| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Intel hardware intrinsic Code Generator XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | #include "jitpch.h" |
| 14 | #ifdef _MSC_VER |
| 15 | #pragma hdrstop |
| 16 | #endif |
| 17 | |
| 18 | #ifdef FEATURE_HW_INTRINSICS |
| 19 | |
| 20 | #include "emit.h" |
| 21 | #include "codegen.h" |
| 22 | #include "sideeffects.h" |
| 23 | #include "lower.h" |
| 24 | #include "gcinfo.h" |
| 25 | #include "gcinfoencoder.h" |
| 26 | |
| 27 | //------------------------------------------------------------------------ |
| 28 | // assertIsContainableHWIntrinsicOp: Asserts that op is containable by node |
| 29 | // |
| 30 | // Arguments: |
| 31 | // lowering - The lowering phase from the compiler |
| 32 | // node - The HWIntrinsic node that has the contained node |
| 33 | // op - The op that is contained |
| 34 | // |
| 35 | static void assertIsContainableHWIntrinsicOp(Lowering* lowering, GenTreeHWIntrinsic* node, GenTree* op) |
| 36 | { |
| 37 | #if DEBUG |
| 38 | // The Lowering::IsContainableHWIntrinsicOp call is not quite right, since it follows pre-register allocation |
| 39 | // logic. However, this check is still important due to the various containment rules that SIMD intrinsics follow. |
| 40 | // |
| 41 | // We use isContainable to track the special HWIntrinsic node containment rules (for things like LoadAligned and |
| 42 | // LoadUnaligned) and we use the supportsRegOptional check to support general-purpose loads (both from stack |
| 43 | // spillage |
| 44 | // and for isUsedFromMemory contained nodes, in the case where the register allocator decided to not allocate a |
| 45 | // register |
| 46 | // in the first place). |
| 47 | |
| 48 | bool supportsRegOptional = false; |
| 49 | bool isContainable = lowering->IsContainableHWIntrinsicOp(node, op, &supportsRegOptional); |
| 50 | assert(isContainable || supportsRegOptional); |
| 51 | #endif // DEBUG |
| 52 | } |
| 53 | |
| 54 | //------------------------------------------------------------------------ |
| 55 | // genIsTableDrivenHWIntrinsic: |
| 56 | // |
| 57 | // Arguments: |
| 58 | // category - category of a HW intrinsic |
| 59 | // |
| 60 | // Return Value: |
| 61 | // returns true if this category can be table-driven in CodeGen |
| 62 | // |
| 63 | static bool genIsTableDrivenHWIntrinsic(NamedIntrinsic intrinsicId, HWIntrinsicCategory category) |
| 64 | { |
| 65 | // TODO - make more categories to the table-driven framework |
| 66 | // HW_Category_Helper and HW_Flag_MultiIns/HW_Flag_SpecialCodeGen usually need manual codegen |
| 67 | const bool tableDrivenCategory = |
| 68 | (category != HW_Category_Special) && (category != HW_Category_Scalar) && (category != HW_Category_Helper); |
| 69 | const bool tableDrivenFlag = |
| 70 | !HWIntrinsicInfo::GeneratesMultipleIns(intrinsicId) && !HWIntrinsicInfo::HasSpecialCodegen(intrinsicId); |
| 71 | return tableDrivenCategory && tableDrivenFlag; |
| 72 | } |
| 73 | |
| 74 | //------------------------------------------------------------------------ |
| 75 | // genHWIntrinsic: Generates the code for a given hardware intrinsic node. |
| 76 | // |
| 77 | // Arguments: |
| 78 | // node - The hardware intrinsic node |
| 79 | // |
| 80 | void CodeGen::genHWIntrinsic(GenTreeHWIntrinsic* node) |
| 81 | { |
| 82 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 83 | InstructionSet isa = HWIntrinsicInfo::lookupIsa(intrinsicId); |
| 84 | HWIntrinsicCategory category = HWIntrinsicInfo::lookupCategory(intrinsicId); |
| 85 | int ival = HWIntrinsicInfo::lookupIval(intrinsicId); |
| 86 | int numArgs = HWIntrinsicInfo::lookupNumArgs(node); |
| 87 | |
| 88 | assert(HWIntrinsicInfo::RequiresCodegen(intrinsicId)); |
| 89 | |
| 90 | if (genIsTableDrivenHWIntrinsic(intrinsicId, category)) |
| 91 | { |
| 92 | GenTree* op1 = node->gtGetOp1(); |
| 93 | GenTree* op2 = node->gtGetOp2(); |
| 94 | regNumber targetReg = node->gtRegNum; |
| 95 | var_types targetType = node->TypeGet(); |
| 96 | var_types baseType = node->gtSIMDBaseType; |
| 97 | |
| 98 | regNumber op1Reg = REG_NA; |
| 99 | regNumber op2Reg = REG_NA; |
| 100 | emitter* emit = getEmitter(); |
| 101 | |
| 102 | assert(numArgs >= 0); |
| 103 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 104 | assert(ins != INS_invalid); |
| 105 | emitAttr simdSize = EA_ATTR(node->gtSIMDSize); |
| 106 | assert(simdSize != 0); |
| 107 | |
| 108 | switch (numArgs) |
| 109 | { |
| 110 | case 1: |
| 111 | { |
| 112 | genConsumeOperands(node); |
| 113 | op1Reg = op1->gtRegNum; |
| 114 | |
| 115 | if (node->OperIsMemoryLoad()) |
| 116 | { |
| 117 | emit->emitIns_R_AR(ins, simdSize, targetReg, op1Reg, 0); |
| 118 | } |
| 119 | else if ((category == HW_Category_SIMDScalar) && HWIntrinsicInfo::CopiesUpperBits(intrinsicId)) |
| 120 | { |
| 121 | emit->emitIns_SIMD_R_R_R(ins, simdSize, targetReg, op1Reg, op1Reg); |
| 122 | } |
| 123 | else if ((ival != -1) && varTypeIsFloating(baseType)) |
| 124 | { |
| 125 | assert((ival >= 0) && (ival <= 127)); |
| 126 | genHWIntrinsic_R_RM_I(node, ins, (int8_t)ival); |
| 127 | } |
| 128 | else |
| 129 | { |
| 130 | genHWIntrinsic_R_RM(node, ins, simdSize); |
| 131 | } |
| 132 | break; |
| 133 | } |
| 134 | |
| 135 | case 2: |
| 136 | { |
| 137 | genConsumeOperands(node); |
| 138 | |
| 139 | op1Reg = op1->gtRegNum; |
| 140 | op2Reg = op2->gtRegNum; |
| 141 | |
| 142 | if ((op1Reg != targetReg) && (op2Reg == targetReg) && node->isRMWHWIntrinsic(compiler)) |
| 143 | { |
| 144 | // We have "reg2 = reg1 op reg2" where "reg1 != reg2" on a RMW intrinsic. |
| 145 | // |
| 146 | // For non-commutative intrinsics, we should have ensured that op2 was marked |
| 147 | // delay free in order to prevent it from getting assigned the same register |
| 148 | // as target. However, for commutative intrinsics, we can just swap the operands |
| 149 | // in order to have "reg2 = reg2 op reg1" which will end up producing the right code. |
| 150 | |
| 151 | noway_assert(node->OperIsCommutative()); |
| 152 | op2Reg = op1Reg; |
| 153 | op1Reg = targetReg; |
| 154 | } |
| 155 | |
| 156 | if (category == HW_Category_MemoryStore) |
| 157 | { |
| 158 | emit->emitIns_AR_R(ins, simdSize, op2Reg, op1Reg, 0); |
| 159 | } |
| 160 | else if ((ival != -1) && varTypeIsFloating(baseType)) |
| 161 | { |
| 162 | assert((ival >= 0) && (ival <= 127)); |
| 163 | genHWIntrinsic_R_R_RM_I(node, ins, ival); |
| 164 | } |
| 165 | else if (category == HW_Category_MemoryLoad) |
| 166 | { |
| 167 | if (intrinsicId == NI_AVX_MaskLoad || intrinsicId == NI_AVX2_MaskLoad) |
| 168 | { |
| 169 | emit->emitIns_SIMD_R_R_AR(ins, simdSize, targetReg, op2Reg, op1Reg); |
| 170 | } |
| 171 | else |
| 172 | { |
| 173 | emit->emitIns_SIMD_R_R_AR(ins, simdSize, targetReg, op1Reg, op2Reg); |
| 174 | } |
| 175 | } |
| 176 | else if (HWIntrinsicInfo::isImmOp(intrinsicId, op2)) |
| 177 | { |
| 178 | assert(ival == -1); |
| 179 | |
| 180 | if (intrinsicId == NI_SSE2_Extract) |
| 181 | { |
| 182 | // extract instructions return to GP-registers, so it needs int size as the emitsize |
| 183 | simdSize = emitTypeSize(TYP_INT); |
| 184 | } |
| 185 | |
| 186 | auto emitSwCase = [&](int8_t i) { genHWIntrinsic_R_RM_I(node, ins, i); }; |
| 187 | |
| 188 | if (op2->IsCnsIntOrI()) |
| 189 | { |
| 190 | ssize_t ival = op2->AsIntCon()->IconValue(); |
| 191 | assert((ival >= 0) && (ival <= 255)); |
| 192 | emitSwCase((int8_t)ival); |
| 193 | } |
| 194 | else |
| 195 | { |
| 196 | // We emit a fallback case for the scenario when the imm-op is not a constant. This should |
| 197 | // normally happen when the intrinsic is called indirectly, such as via Reflection. However, it |
| 198 | // can also occur if the consumer calls it directly and just doesn't pass a constant value. |
| 199 | regNumber baseReg = node->ExtractTempReg(); |
| 200 | regNumber offsReg = node->GetSingleTempReg(); |
| 201 | genHWIntrinsicJumpTableFallback(intrinsicId, op2Reg, baseReg, offsReg, emitSwCase); |
| 202 | } |
| 203 | } |
| 204 | else |
| 205 | { |
| 206 | genHWIntrinsic_R_R_RM(node, ins, EA_ATTR(node->gtSIMDSize)); |
| 207 | } |
| 208 | break; |
| 209 | } |
| 210 | |
| 211 | case 3: |
| 212 | { |
| 213 | assert(op1->OperIsList()); |
| 214 | assert(op1->gtGetOp2()->OperIsList()); |
| 215 | assert(op1->gtGetOp2()->gtGetOp2()->OperIsList()); |
| 216 | |
| 217 | GenTreeArgList* argList = op1->AsArgList(); |
| 218 | op1 = argList->Current(); |
| 219 | genConsumeRegs(op1); |
| 220 | op1Reg = op1->gtRegNum; |
| 221 | |
| 222 | argList = argList->Rest(); |
| 223 | op2 = argList->Current(); |
| 224 | genConsumeRegs(op2); |
| 225 | op2Reg = op2->gtRegNum; |
| 226 | |
| 227 | argList = argList->Rest(); |
| 228 | GenTree* op3 = argList->Current(); |
| 229 | genConsumeRegs(op3); |
| 230 | regNumber op3Reg = op3->gtRegNum; |
| 231 | |
| 232 | if (HWIntrinsicInfo::isImmOp(intrinsicId, op3)) |
| 233 | { |
| 234 | assert(ival == -1); |
| 235 | |
| 236 | auto emitSwCase = [&](int8_t i) { genHWIntrinsic_R_R_RM_I(node, ins, i); }; |
| 237 | |
| 238 | if (op3->IsCnsIntOrI()) |
| 239 | { |
| 240 | ssize_t ival = op3->AsIntCon()->IconValue(); |
| 241 | assert((ival >= 0) && (ival <= 255)); |
| 242 | emitSwCase((int8_t)ival); |
| 243 | } |
| 244 | else |
| 245 | { |
| 246 | // We emit a fallback case for the scenario when the imm-op is not a constant. This should |
| 247 | // normally happen when the intrinsic is called indirectly, such as via Reflection. However, it |
| 248 | // can also occur if the consumer calls it directly and just doesn't pass a constant value. |
| 249 | regNumber baseReg = node->ExtractTempReg(); |
| 250 | regNumber offsReg = node->GetSingleTempReg(); |
| 251 | genHWIntrinsicJumpTableFallback(intrinsicId, op3Reg, baseReg, offsReg, emitSwCase); |
| 252 | } |
| 253 | } |
| 254 | else if (category == HW_Category_MemoryStore) |
| 255 | { |
| 256 | if (intrinsicId == NI_AVX_MaskStore || intrinsicId == NI_AVX2_MaskStore) |
| 257 | { |
| 258 | emit->emitIns_AR_R_R(ins, simdSize, op2Reg, op3Reg, op1Reg, 0); |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | assert(intrinsicId == NI_SSE2_MaskMove); |
| 263 | assert(targetReg == REG_NA); |
| 264 | |
| 265 | // SSE2 MaskMove hardcodes the destination (op3) in DI/EDI/RDI |
| 266 | if (op3Reg != REG_EDI) |
| 267 | { |
| 268 | emit->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_EDI, op3Reg); |
| 269 | } |
| 270 | emit->emitIns_R_R(ins, simdSize, op1Reg, op2Reg); |
| 271 | } |
| 272 | } |
| 273 | else |
| 274 | { |
| 275 | switch (intrinsicId) |
| 276 | { |
| 277 | case NI_SSE41_BlendVariable: |
| 278 | case NI_AVX_BlendVariable: |
| 279 | case NI_AVX2_BlendVariable: |
| 280 | { |
| 281 | genHWIntrinsic_R_R_RM_R(node, ins); |
| 282 | break; |
| 283 | } |
| 284 | |
| 285 | default: |
| 286 | { |
| 287 | unreached(); |
| 288 | break; |
| 289 | }; |
| 290 | } |
| 291 | } |
| 292 | break; |
| 293 | } |
| 294 | |
| 295 | default: |
| 296 | unreached(); |
| 297 | break; |
| 298 | } |
| 299 | genProduceReg(node); |
| 300 | return; |
| 301 | } |
| 302 | |
| 303 | switch (isa) |
| 304 | { |
| 305 | case InstructionSet_Base: |
| 306 | genBaseIntrinsic(node); |
| 307 | break; |
| 308 | case InstructionSet_SSE: |
| 309 | case InstructionSet_SSE_X64: |
| 310 | genSSEIntrinsic(node); |
| 311 | break; |
| 312 | case InstructionSet_SSE2: |
| 313 | case InstructionSet_SSE2_X64: |
| 314 | genSSE2Intrinsic(node); |
| 315 | break; |
| 316 | case InstructionSet_SSE41: |
| 317 | case InstructionSet_SSE41_X64: |
