11083 | break; |
| 11084 | } |
| 11085 | |
| 11086 | case INS_seto: |
| 11087 | case INS_setno: |
| 11088 | case INS_setb: |
| 11089 | case INS_setae: |
| 11090 | case INS_sete: |
| 11091 | case INS_setne: |
| 11092 | case INS_setbe: |
| 11093 | case INS_seta: |
| 11094 | case INS_sets: |
| 11095 | case INS_setns: |
| 11096 | case INS_setpe: |
| 11097 | case INS_setpo: |
| 11098 | case INS_setl: |
| 11099 | case INS_setge: |
| 11100 | case INS_setle: |
| 11101 | case INS_setg: |
| 11102 | |
| 11103 | assert(id->idGCref() == GCT_NONE); |
| 11104 | assert(size == EA_1BYTE); |
| 11105 | |
| 11106 | code = insEncodeMRreg(ins, reg, EA_1BYTE, insCodeMR(ins)); |
| 11107 | |
| 11108 | // Output the REX prefix |
| 11109 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11110 | |
| 11111 | // We expect this to always be a 'big' opcode |
| 11112 | assert(code & 0x00FF0000); |
| 11113 | |
| 11114 | dst += emitOutputByte(dst, code >> 16); |
| 11115 | dst += emitOutputWord(dst, code & 0x0000FFFF); |
| 11116 | |
| 11117 | break; |
| 11118 | |
| 11119 | case INS_mulEAX: |
| 11120 | case INS_imulEAX: |
| 11121 | |
| 11122 | // Kill off any GC refs in EAX or EDX |
| 11123 | emitGCregDeadUpd(REG_EAX, dst); |
| 11124 | emitGCregDeadUpd(REG_EDX, dst); |
| 11125 | |
| 11126 | __fallthrough; |
| 11127 | |
| 11128 | default: |
| 11129 | |
| 11130 | assert(id->idGCref() == GCT_NONE); |
| 11131 | |
| 11132 | code = insEncodeMRreg(ins, reg, size, insCodeMR(ins)); |
| 11133 | |
| 11134 | if (size != EA_1BYTE) |
| 11135 | { |
| 11136 | // Set the 'w' bit to get the large version |
| 11137 | code |= 0x1; |
| 11138 | |
| 11139 | if (size == EA_2BYTE) |
| 11140 | { |
| 11141 | // Output a size prefix for a 16-bit operand |
| 11142 | dst += emitOutputByte(dst, 0x66); |
| 11143 | } |
| 11144 | } |
| 11145 | |
| 11146 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 11147 | |
| 11148 | if (TakesRexWPrefix(ins, size)) |
| 11149 | { |
| 11150 | code = AddRexWPrefix(ins, code); |
| 11151 | } |
| 11152 | |
| 11153 | // Output the REX prefix |
| 11154 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11155 | |
| 11156 | dst += emitOutputWord(dst, code); |
| 11157 | break; |
| 11158 | } |
| 11159 | |
| 11160 | // Are we writing the register? if so then update the GC information |
| 11161 | switch (id->idInsFmt()) |
| 11162 | { |
| 11163 | case IF_RRD: |
| 11164 | break; |
| 11165 | case IF_RWR: |
| 11166 | if (id->idGCref()) |
| 11167 | { |
| 11168 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 11169 | } |
| 11170 | else |
| 11171 | { |
| 11172 | emitGCregDeadUpd(id->idReg1(), dst); |
| 11173 | } |
| 11174 | break; |
| 11175 | case IF_RRW: |
| 11176 | { |
| 11177 | #ifdef DEBUG |
| 11178 | regMaskTP regMask = genRegMask(reg); |
| 11179 | #endif |
| 11180 | if (id->idGCref()) |
| 11181 | { |
| 11182 | // The reg must currently be holding either a gcref or a byref |
| 11183 | // and the instruction must be inc or dec |
| 11184 | assert(((emitThisGCrefRegs | emitThisByrefRegs) & regMask) && |
| 11185 | (ins == INS_inc || ins == INS_dec || ins == INS_inc_l || ins == INS_dec_l)); |
| 11186 | assert(id->idGCref() == GCT_BYREF); |
| 11187 | // Mark it as holding a GCT_BYREF |
| 11188 | emitGCregLiveUpd(GCT_BYREF, id->idReg1(), dst); |
| 11189 | } |
| 11190 | else |
| 11191 | { |
| 11192 | // Can't use RRW to trash a GC ref. It's OK for unverifiable code |
| 11193 | // to trash Byrefs. |
| 11194 | assert((emitThisGCrefRegs & regMask) == 0); |
| 11195 | } |
| 11196 | } |
| 11197 | break; |
| 11198 | default: |
| 11199 | #ifdef DEBUG |
| 11200 | emitDispIns(id, false, false, false); |
| 11201 | #endif |
| 11202 | assert(!"unexpected instruction format" ); |
| 11203 | break; |
| 11204 | } |
| 11205 | |
| 11206 | return dst; |
| 11207 | } |
| 11208 | |
| 11209 | /***************************************************************************** |
| 11210 | * |
| 11211 | * Output an instruction with two register operands. |
| 11212 | */ |
| 11213 | |
| 11214 | BYTE* emitter::emitOutputRR(BYTE* dst, instrDesc* id) |
| 11215 | { |
| 11216 | code_t code; |
| 11217 | |
| 11218 | instruction ins = id->idIns(); |
| 11219 | regNumber reg1 = id->idReg1(); |
| 11220 | regNumber reg2 = id->idReg2(); |
| 11221 | emitAttr size = id->idOpSize(); |
| 11222 | |
| 11223 | // Get the 'base' opcode |
| 11224 | code = insCodeRM(ins); |
| 11225 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 11226 | if (IsSSEOrAVXInstruction(ins)) |
| 11227 | { |
| 11228 | code = insEncodeRMreg(ins, code); |
| 11229 | |
| 11230 | if (TakesRexWPrefix(ins, size)) |
| 11231 | { |
| 11232 | code = AddRexWPrefix(ins, code); |
| 11233 | } |
| 11234 | } |
| 11235 | else if ((ins == INS_movsx) || (ins == INS_movzx) || (insIsCMOV(ins))) |
| 11236 | { |
| 11237 | code = insEncodeRMreg(ins, code) | (int)(size == EA_2BYTE); |
| 11238 | #ifdef _TARGET_AMD64_ |
| 11239 | |
| 11240 | assert((size < EA_4BYTE) || (insIsCMOV(ins))); |
| 11241 | if ((size == EA_8BYTE) || (ins == INS_movsx)) |
| 11242 | { |
| 11243 | code = AddRexWPrefix(ins, code); |
| 11244 | } |
| 11245 | } |
| 11246 | else if (ins == INS_movsxd) |
| 11247 | { |
| 11248 | code = insEncodeRMreg(ins, code); |
| 11249 | |
| 11250 | #endif // _TARGET_AMD64_ |
| 11251 | } |
| 11252 | #ifdef FEATURE_HW_INTRINSICS |
| 11253 | else if ((ins == INS_crc32) || (ins == INS_lzcnt) || (ins == INS_popcnt) || (ins == INS_tzcnt)) |
| 11254 | { |
| 11255 | code = insEncodeRMreg(ins, code); |
| 11256 | if ((ins == INS_crc32) && (size > EA_1BYTE)) |
| 11257 | { |
| 11258 | code |= 0x0100; |
| 11259 | } |
| 11260 | |
| 11261 | if (size == EA_2BYTE) |
| 11262 | { |
| 11263 | assert(ins == INS_crc32); |
| 11264 | dst += emitOutputByte(dst, 0x66); |
| 11265 | } |
| 11266 | else if (size == EA_8BYTE) |
| 11267 | { |
| 11268 | code = AddRexWPrefix(ins, code); |
| 11269 | } |
| 11270 | } |
| 11271 | #endif // FEATURE_HW_INTRINSICS |
| 11272 | else |
| 11273 | { |
| 11274 | code = insEncodeMRreg(ins, insCodeMR(ins)); |
| 11275 | |
| 11276 | if (ins != INS_test) |
| 11277 | { |
| 11278 | code |= 2; |
| 11279 | } |
| 11280 | |
| 11281 | switch (size) |
| 11282 | { |
| 11283 | case EA_1BYTE: |
| 11284 | noway_assert(RBM_BYTE_REGS & genRegMask(reg1)); |
| 11285 | noway_assert(RBM_BYTE_REGS & genRegMask(reg2)); |
| 11286 | break; |
| 11287 | |
| 11288 | case EA_2BYTE: |
| 11289 | // Output a size prefix for a 16-bit operand |
| 11290 | dst += emitOutputByte(dst, 0x66); |
| 11291 | __fallthrough; |
| 11292 | |
| 11293 | case EA_4BYTE: |
| 11294 | // Set the 'w' bit to get the large version |
| 11295 | code |= 0x1; |
| 11296 | break; |
| 11297 | |
| 11298 | #ifdef _TARGET_AMD64_ |
| 11299 | case EA_8BYTE: |
| 11300 | // TODO-AMD64-CQ: Better way to not emit REX.W when we don't need it |
| 11301 | // Don't need to zero out the high bits explicitly |
| 11302 | if ((ins != INS_xor) || (reg1 != reg2)) |
| 11303 | { |
| 11304 | code = AddRexWPrefix(ins, code); |
| 11305 | } |
| 11306 | |
| 11307 | // Set the 'w' bit to get the large version |
| 11308 | code |= 0x1; |
| 11309 | break; |
| 11310 | |
| 11311 | #endif // _TARGET_AMD64_ |
| 11312 | |
| 11313 | default: |
| 11314 | assert(!"unexpected size" ); |
| 11315 | } |
| 11316 | } |
| 11317 | |
| 11318 | regNumber reg345 = REG_NA; |
| 11319 | if (IsBMIInstruction(ins)) |
| 11320 | { |
| 11321 | reg345 = getBmiRegNumber(ins); |
| 11322 | } |
| 11323 | if (reg345 == REG_NA) |
| 11324 | { |
| 11325 | reg345 = id->idReg1(); |
| 11326 | } |
| 11327 | unsigned regCode = insEncodeReg345(ins, reg345, size, &code); |
| 11328 | regCode |= insEncodeReg012(ins, reg2, size, &code); |
| 11329 | |
| 11330 | if (TakesVexPrefix(ins)) |
| 11331 | { |
| 11332 | // In case of AVX instructions that take 3 operands, we generally want to encode reg1 |
| 11333 | // as first source. In this case, reg1 is both a source and a destination. |
| 11334 | // The exception is the "merge" 3-operand case, where we have a move instruction, such |
| 11335 | // as movss, and we want to merge the source with itself. |
| 11336 | // |
| 11337 | // TODO-XArch-CQ: Eventually we need to support 3 operand instruction formats. For |
| 11338 | // now we use the single source as source1 and source2. |
| 11339 | if (IsDstDstSrcAVXInstruction(ins)) |
| 11340 | { |
| 11341 | // encode source/dest operand reg in 'vvvv' bits in 1's complement form |
| 11342 | code = insEncodeReg3456(ins, reg1, size, code); |
| 11343 | } |
| 11344 | else if (IsDstSrcSrcAVXInstruction(ins)) |
| 11345 | { |
| 11346 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 11347 | code = insEncodeReg3456(ins, reg2, size, code); |
| 11348 | } |
| 11349 | } |
| 11350 | |
| 11351 | // Output the REX prefix |
| 11352 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11353 | |
| 11354 | if (code & 0xFF000000) |
| 11355 | { |
| 11356 | // Output the highest word of the opcode |
| 11357 | dst += emitOutputWord(dst, code >> 16); |
| 11358 | code &= 0x0000FFFF; |
| 11359 | |
| 11360 | if (Is4ByteSSEInstruction(ins)) |
| 11361 | { |
| 11362 | // Output 3rd byte of the opcode |
| 11363 | dst += emitOutputByte(dst, code); |
| 11364 | code &= 0xFF00; |
| 11365 | } |
| 11366 | } |
| 11367 | else if (code & 0x00FF0000) |
| 11368 | { |
| 11369 | dst += emitOutputByte(dst, code >> 16); |
| 11370 | code &= 0x0000FFFF; |
| 11371 | } |
| 11372 | |
| 11373 | // TODO-XArch-CQ: Right now support 4-byte opcode instructions only |
| 11374 | if ((code & 0xFF00) == 0xC000) |
| 11375 | { |
| 11376 | dst += emitOutputWord(dst, code | (regCode << 8)); |
| 11377 | } |
| 11378 | else if ((code & 0xFF) == 0x00) |
| 11379 | { |
| 11380 | // This case happens for some SSE/AVX instructions only |
| 11381 | assert(IsAVXInstruction(ins) || Is4ByteSSEInstruction(ins)); |
| 11382 | |
| 11383 | dst += emitOutputByte(dst, (code >> 8) & 0xFF); |
| 11384 | dst += emitOutputByte(dst, (0xC0 | regCode)); |
| 11385 | } |
| 11386 | else |
| 11387 | { |
| 11388 | dst += emitOutputWord(dst, code); |
| 11389 | dst += emitOutputByte(dst, (0xC0 | regCode)); |
| 11390 | } |
| 11391 | |
| 11392 | // Does this instruction operate on a GC ref value? |
| 11393 | if (id->idGCref()) |
| 11394 | { |
| 11395 | switch (id->idInsFmt()) |
| 11396 | { |
| 11397 | case IF_RRD_RRD: |
| 11398 | break; |
| 11399 | |
| 11400 | case IF_RWR_RRD: |
| 11401 | |
| 11402 | if (emitSyncThisObjReg != REG_NA && emitIGisInProlog(emitCurIG) && reg2 == (int)REG_ARG_0) |
| 11403 | { |
| 11404 | // We're relocating "this" in the prolog |
| 11405 | assert(emitComp->lvaIsOriginalThisArg(0)); |
| 11406 | assert(emitComp->lvaTable[0].lvRegister); |
| 11407 | assert(emitComp->lvaTable[0].lvRegNum == reg1); |
| 11408 | |
| 11409 | if (emitFullGCinfo) |
| 11410 | { |
| 11411 | emitGCregLiveSet(id->idGCref(), genRegMask(reg1), dst, true); |
| 11412 | break; |
| 11413 | } |
| 11414 | else |
| 11415 | { |
| 11416 | /* If emitFullGCinfo==false, the we don't use any |
| 11417 | regPtrDsc's and so explictly note the location |
