| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Lowering for AMD64, x86 XX |
| 9 | XX XX |
| 10 | XX This encapsulates all the logic for lowering trees for the AMD64 XX |
| 11 | XX architecture. For a more detailed view of what is lowering, please XX |
| 12 | XX take a look at Lower.cpp XX |
| 13 | XX XX |
| 14 | XX XX |
| 15 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 16 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 17 | */ |
| 18 | |
| 19 | #include "jitpch.h" |
| 20 | #ifdef _MSC_VER |
| 21 | #pragma hdrstop |
| 22 | #endif |
| 23 | |
| 24 | #ifdef _TARGET_XARCH_ // This file is only used for xarch |
| 25 | |
| 26 | #include "jit.h" |
| 27 | #include "sideeffects.h" |
| 28 | #include "lower.h" |
| 29 | |
| 30 | // xarch supports both ROL and ROR instructions so no lowering is required. |
| 31 | void Lowering::LowerRotate(GenTree* tree) |
| 32 | { |
| 33 | ContainCheckShiftRotate(tree->AsOp()); |
| 34 | } |
| 35 | |
| 36 | //------------------------------------------------------------------------ |
| 37 | // LowerStoreLoc: Lower a store of a lclVar |
| 38 | // |
| 39 | // Arguments: |
| 40 | // storeLoc - the local store (GT_STORE_LCL_FLD or GT_STORE_LCL_VAR) |
| 41 | // |
| 42 | // Notes: |
| 43 | // This involves: |
| 44 | // - Handling of contained immediates. |
| 45 | // - Widening operations of unsigneds. |
| 46 | |
| 47 | void Lowering::LowerStoreLoc(GenTreeLclVarCommon* storeLoc) |
| 48 | { |
| 49 | // Try to widen the ops if they are going into a local var. |
| 50 | if ((storeLoc->gtOper == GT_STORE_LCL_VAR) && (storeLoc->gtOp1->gtOper == GT_CNS_INT)) |
| 51 | { |
| 52 | GenTreeIntCon* con = storeLoc->gtOp1->AsIntCon(); |
| 53 | ssize_t ival = con->gtIconVal; |
| 54 | |
| 55 | unsigned varNum = storeLoc->gtLclNum; |
| 56 | LclVarDsc* varDsc = comp->lvaTable + varNum; |
| 57 | |
| 58 | if (varDsc->lvIsSIMDType()) |
| 59 | { |
| 60 | noway_assert(storeLoc->gtType != TYP_STRUCT); |
| 61 | } |
| 62 | unsigned size = genTypeSize(storeLoc); |
| 63 | // If we are storing a constant into a local variable |
| 64 | // we extend the size of the store here |
| 65 | if ((size < 4) && !varTypeIsStruct(varDsc)) |
| 66 | { |
| 67 | if (!varTypeIsUnsigned(varDsc)) |
| 68 | { |
| 69 | if (genTypeSize(storeLoc) == 1) |
| 70 | { |
| 71 | if ((ival & 0x7f) != ival) |
| 72 | { |
| 73 | ival = ival | 0xffffff00; |
| 74 | } |
| 75 | } |
| 76 | else |
| 77 | { |
| 78 | assert(genTypeSize(storeLoc) == 2); |
| 79 | if ((ival & 0x7fff) != ival) |
| 80 | { |
| 81 | ival = ival | 0xffff0000; |
| 82 | } |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | // A local stack slot is at least 4 bytes in size, regardless of |
| 87 | // what the local var is typed as, so auto-promote it here |
| 88 | // unless it is a field of a promoted struct |
| 89 | // TODO-XArch-CQ: if the field is promoted shouldn't we also be able to do this? |
| 90 | if (!varDsc->lvIsStructField) |
| 91 | { |
| 92 | storeLoc->gtType = TYP_INT; |
| 93 | con->SetIconValue(ival); |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | if (storeLoc->OperIs(GT_STORE_LCL_FLD)) |
| 98 | { |
| 99 | // We should only encounter this for lclVars that are lvDoNotEnregister. |
| 100 | verifyLclFldDoNotEnregister(storeLoc->gtLclNum); |
| 101 | } |
| 102 | ContainCheckStoreLoc(storeLoc); |
| 103 | } |
| 104 | |
| 105 | //------------------------------------------------------------------------ |
| 106 | // LowerStoreIndir: Determine addressing mode for an indirection, and whether operands are contained. |
| 107 | // |
| 108 | // Arguments: |
| 109 | // node - The indirect store node (GT_STORE_IND) of interest |
| 110 | // |
| 111 | // Return Value: |
| 112 | // None. |
| 113 | // |
| 114 | void Lowering::LowerStoreIndir(GenTreeIndir* node) |
| 115 | { |
| 116 | // Mark all GT_STOREIND nodes to indicate that it is not known |
| 117 | // whether it represents a RMW memory op. |
| 118 | node->AsStoreInd()->SetRMWStatusDefault(); |
| 119 | |
| 120 | if (!varTypeIsFloating(node)) |
| 121 | { |
| 122 | // Perform recognition of trees with the following structure: |
| 123 | // StoreInd(addr, BinOp(expr, GT_IND(addr))) |
| 124 | // to be able to fold this into an instruction of the form |
| 125 | // BINOP [addr], register |
| 126 | // where register is the actual place where 'expr' is computed. |
| 127 | // |
| 128 | // SSE2 doesn't support RMW form of instructions. |
| 129 | if (LowerRMWMemOp(node)) |
| 130 | { |
| 131 | return; |
| 132 | } |
| 133 | } |
| 134 | ContainCheckStoreIndir(node); |
| 135 | } |
| 136 | |
| 137 | //------------------------------------------------------------------------ |
| 138 | // LowerBlockStore: Set block store type |
| 139 | // |
| 140 | // Arguments: |
| 141 | // blkNode - The block store node of interest |
| 142 | // |
| 143 | // Return Value: |
| 144 | // None. |
| 145 | // |
| 146 | void Lowering::LowerBlockStore(GenTreeBlk* blkNode) |
| 147 | { |
| 148 | GenTree* dstAddr = blkNode->Addr(); |
| 149 | unsigned size = blkNode->gtBlkSize; |