| 318 | genSSE41Intrinsic(node); |
| 319 | break; |
| 320 | case InstructionSet_SSE42: |
| 321 | case InstructionSet_SSE42_X64: |
| 322 | genSSE42Intrinsic(node); |
| 323 | break; |
| 324 | case InstructionSet_AVX: |
| 325 | case InstructionSet_AVX2: |
| 326 | genAvxOrAvx2Intrinsic(node); |
| 327 | break; |
| 328 | case InstructionSet_AES: |
| 329 | genAESIntrinsic(node); |
| 330 | break; |
| 331 | case InstructionSet_BMI1: |
| 332 | case InstructionSet_BMI1_X64: |
| 333 | case InstructionSet_BMI2: |
| 334 | case InstructionSet_BMI2_X64: |
| 335 | genBMI1OrBMI2Intrinsic(node); |
| 336 | break; |
| 337 | case InstructionSet_FMA: |
| 338 | genFMAIntrinsic(node); |
| 339 | break; |
| 340 | case InstructionSet_LZCNT: |
| 341 | case InstructionSet_LZCNT_X64: |
| 342 | genLZCNTIntrinsic(node); |
| 343 | break; |
| 344 | case InstructionSet_PCLMULQDQ: |
| 345 | genPCLMULQDQIntrinsic(node); |
| 346 | break; |
| 347 | case InstructionSet_POPCNT: |
| 348 | case InstructionSet_POPCNT_X64: |
| 349 | genPOPCNTIntrinsic(node); |
| 350 | break; |
| 351 | default: |
| 352 | unreached(); |
| 353 | break; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | //------------------------------------------------------------------------ |
| 358 | // genHWIntrinsic_R_RM: Generates the code for a hardware intrinsic node that takes a |
| 359 | // register/memory operand and that returns a value in register |
| 360 | // |
| 361 | // Arguments: |
| 362 | // node - The hardware intrinsic node |
| 363 | // ins - The instruction being generated |
| 364 | // attr - The emit attribute for the instruciton being generated |
| 365 | // |
| 366 | void CodeGen::genHWIntrinsic_R_RM(GenTreeHWIntrinsic* node, instruction ins, emitAttr attr) |
| 367 | { |
| 368 | var_types targetType = node->TypeGet(); |
| 369 | regNumber targetReg = node->gtRegNum; |
| 370 | GenTree* op1 = node->gtGetOp1(); |
| 371 | GenTree* op2 = node->gtGetOp2(); |
| 372 | emitter* emit = getEmitter(); |
| 373 | |
| 374 | if (op2 != nullptr) |
| 375 | { |
| 376 | // The Compare*OrderedScalar and Compare*UnorderedScalar intrinsics come down this |
| 377 | // code path. They are all MultiIns, as the return value comes from the flags and |
| 378 | // we have two operands instead. |
| 379 | |
| 380 | assert(HWIntrinsicInfo::GeneratesMultipleIns(node->gtHWIntrinsicId)); |
| 381 | assert(targetReg != REG_NA); |
| 382 | |
| 383 | targetReg = op1->gtRegNum; |
| 384 | op1 = op2; |
| 385 | op2 = nullptr; |
| 386 | } |
| 387 | else |
| 388 | { |
| 389 | assert(!node->OperIsCommutative()); |
| 390 | } |
| 391 | |
| 392 | assert(targetReg != REG_NA); |
| 393 | assert(op2 == nullptr); |
| 394 | |
| 395 | if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 396 | { |
| 397 | assert(HWIntrinsicInfo::SupportsContainment(node->gtHWIntrinsicId)); |
| 398 | assertIsContainableHWIntrinsicOp(compiler->m_pLowering, node, op1); |
| 399 | |
| 400 | TempDsc* tmpDsc = nullptr; |
| 401 | unsigned varNum = BAD_VAR_NUM; |
| 402 | unsigned offset = (unsigned)-1; |
| 403 | |
| 404 | if (op1->isUsedFromSpillTemp()) |
| 405 | { |
| 406 | assert(op1->IsRegOptional()); |
| 407 | |
| 408 | tmpDsc = getSpillTempDsc(op1); |
| 409 | varNum = tmpDsc->tdTempNum(); |
| 410 | offset = 0; |
| 411 | |
| 412 | regSet.tmpRlsTemp(tmpDsc); |
| 413 | } |
| 414 | else if (op1->OperIsHWIntrinsic()) |
| 415 | { |
| 416 | emit->emitIns_R_AR(ins, attr, targetReg, op1->gtGetOp1()->gtRegNum, 0); |
| 417 | return; |
| 418 | } |
| 419 | else if (op1->isIndir()) |
| 420 | { |
| 421 | GenTreeIndir* memIndir = op1->AsIndir(); |
| 422 | GenTree* memBase = memIndir->gtOp1; |
| 423 | |
| 424 | switch (memBase->OperGet()) |
| 425 | { |
| 426 | case GT_LCL_VAR_ADDR: |
| 427 | { |
| 428 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 429 | offset = 0; |
| 430 | |
| 431 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 432 | assert(!memIndir->HasIndex()); |
| 433 | assert(memIndir->Scale() == 1); |
| 434 | assert(memIndir->Offset() == 0); |
| 435 | |
| 436 | break; |
| 437 | } |
| 438 | |
| 439 | case GT_CLS_VAR_ADDR: |
| 440 | { |
| 441 | emit->emitIns_R_C(ins, attr, targetReg, memBase->gtClsVar.gtClsVarHnd, 0); |
| 442 | return; |
| 443 | } |
| 444 | |
| 445 | default: |
| 446 | { |
| 447 | emit->emitIns_R_A(ins, attr, targetReg, memIndir); |
| 448 | return; |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | else |
| 453 | { |
| 454 | switch (op1->OperGet()) |
| 455 | { |
| 456 | case GT_LCL_FLD: |
| 457 | { |
| 458 | GenTreeLclFld* lclField = op1->AsLclFld(); |
| 459 | |
| 460 | varNum = lclField->GetLclNum(); |
| 461 | offset = lclField->gtLclFld.gtLclOffs; |
| 462 | break; |
| 463 | } |
| 464 | |
| 465 | case GT_LCL_VAR: |
| 466 | { |
| 467 | assert(op1->IsRegOptional() || !compiler->lvaTable[op1->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 468 | varNum = op1->AsLclVar()->GetLclNum(); |
| 469 | offset = 0; |
| 470 | break; |
| 471 | } |
| 472 | |
| 473 | default: |
| 474 | { |
| 475 | unreached(); |
| 476 | break; |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | // Ensure we got a good varNum and offset. |
| 482 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 483 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 484 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 485 | assert(offset != (unsigned)-1); |
| 486 | |
| 487 | emit->emitIns_R_S(ins, attr, targetReg, varNum, offset); |
| 488 | } |
| 489 | else |
| 490 | { |
| 491 | regNumber op1Reg = op1->gtRegNum; |
| 492 | emit->emitIns_R_R(ins, attr, targetReg, op1Reg); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | //------------------------------------------------------------------------ |
| 497 | // genHWIntrinsic_R_RM_I: Generates the code for a hardware intrinsic node that takes a register/memory operand, |
| 498 | // an immediate operand, and that returns a value in register |
| 499 | // |
| 500 | // Arguments: |
| 501 | // node - The hardware intrinsic node |
| 502 | // ins - The instruction being generated |
| 503 | // ival - The immediate value |
| 504 | // |
| 505 | void CodeGen::genHWIntrinsic_R_RM_I(GenTreeHWIntrinsic* node, instruction ins, int8_t ival) |
| 506 | { |
| 507 | var_types targetType = node->TypeGet(); |
| 508 | regNumber targetReg = node->gtRegNum; |
| 509 | GenTree* op1 = node->gtGetOp1(); |
| 510 | emitAttr simdSize = EA_ATTR(node->gtSIMDSize); |
| 511 | emitter* emit = getEmitter(); |
| 512 | |
| 513 | // TODO-XArch-CQ: Commutative operations can have op1 be contained |
| 514 | // TODO-XArch-CQ: Non-VEX encoded instructions can have both ops contained |
| 515 | |
| 516 | assert(targetReg != REG_NA); |
| 517 | assert(!node->OperIsCommutative()); // One operand intrinsics cannot be commutative |
| 518 | |
| 519 | if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 520 | { |
| 521 | assert(HWIntrinsicInfo::SupportsContainment(node->gtHWIntrinsicId)); |
| 522 | assertIsContainableHWIntrinsicOp(compiler->m_pLowering, node, op1); |
| 523 | |
| 524 | TempDsc* tmpDsc = nullptr; |
| 525 | unsigned varNum = BAD_VAR_NUM; |
| 526 | unsigned offset = (unsigned)-1; |
| 527 | |
| 528 | if (op1->isUsedFromSpillTemp()) |
| 529 | { |
| 530 | assert(op1->IsRegOptional()); |
| 531 | |
| 532 | tmpDsc = getSpillTempDsc(op1); |
| 533 | varNum = tmpDsc->tdTempNum(); |
| 534 | offset = 0; |
| 535 | |
| 536 | regSet.tmpRlsTemp(tmpDsc); |
| 537 | } |
| 538 | else if (op1->OperIsHWIntrinsic()) |
| 539 | { |
| 540 | emit->emitIns_R_AR_I(ins, simdSize, targetReg, op1->gtGetOp1()->gtRegNum, 0, ival); |
| 541 | return; |
| 542 | } |
| 543 | else if (op1->isIndir()) |
| 544 | { |
| 545 | GenTreeIndir* memIndir = op1->AsIndir(); |
| 546 | GenTree* memBase = memIndir->gtOp1; |
| 547 | |
| 548 | switch (memBase->OperGet()) |
| 549 | { |
| 550 | case GT_LCL_VAR_ADDR: |
| 551 | { |
| 552 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 553 | offset = 0; |
| 554 | |
| 555 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 556 | assert(!memIndir->HasIndex()); |
| 557 | assert(memIndir->Scale() == 1); |
| 558 | assert(memIndir->Offset() == 0); |
| 559 | |
| 560 | break; |
| 561 | } |
| 562 | |
| 563 | case GT_CLS_VAR_ADDR: |
| 564 | { |
| 565 | emit->emitIns_R_C_I(ins, simdSize, targetReg, memBase->gtClsVar.gtClsVarHnd, 0, ival); |
| 566 | return; |
| 567 | } |
| 568 | |
| 569 | default: |
| 570 | { |
| 571 | emit->emitIns_R_A_I(ins, simdSize, targetReg, memIndir, ival); |
| 572 | return; |
| 573 | } |
| 574 | } |
| 575 | } |
| 576 | else |
| 577 | { |
| 578 | switch (op1->OperGet()) |
| 579 | { |
| 580 | case GT_LCL_FLD: |
| 581 | { |
| 582 | GenTreeLclFld* lclField = op1->AsLclFld(); |
| 583 | |
| 584 | varNum = lclField->GetLclNum(); |
| 585 | offset = lclField->gtLclFld.gtLclOffs; |
| 586 | break; |
| 587 | } |
| 588 | |
| 589 | case GT_LCL_VAR: |
| 590 | { |
| 591 | assert(op1->IsRegOptional() || !compiler->lvaTable[op1->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 592 | varNum = op1->AsLclVar()->GetLclNum(); |
| 593 | offset = 0; |
| 594 | break; |
| 595 | } |
| 596 | |
| 597 | default: |
| 598 | unreached(); |
| 599 | break; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | // Ensure we got a good varNum and offset. |
| 604 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 605 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 606 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 607 | assert(offset != (unsigned)-1); |
| 608 | |
| 609 | emit->emitIns_R_S_I(ins, simdSize, targetReg, varNum, offset, ival); |
| 610 | } |
| 611 | else |
| 612 | { |
| 613 | regNumber op1Reg = op1->gtRegNum; |
| 614 | emit->emitIns_SIMD_R_R_I(ins, simdSize, targetReg, op1Reg, ival); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | //------------------------------------------------------------------------ |
| 619 | // genHWIntrinsic_R_R_RM: Generates the code for a hardware intrinsic node that takes a register operand, a |
| 620 | // register/memory operand, and that returns a value in register |
| 621 | // |
| 622 | // Arguments: |
| 623 | // node - The hardware intrinsic node |
| 624 | // ins - The instruction being generated |
| 625 | // attr - The emit attribute for the instruciton being generated |
| 626 | // |
| 627 | void CodeGen::genHWIntrinsic_R_R_RM(GenTreeHWIntrinsic* node, instruction ins, emitAttr attr) |
| 628 | { |
| 629 | regNumber targetReg = node->gtRegNum; |
| 630 | GenTree* op1 = node->gtGetOp1(); |
| 631 | GenTree* op2 = node->gtGetOp2(); |
| 632 | regNumber op1Reg = op1->gtRegNum; |
| 633 | |
| 634 | assert(targetReg != REG_NA); |
| 635 | assert(op1Reg != REG_NA); |
| 636 | |
| 637 | genHWIntrinsic_R_R_RM(node, ins, attr, targetReg, op1Reg, op2); |
| 638 | } |
| 639 | |
| 640 | //------------------------------------------------------------------------ |
| 641 | // genHWIntrinsic_R_R_RM: Generates the code for a hardware intrinsic node that takes a register operand, a |
| 642 | // register/memory operand, and that returns a value in register |
| 643 | // |
| 644 | // Arguments: |
| 645 | // node - The hardware intrinsic node |
| 646 | // ins - The instruction being generated |
| 647 | // attr - The emit attribute for the instruciton being generated |
| 648 | // targetReg - The register allocated to the result |
| 649 | // op1Reg - The register allocated to the first operand |
| 650 | // op2 - Another operand that maybe in register or memory |
| 651 | // |
| 652 | void CodeGen::genHWIntrinsic_R_R_RM( |