| 11418 | of "this" in GCEncode.cpp |
| 11419 | */ |
| 11420 | } |
| 11421 | } |
| 11422 | |
| 11423 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 11424 | break; |
| 11425 | |
| 11426 | case IF_RRW_RRD: |
| 11427 | |
| 11428 | switch (id->idIns()) |
| 11429 | { |
| 11430 | /* |
| 11431 | This must be one of the following cases: |
| 11432 | |
| 11433 | xor reg, reg to assign NULL |
| 11434 | |
| 11435 | and r1 , r2 if (ptr1 && ptr2) ... |
| 11436 | or r1 , r2 if (ptr1 || ptr2) ... |
| 11437 | |
| 11438 | add r1 , r2 to compute a normal byref |
| 11439 | sub r1 , r2 to compute a strange byref (VC only) |
| 11440 | |
| 11441 | */ |
| 11442 | case INS_xor: |
| 11443 | assert(id->idReg1() == id->idReg2()); |
| 11444 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 11445 | break; |
| 11446 | |
| 11447 | case INS_or: |
| 11448 | case INS_and: |
| 11449 | emitGCregDeadUpd(id->idReg1(), dst); |
| 11450 | break; |
| 11451 | |
| 11452 | case INS_add: |
| 11453 | case INS_sub: |
| 11454 | assert(id->idGCref() == GCT_BYREF); |
| 11455 | |
| 11456 | #ifdef DEBUG |
| 11457 | regMaskTP regMask; |
| 11458 | regMask = genRegMask(reg1) | genRegMask(reg2); |
| 11459 | |
| 11460 | // r1/r2 could have been a GCREF as GCREF + int=BYREF |
| 11461 | // or BYREF+/-int=BYREF |
| 11462 | assert(((regMask & emitThisGCrefRegs) && (ins == INS_add)) || |
| 11463 | ((regMask & emitThisByrefRegs) && (ins == INS_add || ins == INS_sub))); |
| 11464 | #endif |
| 11465 | // Mark r1 as holding a byref |
| 11466 | emitGCregLiveUpd(GCT_BYREF, id->idReg1(), dst); |
| 11467 | break; |
| 11468 | |
| 11469 | default: |
| 11470 | #ifdef DEBUG |
| 11471 | emitDispIns(id, false, false, false); |
| 11472 | #endif |
| 11473 | assert(!"unexpected GC reg update instruction" ); |
| 11474 | } |
| 11475 | |
| 11476 | break; |
| 11477 | |
| 11478 | case IF_RRW_RRW: |
| 11479 | // This must be "xchg reg1, reg2" |
| 11480 | assert(id->idIns() == INS_xchg); |
| 11481 | |
| 11482 | // If we got here, the GC-ness of the registers doesn't match, so we have to "swap" them in the GC |
| 11483 | // register pointer mask. |
| 11484 | |
| 11485 | GCtype gc1, gc2; |
| 11486 | |
| 11487 | gc1 = emitRegGCtype(reg1); |
| 11488 | gc2 = emitRegGCtype(reg2); |
| 11489 | |
| 11490 | if (gc1 != gc2) |
| 11491 | { |
| 11492 | // Kill the GC-info about the GC registers |
| 11493 | |
| 11494 | if (needsGC(gc1)) |
| 11495 | { |
| 11496 | emitGCregDeadUpd(reg1, dst); |
| 11497 | } |
| 11498 | |
| 11499 | if (needsGC(gc2)) |
| 11500 | { |
| 11501 | emitGCregDeadUpd(reg2, dst); |
| 11502 | } |
| 11503 | |
| 11504 | // Now, swap the info |
| 11505 | |
| 11506 | if (needsGC(gc1)) |
| 11507 | { |
| 11508 | emitGCregLiveUpd(gc1, reg2, dst); |
| 11509 | } |
| 11510 | |
| 11511 | if (needsGC(gc2)) |
| 11512 | { |
| 11513 | emitGCregLiveUpd(gc2, reg1, dst); |
| 11514 | } |
| 11515 | } |
| 11516 | break; |
| 11517 | |
| 11518 | default: |
| 11519 | #ifdef DEBUG |
| 11520 | emitDispIns(id, false, false, false); |
| 11521 | #endif |
| 11522 | assert(!"unexpected GC ref instruction format" ); |
| 11523 | } |
| 11524 | } |
| 11525 | else |
| 11526 | { |
| 11527 | if (!emitInsCanOnlyWriteSSE2OrAVXReg(id)) |
| 11528 | { |
| 11529 | switch (id->idInsFmt()) |
| 11530 | { |
| 11531 | case IF_RRD_CNS: |
| 11532 | // INS_mulEAX can not be used with any of these formats |
| 11533 | assert(ins != INS_mulEAX && ins != INS_imulEAX); |
| 11534 | |
| 11535 | // For the three operand imul instruction the target |
| 11536 | // register is encoded in the opcode |
| 11537 | |
| 11538 | if (instrIs3opImul(ins)) |
| 11539 | { |
| 11540 | regNumber tgtReg = inst3opImulReg(ins); |
| 11541 | emitGCregDeadUpd(tgtReg, dst); |
| 11542 | } |
| 11543 | break; |
| 11544 | |
| 11545 | case IF_RWR_RRD: |
| 11546 | case IF_RRW_RRD: |
| 11547 | case IF_RWR_RRD_RRD: |
| 11548 | // INS_movxmm2i writes to reg2. |
| 11549 | if (ins == INS_mov_xmm2i) |
| 11550 | { |
| 11551 | emitGCregDeadUpd(id->idReg2(), dst); |
| 11552 | } |
| 11553 | else |
| 11554 | { |
| 11555 | emitGCregDeadUpd(id->idReg1(), dst); |
| 11556 | } |
| 11557 | break; |
| 11558 | |
| 11559 | default: |
| 11560 | break; |
| 11561 | } |
| 11562 | } |
| 11563 | } |
| 11564 | |
| 11565 | return dst; |
| 11566 | } |
| 11567 | |
| 11568 | BYTE* emitter::emitOutputRRR(BYTE* dst, instrDesc* id) |
| 11569 | { |
| 11570 | code_t code; |
| 11571 | |
| 11572 | instruction ins = id->idIns(); |
| 11573 | assert(IsAVXInstruction(ins)); |
| 11574 | assert(IsThreeOperandAVXInstruction(ins) || isAvxBlendv(ins)); |
| 11575 | regNumber targetReg = id->idReg1(); |
| 11576 | regNumber src1 = id->idReg2(); |
| 11577 | regNumber src2 = id->idReg3(); |
| 11578 | emitAttr size = id->idOpSize(); |
| 11579 | |
| 11580 | code = insCodeRM(ins); |
| 11581 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 11582 | code = insEncodeRMreg(ins, code); |
| 11583 | |
| 11584 | if (TakesRexWPrefix(ins, size)) |
| 11585 | { |
| 11586 | code = AddRexWPrefix(ins, code); |
| 11587 | } |
| 11588 | |
| 11589 | unsigned regCode = insEncodeReg345(ins, targetReg, size, &code); |
| 11590 | regCode |= insEncodeReg012(ins, src2, size, &code); |
| 11591 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 11592 | code = insEncodeReg3456(ins, src1, size, code); |
| 11593 | |
| 11594 | // Output the REX prefix |
| 11595 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11596 | |
| 11597 | // Is this a 'big' opcode? |
| 11598 | if (code & 0xFF000000) |
| 11599 | { |
| 11600 | // Output the highest word of the opcode |
| 11601 | dst += emitOutputWord(dst, code >> 16); |
| 11602 | code &= 0x0000FFFF; |
| 11603 | } |
| 11604 | else if (code & 0x00FF0000) |
| 11605 | { |
| 11606 | dst += emitOutputByte(dst, code >> 16); |
| 11607 | code &= 0x0000FFFF; |
| 11608 | } |
| 11609 | |
| 11610 | // TODO-XArch-CQ: Right now support 4-byte opcode instructions only |
| 11611 | if ((code & 0xFF00) == 0xC000) |
| 11612 | { |
| 11613 | dst += emitOutputWord(dst, code | (regCode << 8)); |
| 11614 | } |
| 11615 | else if ((code & 0xFF) == 0x00) |
| 11616 | { |
| 11617 | // This case happens for AVX instructions only |
| 11618 | assert(IsAVXInstruction(ins)); |
| 11619 | |
| 11620 | dst += emitOutputByte(dst, (code >> 8) & 0xFF); |
| 11621 | dst += emitOutputByte(dst, (0xC0 | regCode)); |
| 11622 | } |
| 11623 | else |
| 11624 | { |
| 11625 | dst += emitOutputWord(dst, code); |
| 11626 | dst += emitOutputByte(dst, (0xC0 | regCode)); |
| 11627 | } |
| 11628 | |
| 11629 | noway_assert(!id->idGCref()); |
| 11630 | |
| 11631 | return dst; |
| 11632 | } |
| 11633 | |
| 11634 | /***************************************************************************** |
| 11635 | * |
| 11636 | * Output an instruction with a register and constant operands. |
| 11637 | */ |
| 11638 | |
| 11639 | BYTE* emitter::emitOutputRI(BYTE* dst, instrDesc* id) |
| 11640 | { |
| 11641 | code_t code; |
| 11642 | emitAttr size = id->idOpSize(); |
| 11643 | instruction ins = id->idIns(); |
| 11644 | regNumber reg = id->idReg1(); |
| 11645 | ssize_t val = emitGetInsSC(id); |
| 11646 | bool valInByte = ((signed char)val == val) && (ins != INS_mov) && (ins != INS_test); |
| 11647 | |
| 11648 | // BT reg,imm might be useful but it requires special handling of the immediate value |
| 11649 | // (it is always encoded in a byte). Let's not complicate things until this is needed. |
| 11650 | assert(ins != INS_bt); |
| 11651 | |
| 11652 | if (id->idIsCnsReloc()) |
| 11653 | { |
| 11654 | valInByte = false; // relocs can't be placed in a byte |
| 11655 | } |
| 11656 | |
| 11657 | noway_assert(emitVerifyEncodable(ins, size, reg)); |
| 11658 | |
| 11659 | if (IsSSEOrAVXInstruction(ins)) |
| 11660 | { |
| 11661 | // Handle SSE2 instructions of the form "opcode reg, immed8" |
| 11662 | |
| 11663 | assert(id->idGCref() == GCT_NONE); |
| 11664 | assert(valInByte); |
| 11665 | |
| 11666 | // The left and right shifts use the same encoding, and are distinguished by the Reg/Opcode field. |
| 11667 | regNumber regOpcode = getSseShiftRegNumber(ins); |
| 11668 | |
| 11669 | // Get the 'base' opcode. |
| 11670 | code = insCodeMI(ins); |
| 11671 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 11672 | code = insEncodeMIreg(ins, reg, size, code); |
| 11673 | assert(code & 0x00FF0000); |
| 11674 | if (TakesVexPrefix(ins)) |
| 11675 | { |
| 11676 | // The 'vvvv' bits encode the destination register, which for this case (RI) |
| 11677 | // is the same as the source. |
| 11678 | code = insEncodeReg3456(ins, reg, size, code); |
| 11679 | } |
| 11680 | |
| 11681 | unsigned regcode = (insEncodeReg345(ins, regOpcode, size, &code) | insEncodeReg012(ins, reg, size, &code)) << 8; |
| 11682 | |
| 11683 | // Output the REX prefix |
| 11684 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11685 | |
| 11686 | if (code & 0xFF000000) |
| 11687 | { |
| 11688 | dst += emitOutputWord(dst, code >> 16); |
| 11689 | } |
| 11690 | else if (code & 0xFF0000) |
| 11691 | { |
| 11692 | dst += emitOutputByte(dst, code >> 16); |
| 11693 | } |
| 11694 | |
| 11695 | dst += emitOutputWord(dst, code | regcode); |
| 11696 | |
| 11697 | dst += emitOutputByte(dst, val); |
| 11698 | |
| 11699 | return dst; |
| 11700 | } |
| 11701 | |
| 11702 | // The 'mov' opcode is special |
| 11703 | if (ins == INS_mov) |
| 11704 | { |
| 11705 | code = insCodeACC(ins); |
| 11706 | assert(code < 0x100); |
| 11707 | |
| 11708 | code |= 0x08; // Set the 'w' bit |
| 11709 | unsigned regcode = insEncodeReg012(ins, reg, size, &code); |
| 11710 | code |= regcode; |
| 11711 | |
| 11712 | // This is INS_mov and will not take VEX prefix |
| 11713 | assert(!TakesVexPrefix(ins)); |
| 11714 | |
| 11715 | if (TakesRexWPrefix(ins, size)) |
| 11716 | { |
| 11717 | code = AddRexWPrefix(ins, code); |
| 11718 | } |
| 11719 | |
| 11720 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11721 | |
| 11722 | dst += emitOutputByte(dst, code); |
| 11723 | if (size == EA_4BYTE) |
| 11724 | { |
| 11725 | dst += emitOutputLong(dst, val); |
| 11726 | } |
| 11727 | #ifdef _TARGET_AMD64_ |
| 11728 | else |
| 11729 | { |
| 11730 | assert(size == EA_PTRSIZE); |
| 11731 | dst += emitOutputSizeT(dst, val); |
| 11732 | } |
| 11733 | #endif |
| 11734 | |
| 11735 | if (id->idIsCnsReloc()) |
| 11736 | { |
| 11737 | emitRecordRelocation((void*)(dst - (unsigned)EA_SIZE(size)), (void*)(size_t)val, IMAGE_REL_BASED_MOFFSET); |
| 11738 | } |
| 11739 | |
| 11740 | goto DONE; |
| 11741 | } |
| 11742 | |
| 11743 | // Decide which encoding is the shortest |
| 11744 | bool useSigned, useACC; |
| 11745 | |
| 11746 | if (reg == REG_EAX && !instrIs3opImul(ins)) |
| 11747 | { |
| 11748 | if (size == EA_1BYTE || (ins == INS_test)) |
| 11749 | { |
| 11750 | // For al, ACC encoding is always the smallest |
| 11751 | useSigned = false; |
| 11752 | useACC = true; |
| 11753 | } |
| 11754 | else |
| 11755 | { |
| 11756 | /* For ax/eax, we avoid ACC encoding for small constants as we |
| 11757 | * can emit the small constant and have it sign-extended. |