| 150 | GenTree* source = blkNode->Data(); |
| 151 | Compiler* compiler = comp; |
| 152 | GenTree* srcAddrOrFill = nullptr; |
| 153 | bool isInitBlk = blkNode->OperIsInitBlkOp(); |
| 154 | |
| 155 | if (!isInitBlk) |
| 156 | { |
| 157 | // CopyObj or CopyBlk |
| 158 | if ((blkNode->OperGet() == GT_STORE_OBJ) && ((blkNode->AsObj()->gtGcPtrCount == 0) || blkNode->gtBlkOpGcUnsafe)) |
| 159 | { |
| 160 | blkNode->SetOper(GT_STORE_BLK); |
| 161 | } |
| 162 | if (source->gtOper == GT_IND) |
| 163 | { |
| 164 | srcAddrOrFill = blkNode->Data()->gtGetOp1(); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | if (isInitBlk) |
| 169 | { |
| 170 | GenTree* initVal = source; |
| 171 | if (initVal->OperIsInitVal()) |
| 172 | { |
| 173 | initVal->SetContained(); |
| 174 | initVal = initVal->gtGetOp1(); |
| 175 | } |
| 176 | srcAddrOrFill = initVal; |
| 177 | // If we have an InitBlk with constant block size we can optimize several ways: |
| 178 | // a) If the size is smaller than a small memory page but larger than INITBLK_UNROLL_LIMIT bytes |
| 179 | // we use rep stosb since this reduces the register pressure in LSRA and we have |
| 180 | // roughly the same performance as calling the helper. |
| 181 | // b) If the size is <= INITBLK_UNROLL_LIMIT bytes and the fill byte is a constant, |
| 182 | // we can speed this up by unrolling the loop using SSE2 stores. The reason for |
| 183 | // this threshold is because our last investigation (Fall 2013), more than 95% of initblks |
| 184 | // in our framework assemblies are actually <= INITBLK_UNROLL_LIMIT bytes size, so this is the |
| 185 | // preferred code sequence for the vast majority of cases. |
| 186 | |
| 187 | // This threshold will decide from using the helper or let the JIT decide to inline |
| 188 | // a code sequence of its choice. |
| 189 | unsigned helperThreshold = max(INITBLK_STOS_LIMIT, INITBLK_UNROLL_LIMIT); |
| 190 | |
| 191 | // TODO-X86-CQ: Investigate whether a helper call would be beneficial on x86 |
| 192 | if (size != 0 && size <= helperThreshold) |
| 193 | { |
| 194 | // Always favor unrolling vs rep stos. |
| 195 | if (size <= INITBLK_UNROLL_LIMIT && initVal->IsCnsIntOrI()) |
| 196 | { |
| 197 | // The fill value of an initblk is interpreted to hold a |
| 198 | // value of (unsigned int8) however a constant of any size |
| 199 | // may practically reside on the evaluation stack. So extract |
| 200 | // the lower byte out of the initVal constant and replicate |
| 201 | // it to a larger constant whose size is sufficient to support |
| 202 | // the largest width store of the desired inline expansion. |
| 203 | |
| 204 | ssize_t fill = initVal->gtIntCon.gtIconVal & 0xFF; |
| 205 | #ifdef _TARGET_AMD64_ |
| 206 | if (size < REGSIZE_BYTES) |
| 207 | { |
| 208 | initVal->gtIntCon.gtIconVal = 0x01010101 * fill; |
| 209 | } |
| 210 | else |
| 211 | { |
| 212 | initVal->gtIntCon.gtIconVal = 0x0101010101010101LL * fill; |
| 213 | initVal->gtType = TYP_LONG; |
| 214 | if ((fill == 0) && ((size & 0xf) == 0)) |
| 215 | { |
| 216 | MakeSrcContained(blkNode, source); |
| 217 | } |
| 218 | } |
| 219 | #else // !_TARGET_AMD64_ |
| 220 | initVal->gtIntCon.gtIconVal = 0x01010101 * fill; |
| 221 | #endif // !_TARGET_AMD64_ |
| 222 | |
| 223 | if ((fill == 0) && ((size & 0xf) == 0)) |
| 224 | { |
| 225 | MakeSrcContained(blkNode, source); |
| 226 | } |
| 227 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll; |
| 228 | } |
| 229 | else |
| 230 | { |
| 231 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr; |
| 232 | } |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | #ifdef _TARGET_AMD64_ |
| 237 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper; |
| 238 | #else // !_TARGET_AMD64_ |
| 239 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr; |
| 240 | #endif // !_TARGET_AMD64_ |
| 241 | } |
| 242 | } |
| 243 | else |
| 244 | { |
| 245 | if (blkNode->gtOper == GT_STORE_OBJ) |
| 246 | { |
| 247 | // CopyObj |
| 248 | |
| 249 | GenTreeObj* cpObjNode = blkNode->AsObj(); |
| 250 | |
| 251 | unsigned slots = cpObjNode->gtSlots; |
| 252 | |
| 253 | #ifdef DEBUG |
| 254 | // CpObj must always have at least one GC-Pointer as a member. |
| 255 | assert(cpObjNode->gtGcPtrCount > 0); |
| 256 | |
| 257 | assert(dstAddr->gtType == TYP_BYREF || dstAddr->gtType == TYP_I_IMPL); |
| 258 | |
| 259 | CORINFO_CLASS_HANDLE clsHnd = cpObjNode->gtClass; |
| 260 | size_t classSize = comp->info.compCompHnd->getClassSize(clsHnd); |
| 261 | size_t blkSize = roundUp(classSize, TARGET_POINTER_SIZE); |
| 262 | |
| 263 | // Currently, the EE always round up a class data structure so |
| 264 | // we are not handling the case where we have a non multiple of pointer sized |
| 265 | // struct. This behavior may change in the future so in order to keeps things correct |
| 266 | // let's assert it just to be safe. Going forward we should simply |
| 267 | // handle this case. |
| 268 | assert(classSize == blkSize); |
| 269 | assert((blkSize / TARGET_POINTER_SIZE) == slots); |