| 653 | GenTreeHWIntrinsic* node, instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, GenTree* op2) |
| 654 | { |
| 655 | emitter* emit = getEmitter(); |
| 656 | |
| 657 | // TODO-XArch-CQ: Commutative operations can have op1 be contained |
| 658 | // TODO-XArch-CQ: Non-VEX encoded instructions can have both ops contained |
| 659 | |
| 660 | assert(targetReg != REG_NA); |
| 661 | assert(op1Reg != REG_NA); |
| 662 | |
| 663 | if (op2->isContained() || op2->isUsedFromSpillTemp()) |
| 664 | { |
| 665 | assert(HWIntrinsicInfo::SupportsContainment(node->gtHWIntrinsicId)); |
| 666 | assertIsContainableHWIntrinsicOp(compiler->m_pLowering, node, op2); |
| 667 | |
| 668 | TempDsc* tmpDsc = nullptr; |
| 669 | unsigned varNum = BAD_VAR_NUM; |
| 670 | unsigned offset = (unsigned)-1; |
| 671 | |
| 672 | if (op2->isUsedFromSpillTemp()) |
| 673 | { |
| 674 | assert(op2->IsRegOptional()); |
| 675 | |
| 676 | tmpDsc = getSpillTempDsc(op2); |
| 677 | varNum = tmpDsc->tdTempNum(); |
| 678 | offset = 0; |
| 679 | |
| 680 | regSet.tmpRlsTemp(tmpDsc); |
| 681 | } |
| 682 | else if (op2->OperIsHWIntrinsic()) |
| 683 | { |
| 684 | emit->emitIns_SIMD_R_R_AR(ins, attr, targetReg, op1Reg, op2->gtGetOp1()->gtRegNum); |
| 685 | return; |
| 686 | } |
| 687 | else if (op2->isIndir()) |
| 688 | { |
| 689 | GenTreeIndir* memIndir = op2->AsIndir(); |
| 690 | GenTree* memBase = memIndir->gtOp1; |
| 691 | |
| 692 | switch (memBase->OperGet()) |
| 693 | { |
| 694 | case GT_LCL_VAR_ADDR: |
| 695 | { |
| 696 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 697 | offset = 0; |
| 698 | |
| 699 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 700 | assert(!memIndir->HasIndex()); |
| 701 | assert(memIndir->Scale() == 1); |
| 702 | assert(memIndir->Offset() == 0); |
| 703 | |
| 704 | break; |
| 705 | } |
| 706 | |
| 707 | case GT_CLS_VAR_ADDR: |
| 708 | { |
| 709 | emit->emitIns_SIMD_R_R_C(ins, attr, targetReg, op1Reg, memBase->gtClsVar.gtClsVarHnd, 0); |
| 710 | return; |
| 711 | } |
| 712 | |
| 713 | default: |
| 714 | { |
| 715 | emit->emitIns_SIMD_R_R_A(ins, attr, targetReg, op1Reg, memIndir); |
| 716 | return; |
| 717 | } |
| 718 | } |
| 719 | } |
| 720 | else |
| 721 | { |
| 722 | switch (op2->OperGet()) |
| 723 | { |
| 724 | case GT_LCL_FLD: |
| 725 | { |
| 726 | GenTreeLclFld* lclField = op2->AsLclFld(); |
| 727 | |
| 728 | varNum = lclField->GetLclNum(); |
| 729 | offset = lclField->gtLclFld.gtLclOffs; |
| 730 | break; |
| 731 | } |
| 732 | |
| 733 | case GT_LCL_VAR: |
| 734 | { |
| 735 | assert(op2->IsRegOptional() || !compiler->lvaTable[op2->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 736 | varNum = op2->AsLclVar()->GetLclNum(); |
| 737 | offset = 0; |
| 738 | break; |
| 739 | } |
| 740 | |
| 741 | default: |
| 742 | unreached(); |
| 743 | break; |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | // Ensure we got a good varNum and offset. |
| 748 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 749 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 750 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 751 | assert(offset != (unsigned)-1); |
| 752 | |
| 753 | emit->emitIns_SIMD_R_R_S(ins, attr, targetReg, op1Reg, varNum, offset); |
| 754 | } |
| 755 | else |
| 756 | { |
| 757 | regNumber op2Reg = op2->gtRegNum; |
| 758 | |
| 759 | if ((op1Reg != targetReg) && (op2Reg == targetReg) && node->isRMWHWIntrinsic(compiler)) |
| 760 | { |
| 761 | // We have "reg2 = reg1 op reg2" where "reg1 != reg2" on a RMW intrinsic. |
| 762 | // |
| 763 | // For non-commutative intrinsics, we should have ensured that op2 was marked |
| 764 | // delay free in order to prevent it from getting assigned the same register |
| 765 | // as target. However, for commutative intrinsics, we can just swap the operands |
| 766 | // in order to have "reg2 = reg2 op reg1" which will end up producing the right code. |
| 767 | |
| 768 | noway_assert(node->OperIsCommutative()); |
| 769 | op2Reg = op1Reg; |
| 770 | op1Reg = targetReg; |
| 771 | } |
| 772 | |
| 773 | emit->emitIns_SIMD_R_R_R(ins, attr, targetReg, op1Reg, op2Reg); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | //------------------------------------------------------------------------ |
| 778 | // genHWIntrinsic_R_R_RM_I: Generates the code for a hardware intrinsic node that takes a register operand, a |
| 779 | // register/memory operand, an immediate operand, and that returns a value in register |
| 780 | // |
| 781 | // Arguments: |
| 782 | // node - The hardware intrinsic node |
| 783 | // ins - The instruction being generated |
| 784 | // ival - The immediate value |
| 785 | // |
| 786 | void CodeGen::genHWIntrinsic_R_R_RM_I(GenTreeHWIntrinsic* node, instruction ins, int8_t ival) |
| 787 | { |
| 788 | var_types targetType = node->TypeGet(); |
| 789 | regNumber targetReg = node->gtRegNum; |
| 790 | GenTree* op1 = node->gtGetOp1(); |
| 791 | GenTree* op2 = node->gtGetOp2(); |
| 792 | emitAttr simdSize = EA_ATTR(node->gtSIMDSize); |
| 793 | emitter* emit = getEmitter(); |
| 794 | |
| 795 | // TODO-XArch-CQ: Commutative operations can have op1 be contained |
| 796 | // TODO-XArch-CQ: Non-VEX encoded instructions can have both ops contained |
| 797 | |
| 798 | if (op1->OperIsList()) |
| 799 | { |
| 800 | assert(op2 == nullptr); |
| 801 | |
| 802 | GenTreeArgList* argList = op1->AsArgList(); |
| 803 | |
| 804 | op1 = argList->Current(); |
| 805 | argList = argList->Rest(); |
| 806 | |
| 807 | op2 = argList->Current(); |
| 808 | argList = argList->Rest(); |
| 809 | |
| 810 | assert(argList->Current() != nullptr); |
| 811 | assert(argList->Rest() == nullptr); |
| 812 | } |
| 813 | |
| 814 | regNumber op1Reg = op1->gtRegNum; |
| 815 | |
| 816 | assert(targetReg != REG_NA); |
| 817 | assert(op1Reg != REG_NA); |
| 818 | |
| 819 | if (op2->isContained() || op2->isUsedFromSpillTemp()) |
| 820 | { |
| 821 | assert(HWIntrinsicInfo::SupportsContainment(node->gtHWIntrinsicId)); |
| 822 | assertIsContainableHWIntrinsicOp(compiler->m_pLowering, node, op2); |
| 823 | |
| 824 | TempDsc* tmpDsc = nullptr; |
| 825 | unsigned varNum = BAD_VAR_NUM; |
| 826 | unsigned offset = (unsigned)-1; |
| 827 | |
| 828 | if (op2->isUsedFromSpillTemp()) |
| 829 | { |
| 830 | assert(op2->IsRegOptional()); |
| 831 | |
| 832 | tmpDsc = getSpillTempDsc(op2); |
| 833 | varNum = tmpDsc->tdTempNum(); |
| 834 | offset = 0; |
| 835 | |
| 836 | regSet.tmpRlsTemp(tmpDsc); |
| 837 | } |
| 838 | else if (op2->OperIsHWIntrinsic()) |
| 839 | { |
| 840 | emit->emitIns_SIMD_R_R_AR_I(ins, simdSize, targetReg, op1Reg, op2->gtGetOp1()->gtRegNum, ival); |
| 841 | return; |
| 842 | } |
| 843 | else if (op2->isIndir()) |
| 844 | { |
| 845 | GenTreeIndir* memIndir = op2->AsIndir(); |
| 846 | GenTree* memBase = memIndir->gtOp1; |
| 847 | |
| 848 | switch (memBase->OperGet()) |
| 849 | { |
| 850 | case GT_LCL_VAR_ADDR: |
| 851 | { |
| 852 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 853 | offset = 0; |
| 854 | |
| 855 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 856 | assert(!memIndir->HasIndex()); |
| 857 | assert(memIndir->Scale() == 1); |
| 858 | assert(memIndir->Offset() == 0); |
| 859 | |
| 860 | break; |
| 861 | } |
| 862 | |
| 863 | case GT_CLS_VAR_ADDR: |
| 864 | { |
| 865 | emit->emitIns_SIMD_R_R_C_I(ins, simdSize, targetReg, op1Reg, memBase->gtClsVar.gtClsVarHnd, 0, |
| 866 | ival); |
| 867 | return; |
| 868 | } |
| 869 | |
| 870 | default: |
| 871 | { |
| 872 | emit->emitIns_SIMD_R_R_A_I(ins, simdSize, targetReg, op1Reg, memIndir, ival); |
| 873 | return; |
| 874 | } |
| 875 | } |
| 876 | } |
| 877 | else |
| 878 | { |
| 879 | switch (op2->OperGet()) |
| 880 | { |
| 881 | case GT_LCL_FLD: |
| 882 | { |
| 883 | GenTreeLclFld* lclField = op2->AsLclFld(); |
| 884 | |
| 885 | varNum = lclField->GetLclNum(); |
| 886 | offset = lclField->gtLclFld.gtLclOffs; |
| 887 | break; |
| 888 | } |
| 889 | |
| 890 | case GT_LCL_VAR: |
| 891 | { |
| 892 | assert(op2->IsRegOptional() || !compiler->lvaTable[op2->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 893 | varNum = op2->AsLclVar()->GetLclNum(); |
| 894 | offset = 0; |
| 895 | break; |
| 896 | } |
| 897 | |
| 898 | default: |
| 899 | unreached(); |
| 900 | break; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | // Ensure we got a good varNum and offset. |
| 905 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 906 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 907 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 908 | assert(offset != (unsigned)-1); |
| 909 | |
| 910 | emit->emitIns_SIMD_R_R_S_I(ins, simdSize, targetReg, op1Reg, varNum, offset, ival); |
| 911 | } |
| 912 | else |
| 913 | { |
| 914 | regNumber op2Reg = op2->gtRegNum; |
| 915 | |
| 916 | if ((op1Reg != targetReg) && (op2Reg == targetReg) && node->isRMWHWIntrinsic(compiler)) |
| 917 | { |
| 918 | // We have "reg2 = reg1 op reg2" where "reg1 != reg2" on a RMW intrinsic. |
| 919 | // |
| 920 | // For non-commutative intrinsics, we should have ensured that op2 was marked |
| 921 | // delay free in order to prevent it from getting assigned the same register |
| 922 | // as target. However, for commutative intrinsics, we can just swap the operands |
| 923 | // in order to have "reg2 = reg2 op reg1" which will end up producing the right code. |
| 924 | |
| 925 | noway_assert(node->OperIsCommutative()); |
| 926 | op2Reg = op1Reg; |
| 927 | op1Reg = targetReg; |
| 928 | } |
| 929 | |
| 930 | emit->emitIns_SIMD_R_R_R_I(ins, simdSize, targetReg, op1Reg, op2Reg, ival); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | //------------------------------------------------------------------------ |
| 935 | // genHWIntrinsic_R_R_RM_R: Generates the code for a hardware intrinsic node that takes a register operand, a |
| 936 | // register/memory operand, another register operand, and that returns a value in register |
| 937 | // |
| 938 | // Arguments: |
| 939 | // node - The hardware intrinsic node |
| 940 | // ins - The instruction being generated |
| 941 | // |
| 942 | void CodeGen::genHWIntrinsic_R_R_RM_R(GenTreeHWIntrinsic* node, instruction ins) |
| 943 | { |
| 944 | var_types targetType = node->TypeGet(); |
| 945 | regNumber targetReg = node->gtRegNum; |
| 946 | GenTree* op1 = node->gtGetOp1(); |
| 947 | GenTree* op2 = node->gtGetOp2(); |
| 948 | GenTree* op3 = nullptr; |
| 949 | emitAttr simdSize = EA_ATTR(node->gtSIMDSize); |
| 950 | emitter* emit = getEmitter(); |
| 951 | |
| 952 | assert(op1->OperIsList()); |
| 953 | assert(op2 == nullptr); |
| 954 | |
| 955 | GenTreeArgList* argList = op1->AsArgList(); |
| 956 | |
| 957 | op1 = argList->Current(); |
| 958 | argList = argList->Rest(); |
| 959 | |
| 960 | op2 = argList->Current(); |
| 961 | argList = argList->Rest(); |
| 962 | |
| 963 | op3 = argList->Current(); |
| 964 | assert(argList->Rest() == nullptr); |
| 965 | |
| 966 | regNumber op1Reg = op1->gtRegNum; |
| 967 | regNumber op3Reg = op3->gtRegNum; |
| 968 | |
| 969 | assert(targetReg != REG_NA); |
| 970 | assert(op1Reg != REG_NA); |
| 971 | assert(op3Reg != REG_NA); |
| 972 | |
| 973 | if (op2->isContained() || op2->isUsedFromSpillTemp()) |
| 974 | { |
| 975 | assert(HWIntrinsicInfo::SupportsContainment(node->gtHWIntrinsicId)); |
| 976 | assertIsContainableHWIntrinsicOp(compiler->m_pLowering, node, op2); |
| 977 | |
| 978 | TempDsc* tmpDsc = nullptr; |
| 979 | unsigned varNum = BAD_VAR_NUM; |
| 980 | unsigned offset = (unsigned)-1; |
| 981 | |