| 11758 | * For big constants, the ACC encoding is better as we can use |
| 11759 | * the 1 byte opcode |
| 11760 | */ |
| 11761 | |
| 11762 | if (valInByte) |
| 11763 | { |
| 11764 | // avoid using ACC encoding |
| 11765 | useSigned = true; |
| 11766 | useACC = false; |
| 11767 | } |
| 11768 | else |
| 11769 | { |
| 11770 | useSigned = false; |
| 11771 | useACC = true; |
| 11772 | } |
| 11773 | } |
| 11774 | } |
| 11775 | else |
| 11776 | { |
| 11777 | useACC = false; |
| 11778 | |
| 11779 | if (valInByte) |
| 11780 | { |
| 11781 | useSigned = true; |
| 11782 | } |
| 11783 | else |
| 11784 | { |
| 11785 | useSigned = false; |
| 11786 | } |
| 11787 | } |
| 11788 | |
| 11789 | // "test" has no 's' bit |
| 11790 | if (ins == INS_test) |
| 11791 | { |
| 11792 | useSigned = false; |
| 11793 | } |
| 11794 | |
| 11795 | // Get the 'base' opcode |
| 11796 | if (useACC) |
| 11797 | { |
| 11798 | assert(!useSigned); |
| 11799 | code = insCodeACC(ins); |
| 11800 | } |
| 11801 | else |
| 11802 | { |
| 11803 | assert(!useSigned || valInByte); |
| 11804 | |
| 11805 | // Some instructions (at least 'imul') do not have a |
| 11806 | // r/m, immed form, but do have a dstReg,srcReg,imm8 form. |
| 11807 | if (valInByte && useSigned && insNeedsRRIb(ins)) |
| 11808 | { |
| 11809 | code = insEncodeRRIb(ins, reg, size); |
| 11810 | } |
| 11811 | else |
| 11812 | { |
| 11813 | code = insCodeMI(ins); |
| 11814 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 11815 | code = insEncodeMIreg(ins, reg, size, code); |
| 11816 | } |
| 11817 | } |
| 11818 | |
| 11819 | switch (size) |
| 11820 | { |
| 11821 | case EA_1BYTE: |
| 11822 | break; |
| 11823 | |
| 11824 | case EA_2BYTE: |
| 11825 | // Output a size prefix for a 16-bit operand |
| 11826 | dst += emitOutputByte(dst, 0x66); |
| 11827 | __fallthrough; |
| 11828 | |
| 11829 | case EA_4BYTE: |
| 11830 | // Set the 'w' bit to get the large version |
| 11831 | code |= 0x1; |
| 11832 | break; |
| 11833 | |
| 11834 | #ifdef _TARGET_AMD64_ |
| 11835 | case EA_8BYTE: |
| 11836 | /* Set the 'w' bit to get the large version */ |
| 11837 | /* and the REX.W bit to get the really large version */ |
| 11838 | |
| 11839 | code = AddRexWPrefix(ins, code); |
| 11840 | code |= 0x1; |
| 11841 | break; |
| 11842 | #endif |
| 11843 | |
| 11844 | default: |
| 11845 | assert(!"unexpected size" ); |
| 11846 | } |
| 11847 | |
| 11848 | // Output the REX prefix |
| 11849 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 11850 | |
| 11851 | // Does the value fit in a sign-extended byte? |
| 11852 | // Important! Only set the 's' bit when we have a size larger than EA_1BYTE. |
| 11853 | // Note: A sign-extending immediate when (size == EA_1BYTE) is invalid in 64-bit mode. |
| 11854 | |
| 11855 | if (useSigned && (size > EA_1BYTE)) |
| 11856 | { |
| 11857 | // We can just set the 's' bit, and issue an immediate byte |
| 11858 | |
| 11859 | code |= 0x2; // Set the 's' bit to use a sign-extended immediate byte. |
| 11860 | dst += emitOutputWord(dst, code); |
| 11861 | dst += emitOutputByte(dst, val); |
| 11862 | } |
| 11863 | else |
| 11864 | { |
| 11865 | // Can we use an accumulator (EAX) encoding? |
| 11866 | if (useACC) |
| 11867 | { |
| 11868 | dst += emitOutputByte(dst, code); |
| 11869 | } |
| 11870 | else |
| 11871 | { |
| 11872 | dst += emitOutputWord(dst, code); |
| 11873 | } |
| 11874 | |
| 11875 | switch (size) |
| 11876 | { |
| 11877 | case EA_1BYTE: |
| 11878 | dst += emitOutputByte(dst, val); |
| 11879 | break; |
| 11880 | case EA_2BYTE: |
| 11881 | dst += emitOutputWord(dst, val); |
| 11882 | break; |
| 11883 | case EA_4BYTE: |
| 11884 | dst += emitOutputLong(dst, val); |
| 11885 | break; |
| 11886 | #ifdef _TARGET_AMD64_ |
| 11887 | case EA_8BYTE: |
| 11888 | dst += emitOutputLong(dst, val); |
| 11889 | break; |
| 11890 | #endif // _TARGET_AMD64_ |
| 11891 | default: |
| 11892 | break; |
| 11893 | } |
| 11894 | |
| 11895 | if (id->idIsCnsReloc()) |
| 11896 | { |
| 11897 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)(size_t)val, IMAGE_REL_BASED_HIGHLOW); |
| 11898 | assert(size == EA_4BYTE); |
| 11899 | } |
| 11900 | } |
| 11901 | |
| 11902 | DONE: |
| 11903 | |
| 11904 | // Does this instruction operate on a GC ref value? |
| 11905 | if (id->idGCref()) |
| 11906 | { |
| 11907 | switch (id->idInsFmt()) |
| 11908 | { |
| 11909 | case IF_RRD_CNS: |
| 11910 | break; |
| 11911 | |
| 11912 | case IF_RWR_CNS: |
| 11913 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 11914 | break; |
| 11915 | |
| 11916 | case IF_RRW_CNS: |
| 11917 | assert(id->idGCref() == GCT_BYREF); |
| 11918 | |
| 11919 | #ifdef DEBUG |
| 11920 | regMaskTP regMask; |
| 11921 | regMask = genRegMask(reg); |
| 11922 | // FIXNOW review the other places and relax the assert there too |
| 11923 | |
| 11924 | // The reg must currently be holding either a gcref or a byref |
| 11925 | // GCT_GCREF+int = GCT_BYREF, and GCT_BYREF+/-int = GCT_BYREF |
| 11926 | if (emitThisGCrefRegs & regMask) |
| 11927 | { |
| 11928 | assert(ins == INS_add); |
| 11929 | } |
| 11930 | if (emitThisByrefRegs & regMask) |
| 11931 | { |
| 11932 | assert(ins == INS_add || ins == INS_sub); |
| 11933 | } |
| 11934 | #endif |
| 11935 | // Mark it as holding a GCT_BYREF |
| 11936 | emitGCregLiveUpd(GCT_BYREF, id->idReg1(), dst); |
| 11937 | break; |
| 11938 | |
| 11939 | default: |
| 11940 | #ifdef DEBUG |
| 11941 | emitDispIns(id, false, false, false); |
| 11942 | #endif |
| 11943 | assert(!"unexpected GC ref instruction format" ); |
| 11944 | } |
| 11945 | |
| 11946 | // mul can never produce a GC ref |
| 11947 | assert(!instrIs3opImul(ins)); |
| 11948 | assert(ins != INS_mulEAX && ins != INS_imulEAX); |
| 11949 | } |
| 11950 | else |
| 11951 | { |
| 11952 | switch (id->idInsFmt()) |
| 11953 | { |
| 11954 | case IF_RRD_CNS: |
| 11955 | // INS_mulEAX can not be used with any of these formats |
| 11956 | assert(ins != INS_mulEAX && ins != INS_imulEAX); |
| 11957 | |
| 11958 | // For the three operand imul instruction the target |
| 11959 | // register is encoded in the opcode |
| 11960 | |
| 11961 | if (instrIs3opImul(ins)) |
| 11962 | { |
| 11963 | regNumber tgtReg = inst3opImulReg(ins); |
| 11964 | emitGCregDeadUpd(tgtReg, dst); |
| 11965 | } |
| 11966 | break; |
| 11967 | |
| 11968 | case IF_RRW_CNS: |
| 11969 | case IF_RWR_CNS: |
| 11970 | assert(!instrIs3opImul(ins)); |
| 11971 | |
| 11972 | emitGCregDeadUpd(id->idReg1(), dst); |
| 11973 | break; |
| 11974 | |
| 11975 | default: |
| 11976 | #ifdef DEBUG |
| 11977 | emitDispIns(id, false, false, false); |
| 11978 | #endif |
| 11979 | assert(!"unexpected GC ref instruction format" ); |
| 11980 | } |
| 11981 | } |
| 11982 | |
| 11983 | return dst; |
| 11984 | } |
| 11985 | |
| 11986 | /***************************************************************************** |
| 11987 | * |
| 11988 | * Output an instruction with a constant operand. |
| 11989 | */ |
| 11990 | |
| 11991 | BYTE* emitter::emitOutputIV(BYTE* dst, instrDesc* id) |
| 11992 | { |
| 11993 | code_t code; |
| 11994 | instruction ins = id->idIns(); |
| 11995 | emitAttr size = id->idOpSize(); |
| 11996 | ssize_t val = emitGetInsSC(id); |
| 11997 | bool valInByte = ((signed char)val == val); |
| 11998 | |
| 11999 | // We would to update GC info correctly |
| 12000 | assert(!IsSSEInstruction(ins)); |
| 12001 | assert(!IsAVXInstruction(ins)); |
| 12002 | |
| 12003 | #ifdef _TARGET_AMD64_ |
| 12004 | // all these opcodes take a sign-extended 4-byte immediate, max |
| 12005 | noway_assert(size < EA_8BYTE || ((int)val == val && !id->idIsCnsReloc())); |
| 12006 | #endif |
| 12007 | |
| 12008 | if (id->idIsCnsReloc()) |
| 12009 | { |
| 12010 | valInByte = false; // relocs can't be placed in a byte |
| 12011 | |
| 12012 | // Of these instructions only the push instruction can have reloc |
| 12013 | assert(ins == INS_push || ins == INS_push_hide); |
| 12014 | } |
| 12015 | |
| 12016 | switch (ins) |
| 12017 | { |
| 12018 | case INS_jge: |
| 12019 | assert((val >= -128) && (val <= 127)); |
| 12020 | dst += emitOutputByte(dst, insCode(ins)); |
| 12021 | dst += emitOutputByte(dst, val); |
| 12022 | break; |
| 12023 | |
| 12024 | case INS_loop: |
| 12025 | assert((val >= -128) && (val <= 127)); |
| 12026 | dst += emitOutputByte(dst, insCodeMI(ins)); |
| 12027 | dst += emitOutputByte(dst, val); |
| 12028 | break; |
| 12029 | |
| 12030 | case INS_ret: |
| 12031 | assert(val); |
| 12032 | dst += emitOutputByte(dst, insCodeMI(ins)); |
| 12033 | dst += emitOutputWord(dst, val); |
| 12034 | break; |
| 12035 | |
| 12036 | case INS_push_hide: |
| 12037 | case INS_push: |
| 12038 | code = insCodeMI(ins); |
| 12039 | |
| 12040 | // Does the operand fit in a byte? |
| 12041 | if (valInByte) |
| 12042 | { |
| 12043 | dst += emitOutputByte(dst, code | 2); |
| 12044 | dst += emitOutputByte(dst, val); |
| 12045 | } |
| 12046 | else |
| 12047 | { |
| 12048 | if (TakesRexWPrefix(ins, size)) |
| 12049 | { |
| 12050 | code = AddRexWPrefix(ins, code); |
| 12051 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 12052 | } |
| 12053 | |
| 12054 | dst += emitOutputByte(dst, code); |
| 12055 | dst += emitOutputLong(dst, val); |
| 12056 | if (id->idIsCnsReloc()) |
| 12057 | { |
| 12058 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)(size_t)val, IMAGE_REL_BASED_HIGHLOW); |
| 12059 | } |
| 12060 | } |
| 12061 | |
| 12062 | // Did we push a GC ref value? |
| 12063 | if (id->idGCref()) |
| 12064 | { |
| 12065 | #ifdef DEBUG |
| 12066 | printf("UNDONE: record GCref push [cns]\n" ); |
| 12067 | #endif |
| 12068 | } |
| 12069 | |
| 12070 | break; |
| 12071 | |
| 12072 | default: |
| 12073 | assert(!"unexpected instruction" ); |
| 12074 | } |
| 12075 | |
| 12076 | return dst; |
| 12077 | } |
| 12078 | |
| 12079 | /***************************************************************************** |
| 12080 | * |
| 12081 | * Output a local jump instruction. |
| 12082 | * This function also handles non-jumps that have jump-like characteristics, like RIP-relative LEA of a label that |
| 12083 | * needs to get bound to an actual address and processed by branch shortening. |
| 12084 | */ |
| 12085 | |
| 12086 | BYTE* emitter::emitOutputLJ(BYTE* dst, instrDesc* i) |
| 12087 | { |
| 12088 | unsigned srcOffs; |
| 12089 | unsigned dstOffs; |
| 12090 | ssize_t distVal; |
| 12091 | |
| 12092 | instrDescJmp* id = (instrDescJmp*)i; |
| 12093 | instruction ins = id->idIns(); |
| 12094 | bool jmp; |
| 12095 | bool relAddr = true; // does the instruction use relative-addressing? |
| 12096 | |
| 12097 | // SSE/AVX doesnt make any sense here |
| 12098 | assert(!IsSSEInstruction(ins)); |
| 12099 | assert(!IsAVXInstruction(ins)); |
| 12100 | |
| 12101 | size_t ssz; |
| 12102 | size_t lsz; |
| 12103 | |
| 12104 | switch (ins) |
| 12105 | { |
| 12106 | default: |
| 12107 | ssz = JCC_SIZE_SMALL; |
| 12108 | lsz = JCC_SIZE_LARGE; |
| 12109 | jmp = true; |
| 12110 | break; |
| 12111 | |
| 12112 | case INS_jmp: |
| 12113 | ssz = JMP_SIZE_SMALL; |