| 270 | assert(cpObjNode->HasGCPtr()); |
| 271 | #endif |
| 272 | |
| 273 | bool IsRepMovsProfitable = false; |
| 274 | |
| 275 | // If the destination is not on the stack, let's find out if we |
| 276 | // can improve code size by using rep movsq instead of generating |
| 277 | // sequences of movsq instructions. |
| 278 | if (!dstAddr->OperIsLocalAddr()) |
| 279 | { |
| 280 | // Let's inspect the struct/class layout and determine if it's profitable |
| 281 | // to use rep movsq for copying non-gc memory instead of using single movsq |
| 282 | // instructions for each memory slot. |
| 283 | unsigned i = 0; |
| 284 | BYTE* gcPtrs = cpObjNode->gtGcPtrs; |
| 285 | |
| 286 | do |
| 287 | { |
| 288 | unsigned nonGCSlots = 0; |
| 289 | // Measure a contiguous non-gc area inside the struct and note the maximum. |
| 290 | while (i < slots && gcPtrs[i] == TYPE_GC_NONE) |
| 291 | { |
| 292 | nonGCSlots++; |
| 293 | i++; |
| 294 | } |
| 295 | |
| 296 | while (i < slots && gcPtrs[i] != TYPE_GC_NONE) |
| 297 | { |
| 298 | i++; |
| 299 | } |
| 300 | |
| 301 | if (nonGCSlots >= CPOBJ_NONGC_SLOTS_LIMIT) |
| 302 | { |
| 303 | IsRepMovsProfitable = true; |
| 304 | break; |
| 305 | } |
| 306 | } while (i < slots); |
| 307 | } |
| 308 | else if (slots >= CPOBJ_NONGC_SLOTS_LIMIT) |
| 309 | { |
| 310 | IsRepMovsProfitable = true; |
| 311 | } |
| 312 | |
| 313 | // There are two cases in which we need to materialize the |
| 314 | // struct size: |
| 315 | // a) When the destination is on the stack we don't need to use the |
| 316 | // write barrier, we can just simply call rep movsq and get a win in codesize. |
| 317 | // b) If we determine we have contiguous non-gc regions in the struct where it's profitable |
| 318 | // to use rep movsq instead of a sequence of single movsq instructions. According to the |
| 319 | // Intel Manual, the sweet spot for small structs is between 4 to 12 slots of size where |
| 320 | // the entire operation takes 20 cycles and encodes in 5 bytes (moving RCX, and calling rep movsq). |
| 321 | if (IsRepMovsProfitable) |
| 322 | { |
| 323 | // We need the size of the contiguous Non-GC-region to be in RCX to call rep movsq. |
| 324 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr; |
| 325 | } |
| 326 | else |
| 327 | { |
| 328 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll; |
| 329 | } |
| 330 | } |
| 331 | else |
| 332 | { |
| 333 | assert((blkNode->OperGet() == GT_STORE_BLK) || (blkNode->OperGet() == GT_STORE_DYN_BLK)); |
| 334 | // CopyBlk |
| 335 | // In case of a CpBlk with a constant size and less than CPBLK_MOVS_LIMIT size |
| 336 | // we can use rep movs to generate code instead of the helper call. |
| 337 | |
| 338 | // This threshold will decide between using the helper or let the JIT decide to inline |
| 339 | // a code sequence of its choice. |
| 340 | unsigned helperThreshold = max(CPBLK_MOVS_LIMIT, CPBLK_UNROLL_LIMIT); |
| 341 | |
| 342 | // TODO-X86-CQ: Investigate whether a helper call would be beneficial on x86 |
| 343 | if ((size != 0) && (size <= helperThreshold)) |
| 344 | { |
| 345 | // If we have a buffer between XMM_REGSIZE_BYTES and CPBLK_UNROLL_LIMIT bytes, we'll use SSE2. |
| 346 | // Structs and buffer with sizes <= CPBLK_UNROLL_LIMIT bytes are occurring in more than 95% of |
| 347 | // our framework assemblies, so this is the main code generation scheme we'll use. |
| 348 | if (size <= CPBLK_UNROLL_LIMIT) |
| 349 | { |
| 350 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll; |
| 351 | |
| 352 | // If src or dst are on stack, we don't have to generate the address |
| 353 | // into a register because it's just some constant+SP. |
| 354 | if ((srcAddrOrFill != nullptr) && srcAddrOrFill->OperIsLocalAddr()) |
| 355 | { |
| 356 | MakeSrcContained(blkNode, srcAddrOrFill); |
| 357 | } |
| 358 | |
| 359 | if (dstAddr->OperIsLocalAddr()) |
| 360 | { |
| 361 | MakeSrcContained(blkNode, dstAddr); |
| 362 | } |
| 363 | } |
| 364 | else |
| 365 | { |
| 366 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr; |
| 367 | } |
| 368 | } |
| 369 | #ifdef _TARGET_AMD64_ |
| 370 | else |
| 371 | { |
| 372 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper; |
| 373 | } |
| 374 | #elif defined(_TARGET_X86_) |
| 375 | else |
| 376 | { |
| 377 | blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindRepInstr; |
| 378 | } |
| 379 | #endif // _TARGET_X86_ |
| 380 | assert(blkNode->gtBlkOpKind != GenTreeBlk::BlkOpKindInvalid); |
| 381 | } |
| 382 | |
| 383 | // CopyObj or CopyBlk |
| 384 | if (source->gtOper == GT_IND) |
| 385 | { |
| 386 | // The GT_IND is contained, but the address must be in a register unless it is local. |
| 387 | MakeSrcContained(blkNode, source); |
| 388 | GenTree* addr = source->AsIndir()->Addr(); |
| 389 | if (!addr->OperIsLocalAddr()) |
| 390 | { |
| 391 | addr->ClearContained(); |
| 392 | } |
| 393 | } |
| 394 | else if (!source->IsMultiRegCall() && !source->OperIsSIMD() && !source->OperIsSimdHWIntrinsic()) |
| 395 | { |
| 396 | assert(source->IsLocal()); |