| 982 | if (op2->isUsedFromSpillTemp()) |
| 983 | { |
| 984 | assert(op2->IsRegOptional()); |
| 985 | |
| 986 | // TODO-XArch-Cleanup: The getSpillTempDsc...tempRlsTemp code is a fairly common |
| 987 | // pattern. It could probably be extracted to its own method. |
| 988 | tmpDsc = getSpillTempDsc(op2); |
| 989 | varNum = tmpDsc->tdTempNum(); |
| 990 | offset = 0; |
| 991 | |
| 992 | regSet.tmpRlsTemp(tmpDsc); |
| 993 | } |
| 994 | else if (op2->OperIsHWIntrinsic()) |
| 995 | { |
| 996 | emit->emitIns_SIMD_R_R_AR_R(ins, simdSize, targetReg, op1Reg, op3Reg, op2->gtGetOp1()->gtRegNum); |
| 997 | return; |
| 998 | } |
| 999 | else if (op2->isIndir()) |
| 1000 | { |
| 1001 | GenTreeIndir* memIndir = op2->AsIndir(); |
| 1002 | GenTree* memBase = memIndir->gtOp1; |
| 1003 | |
| 1004 | switch (memBase->OperGet()) |
| 1005 | { |
| 1006 | case GT_LCL_VAR_ADDR: |
| 1007 | { |
| 1008 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 1009 | offset = 0; |
| 1010 | |
| 1011 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 1012 | assert(!memIndir->HasIndex()); |
| 1013 | assert(memIndir->Scale() == 1); |
| 1014 | assert(memIndir->Offset() == 0); |
| 1015 | |
| 1016 | break; |
| 1017 | } |
| 1018 | |
| 1019 | case GT_CLS_VAR_ADDR: |
| 1020 | { |
| 1021 | emit->emitIns_SIMD_R_R_C_R(ins, simdSize, targetReg, op1Reg, op3Reg, memBase->gtClsVar.gtClsVarHnd, |
| 1022 | 0); |
| 1023 | return; |
| 1024 | } |
| 1025 | |
| 1026 | default: |
| 1027 | { |
| 1028 | emit->emitIns_SIMD_R_R_A_R(ins, simdSize, targetReg, op1Reg, op3Reg, memIndir); |
| 1029 | return; |
| 1030 | } |
| 1031 | } |
| 1032 | } |
| 1033 | else |
| 1034 | { |
| 1035 | switch (op2->OperGet()) |
| 1036 | { |
| 1037 | case GT_LCL_FLD: |
| 1038 | { |
| 1039 | GenTreeLclFld* lclField = op2->AsLclFld(); |
| 1040 | |
| 1041 | varNum = lclField->GetLclNum(); |
| 1042 | offset = lclField->gtLclFld.gtLclOffs; |
| 1043 | break; |
| 1044 | } |
| 1045 | |
| 1046 | case GT_LCL_VAR: |
| 1047 | { |
| 1048 | assert(op2->IsRegOptional() || !compiler->lvaTable[op2->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 1049 | varNum = op2->AsLclVar()->GetLclNum(); |
| 1050 | offset = 0; |
| 1051 | break; |
| 1052 | } |
| 1053 | |
| 1054 | default: |
| 1055 | unreached(); |
| 1056 | break; |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | // Ensure we got a good varNum and offset. |
| 1061 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 1062 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 1063 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 1064 | assert(offset != (unsigned)-1); |
| 1065 | |
| 1066 | emit->emitIns_SIMD_R_R_S_R(ins, simdSize, targetReg, op1Reg, op3Reg, varNum, offset); |
| 1067 | } |
| 1068 | else |
| 1069 | { |
| 1070 | emit->emitIns_SIMD_R_R_R_R(ins, simdSize, targetReg, op1Reg, op2->gtRegNum, op3Reg); |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | //------------------------------------------------------------------------ |
| 1075 | // genHWIntrinsic_R_R_R_RM: Generates the code for a hardware intrinsic node that takes two register operands, |
| 1076 | // a register/memory operand, and that returns a value in register |
| 1077 | // |
| 1078 | // Arguments: |
| 1079 | // ins - The instruction being generated |
| 1080 | // attr - The emit attribute |
| 1081 | // targetReg - The target register |
| 1082 | // op1Reg - The register of the first operand |
| 1083 | // op2Reg - The register of the second operand |
| 1084 | // op3 - The third operand |
| 1085 | // |
| 1086 | void CodeGen::genHWIntrinsic_R_R_R_RM( |
| 1087 | instruction ins, emitAttr attr, regNumber targetReg, regNumber op1Reg, regNumber op2Reg, GenTree* op3) |
| 1088 | { |
| 1089 | assert(targetReg != REG_NA); |
| 1090 | assert(op1Reg != REG_NA); |
| 1091 | assert(op2Reg != REG_NA); |
| 1092 | |
| 1093 | emitter* emit = getEmitter(); |
| 1094 | |
| 1095 | if (op3->isContained() || op3->isUsedFromSpillTemp()) |
| 1096 | { |
| 1097 | TempDsc* tmpDsc = nullptr; |
| 1098 | unsigned varNum = BAD_VAR_NUM; |
| 1099 | unsigned offset = (unsigned)-1; |
| 1100 | |
| 1101 | if (op3->isUsedFromSpillTemp()) |
| 1102 | { |
| 1103 | assert(op3->IsRegOptional()); |
| 1104 | |
| 1105 | // TODO-XArch-Cleanup: The getSpillTempDsc...tempRlsTemp code is a fairly common |
| 1106 | // pattern. It could probably be extracted to its own method. |
| 1107 | tmpDsc = getSpillTempDsc(op3); |
| 1108 | varNum = tmpDsc->tdTempNum(); |
| 1109 | offset = 0; |
| 1110 | |
| 1111 | regSet.tmpRlsTemp(tmpDsc); |
| 1112 | } |
| 1113 | else if (op3->OperIsHWIntrinsic()) |
| 1114 | { |
| 1115 | emit->emitIns_SIMD_R_R_R_AR(ins, attr, targetReg, op1Reg, op2Reg, op3->gtGetOp1()->gtRegNum); |
| 1116 | return; |
| 1117 | } |
| 1118 | else if (op3->isIndir()) |
| 1119 | { |
| 1120 | GenTreeIndir* memIndir = op3->AsIndir(); |
| 1121 | GenTree* memBase = memIndir->gtOp1; |
| 1122 | |
| 1123 | switch (memBase->OperGet()) |
| 1124 | { |
| 1125 | case GT_LCL_VAR_ADDR: |
| 1126 | { |
| 1127 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 1128 | offset = 0; |
| 1129 | |
| 1130 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 1131 | assert(!memIndir->HasIndex()); |
| 1132 | assert(memIndir->Scale() == 1); |
| 1133 | assert(memIndir->Offset() == 0); |
| 1134 | |
| 1135 | break; |
| 1136 | } |
| 1137 | |
| 1138 | case GT_CLS_VAR_ADDR: |
| 1139 | { |
| 1140 | emit->emitIns_SIMD_R_R_R_C(ins, attr, targetReg, op1Reg, op2Reg, memBase->gtClsVar.gtClsVarHnd, 0); |
| 1141 | return; |
| 1142 | } |
| 1143 | |
| 1144 | default: |
| 1145 | { |
| 1146 | emit->emitIns_SIMD_R_R_R_A(ins, attr, targetReg, op1Reg, op2Reg, memIndir); |
| 1147 | return; |
| 1148 | } |
| 1149 | } |
| 1150 | } |
| 1151 | else |
| 1152 | { |
| 1153 | switch (op3->OperGet()) |
| 1154 | { |
| 1155 | case GT_LCL_FLD: |
| 1156 | { |
| 1157 | GenTreeLclFld* lclField = op3->AsLclFld(); |
| 1158 | |
| 1159 | varNum = lclField->GetLclNum(); |
| 1160 | offset = lclField->gtLclFld.gtLclOffs; |
| 1161 | break; |
| 1162 | } |
| 1163 | |
| 1164 | case GT_LCL_VAR: |
| 1165 | { |
| 1166 | assert(op3->IsRegOptional() || !compiler->lvaTable[op3->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 1167 | varNum = op3->AsLclVar()->GetLclNum(); |
| 1168 | offset = 0; |
| 1169 | break; |
| 1170 | } |
| 1171 | |
| 1172 | default: |
| 1173 | unreached(); |
| 1174 | break; |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | // Ensure we got a good varNum and offset. |
| 1179 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 1180 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 1181 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 1182 | assert(offset != (unsigned)-1); |
| 1183 | |
| 1184 | emit->emitIns_SIMD_R_R_R_S(ins, attr, targetReg, op1Reg, op2Reg, varNum, offset); |
| 1185 | } |
| 1186 | else |
| 1187 | { |
| 1188 | emit->emitIns_SIMD_R_R_R_R(ins, attr, targetReg, op1Reg, op2Reg, op3->gtRegNum); |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | // genHWIntrinsicJumpTableFallback : generate the jump-table fallback for imm-intrinsics |
| 1193 | // with non-constant argument |
| 1194 | // |
| 1195 | // Arguments: |
| 1196 | // intrinsic - intrinsic ID |
| 1197 | // nonConstImmReg - the register contains non-constant imm8 argument |
| 1198 | // baseReg - a register for the start of the switch table |
| 1199 | // offsReg - a register for the offset into the switch table |
| 1200 | // emitSwCase - the lambda to generate siwtch-case |
| 1201 | // |
| 1202 | // Return Value: |
| 1203 | // generate the jump-table fallback for imm-intrinsics with non-constant argument. |
| 1204 | // Note: |
| 1205 | // This function can be used for all imm-intrinsics (whether full-range or not), |
| 1206 | // The compiler front-end (i.e. importer) is responsible to insert a range-check IR |
| 1207 | // (GT_HW_INTRINSIC_CHK) for imm8 argument, so this function does not need to do range-check. |
| 1208 | // |
| 1209 | template <typename HWIntrinsicSwitchCaseBody> |
| 1210 | void CodeGen::genHWIntrinsicJumpTableFallback(NamedIntrinsic intrinsic, |
| 1211 | regNumber nonConstImmReg, |
| 1212 | regNumber baseReg, |
| 1213 | regNumber offsReg, |
| 1214 | HWIntrinsicSwitchCaseBody emitSwCase) |
| 1215 | { |
| 1216 | assert(nonConstImmReg != REG_NA); |
| 1217 | // AVX2 Gather intrinsics use managed non-const fallback since they have discrete imm8 value range |
| 1218 | // that does work with the current compiler generated jump-table fallback |
| 1219 | assert(!HWIntrinsicInfo::isAVX2GatherIntrinsic(intrinsic)); |
| 1220 | emitter* emit = getEmitter(); |
| 1221 | |
| 1222 | const unsigned maxByte = (unsigned)HWIntrinsicInfo::lookupImmUpperBound(intrinsic) + 1; |
| 1223 | assert(maxByte <= 256); |
| 1224 | BasicBlock* jmpTable[256]; |
| 1225 | |
| 1226 | unsigned jmpTableBase = emit->emitBBTableDataGenBeg(maxByte, true); |
| 1227 | unsigned jmpTableOffs = 0; |
| 1228 | |
| 1229 | // Emit the jump table |
| 1230 | for (unsigned i = 0; i < maxByte; i++) |
| 1231 | { |
| 1232 | jmpTable[i] = genCreateTempLabel(); |
| 1233 | emit->emitDataGenData(i, jmpTable[i]); |
| 1234 | } |
| 1235 | |
| 1236 | emit->emitDataGenEnd(); |
| 1237 | |
| 1238 | // Compute and jump to the appropriate offset in the switch table |
| 1239 | emit->emitIns_R_C(INS_lea, emitTypeSize(TYP_I_IMPL), offsReg, compiler->eeFindJitDataOffs(jmpTableBase), 0); |
| 1240 | |
| 1241 | emit->emitIns_R_ARX(INS_mov, EA_4BYTE, offsReg, offsReg, nonConstImmReg, 4, 0); |
| 1242 | emit->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, compiler->fgFirstBB, baseReg); |
| 1243 | emit->emitIns_R_R(INS_add, EA_PTRSIZE, offsReg, baseReg); |
| 1244 | emit->emitIns_R(INS_i_jmp, emitTypeSize(TYP_I_IMPL), offsReg); |
| 1245 | |
| 1246 | // Emit the switch table entries |
| 1247 | |
| 1248 | BasicBlock* switchTableBeg = genCreateTempLabel(); |
| 1249 | BasicBlock* switchTableEnd = genCreateTempLabel(); |
| 1250 | |
| 1251 | genDefineTempLabel(switchTableBeg); |
| 1252 | |
| 1253 | for (unsigned i = 0; i < maxByte; i++) |
| 1254 | { |
| 1255 | genDefineTempLabel(jmpTable[i]); |
| 1256 | emitSwCase((int8_t)i); |
| 1257 | emit->emitIns_J(INS_jmp, switchTableEnd); |
| 1258 | } |
| 1259 | |
| 1260 | genDefineTempLabel(switchTableEnd); |
| 1261 | } |
| 1262 | |
| 1263 | //------------------------------------------------------------------------ |
| 1264 | // genBaseIntrinsic: Generates the code for a base hardware intrinsic node |
| 1265 | // |
| 1266 | // Arguments: |
| 1267 | // node - The hardware intrinsic node |
| 1268 | // |
| 1269 | // Note: |
| 1270 | // We currently assume that all base intrinsics only have a single operand. |
| 1271 | // |
| 1272 | void CodeGen::genBaseIntrinsic(GenTreeHWIntrinsic* node) |
| 1273 | { |
| 1274 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 1275 | regNumber targetReg = node->gtRegNum; |
| 1276 | var_types targetType = node->TypeGet(); |
| 1277 | var_types baseType = node->gtSIMDBaseType; |
| 1278 | |
| 1279 | assert(compiler->compSupports(InstructionSet_SSE)); |
| 1280 | assert((baseType >= TYP_BYTE) && (baseType <= TYP_DOUBLE)); |
| 1281 | |
| 1282 | GenTree* op1 = node->gtGetOp1(); |
| 1283 | regNumber op1Reg = REG_NA; |
| 1284 | |
| 1285 | if (op1 != nullptr) |
| 1286 | { |
| 1287 | assert(!op1->OperIsList()); |
| 1288 | op1Reg = op1->gtRegNum; |
| 1289 | genConsumeOperands(node); |
| 1290 | } |
| 1291 | |
| 1292 | assert(node->gtGetOp2() == nullptr); |
| 1293 | |
| 1294 | emitter* emit = getEmitter(); |