| 12114 | lsz = JMP_SIZE_LARGE; |
| 12115 | jmp = true; |
| 12116 | break; |
| 12117 | |
| 12118 | case INS_call: |
| 12119 | ssz = lsz = CALL_INST_SIZE; |
| 12120 | jmp = false; |
| 12121 | break; |
| 12122 | |
| 12123 | case INS_push_hide: |
| 12124 | case INS_push: |
| 12125 | ssz = lsz = 5; |
| 12126 | jmp = false; |
| 12127 | relAddr = false; |
| 12128 | break; |
| 12129 | |
| 12130 | case INS_mov: |
| 12131 | case INS_lea: |
| 12132 | ssz = lsz = id->idCodeSize(); |
| 12133 | jmp = false; |
| 12134 | relAddr = false; |
| 12135 | break; |
| 12136 | } |
| 12137 | |
| 12138 | // Figure out the distance to the target |
| 12139 | srcOffs = emitCurCodeOffs(dst); |
| 12140 | dstOffs = id->idAddr()->iiaIGlabel->igOffs; |
| 12141 | |
| 12142 | if (relAddr) |
| 12143 | { |
| 12144 | distVal = (ssize_t)(emitOffsetToPtr(dstOffs) - emitOffsetToPtr(srcOffs)); |
| 12145 | } |
| 12146 | else |
| 12147 | { |
| 12148 | distVal = (ssize_t)emitOffsetToPtr(dstOffs); |
| 12149 | } |
| 12150 | |
| 12151 | if (dstOffs <= srcOffs) |
| 12152 | { |
| 12153 | // This is a backward jump - distance is known at this point |
| 12154 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 12155 | |
| 12156 | #if DEBUG_EMIT |
| 12157 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
| 12158 | { |
| 12159 | size_t blkOffs = id->idjIG->igOffs; |
| 12160 | |
| 12161 | if (INTERESTING_JUMP_NUM == 0) |
| 12162 | { |
| 12163 | printf("[3] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
| 12164 | } |
| 12165 | printf("[3] Jump block is at %08X - %02X = %08X\n" , blkOffs, emitOffsAdj, blkOffs - emitOffsAdj); |
| 12166 | printf("[3] Jump is at %08X - %02X = %08X\n" , srcOffs, emitOffsAdj, srcOffs - emitOffsAdj); |
| 12167 | printf("[3] Label block is at %08X - %02X = %08X\n" , dstOffs, emitOffsAdj, dstOffs - emitOffsAdj); |
| 12168 | } |
| 12169 | #endif |
| 12170 | |
| 12171 | // Can we use a short jump? |
| 12172 | if (jmp && distVal - ssz >= (size_t)JMP_DIST_SMALL_MAX_NEG) |
| 12173 | { |
| 12174 | emitSetShortJump(id); |
| 12175 | } |
| 12176 | } |
| 12177 | else |
| 12178 | { |
| 12179 | // This is a forward jump - distance will be an upper limit |
| 12180 | emitFwdJumps = true; |
| 12181 | |
| 12182 | // The target offset will be closer by at least 'emitOffsAdj', but only if this |
| 12183 | // jump doesn't cross the hot-cold boundary. |
| 12184 | if (!emitJumpCrossHotColdBoundary(srcOffs, dstOffs)) |
| 12185 | { |
| 12186 | dstOffs -= emitOffsAdj; |
| 12187 | distVal -= emitOffsAdj; |
| 12188 | } |
| 12189 | |
| 12190 | // Record the location of the jump for later patching |
| 12191 | id->idjOffs = dstOffs; |
| 12192 | |
| 12193 | // Are we overflowing the id->idjOffs bitfield? |
| 12194 | if (id->idjOffs != dstOffs) |
| 12195 | { |
| 12196 | IMPL_LIMITATION("Method is too large" ); |
| 12197 | } |
| 12198 | |
| 12199 | #if DEBUG_EMIT |
| 12200 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
| 12201 | { |
| 12202 | size_t blkOffs = id->idjIG->igOffs; |
| 12203 | |
| 12204 | if (INTERESTING_JUMP_NUM == 0) |
| 12205 | { |
| 12206 | printf("[4] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
| 12207 | } |
| 12208 | printf("[4] Jump block is at %08X\n" , blkOffs); |
| 12209 | printf("[4] Jump is at %08X\n" , srcOffs); |
| 12210 | printf("[4] Label block is at %08X - %02X = %08X\n" , dstOffs + emitOffsAdj, emitOffsAdj, dstOffs); |
| 12211 | } |
| 12212 | #endif |
| 12213 | |
| 12214 | // Can we use a short jump? |
| 12215 | if (jmp && distVal - ssz <= (size_t)JMP_DIST_SMALL_MAX_POS) |
| 12216 | { |
| 12217 | emitSetShortJump(id); |
| 12218 | } |
| 12219 | } |
| 12220 | |
| 12221 | // Adjust the offset to emit relative to the end of the instruction |
| 12222 | if (relAddr) |
| 12223 | { |
| 12224 | distVal -= id->idjShort ? ssz : lsz; |
| 12225 | } |
| 12226 | |
| 12227 | #ifdef DEBUG |
| 12228 | if (0 && emitComp->verbose) |
| 12229 | { |
| 12230 | size_t sz = id->idjShort ? ssz : lsz; |
| 12231 | int distValSize = id->idjShort ? 4 : 8; |
| 12232 | printf("; %s jump [%08X/%03u] from %0*X to %0*X: dist = %08XH\n" , (dstOffs <= srcOffs) ? "Fwd" : "Bwd" , |
| 12233 | emitComp->dspPtr(id), id->idDebugOnlyInfo()->idNum, distValSize, srcOffs + sz, distValSize, dstOffs, |
| 12234 | distVal); |
| 12235 | } |
| 12236 | #endif |
| 12237 | |
| 12238 | // What size jump should we use? |
| 12239 | if (id->idjShort) |
| 12240 | { |
| 12241 | // Short jump |
| 12242 | assert(!id->idjKeepLong); |
| 12243 | assert(emitJumpCrossHotColdBoundary(srcOffs, dstOffs) == false); |
| 12244 | |
| 12245 | assert(JMP_SIZE_SMALL == JCC_SIZE_SMALL); |
| 12246 | assert(JMP_SIZE_SMALL == 2); |
| 12247 | |
| 12248 | assert(jmp); |
| 12249 | |
| 12250 | if (emitInstCodeSz(id) != JMP_SIZE_SMALL) |
| 12251 | { |
| 12252 | emitOffsAdj += emitInstCodeSz(id) - JMP_SIZE_SMALL; |
| 12253 | |
| 12254 | #ifdef DEBUG |
| 12255 | if (emitComp->verbose) |
| 12256 | { |
| 12257 | printf("; NOTE: size of jump [%08X] mis-predicted\n" , emitComp->dspPtr(id)); |
| 12258 | } |
| 12259 | #endif |
| 12260 | } |
| 12261 | |
| 12262 | dst += emitOutputByte(dst, insCode(ins)); |
| 12263 | |
| 12264 | // For forward jumps, record the address of the distance value |
| 12265 | id->idjTemp.idjAddr = (distVal > 0) ? dst : nullptr; |
| 12266 | |
| 12267 | dst += emitOutputByte(dst, distVal); |
| 12268 | } |
| 12269 | else |
| 12270 | { |
| 12271 | code_t code; |
| 12272 | |
| 12273 | // Long jump |
| 12274 | if (jmp) |
| 12275 | { |
| 12276 | // clang-format off |
| 12277 | assert(INS_jmp + (INS_l_jmp - INS_jmp) == INS_l_jmp); |
| 12278 | assert(INS_jo + (INS_l_jmp - INS_jmp) == INS_l_jo); |
| 12279 | assert(INS_jb + (INS_l_jmp - INS_jmp) == INS_l_jb); |
| 12280 | assert(INS_jae + (INS_l_jmp - INS_jmp) == INS_l_jae); |
| 12281 | assert(INS_je + (INS_l_jmp - INS_jmp) == INS_l_je); |
| 12282 | assert(INS_jne + (INS_l_jmp - INS_jmp) == INS_l_jne); |
| 12283 | assert(INS_jbe + (INS_l_jmp - INS_jmp) == INS_l_jbe); |
| 12284 | assert(INS_ja + (INS_l_jmp - INS_jmp) == INS_l_ja); |
| 12285 | assert(INS_js + (INS_l_jmp - INS_jmp) == INS_l_js); |
| 12286 | assert(INS_jns + (INS_l_jmp - INS_jmp) == INS_l_jns); |
| 12287 | assert(INS_jpe + (INS_l_jmp - INS_jmp) == INS_l_jpe); |
| 12288 | assert(INS_jpo + (INS_l_jmp - INS_jmp) == INS_l_jpo); |
| 12289 | assert(INS_jl + (INS_l_jmp - INS_jmp) == INS_l_jl); |
| 12290 | assert(INS_jge + (INS_l_jmp - INS_jmp) == INS_l_jge); |
| 12291 | assert(INS_jle + (INS_l_jmp - INS_jmp) == INS_l_jle); |
| 12292 | assert(INS_jg + (INS_l_jmp - INS_jmp) == INS_l_jg); |
| 12293 | // clang-format on |
| 12294 | |
| 12295 | code = insCode((instruction)(ins + (INS_l_jmp - INS_jmp))); |
| 12296 | } |
| 12297 | else if (ins == INS_push || ins == INS_push_hide) |
| 12298 | { |
| 12299 | assert(insCodeMI(INS_push) == 0x68); |
| 12300 | code = 0x68; |
| 12301 | } |
| 12302 | else if (ins == INS_mov) |
| 12303 | { |
| 12304 | // Make it look like IF_SWR_CNS so that emitOutputSV emits the r/m32 for us |
| 12305 | insFormat tmpInsFmt = id->idInsFmt(); |
| 12306 | insGroup* tmpIGlabel = id->idAddr()->iiaIGlabel; |
| 12307 | bool tmpDspReloc = id->idIsDspReloc(); |
| 12308 | |
| 12309 | id->idInsFmt(IF_SWR_CNS); |
| 12310 | id->idAddr()->iiaLclVar = ((instrDescLbl*)id)->dstLclVar; |
| 12311 | id->idSetIsDspReloc(false); |
| 12312 | |
| 12313 | dst = emitOutputSV(dst, id, insCodeMI(ins)); |
| 12314 | |
| 12315 | // Restore id fields with original values |
| 12316 | id->idInsFmt(tmpInsFmt); |
| 12317 | id->idAddr()->iiaIGlabel = tmpIGlabel; |
| 12318 | id->idSetIsDspReloc(tmpDspReloc); |
| 12319 | code = 0xCC; |
| 12320 | } |
| 12321 | else if (ins == INS_lea) |
| 12322 | { |
| 12323 | // Make an instrDesc that looks like IF_RWR_ARD so that emitOutputAM emits the r/m32 for us. |
| 12324 | // We basically are doing what emitIns_R_AI does. |
| 12325 | // TODO-XArch-Cleanup: revisit this. |
| 12326 | instrDescAmd idAmdStackLocal; |
| 12327 | instrDescAmd* idAmd = &idAmdStackLocal; |
| 12328 | *(instrDesc*)idAmd = *(instrDesc*)id; // copy all the "core" fields |
| 12329 | memset((BYTE*)idAmd + sizeof(instrDesc), 0, |
| 12330 | sizeof(instrDescAmd) - sizeof(instrDesc)); // zero out the tail that wasn't copied |
| 12331 | |
| 12332 | idAmd->idInsFmt(IF_RWR_ARD); |
| 12333 | idAmd->idAddr()->iiaAddrMode.amBaseReg = REG_NA; |
| 12334 | idAmd->idAddr()->iiaAddrMode.amIndxReg = REG_NA; |
| 12335 | emitSetAmdDisp(idAmd, distVal); // set the displacement |
| 12336 | idAmd->idSetIsDspReloc(id->idIsDspReloc()); |
| 12337 | assert(emitGetInsAmdAny(idAmd) == distVal); // make sure "disp" is stored properly |
| 12338 | |
| 12339 | UNATIVE_OFFSET sz = emitInsSizeAM(idAmd, insCodeRM(ins)); |
| 12340 | idAmd->idCodeSize(sz); |
| 12341 | |
| 12342 | code = insCodeRM(ins); |
| 12343 | code |= (insEncodeReg345(ins, id->idReg1(), EA_PTRSIZE, &code) << 8); |
| 12344 | |
| 12345 | dst = emitOutputAM(dst, idAmd, code, nullptr); |
| 12346 | |
| 12347 | code = 0xCC; |
| 12348 | |
| 12349 | // For forward jumps, record the address of the distance value |
| 12350 | // Hard-coded 4 here because we already output the displacement, as the last thing. |
| 12351 | id->idjTemp.idjAddr = (dstOffs > srcOffs) ? (dst - 4) : nullptr; |
| 12352 | |
| 12353 | // We're done |
| 12354 | return dst; |
| 12355 | } |
| 12356 | else |
| 12357 | { |
| 12358 | code = 0xE8; |
| 12359 | } |
| 12360 | |
| 12361 | if (ins != INS_mov) |
| 12362 | { |
| 12363 | dst += emitOutputByte(dst, code); |
| 12364 | |
| 12365 | if (code & 0xFF00) |
| 12366 | { |
| 12367 | dst += emitOutputByte(dst, code >> 8); |
| 12368 | } |
| 12369 | } |
| 12370 | |
| 12371 | // For forward jumps, record the address of the distance value |
| 12372 | id->idjTemp.idjAddr = (dstOffs > srcOffs) ? dst : nullptr; |
| 12373 | |
| 12374 | dst += emitOutputLong(dst, distVal); |
| 12375 | |
| 12376 | #ifndef _TARGET_AMD64_ // all REL32 on AMD have to go through recordRelocation |
| 12377 | if (emitComp->opts.compReloc) |
| 12378 | #endif |
| 12379 | { |
| 12380 | if (!relAddr) |
| 12381 | { |
| 12382 | emitRecordRelocation((void*)(dst - sizeof(INT32)), (void*)distVal, IMAGE_REL_BASED_HIGHLOW); |
| 12383 | } |
| 12384 | else if (emitJumpCrossHotColdBoundary(srcOffs, dstOffs)) |
| 12385 | { |
| 12386 | assert(id->idjKeepLong); |
| 12387 | emitRecordRelocation((void*)(dst - sizeof(INT32)), dst + distVal, IMAGE_REL_BASED_REL32); |
| 12388 | } |
| 12389 | } |
| 12390 | } |
| 12391 | |
| 12392 | // Local calls kill all registers |
| 12393 | if (ins == INS_call && (emitThisGCrefRegs | emitThisByrefRegs)) |
| 12394 | { |
| 12395 | emitGCregDeadUpdMask(emitThisGCrefRegs | emitThisByrefRegs, dst); |
| 12396 | } |
| 12397 | |
| 12398 | return dst; |
| 12399 | } |
| 12400 | |
| 12401 | /***************************************************************************** |
| 12402 | * |
| 12403 | * Append the machine code corresponding to the given instruction descriptor |
| 12404 | * to the code block at '*dp'; the base of the code block is 'bp', and 'ig' |