| 397 | MakeSrcContained(blkNode, source); |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | //------------------------------------------------------------------------ |
| 403 | // LowerPutArgStk: Lower a GT_PUTARG_STK. |
| 404 | // |
| 405 | // Arguments: |
| 406 | // tree - The node of interest |
| 407 | // |
| 408 | // Return Value: |
| 409 | // None. |
| 410 | // |
| 411 | void Lowering::LowerPutArgStk(GenTreePutArgStk* putArgStk) |
| 412 | { |
| 413 | #ifdef _TARGET_X86_ |
| 414 | if (putArgStk->gtOp1->gtOper == GT_FIELD_LIST) |
| 415 | { |
| 416 | putArgStk->gtNumberReferenceSlots = 0; |
| 417 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Invalid; |
| 418 | |
| 419 | GenTreeFieldList* fieldList = putArgStk->gtOp1->AsFieldList(); |
| 420 | |
| 421 | // The code generator will push these fields in reverse order by offset. Reorder the list here s.t. the order |
| 422 | // of uses is visible to LSRA. |
| 423 | unsigned fieldCount = 0; |
| 424 | GenTreeFieldList* head = nullptr; |
| 425 | for (GenTreeFieldList *current = fieldList, *next; current != nullptr; current = next) |
| 426 | { |
| 427 | next = current->Rest(); |
| 428 | |
| 429 | // First, insert the field node into the sorted list. |
| 430 | GenTreeFieldList* prev = nullptr; |
| 431 | for (GenTreeFieldList* cursor = head;; cursor = cursor->Rest()) |
| 432 | { |
| 433 | // If the offset of the current list node is greater than the offset of the cursor or if we have |
| 434 | // reached the end of the list, insert the current node before the cursor and terminate. |
| 435 | if ((cursor == nullptr) || (current->gtFieldOffset > cursor->gtFieldOffset)) |
| 436 | { |
| 437 | if (prev == nullptr) |
| 438 | { |
| 439 | assert(cursor == head); |
| 440 | head = current; |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | prev->Rest() = current; |
| 445 | } |
| 446 | |
| 447 | current->Rest() = cursor; |
| 448 | break; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | fieldCount++; |
| 453 | } |
| 454 | |
| 455 | // In theory, the upper bound for the size of a field list is 8: these constructs only appear when passing the |
| 456 | // collection of lclVars that represent the fields of a promoted struct lclVar, and we do not promote struct |
| 457 | // lclVars with more than 4 fields. If each of these lclVars is of type long, decomposition will split the |
| 458 | // corresponding field list nodes in two, giving an upper bound of 8. |
| 459 | // |
| 460 | // The reason that this is important is that the algorithm we use above to sort the field list is O(N^2): if |
| 461 | // the maximum size of a field list grows significantly, we will need to reevaluate it. |
| 462 | assert(fieldCount <= 8); |
| 463 | |
| 464 | // The sort above may have changed which node is at the head of the list. Update the PUTARG_STK node if |
| 465 | // necessary. |
| 466 | if (head != fieldList) |
| 467 | { |
| 468 | head->gtFlags |= GTF_FIELD_LIST_HEAD; |
| 469 | head->SetContained(); |
| 470 | |
| 471 | fieldList->ClearContained(); |
| 472 | fieldList->gtFlags &= ~GTF_FIELD_LIST_HEAD; |
| 473 | |
| 474 | #ifdef DEBUG |
| 475 | head->gtSeqNum = fieldList->gtSeqNum; |
| 476 | #endif // DEBUG |
| 477 | |
| 478 | BlockRange().InsertAfter(fieldList, head); |
| 479 | BlockRange().Remove(fieldList); |
| 480 | |
| 481 | fieldList = head; |
| 482 | putArgStk->gtOp1 = fieldList; |
| 483 | putArgStk->gtType = fieldList->gtType; |
| 484 | } |
| 485 | |
| 486 | // Now that the fields have been sorted, the kind of code we will generate. |
| 487 | bool allFieldsAreSlots = true; |
| 488 | unsigned prevOffset = putArgStk->getArgSize(); |
| 489 | for (GenTreeFieldList* current = fieldList; current != nullptr; current = current->Rest()) |
| 490 | { |
| 491 | GenTree* const fieldNode = current->Current(); |
| 492 | const var_types fieldType = fieldNode->TypeGet(); |
| 493 | const unsigned fieldOffset = current->gtFieldOffset; |
| 494 | assert(fieldType != TYP_LONG); |
| 495 | |
| 496 | // We can treat as a slot any field that is stored at a slot boundary, where the previous |
| 497 | // field is not in the same slot. (Note that we store the fields in reverse order.) |
| 498 | const bool fieldIsSlot = ((fieldOffset % 4) == 0) && ((prevOffset - fieldOffset) >= 4); |
| 499 | if (!fieldIsSlot) |
| 500 | { |
| 501 | allFieldsAreSlots = false; |
| 502 | } |
| 503 | |
| 504 | if (varTypeIsGC(fieldType)) |
| 505 | { |
| 506 | putArgStk->gtNumberReferenceSlots++; |
| 507 | } |
| 508 | |
| 509 | // For x86 we must mark all integral fields as contained or reg-optional, and handle them |
| 510 | // accordingly in code generation, since we may have up to 8 fields, which cannot all be in |
| 511 | // registers to be consumed atomically by the call. |
| 512 | if (varTypeIsIntegralOrI(fieldNode)) |
| 513 | { |
| 514 | if (fieldNode->OperGet() == GT_LCL_VAR) |
| 515 | { |
| 516 | LclVarDsc* varDsc = &(comp->lvaTable[fieldNode->AsLclVarCommon()->gtLclNum]); |
| 517 | if (!varDsc->lvDoNotEnregister) |