| 1295 | emitAttr attr = EA_ATTR(node->gtSIMDSize); |
| 1296 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1297 | |
| 1298 | switch (intrinsicId) |
| 1299 | { |
| 1300 | case NI_Base_Vector128_CreateScalarUnsafe: |
| 1301 | case NI_Base_Vector256_CreateScalarUnsafe: |
| 1302 | { |
| 1303 | if (varTypeIsIntegral(baseType)) |
| 1304 | { |
| 1305 | genHWIntrinsic_R_RM(node, ins, emitActualTypeSize(baseType)); |
| 1306 | } |
| 1307 | else |
| 1308 | { |
| 1309 | assert(varTypeIsFloating(baseType)); |
| 1310 | |
| 1311 | attr = emitTypeSize(baseType); |
| 1312 | |
| 1313 | if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 1314 | { |
| 1315 | genHWIntrinsic_R_RM(node, ins, attr); |
| 1316 | } |
| 1317 | else if (targetReg != op1Reg) |
| 1318 | { |
| 1319 | // Just use movaps for reg->reg moves as it has zero-latency on modern CPUs |
| 1320 | emit->emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 1321 | } |
| 1322 | } |
| 1323 | break; |
| 1324 | } |
| 1325 | |
| 1326 | case NI_Base_Vector128_ToScalar: |
| 1327 | case NI_Base_Vector256_ToScalar: |
| 1328 | { |
| 1329 | assert(varTypeIsFloating(baseType)); |
| 1330 | |
| 1331 | attr = emitTypeSize(TYP_SIMD16); |
| 1332 | |
| 1333 | if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 1334 | { |
| 1335 | genHWIntrinsic_R_RM(node, ins, attr); |
| 1336 | } |
| 1337 | else if (targetReg != op1Reg) |
| 1338 | { |
| 1339 | // Just use movaps for reg->reg moves as it has zero-latency on modern CPUs |
| 1340 | emit->emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 1341 | } |
| 1342 | break; |
| 1343 | } |
| 1344 | |
| 1345 | case NI_Base_Vector128_ToVector256: |
| 1346 | { |
| 1347 | // ToVector256 has zero-extend semantics in order to ensure it is deterministic |
| 1348 | // We always emit a move to the target register, even when op1Reg == targetReg, |
| 1349 | // in order to ensure that Bits MAXVL-1:128 are zeroed. |
| 1350 | |
| 1351 | attr = emitTypeSize(TYP_SIMD16); |
| 1352 | |
| 1353 | if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 1354 | { |
| 1355 | genHWIntrinsic_R_RM(node, ins, attr); |
| 1356 | } |
| 1357 | else |
| 1358 | { |
| 1359 | // Just use movaps for reg->reg moves as it has zero-latency on modern CPUs |
| 1360 | emit->emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 1361 | } |
| 1362 | break; |
| 1363 | } |
| 1364 | |
| 1365 | case NI_Base_Vector128_ToVector256Unsafe: |
| 1366 | case NI_Base_Vector256_GetLower: |
| 1367 | { |
| 1368 | if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 1369 | { |
| 1370 | genHWIntrinsic_R_RM(node, ins, attr); |
| 1371 | } |
| 1372 | else if (targetReg != op1Reg) |
| 1373 | { |
| 1374 | // Just use movaps for reg->reg moves as it has zero-latency on modern CPUs |
| 1375 | emit->emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 1376 | } |
| 1377 | break; |
| 1378 | } |
| 1379 | |
| 1380 | case NI_Base_Vector128_Zero: |
| 1381 | case NI_Base_Vector256_Zero: |
| 1382 | { |
| 1383 | assert(op1 == nullptr); |
| 1384 | emit->emitIns_SIMD_R_R_R(ins, attr, targetReg, targetReg, targetReg); |
| 1385 | break; |
| 1386 | } |
| 1387 | |
| 1388 | default: |
| 1389 | { |
| 1390 | unreached(); |
| 1391 | break; |
| 1392 | } |
| 1393 | } |
| 1394 | |
| 1395 | genProduceReg(node); |
| 1396 | } |
| 1397 | |
| 1398 | //------------------------------------------------------------------------ |
| 1399 | // genSSEIntrinsic: Generates the code for an SSE hardware intrinsic node |
| 1400 | // |
| 1401 | // Arguments: |
| 1402 | // node - The hardware intrinsic node |
| 1403 | // |
| 1404 | void CodeGen::genSSEIntrinsic(GenTreeHWIntrinsic* node) |
| 1405 | { |
| 1406 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 1407 | GenTree* op1 = node->gtGetOp1(); |
| 1408 | GenTree* op2 = node->gtGetOp2(); |
| 1409 | GenTree* op3 = nullptr; |
| 1410 | GenTree* op4 = nullptr; |
| 1411 | regNumber targetReg = node->gtRegNum; |
| 1412 | var_types targetType = node->TypeGet(); |
| 1413 | var_types baseType = node->gtSIMDBaseType; |
| 1414 | |
| 1415 | regNumber op1Reg = REG_NA; |
| 1416 | regNumber op2Reg = REG_NA; |
| 1417 | regNumber op3Reg = REG_NA; |
| 1418 | regNumber op4Reg = REG_NA; |
| 1419 | emitter* emit = getEmitter(); |
| 1420 | |
| 1421 | if ((op1 != nullptr) && !op1->OperIsList()) |
| 1422 | { |
| 1423 | op1Reg = op1->gtRegNum; |
| 1424 | genConsumeOperands(node); |
| 1425 | } |
| 1426 | |
| 1427 | switch (intrinsicId) |
| 1428 | { |
| 1429 | case NI_SSE_CompareEqualOrderedScalar: |
| 1430 | case NI_SSE_CompareEqualUnorderedScalar: |
| 1431 | { |
| 1432 | assert(baseType == TYP_FLOAT); |
| 1433 | regNumber tmpReg = node->GetSingleTempReg(); |
| 1434 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1435 | |
| 1436 | // Ensure we aren't overwriting targetReg |
| 1437 | assert(tmpReg != targetReg); |
| 1438 | |
| 1439 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1440 | emit->emitIns_R(INS_setpo, EA_1BYTE, targetReg); |
| 1441 | emit->emitIns_R(INS_sete, EA_1BYTE, tmpReg); |
| 1442 | emit->emitIns_R_R(INS_and, EA_1BYTE, tmpReg, targetReg); |
| 1443 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, tmpReg); |
| 1444 | break; |
| 1445 | } |
| 1446 | |
| 1447 | case NI_SSE_CompareGreaterThanOrderedScalar: |
| 1448 | case NI_SSE_CompareGreaterThanUnorderedScalar: |
| 1449 | { |
| 1450 | assert(baseType == TYP_FLOAT); |
| 1451 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1452 | |
| 1453 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1454 | emit->emitIns_R(INS_seta, EA_1BYTE, targetReg); |
| 1455 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1456 | break; |
| 1457 | } |
| 1458 | |
| 1459 | case NI_SSE_CompareGreaterThanOrEqualOrderedScalar: |
| 1460 | case NI_SSE_CompareGreaterThanOrEqualUnorderedScalar: |
| 1461 | { |
| 1462 | assert(baseType == TYP_FLOAT); |
| 1463 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1464 | |
| 1465 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1466 | emit->emitIns_R(INS_setae, EA_1BYTE, targetReg); |
| 1467 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1468 | break; |
| 1469 | } |
| 1470 | |
| 1471 | case NI_SSE_CompareLessThanOrderedScalar: |
| 1472 | case NI_SSE_CompareLessThanUnorderedScalar: |
| 1473 | { |
| 1474 | assert(baseType == TYP_FLOAT); |
| 1475 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1476 | |
| 1477 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1478 | emit->emitIns_R(INS_seta, EA_1BYTE, targetReg); |
| 1479 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1480 | break; |
| 1481 | } |
| 1482 | |
| 1483 | case NI_SSE_CompareLessThanOrEqualOrderedScalar: |
| 1484 | case NI_SSE_CompareLessThanOrEqualUnorderedScalar: |
| 1485 | { |
| 1486 | assert(baseType == TYP_FLOAT); |
| 1487 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1488 | |
| 1489 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1490 | emit->emitIns_R(INS_setae, EA_1BYTE, targetReg); |
| 1491 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1492 | break; |
| 1493 | } |
| 1494 | |
| 1495 | case NI_SSE_CompareNotEqualOrderedScalar: |
| 1496 | case NI_SSE_CompareNotEqualUnorderedScalar: |
| 1497 | { |
| 1498 | assert(baseType == TYP_FLOAT); |
| 1499 | regNumber tmpReg = node->GetSingleTempReg(); |
| 1500 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1501 | |
| 1502 | // Ensure we aren't overwriting targetReg |
| 1503 | assert(tmpReg != targetReg); |
| 1504 | |
| 1505 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1506 | emit->emitIns_R(INS_setpe, EA_1BYTE, targetReg); |
| 1507 | emit->emitIns_R(INS_setne, EA_1BYTE, tmpReg); |
| 1508 | emit->emitIns_R_R(INS_or, EA_1BYTE, tmpReg, targetReg); |
| 1509 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, tmpReg); |
| 1510 | break; |
| 1511 | } |
| 1512 | |
| 1513 | case NI_SSE_X64_ConvertScalarToVector128Single: |
| 1514 | { |
| 1515 | assert(baseType == TYP_LONG); |
| 1516 | assert(op1 != nullptr); |
| 1517 | assert(op2 != nullptr); |
| 1518 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1519 | genHWIntrinsic_R_R_RM(node, ins, EA_8BYTE); |
| 1520 | break; |
| 1521 | } |
| 1522 | |
| 1523 | case NI_SSE_MoveMask: |
| 1524 | { |
| 1525 | assert(baseType == TYP_FLOAT); |
| 1526 | assert(op2 == nullptr); |
| 1527 | |
| 1528 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1529 | emit->emitIns_R_R(ins, emitTypeSize(TYP_INT), targetReg, op1Reg); |
| 1530 | break; |
| 1531 | } |
| 1532 | |
| 1533 | case NI_SSE_Prefetch0: |
| 1534 | case NI_SSE_Prefetch1: |
| 1535 | case NI_SSE_Prefetch2: |
| 1536 | case NI_SSE_PrefetchNonTemporal: |
| 1537 | { |
| 1538 | assert(baseType == TYP_UBYTE); |
| 1539 | assert(op2 == nullptr); |
| 1540 | |
| 1541 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType); |
| 1542 | emit->emitIns_AR(ins, emitTypeSize(baseType), op1Reg, 0); |
| 1543 | break; |
| 1544 | } |
| 1545 | |
| 1546 | case NI_SSE_StoreFence: |
| 1547 | { |
| 1548 | assert(baseType == TYP_VOID); |
| 1549 | assert(op1 == nullptr); |
| 1550 | assert(op2 == nullptr); |
| 1551 | emit->emitIns(INS_sfence); |
| 1552 | break; |
| 1553 | } |
| 1554 | |
| 1555 | default: |
| 1556 | unreached(); |
| 1557 | break; |
| 1558 | } |
| 1559 | |
| 1560 | genProduceReg(node); |
| 1561 | } |
| 1562 | |
| 1563 | //------------------------------------------------------------------------ |
| 1564 | // genSSE2Intrinsic: Generates the code for an SSE2 hardware intrinsic node |
| 1565 | // |
| 1566 | // Arguments: |
| 1567 | // node - The hardware intrinsic node |
| 1568 | // |
| 1569 | void CodeGen::genSSE2Intrinsic(GenTreeHWIntrinsic* node) |
| 1570 | { |
| 1571 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 1572 | GenTree* op1 = node->gtGetOp1(); |
| 1573 | GenTree* op2 = node->gtGetOp2(); |
| 1574 | regNumber targetReg = node->gtRegNum; |
| 1575 | var_types targetType = node->TypeGet(); |
| 1576 | var_types baseType = node->gtSIMDBaseType; |
| 1577 | regNumber op1Reg = REG_NA; |
| 1578 | regNumber op2Reg = REG_NA; |
| 1579 | emitter* emit = getEmitter(); |
| 1580 | |
| 1581 | if ((op1 != nullptr) && !op1->OperIsList()) |
| 1582 | { |
| 1583 | op1Reg = op1->gtRegNum; |
| 1584 | genConsumeOperands(node); |
| 1585 | } |
| 1586 | |
| 1587 | switch (intrinsicId) |
| 1588 | { |
| 1589 | // All integer overloads are handled by table codegen |
| 1590 | case NI_SSE2_CompareLessThan: |
| 1591 | { |
| 1592 | assert(op1 != nullptr); |
| 1593 | assert(op2 != nullptr); |
| 1594 | |
| 1595 | assert(baseType == TYP_DOUBLE); |
| 1596 | |
| 1597 | int ival = HWIntrinsicInfo::lookupIval(intrinsicId); |
| 1598 | assert((ival >= 0) && (ival <= 127)); |
| 1599 | |
| 1600 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1601 | op2Reg = op2->gtRegNum; |
| 1602 | emit->emitIns_SIMD_R_R_R_I(ins, emitTypeSize(TYP_SIMD16), targetReg, op1Reg, op2Reg, ival); |
| 1603 | |
| 1604 | break; |
| 1605 | } |
| 1606 | |
| 1607 | case NI_SSE2_CompareEqualOrderedScalar: |
| 1608 | case NI_SSE2_CompareEqualUnorderedScalar: |
| 1609 | { |
| 1610 | assert(baseType == TYP_DOUBLE); |
| 1611 | regNumber tmpReg = node->GetSingleTempReg(); |
| 1612 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1613 | |
| 1614 | // Ensure we aren't overwriting targetReg |
| 1615 | assert(tmpReg != targetReg); |
| 1616 | |
| 1617 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1618 | emit->emitIns_R(INS_setpo, EA_1BYTE, targetReg); |
| 1619 | emit->emitIns_R(INS_sete, EA_1BYTE, tmpReg); |