| 12405 | * is the instruction group that contains the instruction. Updates '*dp' to |
| 12406 | * point past the generated code, and returns the size of the instruction |
| 12407 | * descriptor in bytes. |
| 12408 | */ |
| 12409 | |
| 12410 | #ifdef _PREFAST_ |
| 12411 | #pragma warning(push) |
| 12412 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
| 12413 | #endif |
| 12414 | size_t emitter::emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp) |
| 12415 | { |
| 12416 | assert(emitIssuing); |
| 12417 | |
| 12418 | BYTE* dst = *dp; |
| 12419 | size_t sz = sizeof(instrDesc); |
| 12420 | instruction ins = id->idIns(); |
| 12421 | unsigned char callInstrSize = 0; |
| 12422 | |
| 12423 | #ifdef DEBUG |
| 12424 | bool dspOffs = emitComp->opts.dspGCtbls; |
| 12425 | #endif // DEBUG |
| 12426 | |
| 12427 | emitAttr size = id->idOpSize(); |
| 12428 | |
| 12429 | assert(REG_NA == (int)REG_NA); |
| 12430 | |
| 12431 | assert(ins != INS_imul || size >= EA_4BYTE); // Has no 'w' bit |
| 12432 | assert(instrIs3opImul(id->idIns()) == 0 || size >= EA_4BYTE); // Has no 'w' bit |
| 12433 | |
| 12434 | VARSET_TP GCvars(VarSetOps::UninitVal()); |
| 12435 | |
| 12436 | // What instruction format have we got? |
| 12437 | switch (id->idInsFmt()) |
| 12438 | { |
| 12439 | code_t code; |
| 12440 | unsigned regcode; |
| 12441 | int args; |
| 12442 | CnsVal cnsVal; |
| 12443 | |
| 12444 | BYTE* addr; |
| 12445 | bool recCall; |
| 12446 | |
| 12447 | regMaskTP gcrefRegs; |
| 12448 | regMaskTP byrefRegs; |
| 12449 | |
| 12450 | /********************************************************************/ |
| 12451 | /* No operands */ |
| 12452 | /********************************************************************/ |
| 12453 | case IF_NONE: |
| 12454 | // the loop alignment pseudo instruction |
| 12455 | if (ins == INS_align) |
| 12456 | { |
| 12457 | sz = SMALL_IDSC_SIZE; |
| 12458 | dst = emitOutputNOP(dst, (-(int)(size_t)dst) & 0x0f); |
| 12459 | assert(((size_t)dst & 0x0f) == 0); |
| 12460 | break; |
| 12461 | } |
| 12462 | |
| 12463 | if (ins == INS_nop) |
| 12464 | { |
| 12465 | dst = emitOutputNOP(dst, id->idCodeSize()); |
| 12466 | break; |
| 12467 | } |
| 12468 | |
| 12469 | // the cdq instruction kills the EDX register implicitly |
| 12470 | if (ins == INS_cdq) |
| 12471 | { |
| 12472 | emitGCregDeadUpd(REG_EDX, dst); |
| 12473 | } |
| 12474 | |
| 12475 | assert(id->idGCref() == GCT_NONE); |
| 12476 | |
| 12477 | code = insCodeMR(ins); |
| 12478 | |
| 12479 | #ifdef _TARGET_AMD64_ |
| 12480 | // Support only scalar AVX instructions and hence size is hard coded to 4-byte. |
| 12481 | code = AddVexPrefixIfNeeded(ins, code, EA_4BYTE); |
| 12482 | |
| 12483 | if (ins == INS_cdq && TakesRexWPrefix(ins, id->idOpSize())) |
| 12484 | { |
| 12485 | code = AddRexWPrefix(ins, code); |
| 12486 | } |
| 12487 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 12488 | #endif |
| 12489 | // Is this a 'big' opcode? |
| 12490 | if (code & 0xFF000000) |
| 12491 | { |
| 12492 | // The high word and then the low word |
| 12493 | dst += emitOutputWord(dst, code >> 16); |
| 12494 | code &= 0x0000FFFF; |
| 12495 | dst += emitOutputWord(dst, code); |
| 12496 | } |
| 12497 | else if (code & 0x00FF0000) |
| 12498 | { |
| 12499 | // The high byte and then the low word |
| 12500 | dst += emitOutputByte(dst, code >> 16); |
| 12501 | code &= 0x0000FFFF; |
| 12502 | dst += emitOutputWord(dst, code); |
| 12503 | } |
| 12504 | else if (code & 0xFF00) |
| 12505 | { |
| 12506 | // The 2 byte opcode |
| 12507 | dst += emitOutputWord(dst, code); |
| 12508 | } |
| 12509 | else |
| 12510 | { |
| 12511 | // The 1 byte opcode |
| 12512 | dst += emitOutputByte(dst, code); |
| 12513 | } |
| 12514 | |
| 12515 | break; |
| 12516 | |
| 12517 | /********************************************************************/ |
| 12518 | /* Simple constant, local label, method */ |
| 12519 | /********************************************************************/ |
| 12520 | |
| 12521 | case IF_CNS: |
| 12522 | dst = emitOutputIV(dst, id); |
| 12523 | sz = emitSizeOfInsDsc(id); |
| 12524 | break; |
| 12525 | |
| 12526 | case IF_LABEL: |
| 12527 | case IF_RWR_LABEL: |
| 12528 | case IF_SWR_LABEL: |
| 12529 | assert(id->idGCref() == GCT_NONE); |
| 12530 | assert(id->idIsBound()); |
| 12531 | |
| 12532 | // TODO-XArch-Cleanup: handle IF_RWR_LABEL in emitOutputLJ() or change it to emitOutputAM()? |
| 12533 | dst = emitOutputLJ(dst, id); |
| 12534 | sz = (id->idInsFmt() == IF_SWR_LABEL ? sizeof(instrDescLbl) : sizeof(instrDescJmp)); |
| 12535 | break; |
| 12536 | |
| 12537 | case IF_METHOD: |
| 12538 | case IF_METHPTR: |
| 12539 | // Assume we'll be recording this call |
| 12540 | recCall = true; |
| 12541 | |
| 12542 | // Get hold of the argument count and field Handle |
| 12543 | args = emitGetInsCDinfo(id); |
| 12544 | |
| 12545 | // Is this a "fat" call descriptor? |
| 12546 | if (id->idIsLargeCall()) |
| 12547 | { |
| 12548 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
| 12549 | gcrefRegs = idCall->idcGcrefRegs; |
| 12550 | byrefRegs = idCall->idcByrefRegs; |
| 12551 | VarSetOps::Assign(emitComp, GCvars, idCall->idcGCvars); |
| 12552 | sz = sizeof(instrDescCGCA); |
| 12553 | } |
| 12554 | else |
| 12555 | { |
| 12556 | assert(!id->idIsLargeDsp()); |
| 12557 | assert(!id->idIsLargeCns()); |
| 12558 | |
| 12559 | gcrefRegs = emitDecodeCallGCregs(id); |
| 12560 | byrefRegs = 0; |
| 12561 | VarSetOps::AssignNoCopy(emitComp, GCvars, VarSetOps::MakeEmpty(emitComp)); |
| 12562 | sz = sizeof(instrDesc); |
| 12563 | } |
| 12564 | |
| 12565 | addr = (BYTE*)id->idAddr()->iiaAddr; |
| 12566 | assert(addr != nullptr); |
| 12567 | |
| 12568 | // Some helpers don't get recorded in GC tables |
| 12569 | if (id->idIsNoGC()) |
| 12570 | { |
| 12571 | recCall = false; |
| 12572 | } |
| 12573 | |
| 12574 | // What kind of a call do we have here? |
| 12575 | if (id->idInsFmt() == IF_METHPTR) |
| 12576 | { |
| 12577 | // This is call indirect via a method pointer |
| 12578 | |
| 12579 | code = insCodeMR(ins); |
| 12580 | if (ins == INS_i_jmp) |
| 12581 | { |
| 12582 | code |= 1; |
| 12583 | } |
| 12584 | |
| 12585 | if (id->idIsDspReloc()) |
| 12586 | { |
| 12587 | dst += emitOutputWord(dst, code | 0x0500); |
| 12588 | #ifdef _TARGET_AMD64_ |
| 12589 | dst += emitOutputLong(dst, 0); |
| 12590 | #else |
| 12591 | dst += emitOutputLong(dst, (int)addr); |
| 12592 | #endif |
| 12593 | emitRecordRelocation((void*)(dst - sizeof(int)), addr, IMAGE_REL_BASED_DISP32); |
| 12594 | } |
| 12595 | else |
| 12596 | { |
| 12597 | #ifdef _TARGET_X86_ |
| 12598 | dst += emitOutputWord(dst, code | 0x0500); |
| 12599 | #else //_TARGET_AMD64_ |
| 12600 | // Amd64: addr fits within 32-bits and can be encoded as a displacement relative to zero. |
| 12601 | // This addr mode should never be used while generating relocatable ngen code nor if |
| 12602 | // the addr can be encoded as pc-relative address. |
| 12603 | noway_assert(!emitComp->opts.compReloc); |
| 12604 | noway_assert(codeGen->genAddrRelocTypeHint((size_t)addr) != IMAGE_REL_BASED_REL32); |
| 12605 | noway_assert(static_cast<int>(reinterpret_cast<intptr_t>(addr)) == (ssize_t)addr); |
| 12606 | |
| 12607 | // This requires, specifying a SIB byte after ModRM byte. |
| 12608 | dst += emitOutputWord(dst, code | 0x0400); |
| 12609 | dst += emitOutputByte(dst, 0x25); |
| 12610 | #endif //_TARGET_AMD64_ |
| 12611 | dst += emitOutputLong(dst, static_cast<int>(reinterpret_cast<intptr_t>(addr))); |
| 12612 | } |
| 12613 | goto DONE_CALL; |
| 12614 | } |
| 12615 | |
| 12616 | // Else |
| 12617 | // This is call direct where we know the target, thus we can |
| 12618 | // use a direct call; the target to jump to is in iiaAddr. |
| 12619 | assert(id->idInsFmt() == IF_METHOD); |
| 12620 | |
| 12621 | // Output the call opcode followed by the target distance |
| 12622 | dst += (ins == INS_l_jmp) ? emitOutputByte(dst, insCode(ins)) : emitOutputByte(dst, insCodeMI(ins)); |
| 12623 | |
| 12624 | ssize_t offset; |
| 12625 | #ifdef _TARGET_AMD64_ |
| 12626 | // All REL32 on Amd64 go through recordRelocation. Here we will output zero to advance dst. |
| 12627 | offset = 0; |
| 12628 | assert(id->idIsDspReloc()); |
| 12629 | #else |
| 12630 | // Calculate PC relative displacement. |
| 12631 | // Although you think we should be using sizeof(void*), the x86 and x64 instruction set |
| 12632 | // only allow a 32-bit offset, so we correctly use sizeof(INT32) |
| 12633 | offset = addr - (dst + sizeof(INT32)); |
| 12634 | #endif |
| 12635 | |
| 12636 | dst += emitOutputLong(dst, offset); |
| 12637 | |
| 12638 | if (id->idIsDspReloc()) |
| 12639 | { |
| 12640 | emitRecordRelocation((void*)(dst - sizeof(INT32)), addr, IMAGE_REL_BASED_REL32); |
| 12641 | } |
| 12642 | |
| 12643 | DONE_CALL: |
| 12644 | |
| 12645 | /* We update the GC info before the call as the variables cannot be |
| 12646 | used by the call. Killing variables before the call helps with |
| 12647 | boundary conditions if the call is CORINFO_HELP_THROW - see bug 50029. |
| 12648 | If we ever track aliased variables (which could be used by the |
| 12649 | call), we would have to keep them alive past the call. |
| 12650 | */ |
| 12651 | assert(FitsIn<unsigned char>(dst - *dp)); |
| 12652 | callInstrSize = static_cast<unsigned char>(dst - *dp); |
| 12653 | emitUpdateLiveGCvars(GCvars, *dp); |
| 12654 | |
| 12655 | // If the method returns a GC ref, mark EAX appropriately |
| 12656 | if (id->idGCref() == GCT_GCREF) |
| 12657 | { |
| 12658 | gcrefRegs |= RBM_EAX; |
| 12659 | } |
| 12660 | else if (id->idGCref() == GCT_BYREF) |
| 12661 | { |
| 12662 | byrefRegs |= RBM_EAX; |
| 12663 | } |
| 12664 | |
| 12665 | #ifdef UNIX_AMD64_ABI |
| 12666 | // If is a multi-register return method is called, mark RDX appropriately (for System V AMD64). |
| 12667 | if (id->idIsLargeCall()) |
| 12668 | { |
| 12669 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
| 12670 | if (idCall->idSecondGCref() == GCT_GCREF) |
| 12671 | { |
| 12672 | gcrefRegs |= RBM_RDX; |
| 12673 | } |
| 12674 | else if (idCall->idSecondGCref() == GCT_BYREF) |
| 12675 | { |
| 12676 | byrefRegs |= RBM_RDX; |
| 12677 | } |
| 12678 | } |
| 12679 | #endif // UNIX_AMD64_ABI |
| 12680 | |
| 12681 | // If the GC register set has changed, report the new set |
| 12682 | if (gcrefRegs != emitThisGCrefRegs) |
| 12683 | { |
| 12684 | emitUpdateLiveGCregs(GCT_GCREF, gcrefRegs, dst); |
| 12685 | } |
| 12686 | |
| 12687 | if (byrefRegs != emitThisByrefRegs) |
| 12688 | { |
| 12689 | emitUpdateLiveGCregs(GCT_BYREF, byrefRegs, dst); |
| 12690 | } |
| 12691 | |
| 12692 | if (recCall || args) |
| 12693 | { |
| 12694 | // For callee-pop, all arguments will be popped after the call. |
| 12695 | // For caller-pop, any GC arguments will go dead after the call. |
| 12696 | |
| 12697 | assert(callInstrSize != 0); |
| 12698 | |
| 12699 | if (args >= 0) |
| 12700 | { |
| 12701 | emitStackPop(dst, /*isCall*/ true, callInstrSize, args); |