| 518 | { |
| 519 | fieldNode->SetRegOptional(); |
| 520 | } |
| 521 | else |
| 522 | { |
| 523 | MakeSrcContained(putArgStk, fieldNode); |
| 524 | } |
| 525 | } |
| 526 | else if (fieldNode->IsIntCnsFitsInI32()) |
| 527 | { |
| 528 | MakeSrcContained(putArgStk, fieldNode); |
| 529 | } |
| 530 | else |
| 531 | { |
| 532 | // For the case where we cannot directly push the value, if we run out of registers, |
| 533 | // it would be better to defer computation until we are pushing the arguments rather |
| 534 | // than spilling, but this situation is not all that common, as most cases of promoted |
| 535 | // structs do not have a large number of fields, and of those most are lclVars or |
| 536 | // copy-propagated constants. |
| 537 | fieldNode->SetRegOptional(); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | prevOffset = fieldOffset; |
| 542 | } |
| 543 | |
| 544 | // Set the copy kind. |
| 545 | // TODO-X86-CQ: Even if we are using push, if there are contiguous floating point fields, we should |
| 546 | // adjust the stack once for those fields. The latter is really best done in code generation, but |
| 547 | // this tuning should probably be undertaken as a whole. |
| 548 | // Also, if there are floating point fields, it may be better to use the "Unroll" mode |
| 549 | // of copying the struct as a whole, if the fields are not register candidates. |
| 550 | if (allFieldsAreSlots) |
| 551 | { |
| 552 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::PushAllSlots; |
| 553 | } |
| 554 | else |
| 555 | { |
| 556 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push; |
| 557 | } |
| 558 | return; |
| 559 | } |
| 560 | #endif // _TARGET_X86_ |
| 561 | |
| 562 | GenTree* src = putArgStk->gtOp1; |
| 563 | |
| 564 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 565 | if (src->TypeGet() != TYP_STRUCT) |
| 566 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 567 | { |
| 568 | // If the child of GT_PUTARG_STK is a constant, we don't need a register to |
| 569 | // move it to memory (stack location). |
| 570 | // |
| 571 | // On AMD64, we don't want to make 0 contained, because we can generate smaller code |
| 572 | // by zeroing a register and then storing it. E.g.: |
| 573 | // xor rdx, rdx |
| 574 | // mov gword ptr [rsp+28H], rdx |
| 575 | // is 2 bytes smaller than: |
| 576 | // mov gword ptr [rsp+28H], 0 |
| 577 | // |
| 578 | // On x86, we push stack arguments; we don't use 'mov'. So: |
| 579 | // push 0 |
| 580 | // is 1 byte smaller than: |
| 581 | // xor rdx, rdx |
| 582 | // push rdx |
| 583 | |
| 584 | if (IsContainableImmed(putArgStk, src) |
| 585 | #if defined(_TARGET_AMD64_) |
| 586 | && !src->IsIntegralConst(0) |
| 587 | #endif // _TARGET_AMD64_ |
| 588 | ) |
| 589 | { |
| 590 | MakeSrcContained(putArgStk, src); |
| 591 | } |
| 592 | return; |
| 593 | } |
| 594 | |
| 595 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 596 | GenTree* dst = putArgStk; |
| 597 | GenTree* srcAddr = nullptr; |
| 598 | |
| 599 | bool haveLocalAddr = false; |
| 600 | if ((src->OperGet() == GT_OBJ) || (src->OperGet() == GT_IND)) |
| 601 | { |
| 602 | srcAddr = src->gtOp.gtOp1; |
| 603 | assert(srcAddr != nullptr); |
| 604 | haveLocalAddr = srcAddr->OperIsLocalAddr(); |
| 605 | } |
| 606 | else |
| 607 | { |
| 608 | assert(varTypeIsSIMD(putArgStk)); |
| 609 | } |
| 610 | |
| 611 | // In case of a CpBlk we could use a helper call. In case of putarg_stk we |
| 612 | // can't do that since the helper call could kill some already set up outgoing args. |
| 613 | // TODO-Amd64-Unix: converge the code for putarg_stk with cpyblk/cpyobj. |
| 614 | // The cpyXXXX code is rather complex and this could cause it to be more complex, but |
| 615 | // it might be the right thing to do. |
| 616 | |
| 617 | // This threshold will decide from using the helper or let the JIT decide to inline |
| 618 | // a code sequence of its choice. |
| 619 | ssize_t helperThreshold = max(CPBLK_MOVS_LIMIT, CPBLK_UNROLL_LIMIT); |
| 620 | ssize_t size = putArgStk->gtNumSlots * TARGET_POINTER_SIZE; |
| 621 | |
| 622 | // TODO-X86-CQ: The helper call either is not supported on x86 or required more work |
| 623 | // (I don't know which). |
| 624 | |
| 625 | // If we have a buffer between XMM_REGSIZE_BYTES and CPBLK_UNROLL_LIMIT bytes, we'll use SSE2. |
| 626 | // Structs and buffer with sizes <= CPBLK_UNROLL_LIMIT bytes are occurring in more than 95% of |
| 627 | // our framework assemblies, so this is the main code generation scheme we'll use. |
| 628 | if (size <= CPBLK_UNROLL_LIMIT && putArgStk->gtNumberReferenceSlots == 0) |
| 629 | { |
| 630 | #ifdef _TARGET_X86_ |
| 631 | if (size < XMM_REGSIZE_BYTES) |
| 632 | { |
| 633 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push; |
| 634 | } |
| 635 | else |
| 636 | #endif // _TARGET_X86_ |
| 637 | { |
| 638 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Unroll; |
| 639 | } |
| 640 | } |
| 641 | #ifdef _TARGET_X86_ |
| 642 | else if (putArgStk->gtNumberReferenceSlots != 0) |