| 1620 | emit->emitIns_R_R(INS_and, EA_1BYTE, tmpReg, targetReg); |
| 1621 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, tmpReg); |
| 1622 | break; |
| 1623 | } |
| 1624 | |
| 1625 | case NI_SSE2_CompareGreaterThanOrderedScalar: |
| 1626 | case NI_SSE2_CompareGreaterThanUnorderedScalar: |
| 1627 | { |
| 1628 | assert(baseType == TYP_DOUBLE); |
| 1629 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1630 | |
| 1631 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1632 | emit->emitIns_R(INS_seta, EA_1BYTE, targetReg); |
| 1633 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1634 | break; |
| 1635 | } |
| 1636 | |
| 1637 | case NI_SSE2_CompareGreaterThanOrEqualOrderedScalar: |
| 1638 | case NI_SSE2_CompareGreaterThanOrEqualUnorderedScalar: |
| 1639 | { |
| 1640 | assert(baseType == TYP_DOUBLE); |
| 1641 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1642 | |
| 1643 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1644 | emit->emitIns_R(INS_setae, EA_1BYTE, targetReg); |
| 1645 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1646 | break; |
| 1647 | } |
| 1648 | |
| 1649 | case NI_SSE2_CompareLessThanOrderedScalar: |
| 1650 | case NI_SSE2_CompareLessThanUnorderedScalar: |
| 1651 | { |
| 1652 | assert(baseType == TYP_DOUBLE); |
| 1653 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1654 | |
| 1655 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1656 | emit->emitIns_R(INS_seta, EA_1BYTE, targetReg); |
| 1657 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1658 | break; |
| 1659 | } |
| 1660 | |
| 1661 | case NI_SSE2_CompareLessThanOrEqualOrderedScalar: |
| 1662 | case NI_SSE2_CompareLessThanOrEqualUnorderedScalar: |
| 1663 | { |
| 1664 | assert(baseType == TYP_DOUBLE); |
| 1665 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1666 | |
| 1667 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1668 | emit->emitIns_R(INS_setae, EA_1BYTE, targetReg); |
| 1669 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1670 | break; |
| 1671 | } |
| 1672 | |
| 1673 | case NI_SSE2_CompareNotEqualOrderedScalar: |
| 1674 | case NI_SSE2_CompareNotEqualUnorderedScalar: |
| 1675 | { |
| 1676 | assert(baseType == TYP_DOUBLE); |
| 1677 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1678 | regNumber tmpReg = node->GetSingleTempReg(); |
| 1679 | |
| 1680 | // Ensure we aren't overwriting targetReg |
| 1681 | assert(tmpReg != targetReg); |
| 1682 | |
| 1683 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(TYP_SIMD16)); |
| 1684 | emit->emitIns_R(INS_setpe, EA_1BYTE, targetReg); |
| 1685 | emit->emitIns_R(INS_setne, EA_1BYTE, tmpReg); |
| 1686 | emit->emitIns_R_R(INS_or, EA_1BYTE, tmpReg, targetReg); |
| 1687 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, tmpReg); |
| 1688 | break; |
| 1689 | } |
| 1690 | |
| 1691 | case NI_SSE2_X64_ConvertScalarToVector128Double: |
| 1692 | { |
| 1693 | assert(baseType == TYP_LONG); |
| 1694 | assert(op1 != nullptr); |
| 1695 | assert(op2 != nullptr); |
| 1696 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1697 | genHWIntrinsic_R_R_RM(node, ins, EA_8BYTE); |
| 1698 | break; |
| 1699 | } |
| 1700 | |
| 1701 | case NI_SSE2_X64_ConvertScalarToVector128Int64: |
| 1702 | case NI_SSE2_X64_ConvertScalarToVector128UInt64: |
| 1703 | { |
| 1704 | assert(baseType == TYP_LONG || baseType == TYP_ULONG); |
| 1705 | assert(op1 != nullptr); |
| 1706 | assert(op2 == nullptr); |
| 1707 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1708 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(baseType)); |
| 1709 | break; |
| 1710 | } |
| 1711 | |
| 1712 | case NI_SSE2_ConvertToInt32: |
| 1713 | case NI_SSE2_ConvertToInt32WithTruncation: |
| 1714 | case NI_SSE2_ConvertToUInt32: |
| 1715 | case NI_SSE2_X64_ConvertToUInt64: |
| 1716 | case NI_SSE2_X64_ConvertToInt64: |
| 1717 | { |
| 1718 | assert(op2 == nullptr); |
| 1719 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1720 | |
| 1721 | if (varTypeIsIntegral(baseType)) |
| 1722 | { |
| 1723 | assert(baseType == TYP_INT || baseType == TYP_UINT || baseType == TYP_LONG || baseType == TYP_ULONG); |
| 1724 | emit->emitIns_R_R(ins, emitActualTypeSize(baseType), op1Reg, targetReg); |
| 1725 | } |
| 1726 | else |
| 1727 | { |
| 1728 | assert(baseType == TYP_DOUBLE || baseType == TYP_FLOAT); |
| 1729 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(targetType)); |
| 1730 | } |
| 1731 | break; |
| 1732 | } |
| 1733 | |
| 1734 | case NI_SSE2_LoadFence: |
| 1735 | { |
| 1736 | assert(baseType == TYP_VOID); |
| 1737 | assert(op1 == nullptr); |
| 1738 | assert(op2 == nullptr); |
| 1739 | emit->emitIns(INS_lfence); |
| 1740 | break; |
| 1741 | } |
| 1742 | |
| 1743 | case NI_SSE2_MemoryFence: |
| 1744 | { |
| 1745 | assert(baseType == TYP_VOID); |
| 1746 | assert(op1 == nullptr); |
| 1747 | assert(op2 == nullptr); |
| 1748 | emit->emitIns(INS_mfence); |
| 1749 | break; |
| 1750 | } |
| 1751 | |
| 1752 | case NI_SSE2_MoveMask: |
| 1753 | { |
| 1754 | assert(op2 == nullptr); |
| 1755 | assert(baseType == TYP_BYTE || baseType == TYP_UBYTE || baseType == TYP_DOUBLE); |
| 1756 | |
| 1757 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1758 | emit->emitIns_R_R(ins, emitTypeSize(TYP_INT), targetReg, op1Reg); |
| 1759 | break; |
| 1760 | } |
| 1761 | |
| 1762 | case NI_SSE2_StoreNonTemporal: |
| 1763 | case NI_SSE2_X64_StoreNonTemporal: |
| 1764 | { |
| 1765 | assert(baseType == TYP_INT || baseType == TYP_UINT || baseType == TYP_LONG || baseType == TYP_ULONG); |
| 1766 | assert(op1 != nullptr); |
| 1767 | assert(op2 != nullptr); |
| 1768 | |
| 1769 | op2Reg = op2->gtRegNum; |
| 1770 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1771 | emit->emitIns_AR_R(ins, emitTypeSize(baseType), op2Reg, op1Reg, 0); |
| 1772 | break; |
| 1773 | } |
| 1774 | |
| 1775 | default: |
| 1776 | unreached(); |
| 1777 | break; |
| 1778 | } |
| 1779 | |
| 1780 | genProduceReg(node); |
| 1781 | } |
| 1782 | |
| 1783 | //------------------------------------------------------------------------ |
| 1784 | // genSSE41Intrinsic: Generates the code for an SSE4.1 hardware intrinsic node |
| 1785 | // |
| 1786 | // Arguments: |
| 1787 | // node - The hardware intrinsic node |
| 1788 | // |
| 1789 | void CodeGen::genSSE41Intrinsic(GenTreeHWIntrinsic* node) |
| 1790 | { |
| 1791 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 1792 | GenTree* op1 = node->gtGetOp1(); |
| 1793 | GenTree* op2 = node->gtGetOp2(); |
| 1794 | GenTree* op3 = nullptr; |
| 1795 | GenTree* op4 = nullptr; |
| 1796 | regNumber targetReg = node->gtRegNum; |
| 1797 | var_types targetType = node->TypeGet(); |
| 1798 | var_types baseType = node->gtSIMDBaseType; |
| 1799 | |
| 1800 | regNumber op1Reg = REG_NA; |
| 1801 | regNumber op2Reg = REG_NA; |
| 1802 | regNumber op3Reg = REG_NA; |
| 1803 | regNumber op4Reg = REG_NA; |
| 1804 | emitter* emit = getEmitter(); |
| 1805 | |
| 1806 | if ((op1 != nullptr) && !op1->OperIsList()) |
| 1807 | { |
| 1808 | op1Reg = op1->gtRegNum; |
| 1809 | genConsumeOperands(node); |
| 1810 | } |
| 1811 | |
| 1812 | switch (intrinsicId) |
| 1813 | { |
| 1814 | case NI_SSE41_TestAllOnes: |
| 1815 | { |
| 1816 | regNumber tmpReg = node->GetSingleTempReg(); |
| 1817 | assert(HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType) == INS_ptest); |
| 1818 | emit->emitIns_SIMD_R_R_R(INS_pcmpeqd, emitTypeSize(TYP_SIMD16), tmpReg, tmpReg, tmpReg); |
| 1819 | emit->emitIns_R_R(INS_ptest, emitTypeSize(TYP_SIMD16), op1Reg, tmpReg); |
| 1820 | emit->emitIns_R(INS_setb, EA_1BYTE, targetReg); |
| 1821 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1822 | break; |
| 1823 | } |
| 1824 | |
| 1825 | case NI_SSE41_TestAllZeros: |
| 1826 | case NI_SSE41_TestZ: |
| 1827 | { |
| 1828 | assert(HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType) == INS_ptest); |
| 1829 | genHWIntrinsic_R_RM(node, INS_ptest, emitTypeSize(TYP_SIMD16)); |
| 1830 | emit->emitIns_R(INS_sete, EA_1BYTE, targetReg); |
| 1831 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1832 | break; |
| 1833 | } |
| 1834 | |
| 1835 | case NI_SSE41_TestC: |
| 1836 | { |
| 1837 | assert(HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType) == INS_ptest); |
| 1838 | genHWIntrinsic_R_RM(node, INS_ptest, emitTypeSize(TYP_SIMD16)); |
| 1839 | emit->emitIns_R(INS_setb, EA_1BYTE, targetReg); |
| 1840 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1841 | break; |
| 1842 | } |
| 1843 | |
| 1844 | case NI_SSE41_TestMixOnesZeros: |
| 1845 | case NI_SSE41_TestNotZAndNotC: |
| 1846 | { |
| 1847 | assert(HWIntrinsicInfo::lookupIns(intrinsicId, node->gtSIMDBaseType) == INS_ptest); |
| 1848 | genHWIntrinsic_R_RM(node, INS_ptest, emitTypeSize(TYP_SIMD16)); |
| 1849 | emit->emitIns_R(INS_seta, EA_1BYTE, targetReg); |
| 1850 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 1851 | break; |
| 1852 | } |
| 1853 | |
| 1854 | case NI_SSE41_Extract: |
| 1855 | case NI_SSE41_X64_Extract: |
| 1856 | { |
| 1857 | regNumber tmpTargetReg = REG_NA; |
| 1858 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1859 | if (baseType == TYP_FLOAT) |
| 1860 | { |
| 1861 | tmpTargetReg = node->ExtractTempReg(); |
| 1862 | } |
| 1863 | |
| 1864 | auto emitSwCase = [&](int8_t i) { |
| 1865 | if (baseType == TYP_FLOAT) |
| 1866 | { |
| 1867 | // extract instructions return to GP-registers, so it needs int size as the emitsize |
| 1868 | emit->emitIns_SIMD_R_R_I(ins, emitTypeSize(TYP_INT), tmpTargetReg, op1Reg, i); |
| 1869 | emit->emitIns_R_R(INS_mov_i2xmm, EA_4BYTE, targetReg, tmpTargetReg); |
| 1870 | } |
| 1871 | else |
| 1872 | { |
| 1873 | emit->emitIns_SIMD_R_R_I(ins, emitTypeSize(TYP_INT), targetReg, op1Reg, i); |
| 1874 | } |
| 1875 | }; |
| 1876 | |
| 1877 | if (op2->IsCnsIntOrI()) |
| 1878 | { |
| 1879 | ssize_t ival = op2->AsIntCon()->IconValue(); |
| 1880 | assert((ival >= 0) && (ival <= 255)); |
| 1881 | emitSwCase((int8_t)ival); |
| 1882 | } |
| 1883 | else |
| 1884 | { |
| 1885 | // We emit a fallback case for the scenario when the imm-op is not a constant. This should |
| 1886 | // normally happen when the intrinsic is called indirectly, such as via Reflection. However, it |
| 1887 | // can also occur if the consumer calls it directly and just doesn't pass a constant value. |
| 1888 | regNumber baseReg = node->ExtractTempReg(); |
| 1889 | regNumber offsReg = node->GetSingleTempReg(); |
| 1890 | genHWIntrinsicJumpTableFallback(intrinsicId, op2->gtRegNum, baseReg, offsReg, emitSwCase); |
| 1891 | } |
| 1892 | break; |
| 1893 | } |
| 1894 | |
| 1895 | default: |
| 1896 | unreached(); |
| 1897 | break; |
| 1898 | } |
| 1899 | |
| 1900 | genProduceReg(node); |
| 1901 | } |
| 1902 | |
| 1903 | //------------------------------------------------------------------------ |
| 1904 | // genSSE42Intrinsic: Generates the code for an SSE4.2 hardware intrinsic node |
| 1905 | // |
| 1906 | // Arguments: |
| 1907 | // node - The hardware intrinsic node |
| 1908 | // |
| 1909 | void CodeGen::genSSE42Intrinsic(GenTreeHWIntrinsic* node) |
| 1910 | { |
| 1911 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 1912 | regNumber targetReg = node->gtRegNum; |
| 1913 | GenTree* op1 = node->gtGetOp1(); |
| 1914 | GenTree* op2 = node->gtGetOp2(); |
| 1915 | var_types baseType = node->gtSIMDBaseType; |
| 1916 | var_types targetType = node->TypeGet(); |
| 1917 | emitter* emit = getEmitter(); |
| 1918 | |
| 1919 | regNumber op1Reg = op1->gtRegNum; |
| 1920 | genConsumeOperands(node); |
| 1921 | |
| 1922 | assert(targetReg != REG_NA); |