| 12702 | } |
| 12703 | else |
| 12704 | { |
| 12705 | emitStackKillArgs(dst, -args, callInstrSize); |
| 12706 | } |
| 12707 | } |
| 12708 | |
| 12709 | // Do we need to record a call location for GC purposes? |
| 12710 | if (!emitFullGCinfo && recCall) |
| 12711 | { |
| 12712 | assert(callInstrSize != 0); |
| 12713 | emitRecordGCcall(dst, callInstrSize); |
| 12714 | } |
| 12715 | |
| 12716 | #ifdef DEBUG |
| 12717 | if (ins == INS_call) |
| 12718 | { |
| 12719 | emitRecordCallSite(emitCurCodeOffs(*dp), id->idDebugOnlyInfo()->idCallSig, |
| 12720 | (CORINFO_METHOD_HANDLE)id->idDebugOnlyInfo()->idMemCookie); |
| 12721 | } |
| 12722 | #endif // DEBUG |
| 12723 | |
| 12724 | break; |
| 12725 | |
| 12726 | /********************************************************************/ |
| 12727 | /* One register operand */ |
| 12728 | /********************************************************************/ |
| 12729 | |
| 12730 | case IF_RRD: |
| 12731 | case IF_RWR: |
| 12732 | case IF_RRW: |
| 12733 | dst = emitOutputR(dst, id); |
| 12734 | sz = SMALL_IDSC_SIZE; |
| 12735 | break; |
| 12736 | |
| 12737 | /********************************************************************/ |
| 12738 | /* Register and register/constant */ |
| 12739 | /********************************************************************/ |
| 12740 | |
| 12741 | case IF_RRW_SHF: |
| 12742 | code = insCodeMR(ins); |
| 12743 | // Emit the VEX prefix if it exists |
| 12744 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 12745 | code = insEncodeMRreg(ins, id->idReg1(), size, code); |
| 12746 | |
| 12747 | // set the W bit |
| 12748 | if (size != EA_1BYTE) |
| 12749 | { |
| 12750 | code |= 1; |
| 12751 | } |
| 12752 | |
| 12753 | // Emit the REX prefix if it exists |
| 12754 | if (TakesRexWPrefix(ins, size)) |
| 12755 | { |
| 12756 | code = AddRexWPrefix(ins, code); |
| 12757 | } |
| 12758 | |
| 12759 | // Output a size prefix for a 16-bit operand |
| 12760 | if (size == EA_2BYTE) |
| 12761 | { |
| 12762 | dst += emitOutputByte(dst, 0x66); |
| 12763 | } |
| 12764 | |
| 12765 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 12766 | dst += emitOutputWord(dst, code); |
| 12767 | dst += emitOutputByte(dst, emitGetInsSC(id)); |
| 12768 | sz = emitSizeOfInsDsc(id); |
| 12769 | |
| 12770 | // Update GC info. |
| 12771 | assert(!id->idGCref()); |
| 12772 | emitGCregDeadUpd(id->idReg1(), dst); |
| 12773 | break; |
| 12774 | |
| 12775 | case IF_RRD_RRD: |
| 12776 | case IF_RWR_RRD: |
| 12777 | case IF_RRW_RRD: |
| 12778 | case IF_RRW_RRW: |
| 12779 | dst = emitOutputRR(dst, id); |
| 12780 | sz = SMALL_IDSC_SIZE; |
| 12781 | break; |
| 12782 | |
| 12783 | case IF_RRD_CNS: |
| 12784 | case IF_RWR_CNS: |
| 12785 | case IF_RRW_CNS: |
| 12786 | dst = emitOutputRI(dst, id); |
| 12787 | sz = emitSizeOfInsDsc(id); |
| 12788 | break; |
| 12789 | |
| 12790 | case IF_RWR_RRD_RRD: |
| 12791 | dst = emitOutputRRR(dst, id); |
| 12792 | sz = emitSizeOfInsDsc(id); |
| 12793 | break; |
| 12794 | case IF_RWR_RRD_RRD_CNS: |
| 12795 | case IF_RWR_RRD_RRD_RRD: |
| 12796 | dst = emitOutputRRR(dst, id); |
| 12797 | sz = emitSizeOfInsDsc(id); |
| 12798 | dst += emitOutputByte(dst, emitGetInsSC(id)); |
| 12799 | break; |
| 12800 | |
| 12801 | case IF_RRW_RRW_CNS: |
| 12802 | assert(id->idGCref() == GCT_NONE); |
| 12803 | |
| 12804 | // Get the 'base' opcode (it's a big one) |
| 12805 | // Also, determine which operand goes where in the ModRM byte. |
| 12806 | regNumber mReg; |
| 12807 | regNumber rReg; |
| 12808 | if (hasCodeMR(ins)) |
| 12809 | { |
| 12810 | code = insCodeMR(ins); |
| 12811 | // Emit the VEX prefix if it exists |
| 12812 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 12813 | code = insEncodeMRreg(ins, code); |
| 12814 | mReg = id->idReg1(); |
| 12815 | rReg = id->idReg2(); |
| 12816 | } |
| 12817 | else if (hasCodeMI(ins)) |
| 12818 | { |
| 12819 | code = insCodeMI(ins); |
| 12820 | |
| 12821 | // Emit the VEX prefix if it exists |
| 12822 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 12823 | |
| 12824 | assert((code & 0xC000) == 0); |
| 12825 | code |= 0xC000; |
| 12826 | |
| 12827 | mReg = id->idReg2(); |
| 12828 | |
| 12829 | // The left and right shifts use the same encoding, and are distinguished by the Reg/Opcode field. |
| 12830 | rReg = getSseShiftRegNumber(ins); |
| 12831 | } |
| 12832 | else |
| 12833 | { |
| 12834 | code = insCodeRM(ins); |
| 12835 | // Emit the VEX prefix if it exists |
| 12836 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 12837 | code = insEncodeRMreg(ins, code); |
| 12838 | mReg = id->idReg2(); |
| 12839 | rReg = id->idReg1(); |
| 12840 | } |
| 12841 | assert(code & 0x00FF0000); |
| 12842 | |
| 12843 | if (TakesRexWPrefix(ins, size)) |
| 12844 | { |
| 12845 | code = AddRexWPrefix(ins, code); |
| 12846 | } |
| 12847 | |
| 12848 | if (TakesVexPrefix(ins)) |
| 12849 | { |
| 12850 | if (IsDstDstSrcAVXInstruction(ins)) |
| 12851 | { |
| 12852 | // Encode source/dest operand reg in 'vvvv' bits in 1's complement form |
| 12853 | // This code will have to change when we support 3 operands. |
| 12854 | // For now, we always overload this source with the destination (always reg1). |
| 12855 | // (Though we will need to handle the few ops that can have the 'vvvv' bits as destination, |
| 12856 | // e.g. pslldq, when/if we support those instructions with 2 registers.) |
| 12857 | // (see x64 manual Table 2-9. Instructions with a VEX.vvvv destination) |
| 12858 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 12859 | } |
| 12860 | else if (IsDstSrcSrcAVXInstruction(ins)) |
| 12861 | { |
| 12862 | // This is a "merge" move instruction. |
| 12863 | // Encode source operand reg in 'vvvv' bits in 1's complement form |
| 12864 | code = insEncodeReg3456(ins, id->idReg2(), size, code); |
| 12865 | } |
| 12866 | } |
| 12867 | |
| 12868 | regcode = (insEncodeReg345(ins, rReg, size, &code) | insEncodeReg012(ins, mReg, size, &code)); |
| 12869 | |
| 12870 | // Output the REX prefix |
| 12871 | dst += emitOutputRexOrVexPrefixIfNeeded(ins, dst, code); |
| 12872 | |
| 12873 | if (code & 0xFF000000) |
| 12874 | { |
| 12875 | // Output the highest word of the opcode |
| 12876 | dst += emitOutputWord(dst, code >> 16); |
| 12877 | code &= 0x0000FFFF; |
| 12878 | |
| 12879 | if (Is4ByteSSEInstruction(ins)) |
| 12880 | { |
| 12881 | // Output 3rd byte of the opcode |
| 12882 | dst += emitOutputByte(dst, code); |
| 12883 | code &= 0xFF00; |
| 12884 | } |
| 12885 | } |
| 12886 | else if (code & 0x00FF0000) |
| 12887 | { |
| 12888 | dst += emitOutputByte(dst, code >> 16); |
| 12889 | code &= 0x0000FFFF; |
| 12890 | } |
| 12891 | |
| 12892 | // TODO-XArch-CQ: Right now support 4-byte opcode instructions only |
| 12893 | if ((code & 0xFF00) == 0xC000) |
| 12894 | { |
| 12895 | dst += emitOutputWord(dst, code | (regcode << 8)); |
| 12896 | } |
| 12897 | else if ((code & 0xFF) == 0x00) |
| 12898 | { |
| 12899 | // This case happens for some SSE/AVX instructions only |
| 12900 | assert(IsAVXInstruction(ins) || Is4ByteSSEInstruction(ins)); |
| 12901 | |
| 12902 | dst += emitOutputByte(dst, (code >> 8) & 0xFF); |
| 12903 | dst += emitOutputByte(dst, (0xC0 | regcode)); |
| 12904 | } |
| 12905 | else |
| 12906 | { |
| 12907 | dst += emitOutputWord(dst, code); |
| 12908 | dst += emitOutputByte(dst, (0xC0 | regcode)); |
| 12909 | } |
| 12910 | |
| 12911 | dst += emitOutputByte(dst, emitGetInsSC(id)); |
| 12912 | sz = emitSizeOfInsDsc(id); |
| 12913 | |
| 12914 | // Kill any GC ref in the destination register if necessary. |
| 12915 | if (!emitInsCanOnlyWriteSSE2OrAVXReg(id)) |
| 12916 | { |
| 12917 | emitGCregDeadUpd(id->idReg1(), dst); |
| 12918 | } |
| 12919 | break; |
| 12920 | |
| 12921 | /********************************************************************/ |
| 12922 | /* Address mode operand */ |
| 12923 | /********************************************************************/ |
| 12924 | |
| 12925 | case IF_ARD: |
| 12926 | case IF_AWR: |
| 12927 | case IF_ARW: |
| 12928 | |
| 12929 | dst = emitCodeWithInstructionSize(dst, emitOutputAM(dst, id, insCodeMR(ins)), &callInstrSize); |
| 12930 | |
| 12931 | switch (ins) |
| 12932 | { |
| 12933 | case INS_call: |
| 12934 | |
| 12935 | IND_CALL: |
| 12936 | // Get hold of the argument count and method handle |
| 12937 | args = emitGetInsCIargs(id); |
| 12938 | |
| 12939 | // Is this a "fat" call descriptor? |
| 12940 | if (id->idIsLargeCall()) |
| 12941 | { |
| 12942 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
| 12943 | |
| 12944 | gcrefRegs = idCall->idcGcrefRegs; |
| 12945 | byrefRegs = idCall->idcByrefRegs; |
| 12946 | VarSetOps::Assign(emitComp, GCvars, idCall->idcGCvars); |
| 12947 | sz = sizeof(instrDescCGCA); |
| 12948 | } |
| 12949 | else |
| 12950 | { |
| 12951 | assert(!id->idIsLargeDsp()); |
| 12952 | assert(!id->idIsLargeCns()); |
| 12953 | |
| 12954 | gcrefRegs = emitDecodeCallGCregs(id); |
| 12955 | byrefRegs = 0; |
| 12956 | VarSetOps::AssignNoCopy(emitComp, GCvars, VarSetOps::MakeEmpty(emitComp)); |
| 12957 | sz = sizeof(instrDesc); |
| 12958 | } |
| 12959 | |
| 12960 | recCall = true; |
| 12961 | |
| 12962 | goto DONE_CALL; |
| 12963 | |
| 12964 | default: |
| 12965 | sz = emitSizeOfInsDsc(id); |
| 12966 | break; |
| 12967 | } |
| 12968 | break; |
| 12969 | |
| 12970 | case IF_RRW_ARD_CNS: |
| 12971 | case IF_RWR_ARD_CNS: |
| 12972 | emitGetInsAmdCns(id, &cnsVal); |
| 12973 | code = insCodeRM(ins); |
| 12974 | |
| 12975 | // Special case 4-byte AVX instructions |
| 12976 | if (EncodedBySSE38orSSE3A(ins)) |
| 12977 | { |
| 12978 | dst = emitOutputAM(dst, id, code, &cnsVal); |
| 12979 | } |
| 12980 | else |
| 12981 | { |
| 12982 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 12983 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 12984 | dst = emitOutputAM(dst, id, code | regcode, &cnsVal); |
| 12985 | } |
| 12986 | |
| 12987 | sz = emitSizeOfInsDsc(id); |
| 12988 | break; |
| 12989 | |
| 12990 | case IF_AWR_RRD_CNS: |
| 12991 | assert(ins == INS_vextracti128 || ins == INS_vextractf128); |
| 12992 | assert(UseVEXEncoding()); |
| 12993 | emitGetInsAmdCns(id, &cnsVal); |
| 12994 | code = insCodeMR(ins); |
| 12995 | dst = emitOutputAM(dst, id, code, &cnsVal); |
| 12996 | sz = emitSizeOfInsDsc(id); |
| 12997 | break; |
| 12998 | |
| 12999 | case IF_RRD_ARD: |
| 13000 | case IF_RWR_ARD: |
| 13001 | case IF_RRW_ARD: |
| 13002 | case IF_RWR_RRD_ARD: |
| 13003 | { |
| 13004 | code = insCodeRM(ins); |
| 13005 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 13006 | { |
| 13007 | dst = emitOutputAM(dst, id, code); |
| 13008 | } |
| 13009 | else |
| 13010 | { |
| 13011 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13012 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13013 | dst = emitOutputAM(dst, id, code | regcode); |
| 13014 | } |
| 13015 | sz = emitSizeOfInsDsc(id); |
| 13016 | break; |
| 13017 | } |
| 13018 | |
| 13019 | case IF_RWR_ARD_RRD: |
| 13020 | { |
| 13021 | assert(IsAVX2GatherInstruction(ins)); |