| 643 | { |
| 644 | // On x86, we must use `push` to store GC references to the stack in order for the emitter to properly update |
| 645 | // the function's GC info. These `putargstk` nodes will generate a sequence of `push` instructions. |
| 646 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::Push; |
| 647 | } |
| 648 | #endif // _TARGET_X86_ |
| 649 | else |
| 650 | { |
| 651 | putArgStk->gtPutArgStkKind = GenTreePutArgStk::Kind::RepInstr; |
| 652 | } |
| 653 | // Always mark the OBJ and ADDR as contained trees by the putarg_stk. The codegen will deal with this tree. |
| 654 | MakeSrcContained(putArgStk, src); |
| 655 | if (haveLocalAddr) |
| 656 | { |
| 657 | // If the source address is the address of a lclVar, make the source address contained to avoid unnecessary |
| 658 | // copies. |
| 659 | // |
| 660 | MakeSrcContained(putArgStk, srcAddr); |
| 661 | } |
| 662 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 663 | } |
| 664 | |
| 665 | /* Lower GT_CAST(srcType, DstType) nodes. |
| 666 | * |
| 667 | * Casts from small int type to float/double are transformed as follows: |
| 668 | * GT_CAST(byte, float/double) = GT_CAST(GT_CAST(byte, int32), float/double) |
| 669 | * GT_CAST(sbyte, float/double) = GT_CAST(GT_CAST(sbyte, int32), float/double) |
| 670 | * GT_CAST(int16, float/double) = GT_CAST(GT_CAST(int16, int32), float/double) |
| 671 | * GT_CAST(uint16, float/double) = GT_CAST(GT_CAST(uint16, int32), float/double) |
| 672 | * |
| 673 | * SSE2 conversion instructions operate on signed integers. casts from Uint32/Uint64 |
| 674 | * are morphed as follows by front-end and hence should not be seen here. |
| 675 | * GT_CAST(uint32, float/double) = GT_CAST(GT_CAST(uint32, long), float/double) |
| 676 | * GT_CAST(uint64, float) = GT_CAST(GT_CAST(uint64, double), float) |
| 677 | * |
| 678 | * |
| 679 | * Similarly casts from float/double to a smaller int type are transformed as follows: |
| 680 | * GT_CAST(float/double, byte) = GT_CAST(GT_CAST(float/double, int32), byte) |
| 681 | * GT_CAST(float/double, sbyte) = GT_CAST(GT_CAST(float/double, int32), sbyte) |
| 682 | * GT_CAST(float/double, int16) = GT_CAST(GT_CAST(double/double, int32), int16) |
| 683 | * GT_CAST(float/double, uint16) = GT_CAST(GT_CAST(double/double, int32), uint16) |
| 684 | * |
| 685 | * SSE2 has instructions to convert a float/double vlaue into a signed 32/64-bit |
| 686 | * integer. The above transformations help us to leverage those instructions. |
| 687 | * |
| 688 | * Note that for the following conversions we still depend on helper calls and |
| 689 | * don't expect to see them here. |
| 690 | * i) GT_CAST(float/double, uint64) |
| 691 | * ii) GT_CAST(float/double, int type with overflow detection) |
| 692 | * |
| 693 | * TODO-XArch-CQ: (Low-pri): Jit64 generates in-line code of 8 instructions for (i) above. |
| 694 | * There are hardly any occurrences of this conversion operation in platform |
| 695 | * assemblies or in CQ perf benchmarks (1 occurrence in mscorlib, microsoft.jscript, |
| 696 | * 1 occurence in Roslyn and no occurrences in system, system.core, system.numerics |
| 697 | * system.windows.forms, scimark, fractals, bio mums). If we ever find evidence that |
| 698 | * doing this optimization is a win, should consider generating in-lined code. |
| 699 | */ |
| 700 | void Lowering::LowerCast(GenTree* tree) |
| 701 | { |
| 702 | assert(tree->OperGet() == GT_CAST); |
| 703 | |
| 704 | GenTree* castOp = tree->gtCast.CastOp(); |
| 705 | var_types castToType = tree->CastToType(); |
| 706 | var_types srcType = castOp->TypeGet(); |
| 707 | var_types tmpType = TYP_UNDEF; |
| 708 | |
| 709 | // force the srcType to unsigned if GT_UNSIGNED flag is set |
| 710 | if (tree->gtFlags & GTF_UNSIGNED) |
| 711 | { |
| 712 | srcType = genUnsignedType(srcType); |
| 713 | } |
| 714 | |
| 715 | // We should never see the following casts as they are expected to be lowered |
| 716 | // apropriately or converted into helper calls by front-end. |
| 717 | // srcType = float/double castToType = * and overflow detecting cast |
| 718 | // Reason: must be converted to a helper call |
| 719 | // srcType = float/double, castToType = ulong |
| 720 | // Reason: must be converted to a helper call |
| 721 | // srcType = uint castToType = float/double |
| 722 | // Reason: uint -> float/double = uint -> long -> float/double |
| 723 | // srcType = ulong castToType = float |
| 724 | // Reason: ulong -> float = ulong -> double -> float |
| 725 | if (varTypeIsFloating(srcType)) |
| 726 | { |
| 727 | noway_assert(!tree->gtOverflow()); |
| 728 | noway_assert(castToType != TYP_ULONG); |
| 729 | } |
| 730 | else if (srcType == TYP_UINT) |
| 731 | { |
| 732 | noway_assert(!varTypeIsFloating(castToType)); |
| 733 | } |
| 734 | else if (srcType == TYP_ULONG) |
| 735 | { |
| 736 | noway_assert(castToType != TYP_FLOAT); |
| 737 | } |
| 738 | |
| 739 | // Case of src is a small type and dst is a floating point type. |
| 740 | if (varTypeIsSmall(srcType) && varTypeIsFloating(castToType)) |