| 1923 | assert(op1Reg != REG_NA); |
| 1924 | assert(op2 != nullptr); |
| 1925 | assert(!node->OperIsCommutative()); |
| 1926 | |
| 1927 | switch (intrinsicId) |
| 1928 | { |
| 1929 | case NI_SSE42_Crc32: |
| 1930 | case NI_SSE42_X64_Crc32: |
| 1931 | { |
| 1932 | if (op1Reg != targetReg) |
| 1933 | { |
| 1934 | assert(op2->gtRegNum != targetReg); |
| 1935 | emit->emitIns_R_R(INS_mov, emitTypeSize(targetType), targetReg, op1Reg); |
| 1936 | } |
| 1937 | |
| 1938 | // This makes the genHWIntrinsic_R_RM code much simpler, as we don't need an |
| 1939 | // overload that explicitly takes the operands. |
| 1940 | node->gtOp1 = op2; |
| 1941 | node->gtOp2 = nullptr; |
| 1942 | |
| 1943 | if ((baseType == TYP_UBYTE) || (baseType == TYP_USHORT)) // baseType is the type of the second argument |
| 1944 | { |
| 1945 | assert(targetType == TYP_INT); |
| 1946 | genHWIntrinsic_R_RM(node, INS_crc32, emitTypeSize(baseType)); |
| 1947 | } |
| 1948 | else |
| 1949 | { |
| 1950 | assert(op1->TypeGet() == op2->TypeGet()); |
| 1951 | assert((targetType == TYP_INT) || (targetType == TYP_LONG)); |
| 1952 | genHWIntrinsic_R_RM(node, INS_crc32, emitTypeSize(targetType)); |
| 1953 | } |
| 1954 | |
| 1955 | break; |
| 1956 | } |
| 1957 | |
| 1958 | default: |
| 1959 | { |
| 1960 | unreached(); |
| 1961 | break; |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | genProduceReg(node); |
| 1966 | } |
| 1967 | |
| 1968 | //------------------------------------------------------------------------ |
| 1969 | // genAvxOrAvx2Intrinsic: Generates the code for an AVX/AVX2 hardware intrinsic node |
| 1970 | // |
| 1971 | // Arguments: |
| 1972 | // node - The hardware intrinsic node |
| 1973 | // |
| 1974 | void CodeGen::genAvxOrAvx2Intrinsic(GenTreeHWIntrinsic* node) |
| 1975 | { |
| 1976 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 1977 | var_types baseType = node->gtSIMDBaseType; |
| 1978 | emitAttr attr = EA_ATTR(node->gtSIMDSize); |
| 1979 | var_types targetType = node->TypeGet(); |
| 1980 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 1981 | int numArgs = HWIntrinsicInfo::lookupNumArgs(node); |
| 1982 | GenTree* op1 = node->gtGetOp1(); |
| 1983 | GenTree* op2 = node->gtGetOp2(); |
| 1984 | regNumber op1Reg = REG_NA; |
| 1985 | regNumber op2Reg = REG_NA; |
| 1986 | regNumber targetReg = node->gtRegNum; |
| 1987 | emitter* emit = getEmitter(); |
| 1988 | |
| 1989 | if ((op1 != nullptr) && !op1->OperIsList()) |
| 1990 | { |
| 1991 | op1Reg = op1->gtRegNum; |
| 1992 | genConsumeOperands(node); |
| 1993 | } |
| 1994 | |
| 1995 | switch (intrinsicId) |
| 1996 | { |
| 1997 | case NI_AVX2_ConvertToInt32: |
| 1998 | case NI_AVX2_ConvertToUInt32: |
| 1999 | { |
| 2000 | assert(op2 == nullptr); |
| 2001 | assert((baseType == TYP_INT) || (baseType == TYP_UINT)); |
| 2002 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 2003 | emit->emitIns_R_R(ins, emitActualTypeSize(baseType), op1Reg, targetReg); |
| 2004 | break; |
| 2005 | } |
| 2006 | |
| 2007 | case NI_AVX2_GatherVector128: |
| 2008 | case NI_AVX2_GatherVector256: |
| 2009 | case NI_AVX2_GatherMaskVector128: |
| 2010 | case NI_AVX2_GatherMaskVector256: |
| 2011 | { |
| 2012 | GenTreeArgList* list = op1->AsArgList(); |
| 2013 | op1 = list->Current(); |
| 2014 | op1Reg = op1->gtRegNum; |
| 2015 | genConsumeRegs(op1); |
| 2016 | |
| 2017 | list = list->Rest(); |
| 2018 | op2 = list->Current(); |
| 2019 | op2Reg = op2->gtRegNum; |
| 2020 | genConsumeRegs(op2); |
| 2021 | |
| 2022 | list = list->Rest(); |
| 2023 | GenTree* op3 = list->Current(); |
| 2024 | genConsumeRegs(op3); |
| 2025 | |
| 2026 | list = list->Rest(); |
| 2027 | GenTree* op4 = nullptr; |
| 2028 | GenTree* lastOp = nullptr; |
| 2029 | GenTree* indexOp = nullptr; |
| 2030 | |
| 2031 | regNumber op3Reg = REG_NA; |
| 2032 | regNumber op4Reg = REG_NA; |
| 2033 | regNumber addrBaseReg = REG_NA; |
| 2034 | regNumber addrIndexReg = REG_NA; |
| 2035 | regNumber maskReg = node->ExtractTempReg(RBM_ALLFLOAT); |
| 2036 | |
| 2037 | if (numArgs == 5) |
| 2038 | { |
| 2039 | assert(intrinsicId == NI_AVX2_GatherMaskVector128 || intrinsicId == NI_AVX2_GatherMaskVector256); |
| 2040 | op4 = list->Current(); |
| 2041 | list = list->Rest(); |
| 2042 | lastOp = list->Current(); |
| 2043 | op3Reg = op3->gtRegNum; |
| 2044 | op4Reg = op4->gtRegNum; |
| 2045 | genConsumeRegs(op4); |
| 2046 | addrBaseReg = op2Reg; |
| 2047 | addrIndexReg = op3Reg; |
| 2048 | indexOp = op3; |
| 2049 | |
| 2050 | // copy op4Reg into the tmp mask register, |
| 2051 | // the mask register will be cleared by gather instructions |
| 2052 | emit->emitIns_R_R(INS_movaps, attr, maskReg, op4Reg); |
| 2053 | |
| 2054 | if (targetReg != op1Reg) |
| 2055 | { |
| 2056 | // copy source vector to the target register for masking merge |
| 2057 | emit->emitIns_R_R(INS_movaps, attr, targetReg, op1Reg); |
| 2058 | } |
| 2059 | } |
| 2060 | else |
| 2061 | { |
| 2062 | assert(intrinsicId == NI_AVX2_GatherVector128 || intrinsicId == NI_AVX2_GatherVector256); |
| 2063 | addrBaseReg = op1Reg; |
| 2064 | addrIndexReg = op2Reg; |
| 2065 | indexOp = op2; |
| 2066 | lastOp = op3; |
| 2067 | |
| 2068 | // generate all-one mask vector |
| 2069 | emit->emitIns_SIMD_R_R_R(INS_pcmpeqd, attr, maskReg, maskReg, maskReg); |
| 2070 | } |
| 2071 | |
| 2072 | bool isVector128GatherWithVector256Index = (targetType == TYP_SIMD16) && (indexOp->TypeGet() == TYP_SIMD32); |
| 2073 | |
| 2074 | // hwintrinsiclistxarch.h uses Dword index instructions in default |
| 2075 | if (varTypeIsLong(node->gtIndexBaseType)) |
| 2076 | { |
| 2077 | switch (ins) |
| 2078 | { |
| 2079 | case INS_vpgatherdd: |
| 2080 | ins = INS_vpgatherqd; |
| 2081 | if (isVector128GatherWithVector256Index) |
| 2082 | { |
| 2083 | // YMM index in address mode |
| 2084 | attr = emitTypeSize(TYP_SIMD32); |
| 2085 | } |
| 2086 | break; |
| 2087 | case INS_vpgatherdq: |
| 2088 | ins = INS_vpgatherqq; |
| 2089 | break; |
| 2090 | case INS_vgatherdps: |
| 2091 | ins = INS_vgatherqps; |
| 2092 | if (isVector128GatherWithVector256Index) |
| 2093 | { |
| 2094 | // YMM index in address mode |
| 2095 | attr = emitTypeSize(TYP_SIMD32); |
| 2096 | } |
| 2097 | break; |
| 2098 | case INS_vgatherdpd: |
| 2099 | ins = INS_vgatherqpd; |
| 2100 | break; |
| 2101 | default: |
| 2102 | unreached(); |
| 2103 | } |
| 2104 | } |
| 2105 | |
| 2106 | assert(lastOp->IsCnsIntOrI()); |
| 2107 | ssize_t ival = lastOp->AsIntCon()->IconValue(); |
| 2108 | assert((ival >= 0) && (ival <= 255)); |
| 2109 | |
| 2110 | assert(targetReg != maskReg); |
| 2111 | assert(targetReg != addrIndexReg); |
| 2112 | assert(maskReg != addrIndexReg); |
| 2113 | emit->emitIns_R_AR_R(ins, attr, targetReg, maskReg, addrBaseReg, addrIndexReg, (int8_t)ival, 0); |
| 2114 | |
| 2115 | break; |
| 2116 | } |
| 2117 | |
| 2118 | case NI_AVX_TestC: |
| 2119 | { |
| 2120 | genHWIntrinsic_R_RM(node, ins, attr); |
| 2121 | emit->emitIns_R(INS_setb, EA_1BYTE, targetReg); |
| 2122 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 2123 | break; |
| 2124 | } |
| 2125 | |
| 2126 | case NI_AVX_TestNotZAndNotC: |
| 2127 | { |
| 2128 | genHWIntrinsic_R_RM(node, ins, attr); |
| 2129 | emit->emitIns_R(INS_seta, EA_1BYTE, targetReg); |
| 2130 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 2131 | break; |
| 2132 | } |
| 2133 | |
| 2134 | case NI_AVX_TestZ: |
| 2135 | { |
| 2136 | genHWIntrinsic_R_RM(node, ins, attr); |
| 2137 | emit->emitIns_R(INS_sete, EA_1BYTE, targetReg); |
| 2138 | emit->emitIns_R_R(INS_movzx, EA_1BYTE, targetReg, targetReg); |
| 2139 | break; |
| 2140 | } |
| 2141 | |
| 2142 | case NI_AVX_ExtractVector128: |
| 2143 | case NI_AVX_InsertVector128: |
| 2144 | case NI_AVX2_ExtractVector128: |
| 2145 | case NI_AVX2_InsertVector128: |
| 2146 | { |
| 2147 | GenTree* lastOp = nullptr; |
| 2148 | if (numArgs == 2) |
| 2149 | { |
| 2150 | assert(intrinsicId == NI_AVX_ExtractVector128 || NI_AVX_ExtractVector128); |
| 2151 | op2Reg = op2->gtRegNum; |
| 2152 | lastOp = op2; |
| 2153 | } |
| 2154 | else |
| 2155 | { |
| 2156 | assert(numArgs == 3); |
| 2157 | assert(op1->OperIsList()); |
| 2158 | assert(op1->gtGetOp2()->OperIsList()); |
| 2159 | assert(op1->gtGetOp2()->gtGetOp2()->OperIsList()); |
| 2160 | |
| 2161 | GenTreeArgList* argList = op1->AsArgList(); |
| 2162 | op1 = argList->Current(); |
| 2163 | genConsumeRegs(op1); |
| 2164 | op1Reg = op1->gtRegNum; |
| 2165 | |
| 2166 | argList = argList->Rest(); |
| 2167 | op2 = argList->Current(); |
| 2168 | genConsumeRegs(op2); |
| 2169 | op2Reg = op2->gtRegNum; |
| 2170 | |
| 2171 | argList = argList->Rest(); |
| 2172 | lastOp = argList->Current(); |
| 2173 | genConsumeRegs(lastOp); |
| 2174 | } |
| 2175 | |
| 2176 | regNumber op3Reg = lastOp->gtRegNum; |
| 2177 | |
| 2178 | auto emitSwCase = [&](int8_t i) { |
| 2179 | if (numArgs == 3) |
| 2180 | { |
| 2181 | if (intrinsicId == NI_AVX_ExtractVector128 || intrinsicId == NI_AVX2_ExtractVector128) |
| 2182 | { |
| 2183 | emit->emitIns_AR_R_I(ins, attr, op1Reg, 0, op2Reg, i); |
| 2184 | } |
| 2185 | else if (op2->TypeGet() == TYP_I_IMPL) |
| 2186 | { |
| 2187 | emit->emitIns_SIMD_R_R_AR_I(ins, attr, targetReg, op1Reg, op2Reg, i); |
| 2188 | } |
| 2189 | else |
| 2190 | { |
| 2191 | assert(op2->TypeGet() == TYP_SIMD16); |
| 2192 | emit->emitIns_SIMD_R_R_R_I(ins, attr, targetReg, op1Reg, op2Reg, i); |
| 2193 | } |
| 2194 | } |
| 2195 | else |
| 2196 | { |
| 2197 | assert(numArgs == 2); |
| 2198 | assert(intrinsicId == NI_AVX_ExtractVector128 || intrinsicId == NI_AVX2_ExtractVector128); |
| 2199 | emit->emitIns_SIMD_R_R_I(ins, attr, targetReg, op1Reg, i); |
| 2200 | } |
| 2201 | }; |
| 2202 | |
| 2203 | if (lastOp->IsCnsIntOrI()) |
| 2204 | { |
| 2205 | ssize_t ival = lastOp->AsIntCon()->IconValue(); |
| 2206 | assert((ival >= 0) && (ival <= 255)); |
| 2207 | emitSwCase((int8_t)ival); |
| 2208 | } |
| 2209 | else |
| 2210 | { |
| 2211 | // We emit a fallback case for the scenario when the imm-op is not a constant. This should |
| 2212 | // normally happen when the intrinsic is called indirectly, such as via Reflection. However, it |
| 2213 | // can also occur if the consumer calls it directly and just doesn't pass a constant value. |
| 2214 | regNumber baseReg = node->ExtractTempReg(); |
| 2215 | regNumber offsReg = node->GetSingleTempReg(); |
| 2216 | genHWIntrinsicJumpTableFallback(intrinsicId, op3Reg, baseReg, offsReg, emitSwCase); |
| 2217 | } |
| 2218 | break; |
| 2219 | } |
| 2220 | |
| 2221 | default: |
| 2222 | unreached(); |
| 2223 | break; |
| 2224 | } |
| 2225 | |
| 2226 | genProduceReg(node); |
| 2227 | } |
| 2228 | |
| 2229 | //------------------------------------------------------------------------ |
| 2230 | // genAESIntrinsic: Generates the code for an AES hardware intrinsic node |
| 2231 | // |
| 2232 | // Arguments: |
| 2233 | // node - The hardware intrinsic node |
| 2234 | // |
| 2235 | void CodeGen::genAESIntrinsic(GenTreeHWIntrinsic* node) |
| 2236 | { |
| 2237 | NYI("Implement AES intrinsic code generation" ); |
| 2238 | } |
| 2239 | |
| 2240 | //------------------------------------------------------------------------ |
| 2241 | // genBMI1OrBMI2Intrinsic: Generates the code for a BMI1 and BMI2 hardware intrinsic node |
| 2242 | // |
| 2243 | // Arguments: |
| 2244 | // node - The hardware intrinsic node |
| 2245 | // |
| 2246 | void CodeGen::genBMI1OrBMI2Intrinsic(GenTreeHWIntrinsic* node) |
| 2247 | { |