| 13022 | code = insCodeRM(ins); |
| 13023 | dst = emitOutputAM(dst, id, code); |
| 13024 | sz = emitSizeOfInsDsc(id); |
| 13025 | break; |
| 13026 | } |
| 13027 | |
| 13028 | case IF_RWR_RRD_ARD_CNS: |
| 13029 | case IF_RWR_RRD_ARD_RRD: |
| 13030 | { |
| 13031 | emitGetInsAmdCns(id, &cnsVal); |
| 13032 | code = insCodeRM(ins); |
| 13033 | if (EncodedBySSE38orSSE3A(ins)) |
| 13034 | { |
| 13035 | dst = emitOutputAM(dst, id, code, &cnsVal); |
| 13036 | } |
| 13037 | else |
| 13038 | { |
| 13039 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13040 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13041 | dst = emitOutputAM(dst, id, code | regcode, &cnsVal); |
| 13042 | } |
| 13043 | sz = emitSizeOfInsDsc(id); |
| 13044 | break; |
| 13045 | } |
| 13046 | |
| 13047 | case IF_ARD_RRD: |
| 13048 | case IF_AWR_RRD: |
| 13049 | case IF_ARW_RRD: |
| 13050 | code = insCodeMR(ins); |
| 13051 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13052 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13053 | dst = emitOutputAM(dst, id, code | regcode); |
| 13054 | sz = emitSizeOfInsDsc(id); |
| 13055 | break; |
| 13056 | |
| 13057 | case IF_AWR_RRD_RRD: |
| 13058 | { |
| 13059 | code = insCodeMR(ins); |
| 13060 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13061 | dst = emitOutputAM(dst, id, code); |
| 13062 | sz = emitSizeOfInsDsc(id); |
| 13063 | break; |
| 13064 | } |
| 13065 | |
| 13066 | case IF_ARD_CNS: |
| 13067 | case IF_AWR_CNS: |
| 13068 | case IF_ARW_CNS: |
| 13069 | emitGetInsAmdCns(id, &cnsVal); |
| 13070 | dst = emitOutputAM(dst, id, insCodeMI(ins), &cnsVal); |
| 13071 | sz = emitSizeOfInsDsc(id); |
| 13072 | break; |
| 13073 | |
| 13074 | case IF_ARW_SHF: |
| 13075 | emitGetInsAmdCns(id, &cnsVal); |
| 13076 | dst = emitOutputAM(dst, id, insCodeMR(ins), &cnsVal); |
| 13077 | sz = emitSizeOfInsDsc(id); |
| 13078 | break; |
| 13079 | |
| 13080 | /********************************************************************/ |
| 13081 | /* Stack-based operand */ |
| 13082 | /********************************************************************/ |
| 13083 | |
| 13084 | case IF_SRD: |
| 13085 | case IF_SWR: |
| 13086 | case IF_SRW: |
| 13087 | |
| 13088 | assert(ins != INS_pop_hide); |
| 13089 | if (ins == INS_pop) |
| 13090 | { |
| 13091 | // The offset in "pop [ESP+xxx]" is relative to the new ESP value |
| 13092 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 13093 | |
| 13094 | #if !FEATURE_FIXED_OUT_ARGS |
| 13095 | emitCurStackLvl -= sizeof(int); |
| 13096 | #endif |
| 13097 | dst = emitOutputSV(dst, id, insCodeMR(ins)); |
| 13098 | |
| 13099 | #if !FEATURE_FIXED_OUT_ARGS |
| 13100 | emitCurStackLvl += sizeof(int); |
| 13101 | #endif |
| 13102 | break; |
| 13103 | } |
| 13104 | |
| 13105 | dst = emitCodeWithInstructionSize(dst, emitOutputSV(dst, id, insCodeMR(ins)), &callInstrSize); |
| 13106 | |
| 13107 | if (ins == INS_call) |
| 13108 | { |
| 13109 | goto IND_CALL; |
| 13110 | } |
| 13111 | |
| 13112 | break; |
| 13113 | |
| 13114 | case IF_SRD_CNS: |
| 13115 | case IF_SWR_CNS: |
| 13116 | case IF_SRW_CNS: |
| 13117 | emitGetInsCns(id, &cnsVal); |
| 13118 | dst = emitOutputSV(dst, id, insCodeMI(ins), &cnsVal); |
| 13119 | sz = emitSizeOfInsDsc(id); |
| 13120 | break; |
| 13121 | |
| 13122 | case IF_SRW_SHF: |
| 13123 | emitGetInsCns(id, &cnsVal); |
| 13124 | dst = emitOutputSV(dst, id, insCodeMR(ins), &cnsVal); |
| 13125 | sz = emitSizeOfInsDsc(id); |
| 13126 | break; |
| 13127 | |
| 13128 | case IF_RRW_SRD_CNS: |
| 13129 | case IF_RWR_SRD_CNS: |
| 13130 | emitGetInsCns(id, &cnsVal); |
| 13131 | code = insCodeRM(ins); |
| 13132 | |
| 13133 | // Special case 4-byte AVX instructions |
| 13134 | if (EncodedBySSE38orSSE3A(ins)) |
| 13135 | { |
| 13136 | dst = emitOutputSV(dst, id, code, &cnsVal); |
| 13137 | } |
| 13138 | else |
| 13139 | { |
| 13140 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13141 | |
| 13142 | // In case of AVX instructions that take 3 operands, encode reg1 as first source. |
| 13143 | // Note that reg1 is both a source and a destination. |
| 13144 | // |
| 13145 | // TODO-XArch-CQ: Eventually we need to support 3 operand instruction formats. For |
| 13146 | // now we use the single source as source1 and source2. |
| 13147 | // For this format, moves do not support a third operand, so we only need to handle the binary ops. |
| 13148 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13149 | { |
| 13150 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13151 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13152 | } |
| 13153 | |
| 13154 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13155 | dst = emitOutputSV(dst, id, code | regcode, &cnsVal); |
| 13156 | } |
| 13157 | |
| 13158 | sz = emitSizeOfInsDsc(id); |
| 13159 | break; |
| 13160 | |
| 13161 | case IF_RRD_SRD: |
| 13162 | case IF_RWR_SRD: |
| 13163 | case IF_RRW_SRD: |
| 13164 | { |
| 13165 | code = insCodeRM(ins); |
| 13166 | |
| 13167 | // 4-byte AVX instructions are special cased inside emitOutputSV |
| 13168 | // since they do not have space to encode ModRM byte. |
| 13169 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 13170 | { |
| 13171 | dst = emitOutputSV(dst, id, code); |
| 13172 | } |
| 13173 | else |
| 13174 | { |
| 13175 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13176 | |
| 13177 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13178 | { |
| 13179 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13180 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13181 | } |
| 13182 | |
| 13183 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13184 | dst = emitOutputSV(dst, id, code | regcode); |
| 13185 | } |
| 13186 | |
| 13187 | sz = emitSizeOfInsDsc(id); |
| 13188 | break; |
| 13189 | } |
| 13190 | |
| 13191 | case IF_RWR_RRD_SRD: |
| 13192 | { |
| 13193 | // This should only be called on AVX instructions |
| 13194 | assert(IsAVXInstruction(ins)); |
| 13195 | |
| 13196 | code = insCodeRM(ins); |
| 13197 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13198 | code = insEncodeReg3456(ins, id->idReg2(), size, |
| 13199 | code); // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13200 | |
| 13201 | // 4-byte AVX instructions are special cased inside emitOutputSV |
| 13202 | // since they do not have space to encode ModRM byte. |
| 13203 | if (EncodedBySSE38orSSE3A(ins)) |
| 13204 | { |
| 13205 | dst = emitOutputSV(dst, id, code); |
| 13206 | } |
| 13207 | else |
| 13208 | { |
| 13209 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13210 | dst = emitOutputSV(dst, id, code | regcode); |
| 13211 | } |
| 13212 | break; |
| 13213 | } |
| 13214 | |
| 13215 | case IF_RWR_RRD_SRD_CNS: |
| 13216 | case IF_RWR_RRD_SRD_RRD: |
| 13217 | { |
| 13218 | // This should only be called on AVX instructions |
| 13219 | assert(IsAVXInstruction(ins)); |
| 13220 | emitGetInsCns(id, &cnsVal); |
| 13221 | |
| 13222 | code = insCodeRM(ins); |
| 13223 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13224 | code = insEncodeReg3456(ins, id->idReg2(), size, |
| 13225 | code); // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13226 | |
| 13227 | // 4-byte AVX instructions are special cased inside emitOutputSV |
| 13228 | // since they do not have space to encode ModRM byte. |
| 13229 | if (EncodedBySSE38orSSE3A(ins)) |
| 13230 | { |
| 13231 | dst = emitOutputSV(dst, id, code, &cnsVal); |
| 13232 | } |
| 13233 | else |
| 13234 | { |
| 13235 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13236 | dst = emitOutputSV(dst, id, code | regcode, &cnsVal); |
| 13237 | } |
| 13238 | |
| 13239 | sz = emitSizeOfInsDsc(id); |
| 13240 | break; |
| 13241 | } |
| 13242 | |
| 13243 | case IF_SRD_RRD: |
| 13244 | case IF_SWR_RRD: |
| 13245 | case IF_SRW_RRD: |
| 13246 | code = insCodeMR(ins); |
| 13247 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13248 | |
| 13249 | // In case of AVX instructions that take 3 operands, encode reg1 as first source. |
| 13250 | // Note that reg1 is both a source and a destination. |
| 13251 | // |
| 13252 | // TODO-XArch-CQ: Eventually we need to support 3 operand instruction formats. For |
| 13253 | // now we use the single source as source1 and source2. |
| 13254 | // For this format, moves do not support a third operand, so we only need to handle the binary ops. |
| 13255 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13256 | { |
| 13257 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13258 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13259 | } |
| 13260 | |
| 13261 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13262 | dst = emitOutputSV(dst, id, code | regcode); |
| 13263 | break; |
| 13264 | |
| 13265 | /********************************************************************/ |
| 13266 | /* Direct memory address */ |
| 13267 | /********************************************************************/ |
| 13268 | |
| 13269 | case IF_MRD: |
| 13270 | case IF_MRW: |
| 13271 | case IF_MWR: |
| 13272 | |
| 13273 | noway_assert(ins != INS_call); |
| 13274 | dst = emitOutputCV(dst, id, insCodeMR(ins) | 0x0500); |
| 13275 | sz = emitSizeOfInsDsc(id); |
| 13276 | break; |
| 13277 | |
| 13278 | case IF_MRD_OFF: |
| 13279 | dst = emitOutputCV(dst, id, insCodeMI(ins)); |
| 13280 | break; |
| 13281 | |
| 13282 | case IF_RRW_MRD_CNS: |
| 13283 | case IF_RWR_MRD_CNS: |
| 13284 | emitGetInsDcmCns(id, &cnsVal); |
| 13285 | code = insCodeRM(ins); |
| 13286 | |
| 13287 | // Special case 4-byte AVX instructions |
| 13288 | if (EncodedBySSE38orSSE3A(ins)) |
| 13289 | { |
| 13290 | dst = emitOutputCV(dst, id, code, &cnsVal); |
| 13291 | } |
| 13292 | else |
| 13293 | { |
| 13294 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13295 | |
| 13296 | // In case of AVX instructions that take 3 operands, encode reg1 as first source. |
| 13297 | // Note that reg1 is both a source and a destination. |
| 13298 | // |
| 13299 | // TODO-XArch-CQ: Eventually we need to support 3 operand instruction formats. For |
| 13300 | // now we use the single source as source1 and source2. |
| 13301 | // For this format, moves do not support a third operand, so we only need to handle the binary ops. |
| 13302 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13303 | { |
| 13304 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13305 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13306 | } |
| 13307 | |
| 13308 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13309 | dst = emitOutputCV(dst, id, code | regcode | 0x0500, &cnsVal); |
| 13310 | } |
| 13311 | |
| 13312 | sz = emitSizeOfInsDsc(id); |
| 13313 | break; |
| 13314 | |
| 13315 | case IF_MWR_RRD_CNS: |
| 13316 | assert(ins == INS_vextracti128 || ins == INS_vextractf128); |
| 13317 | assert(UseVEXEncoding()); |
| 13318 | emitGetInsDcmCns(id, &cnsVal); |
| 13319 | code = insCodeMR(ins); |
| 13320 | // only AVX2 vextracti128 and AVX vextractf128 can reach this path, |
| 13321 | // they do not need VEX.vvvv to encode the register operand |