| 741 | { |
| 742 | // These conversions can never be overflow detecting ones. |
| 743 | noway_assert(!tree->gtOverflow()); |
| 744 | tmpType = TYP_INT; |
| 745 | } |
| 746 | // case of src is a floating point type and dst is a small type. |
| 747 | else if (varTypeIsFloating(srcType) && varTypeIsSmall(castToType)) |
| 748 | { |
| 749 | tmpType = TYP_INT; |
| 750 | } |
| 751 | |
| 752 | if (tmpType != TYP_UNDEF) |
| 753 | { |
| 754 | GenTree* tmp = comp->gtNewCastNode(tmpType, castOp, tree->IsUnsigned(), tmpType); |
| 755 | tmp->gtFlags |= (tree->gtFlags & (GTF_OVERFLOW | GTF_EXCEPT)); |
| 756 | |
| 757 | tree->gtFlags &= ~GTF_UNSIGNED; |
| 758 | tree->gtOp.gtOp1 = tmp; |
| 759 | BlockRange().InsertAfter(castOp, tmp); |
| 760 | ContainCheckCast(tmp->AsCast()); |
| 761 | } |
| 762 | |
| 763 | // Now determine if we have operands that should be contained. |
| 764 | ContainCheckCast(tree->AsCast()); |
| 765 | } |
| 766 | |
| 767 | #ifdef FEATURE_SIMD |
| 768 | //---------------------------------------------------------------------------------------------- |
| 769 | // Lowering::LowerSIMD: Perform containment analysis for a SIMD intrinsic node. |
| 770 | // |
| 771 | // Arguments: |
| 772 | // simdNode - The SIMD intrinsic node. |
| 773 | // |
| 774 | void Lowering::LowerSIMD(GenTreeSIMD* simdNode) |
| 775 | { |
| 776 | if (simdNode->TypeGet() == TYP_SIMD12) |
| 777 | { |
| 778 | // GT_SIMD node requiring to produce TYP_SIMD12 in fact |
| 779 | // produces a TYP_SIMD16 result |
| 780 | simdNode->gtType = TYP_SIMD16; |
| 781 | } |
| 782 | |
| 783 | #ifdef _TARGET_XARCH_ |
| 784 | if ((simdNode->gtSIMDIntrinsicID == SIMDIntrinsicGetItem) && (simdNode->gtGetOp1()->OperGet() == GT_IND)) |
| 785 | { |
| 786 | // If SIMD vector is already in memory, we force its |
| 787 | // addr to be evaluated into a reg. This would allow |
| 788 | // us to generate [regBase] or [regBase+offset] or |
| 789 | // [regBase+sizeOf(SIMD vector baseType)*regIndex] |
| 790 | // to access the required SIMD vector element directly |
| 791 | // from memory. |
| 792 | // |
| 793 | // TODO-CQ-XARCH: If addr of GT_IND is GT_LEA, we |
| 794 | // might be able update GT_LEA to fold the regIndex |
| 795 | // or offset in some cases. Instead with this |
| 796 | // approach we always evaluate GT_LEA into a reg. |
| 797 | // Ideally, we should be able to lower GetItem intrinsic |
| 798 | // into GT_IND(newAddr) where newAddr combines |
| 799 | // the addr of SIMD vector with the given index. |
| 800 | simdNode->gtOp1->gtFlags |= GTF_IND_REQ_ADDR_IN_REG; |
| 801 | } |
| 802 | else if (simdNode->IsSIMDEqualityOrInequality()) |
| 803 | { |
| 804 | LIR::Use simdUse; |
| 805 | |
| 806 | if (BlockRange().TryGetUse(simdNode, &simdUse)) |
| 807 | { |
| 808 | // |
| 809 | // Try to transform JTRUE(EQ|NE(SIMD<OpEquality|OpInEquality>(x, y), 0|1)) into |
| 810 | // JCC(SIMD<OpEquality|OpInEquality>(x, y)). SIMD<OpEquality|OpInEquality>(x, y) |
| 811 | // is expected to set the Zero flag appropriately. |
| 812 | // All the involved nodes must form a continuous range, there's no other way to |
| 813 | // guarantee that condition flags aren't changed between the SIMD node and the JCC |
| 814 | // node. |
| 815 | // |
| 816 | |
| 817 | bool transformed = false; |
| 818 | GenTree* simdUser = simdUse.User(); |
| 819 | |
| 820 | if (simdUser->OperIs(GT_EQ, GT_NE) && simdUser->gtGetOp2()->IsCnsIntOrI() && |
| 821 | (simdNode->gtNext == simdUser->gtGetOp2()) && (simdUser->gtGetOp2()->gtNext == simdUser)) |
| 822 | { |
| 823 | ssize_t relopOp2Value = simdUser->gtGetOp2()->AsIntCon()->IconValue(); |
| 824 | |
| 825 | if ((relopOp2Value == 0) || (relopOp2Value == 1)) |
| 826 | { |
| 827 | GenTree* jtrue = simdUser->gtNext; |
| 828 | |
| 829 | if ((jtrue != nullptr) && jtrue->OperIs(GT_JTRUE) && (jtrue->gtGetOp1() == simdUser)) |
| 830 | { |
| 831 | if ((simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpEquality) != simdUser->OperIs(GT_EQ)) |
| 832 | { |
| 833 | relopOp2Value ^= 1; |
| 834 | } |
| 835 | |
| 836 | jtrue->ChangeOper(GT_JCC); |
| 837 | GenTreeCC* jcc = jtrue->AsCC(); |
| 838 | jcc->gtFlags |= GTF_USE_FLAGS; |
| 839 | jcc->gtCondition = (relopOp2Value == 0) ? GT_NE : GT_EQ; |
| 840 | |
| 841 | BlockRange().Remove(simdUser->gtGetOp2()); |
| 842 | BlockRange().Remove(simdUser); |
| 843 | transformed = true; |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | if (!transformed) |
| 849 | { |
| 850 | // |
| 851 | // The code generated for SIMD SIMD<OpEquality|OpInEquality>(x, y) nodes sets |
| 852 | // the Zero flag like integer compares do so we can simply use SETCC<EQ|NE> |
| 853 | // to produce the desired result. This avoids the need for subsequent phases |
| 854 | // to have to handle 2 cases (set flags/set destination register). |
| 855 | // |
| 856 | |
| 857 | genTreeOps condition = (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpEquality) ? GT_EQ : GT_NE; |
| 858 | GenTreeCC* setcc = new (comp, GT_SETCC) GenTreeCC(GT_SETCC, condition, simdNode->TypeGet()); |