| 2248 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 2249 | regNumber targetReg = node->gtRegNum; |
| 2250 | GenTree* op1 = node->gtGetOp1(); |
| 2251 | GenTree* op2 = node->gtGetOp2(); |
| 2252 | var_types targetType = node->TypeGet(); |
| 2253 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, targetType); |
| 2254 | emitter* emit = getEmitter(); |
| 2255 | |
| 2256 | assert(targetReg != REG_NA); |
| 2257 | assert(op1 != nullptr); |
| 2258 | |
| 2259 | if (!op1->OperIsList()) |
| 2260 | { |
| 2261 | genConsumeOperands(node); |
| 2262 | } |
| 2263 | |
| 2264 | switch (intrinsicId) |
| 2265 | { |
| 2266 | case NI_BMI1_AndNot: |
| 2267 | case NI_BMI1_X64_AndNot: |
| 2268 | case NI_BMI1_BitFieldExtract: |
| 2269 | case NI_BMI1_X64_BitFieldExtract: |
| 2270 | case NI_BMI2_ParallelBitDeposit: |
| 2271 | case NI_BMI2_ParallelBitExtract: |
| 2272 | case NI_BMI2_X64_ParallelBitDeposit: |
| 2273 | case NI_BMI2_X64_ParallelBitExtract: |
| 2274 | case NI_BMI2_ZeroHighBits: |
| 2275 | case NI_BMI2_X64_ZeroHighBits: |
| 2276 | { |
| 2277 | assert(op2 != nullptr); |
| 2278 | assert((targetType == TYP_INT) || (targetType == TYP_LONG)); |
| 2279 | genHWIntrinsic_R_R_RM(node, ins, emitTypeSize(node->TypeGet())); |
| 2280 | break; |
| 2281 | } |
| 2282 | |
| 2283 | case NI_BMI1_ExtractLowestSetBit: |
| 2284 | case NI_BMI1_GetMaskUpToLowestSetBit: |
| 2285 | case NI_BMI1_ResetLowestSetBit: |
| 2286 | case NI_BMI1_X64_ExtractLowestSetBit: |
| 2287 | case NI_BMI1_X64_GetMaskUpToLowestSetBit: |
| 2288 | case NI_BMI1_X64_ResetLowestSetBit: |
| 2289 | { |
| 2290 | assert(op2 == nullptr); |
| 2291 | assert((targetType == TYP_INT) || (targetType == TYP_LONG)); |
| 2292 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(node->TypeGet())); |
| 2293 | break; |
| 2294 | } |
| 2295 | |
| 2296 | case NI_BMI1_TrailingZeroCount: |
| 2297 | case NI_BMI1_X64_TrailingZeroCount: |
| 2298 | { |
| 2299 | assert(op2 == nullptr); |
| 2300 | assert((targetType == TYP_INT) || (targetType == TYP_LONG)); |
| 2301 | genXCNTIntrinsic(node, ins); |
| 2302 | break; |
| 2303 | } |
| 2304 | |
| 2305 | case NI_BMI2_MultiplyNoFlags: |
| 2306 | case NI_BMI2_X64_MultiplyNoFlags: |
| 2307 | { |
| 2308 | int numArgs = HWIntrinsicInfo::lookupNumArgs(node); |
| 2309 | assert(numArgs == 2 || numArgs == 3); |
| 2310 | |
| 2311 | regNumber op1Reg = REG_NA; |
| 2312 | regNumber op2Reg = REG_NA; |
| 2313 | regNumber op3Reg = REG_NA; |
| 2314 | regNumber lowReg = REG_NA; |
| 2315 | |
| 2316 | if (numArgs == 2) |
| 2317 | { |
| 2318 | op1Reg = op1->gtRegNum; |
| 2319 | op2Reg = op2->gtRegNum; |
| 2320 | lowReg = targetReg; |
| 2321 | } |
| 2322 | else |
| 2323 | { |
| 2324 | GenTreeArgList* argList = op1->AsArgList(); |
| 2325 | op1 = argList->Current(); |
| 2326 | genConsumeRegs(op1); |
| 2327 | op1Reg = op1->gtRegNum; |
| 2328 | argList = argList->Rest(); |
| 2329 | op2 = argList->Current(); |
| 2330 | genConsumeRegs(op2); |
| 2331 | op2Reg = op2->gtRegNum; |
| 2332 | argList = argList->Rest(); |
| 2333 | GenTree* op3 = argList->Current(); |
| 2334 | genConsumeRegs(op3); |
| 2335 | op3Reg = op3->gtRegNum; |
| 2336 | assert(op3Reg != op1Reg); |
| 2337 | assert(op3Reg != targetReg); |
| 2338 | assert(op3Reg != REG_EDX); |
| 2339 | lowReg = node->GetSingleTempReg(); |
| 2340 | assert(op3Reg != lowReg); |
| 2341 | assert(lowReg != targetReg); |
| 2342 | } |
| 2343 | |
| 2344 | emitAttr attr = emitTypeSize(targetType); |
| 2345 | // mov the first operand into implicit source operand EDX/RDX |
| 2346 | if (op1Reg != REG_EDX) |
| 2347 | { |
| 2348 | assert(op2Reg != REG_EDX); |
| 2349 | emit->emitIns_R_R(INS_mov, attr, REG_EDX, op1Reg); |
| 2350 | } |
| 2351 | |
| 2352 | // generate code for MULX |
| 2353 | genHWIntrinsic_R_R_RM(node, ins, attr, targetReg, lowReg, op2); |
| 2354 | |
| 2355 | // If requires the lower half result, store in the memory opinted by op3 |
| 2356 | if (numArgs == 3) |
| 2357 | { |
| 2358 | emit->emitIns_AR_R(INS_mov, attr, lowReg, op3Reg, 0); |
| 2359 | } |
| 2360 | |
| 2361 | break; |
| 2362 | } |
| 2363 | |
| 2364 | default: |
| 2365 | { |
| 2366 | unreached(); |
| 2367 | break; |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | genProduceReg(node); |
| 2372 | } |
| 2373 | |
| 2374 | //------------------------------------------------------------------------ |
| 2375 | // genFMAIntrinsic: Generates the code for an FMA hardware intrinsic node |
| 2376 | // |
| 2377 | // Arguments: |
| 2378 | // node - The hardware intrinsic node |
| 2379 | // |
| 2380 | void CodeGen::genFMAIntrinsic(GenTreeHWIntrinsic* node) |
| 2381 | { |
| 2382 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 2383 | var_types baseType = node->gtSIMDBaseType; |
| 2384 | emitAttr attr = EA_ATTR(node->gtSIMDSize); |
| 2385 | instruction ins = HWIntrinsicInfo::lookupIns(intrinsicId, baseType); |
| 2386 | GenTree* op1 = node->gtGetOp1(); |
| 2387 | regNumber targetReg = node->gtRegNum; |
| 2388 | |
| 2389 | assert(HWIntrinsicInfo::lookupNumArgs(node) == 3); |
| 2390 | assert(op1 != nullptr); |
| 2391 | assert(op1->OperIsList()); |
| 2392 | assert(op1->gtGetOp2()->OperIsList()); |
| 2393 | assert(op1->gtGetOp2()->gtGetOp2()->OperIsList()); |
| 2394 | |
| 2395 | GenTreeArgList* argList = op1->AsArgList(); |
| 2396 | op1 = argList->Current(); |
| 2397 | genConsumeRegs(op1); |
| 2398 | |
| 2399 | argList = argList->Rest(); |
| 2400 | GenTree* op2 = argList->Current(); |
| 2401 | genConsumeRegs(op2); |
| 2402 | |
| 2403 | argList = argList->Rest(); |
| 2404 | GenTree* op3 = argList->Current(); |
| 2405 | genConsumeRegs(op3); |
| 2406 | |
| 2407 | regNumber op1Reg; |
| 2408 | regNumber op2Reg; |
| 2409 | |
| 2410 | bool isCommutative = false; |
| 2411 | const bool copiesUpperBits = HWIntrinsicInfo::CopiesUpperBits(intrinsicId); |
| 2412 | |
| 2413 | // Intrinsics with CopyUpperBits semantics cannot have op1 be contained |
| 2414 | assert(!copiesUpperBits || !op1->isContained()); |
| 2415 | |
| 2416 | if (op3->isContained() || op3->isUsedFromSpillTemp()) |
| 2417 | { |
| 2418 | // 213 form: op1 = (op2 * op1) + [op3] |
| 2419 | |
| 2420 | op1Reg = op1->gtRegNum; |
| 2421 | op2Reg = op2->gtRegNum; |
| 2422 | |
| 2423 | isCommutative = !copiesUpperBits; |
| 2424 | } |
| 2425 | else if (op2->isContained() || op2->isUsedFromSpillTemp()) |
| 2426 | { |
| 2427 | // 132 form: op1 = (op1 * op3) + [op2] |
| 2428 | |
| 2429 | ins = (instruction)(ins - 1); |
| 2430 | op1Reg = op1->gtRegNum; |
| 2431 | op2Reg = op3->gtRegNum; |
| 2432 | op3 = op2; |
| 2433 | } |
| 2434 | else if (op1->isContained() || op1->isUsedFromSpillTemp()) |
| 2435 | { |
| 2436 | // 231 form: op3 = (op2 * op3) + [op1] |
| 2437 | |
| 2438 | ins = (instruction)(ins + 1); |
| 2439 | op1Reg = op3->gtRegNum; |
| 2440 | op2Reg = op2->gtRegNum; |
| 2441 | op3 = op1; |
| 2442 | } |
| 2443 | else |
| 2444 | { |
| 2445 | // 213 form: op1 = (op2 * op1) + op3 |
| 2446 | |
| 2447 | op1Reg = op1->gtRegNum; |
| 2448 | op2Reg = op2->gtRegNum; |
| 2449 | |
| 2450 | isCommutative = !copiesUpperBits; |
| 2451 | } |
| 2452 | |
| 2453 | if (isCommutative && (op1Reg != targetReg) && (op2Reg == targetReg)) |
| 2454 | { |
| 2455 | assert(node->isRMWHWIntrinsic(compiler)); |
| 2456 | |
| 2457 | // We have "reg2 = (reg1 * reg2) +/- op3" where "reg1 != reg2" on a RMW intrinsic. |
| 2458 | // |
| 2459 | // For non-commutative intrinsics, we should have ensured that op2 was marked |
| 2460 | // delay free in order to prevent it from getting assigned the same register |
| 2461 | // as target. However, for commutative intrinsics, we can just swap the operands |
| 2462 | // in order to have "reg2 = reg2 op reg1" which will end up producing the right code. |
| 2463 | |
| 2464 | op2Reg = op1Reg; |
| 2465 | op1Reg = targetReg; |
| 2466 | } |
| 2467 | |
| 2468 | genHWIntrinsic_R_R_R_RM(ins, attr, targetReg, op1Reg, op2Reg, op3); |
| 2469 | genProduceReg(node); |
| 2470 | } |
| 2471 | |
| 2472 | //------------------------------------------------------------------------ |
| 2473 | // genLZCNTIntrinsic: Generates the code for a LZCNT hardware intrinsic node |
| 2474 | // |
| 2475 | // Arguments: |
| 2476 | // node - The hardware intrinsic node |
| 2477 | // |
| 2478 | void CodeGen::genLZCNTIntrinsic(GenTreeHWIntrinsic* node) |
| 2479 | { |
| 2480 | assert(node->gtHWIntrinsicId == NI_LZCNT_LeadingZeroCount || |
| 2481 | node->gtHWIntrinsicId == NI_LZCNT_X64_LeadingZeroCount); |
| 2482 | |
| 2483 | genConsumeOperands(node); |
| 2484 | genXCNTIntrinsic(node, INS_lzcnt); |
| 2485 | genProduceReg(node); |
| 2486 | } |
| 2487 | |
| 2488 | //------------------------------------------------------------------------ |
| 2489 | // genPCLMULQDQIntrinsic: Generates the code for a PCLMULQDQ hardware intrinsic node |
| 2490 | // |
| 2491 | // Arguments: |
| 2492 | // node - The hardware intrinsic node |
| 2493 | // |
| 2494 | void CodeGen::genPCLMULQDQIntrinsic(GenTreeHWIntrinsic* node) |
| 2495 | { |
| 2496 | NYI("Implement PCLMULQDQ intrinsic code generation" ); |
| 2497 | } |
| 2498 | |
| 2499 | //------------------------------------------------------------------------ |
| 2500 | // genPOPCNTIntrinsic: Generates the code for a POPCNT hardware intrinsic node |
| 2501 | // |
| 2502 | // Arguments: |
| 2503 | // node - The hardware intrinsic node |
| 2504 | // |
| 2505 | void CodeGen::genPOPCNTIntrinsic(GenTreeHWIntrinsic* node) |
| 2506 | { |
| 2507 | assert(node->gtHWIntrinsicId == NI_POPCNT_PopCount || node->gtHWIntrinsicId == NI_POPCNT_X64_PopCount); |
| 2508 | |
| 2509 | genConsumeOperands(node); |
| 2510 | genXCNTIntrinsic(node, INS_popcnt); |
| 2511 | genProduceReg(node); |
| 2512 | } |
| 2513 | |
| 2514 | //------------------------------------------------------------------------ |
| 2515 | // genXCNTIntrinsic: Generates the code for a lzcnt/tzcnt/popcnt hardware intrinsic node, breaks false dependencies on |
| 2516 | // the target register |
| 2517 | // |
| 2518 | // Arguments: |
| 2519 | // node - The hardware intrinsic node |
| 2520 | // ins - The instruction being generated |
| 2521 | // |
| 2522 | void CodeGen::genXCNTIntrinsic(GenTreeHWIntrinsic* node, instruction ins) |
| 2523 | { |
| 2524 | // LZCNT/TZCNT/POPCNT have a false dependency on the target register on Intel Sandy Bridge, Haswell, and Skylake |
| 2525 | // (POPCNT only) processors, so insert a `XOR target, target` to break the dependency via XOR triggering register |
| 2526 | // renaming, but only if it's not an actual dependency. |
| 2527 | |
| 2528 | GenTree* op1 = node->gtGetOp1(); |
| 2529 | regNumber sourceReg1 = REG_NA; |
| 2530 | regNumber sourceReg2 = REG_NA; |
| 2531 | |
| 2532 | if (!op1->isContained()) |
| 2533 | { |
| 2534 | sourceReg1 = op1->gtRegNum; |
| 2535 | } |
| 2536 | else if (op1->isIndir()) |
| 2537 | { |
| 2538 | GenTreeIndir* indir = op1->AsIndir(); |
| 2539 | GenTree* memBase = indir->Base(); |
| 2540 | |
| 2541 | if (memBase != nullptr) |
| 2542 | { |
| 2543 | sourceReg1 = memBase->gtRegNum; |
| 2544 | } |
| 2545 | |
| 2546 | if (indir->HasIndex()) |
| 2547 | { |
| 2548 | sourceReg2 = indir->Index()->gtRegNum; |
| 2549 | } |
| 2550 | } |
| 2551 | |
| 2552 | regNumber targetReg = node->gtRegNum; |
| 2553 | if ((targetReg != sourceReg1) && (targetReg != sourceReg2)) |
| 2554 | { |
| 2555 | getEmitter()->emitIns_R_R(INS_xor, EA_4BYTE, targetReg, targetReg); |
| 2556 | } |
| 2557 | genHWIntrinsic_R_RM(node, ins, emitTypeSize(node->TypeGet())); |
| 2558 | } |
| 2559 | |
| 2560 | #endif // FEATURE_HW_INTRINSICS |
| 2561 | |