| 13322 | dst = emitOutputCV(dst, id, code, &cnsVal); |
| 13323 | sz = emitSizeOfInsDsc(id); |
| 13324 | break; |
| 13325 | |
| 13326 | case IF_RRD_MRD: |
| 13327 | case IF_RWR_MRD: |
| 13328 | case IF_RRW_MRD: |
| 13329 | { |
| 13330 | code = insCodeRM(ins); |
| 13331 | |
| 13332 | // Special case 4-byte AVX instructions |
| 13333 | if (EncodedBySSE38orSSE3A(ins) || (ins == INS_crc32)) |
| 13334 | { |
| 13335 | dst = emitOutputCV(dst, id, code); |
| 13336 | } |
| 13337 | else |
| 13338 | { |
| 13339 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13340 | |
| 13341 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13342 | { |
| 13343 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13344 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13345 | } |
| 13346 | |
| 13347 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13348 | dst = emitOutputCV(dst, id, code | regcode | 0x0500); |
| 13349 | } |
| 13350 | |
| 13351 | sz = emitSizeOfInsDsc(id); |
| 13352 | break; |
| 13353 | } |
| 13354 | |
| 13355 | case IF_RWR_RRD_MRD: |
| 13356 | { |
| 13357 | // This should only be called on AVX instructions |
| 13358 | assert(IsAVXInstruction(ins)); |
| 13359 | |
| 13360 | code = insCodeRM(ins); |
| 13361 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13362 | code = insEncodeReg3456(ins, id->idReg2(), size, |
| 13363 | code); // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13364 | |
| 13365 | // Special case 4-byte AVX instructions |
| 13366 | if (EncodedBySSE38orSSE3A(ins)) |
| 13367 | { |
| 13368 | dst = emitOutputCV(dst, id, code); |
| 13369 | } |
| 13370 | else |
| 13371 | { |
| 13372 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13373 | dst = emitOutputCV(dst, id, code | regcode | 0x0500); |
| 13374 | } |
| 13375 | sz = emitSizeOfInsDsc(id); |
| 13376 | break; |
| 13377 | } |
| 13378 | |
| 13379 | case IF_RWR_RRD_MRD_CNS: |
| 13380 | case IF_RWR_RRD_MRD_RRD: |
| 13381 | { |
| 13382 | // This should only be called on AVX instructions |
| 13383 | assert(IsAVXInstruction(ins)); |
| 13384 | emitGetInsCns(id, &cnsVal); |
| 13385 | |
| 13386 | code = insCodeRM(ins); |
| 13387 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13388 | code = insEncodeReg3456(ins, id->idReg2(), size, |
| 13389 | code); // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13390 | |
| 13391 | // Special case 4-byte AVX instructions |
| 13392 | if (EncodedBySSE38orSSE3A(ins)) |
| 13393 | { |
| 13394 | dst = emitOutputCV(dst, id, code, &cnsVal); |
| 13395 | } |
| 13396 | else |
| 13397 | { |
| 13398 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13399 | dst = emitOutputCV(dst, id, code | regcode | 0x0500, &cnsVal); |
| 13400 | } |
| 13401 | sz = emitSizeOfInsDsc(id); |
| 13402 | break; |
| 13403 | } |
| 13404 | |
| 13405 | case IF_RWR_MRD_OFF: |
| 13406 | code = insCode(ins); |
| 13407 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13408 | |
| 13409 | // In case of AVX instructions that take 3 operands, encode reg1 as first source. |
| 13410 | // Note that reg1 is both a source and a destination. |
| 13411 | // |
| 13412 | // TODO-XArch-CQ: Eventually we need to support 3 operand instruction formats. For |
| 13413 | // now we use the single source as source1 and source2. |
| 13414 | // For this format, moves do not support a third operand, so we only need to handle the binary ops. |
| 13415 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13416 | { |
| 13417 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13418 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13419 | } |
| 13420 | |
| 13421 | regcode = insEncodeReg012(id->idIns(), id->idReg1(), size, &code); |
| 13422 | dst = emitOutputCV(dst, id, code | 0x30 | regcode); |
| 13423 | sz = emitSizeOfInsDsc(id); |
| 13424 | break; |
| 13425 | |
| 13426 | case IF_MRD_RRD: |
| 13427 | case IF_MWR_RRD: |
| 13428 | case IF_MRW_RRD: |
| 13429 | code = insCodeMR(ins); |
| 13430 | code = AddVexPrefixIfNeeded(ins, code, size); |
| 13431 | |
| 13432 | // In case of AVX instructions that take 3 operands, encode reg1 as first source. |
| 13433 | // Note that reg1 is both a source and a destination. |
| 13434 | // |
| 13435 | // TODO-XArch-CQ: Eventually we need to support 3 operand instruction formats. For |
| 13436 | // now we use the single source as source1 and source2. |
| 13437 | // For this format, moves do not support a third operand, so we only need to handle the binary ops. |
| 13438 | if (IsDstDstSrcAVXInstruction(ins)) |
| 13439 | { |
| 13440 | // encode source operand reg in 'vvvv' bits in 1's complement form |
| 13441 | code = insEncodeReg3456(ins, id->idReg1(), size, code); |
| 13442 | } |
| 13443 | |
| 13444 | regcode = (insEncodeReg345(ins, id->idReg1(), size, &code) << 8); |
| 13445 | dst = emitOutputCV(dst, id, code | regcode | 0x0500); |
| 13446 | sz = emitSizeOfInsDsc(id); |
| 13447 | break; |
| 13448 | |
| 13449 | case IF_MRD_CNS: |
| 13450 | case IF_MWR_CNS: |
| 13451 | case IF_MRW_CNS: |
| 13452 | emitGetInsDcmCns(id, &cnsVal); |
| 13453 | dst = emitOutputCV(dst, id, insCodeMI(ins) | 0x0500, &cnsVal); |
| 13454 | sz = emitSizeOfInsDsc(id); |
| 13455 | break; |
| 13456 | |
| 13457 | case IF_MRW_SHF: |
| 13458 | emitGetInsDcmCns(id, &cnsVal); |
| 13459 | dst = emitOutputCV(dst, id, insCodeMR(ins) | 0x0500, &cnsVal); |
| 13460 | sz = emitSizeOfInsDsc(id); |
| 13461 | break; |
| 13462 | |
| 13463 | /********************************************************************/ |
| 13464 | /* oops */ |
| 13465 | /********************************************************************/ |
| 13466 | |
| 13467 | default: |
| 13468 | |
| 13469 | #ifdef DEBUG |
| 13470 | printf("unexpected format %s\n" , emitIfName(id->idInsFmt())); |
| 13471 | assert(!"don't know how to encode this instruction" ); |
| 13472 | #endif |
| 13473 | break; |
| 13474 | } |
| 13475 | |
| 13476 | // Make sure we set the instruction descriptor size correctly |
| 13477 | assert(sz == emitSizeOfInsDsc(id)); |
| 13478 | |
| 13479 | #if !FEATURE_FIXED_OUT_ARGS |
| 13480 | bool updateStackLevel = !emitIGisInProlog(ig) && !emitIGisInEpilog(ig); |
| 13481 | |
| 13482 | #if FEATURE_EH_FUNCLETS |
| 13483 | updateStackLevel = updateStackLevel && !emitIGisInFuncletProlog(ig) && !emitIGisInFuncletEpilog(ig); |
| 13484 | #endif // FEATURE_EH_FUNCLETS |
| 13485 | |
| 13486 | // Make sure we keep the current stack level up to date |
| 13487 | if (updateStackLevel) |
| 13488 | { |
| 13489 | switch (ins) |
| 13490 | { |
| 13491 | case INS_push: |
| 13492 | // Please note: {INS_push_hide,IF_LABEL} is used to push the address of the |
| 13493 | // finally block for calling it locally for an op_leave. |
| 13494 | emitStackPush(dst, id->idGCref()); |
| 13495 | break; |
| 13496 | |
| 13497 | case INS_pop: |
| 13498 | emitStackPop(dst, false, /*callInstrSize*/ 0, 1); |
| 13499 | break; |
| 13500 | |
| 13501 | case INS_sub: |
| 13502 | // Check for "sub ESP, icon" |
| 13503 | if (ins == INS_sub && id->idInsFmt() == IF_RRW_CNS && id->idReg1() == REG_ESP) |
| 13504 | { |
| 13505 | assert((size_t)emitGetInsSC(id) < 0x00000000FFFFFFFFLL); |
| 13506 | emitStackPushN(dst, (unsigned)(emitGetInsSC(id) / TARGET_POINTER_SIZE)); |
| 13507 | } |
| 13508 | break; |
| 13509 | |
| 13510 | case INS_add: |
| 13511 | // Check for "add ESP, icon" |
| 13512 | if (ins == INS_add && id->idInsFmt() == IF_RRW_CNS && id->idReg1() == REG_ESP) |
| 13513 | { |
| 13514 | assert((size_t)emitGetInsSC(id) < 0x00000000FFFFFFFFLL); |
| 13515 | emitStackPop(dst, /*isCall*/ false, /*callInstrSize*/ 0, |
| 13516 | (unsigned)(emitGetInsSC(id) / TARGET_POINTER_SIZE)); |
| 13517 | } |
| 13518 | break; |
| 13519 | |
| 13520 | default: |
| 13521 | break; |
| 13522 | } |
| 13523 | } |
| 13524 | |
| 13525 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 13526 | |
| 13527 | assert((int)emitCurStackLvl >= 0); |
| 13528 | |
| 13529 | // Only epilog "instructions" and some pseudo-instrs |
| 13530 | // are allowed not to generate any code |
| 13531 | |
| 13532 | assert(*dp != dst || emitInstHasNoCode(ins)); |
| 13533 | |
| 13534 | #ifdef DEBUG |
| 13535 | if (emitComp->opts.disAsm || emitComp->opts.dspEmit || emitComp->verbose) |
| 13536 | { |
| 13537 | emitDispIns(id, false, dspOffs, true, emitCurCodeOffs(*dp), *dp, (dst - *dp)); |
| 13538 | } |
| 13539 | |
| 13540 | if (emitComp->compDebugBreak) |
| 13541 | { |
| 13542 | // set JitEmitPrintRefRegs=1 will print out emitThisGCrefRegs and emitThisByrefRegs |
| 13543 | // at the beginning of this method. |
| 13544 | if (JitConfig.JitEmitPrintRefRegs() != 0) |
| 13545 | { |
| 13546 | printf("Before emitOutputInstr for id->idDebugOnlyInfo()->idNum=0x%02x\n" , id->idDebugOnlyInfo()->idNum); |
| 13547 | printf(" emitThisGCrefRegs(0x%p)=" , emitComp->dspPtr(&emitThisGCrefRegs)); |
| 13548 | printRegMaskInt(emitThisGCrefRegs); |
| 13549 | emitDispRegSet(emitThisGCrefRegs); |
| 13550 | printf("\n" ); |
| 13551 | printf(" emitThisByrefRegs(0x%p)=" , emitComp->dspPtr(&emitThisByrefRegs)); |
| 13552 | printRegMaskInt(emitThisByrefRegs); |
| 13553 | emitDispRegSet(emitThisByrefRegs); |
| 13554 | printf("\n" ); |
| 13555 | } |
| 13556 | |
| 13557 | // For example, set JitBreakEmitOutputInstr=a6 will break when this method is called for |
| 13558 | // emitting instruction a6, (i.e. IN00a6 in jitdump). |
| 13559 | if ((unsigned)JitConfig.JitBreakEmitOutputInstr() == id->idDebugOnlyInfo()->idNum) |
| 13560 | { |
| 13561 | assert(!"JitBreakEmitOutputInstr reached" ); |
| 13562 | } |
| 13563 | } |
| 13564 | #endif |
| 13565 | |
| 13566 | #ifdef TRANSLATE_PDB |
| 13567 | if (*dp != dst) |
| 13568 | { |
| 13569 | // only map instruction groups to instruction groups |
| 13570 | MapCode(id->idDebugOnlyInfo()->idilStart, *dp); |
| 13571 | } |
| 13572 | #endif |
| 13573 | |
| 13574 | *dp = dst; |
| 13575 | |
| 13576 | #ifdef DEBUG |
| 13577 | if (ins == INS_mulEAX || ins == INS_imulEAX) |
| 13578 | { |
| 13579 | // INS_mulEAX has implicit target of Edx:Eax. Make sure |
| 13580 | // that we detected this cleared its GC-status. |
| 13581 | |
| 13582 | assert(((RBM_EAX | RBM_EDX) & (emitThisGCrefRegs | emitThisByrefRegs)) == 0); |
| 13583 | } |
| 13584 | |
| 13585 | if (instrIs3opImul(ins)) |
| 13586 | { |
| 13587 | // The target of the 3-operand imul is implicitly encoded. Make sure |
| 13588 | // that we detected the implicit register and cleared its GC-status. |
| 13589 | |
| 13590 | regMaskTP regMask = genRegMask(inst3opImulReg(ins)); |
| 13591 | assert((regMask & (emitThisGCrefRegs | emitThisByrefRegs)) == 0); |
| 13592 | } |
| 13593 | #endif |
| 13594 | |
| 13595 | return sz; |
| 13596 | } |
| 13597 | #ifdef _PREFAST_ |
| 13598 | #pragma warning(pop) |
| 13599 | #endif |
| 13600 | |
| 13601 | /*****************************************************************************/ |
| 13602 | /*****************************************************************************/ |
| 13603 | |
| 13604 | #endif // defined(_TARGET_XARCH_) |
| 13605 | |