| 859 | setcc->gtFlags |= GTF_USE_FLAGS; |
| 860 | BlockRange().InsertAfter(simdNode, setcc); |
| 861 | simdUse.ReplaceWith(comp, setcc); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | simdNode->gtFlags |= GTF_SET_FLAGS; |
| 866 | simdNode->gtType = TYP_VOID; |
| 867 | } |
| 868 | #endif |
| 869 | ContainCheckSIMD(simdNode); |
| 870 | } |
| 871 | #endif // FEATURE_SIMD |
| 872 | |
| 873 | #ifdef FEATURE_HW_INTRINSICS |
| 874 | //---------------------------------------------------------------------------------------------- |
| 875 | // Lowering::LowerHWIntrinsic: Perform containment analysis for a hardware intrinsic node. |
| 876 | // |
| 877 | // Arguments: |
| 878 | // node - The hardware intrinsic node. |
| 879 | // |
| 880 | void Lowering::LowerHWIntrinsic(GenTreeHWIntrinsic* node) |
| 881 | { |
| 882 | ContainCheckHWIntrinsic(node); |
| 883 | } |
| 884 | #endif // FEATURE_HW_INTRINSICS |
| 885 | |
| 886 | //---------------------------------------------------------------------------------------------- |
| 887 | // Lowering::IsRMWIndirCandidate: |
| 888 | // Returns true if the given operand is a candidate indirection for a read-modify-write |
| 889 | // operator. |
| 890 | // |
| 891 | // Arguments: |
| 892 | // operand - The operand to consider. |
| 893 | // storeInd - The indirect store that roots the possible RMW operator. |
| 894 | // |
| 895 | bool Lowering::IsRMWIndirCandidate(GenTree* operand, GenTree* storeInd) |
| 896 | { |
| 897 | // If the operand isn't an indirection, it's trivially not a candidate. |
| 898 | if (operand->OperGet() != GT_IND) |
| 899 | { |
| 900 | return false; |
| 901 | } |
| 902 | |
| 903 | // If the indirection's source address isn't equivalent to the destination address of the storeIndir, then the |
| 904 | // indirection is not a candidate. |
| 905 | GenTree* srcAddr = operand->gtGetOp1(); |
| 906 | GenTree* dstAddr = storeInd->gtGetOp1(); |
| 907 | if ((srcAddr->OperGet() != dstAddr->OperGet()) || !IndirsAreEquivalent(operand, storeInd)) |
| 908 | { |
| 909 | return false; |
| 910 | } |
| 911 | |
| 912 | // If it is not safe to contain the entire tree rooted at the indirection, then the indirection is not a |
| 913 | // candidate. Crawl the IR from the node immediately preceding the storeIndir until the last node in the |
| 914 | // indirection's tree is visited and check the side effects at each point. |
| 915 | |
| 916 | m_scratchSideEffects.Clear(); |
| 917 | |
| 918 | assert((operand->gtLIRFlags & LIR::Flags::Mark) == 0); |
| 919 | operand->gtLIRFlags |= LIR::Flags::Mark; |
| 920 | |
| 921 | unsigned markCount = 1; |
| 922 | GenTree* node; |
| 923 | for (node = storeInd->gtPrev; markCount > 0; node = node->gtPrev) |
| 924 | { |
| 925 | assert(node != nullptr); |
| 926 | |
| 927 | if ((node->gtLIRFlags & LIR::Flags::Mark) == 0) |
| 928 | { |
| 929 | m_scratchSideEffects.AddNode(comp, node); |
| 930 | } |
| 931 | else |
| 932 | { |
| 933 | node->gtLIRFlags &= ~LIR::Flags::Mark; |
| 934 | markCount--; |
| 935 | |
| 936 | if (m_scratchSideEffects.InterferesWith(comp, node, false)) |
| 937 | { |
| 938 | // The indirection's tree contains some node that can't be moved to the storeInder. The indirection is |
| 939 | // not a candidate. Clear any leftover mark bits and return. |
| 940 | for (; markCount > 0; node = node->gtPrev) |
| 941 | { |
| 942 | if ((node->gtLIRFlags & LIR::Flags::Mark) != 0) |
| 943 | { |
| 944 | node->gtLIRFlags &= ~LIR::Flags::Mark; |
| 945 | markCount--; |
| 946 | } |
| 947 | } |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | node->VisitOperands([&markCount](GenTree* nodeOperand) -> GenTree::VisitResult { |
| 952 | assert((nodeOperand->gtLIRFlags & LIR::Flags::Mark) == 0); |
| 953 | nodeOperand->gtLIRFlags |= LIR::Flags::Mark; |
| 954 | markCount++; |
| 955 | return GenTree::VisitResult::Continue; |
| 956 | }); |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | // At this point we've verified that the operand is an indirection, its address is equivalent to the storeIndir's |
| 961 | // destination address, and that it and the transitive closure of its operand can be safely contained by the |
| 962 | // storeIndir. This indirection is therefore a candidate for an RMW op. |
| 963 | return true; |
| 964 | } |
| 965 | |
| 966 | //---------------------------------------------------------------------------------------------- |
| 967 | // Returns true if this tree is bin-op of a GT_STOREIND of the following form |
| 968 | // storeInd(subTreeA, binOp(gtInd(subTreeA), subtreeB)) or |
| 969 | // storeInd(subTreeA, binOp(subtreeB, gtInd(subTreeA)) in case of commutative bin-ops |
| 970 | // |
| 971 | // The above form for storeInd represents a read-modify-write memory binary operation. |
| 972 | // |
| 973 | // Parameters |
| 974 | // tree - GentreePtr of binOp |
| 975 | // |
| 976 | // Return Value |
| 977 | // True if 'tree' is part of a RMW memory operation pattern |
| 978 | // |
| 979 | bool Lowering::IsBinOpInRMWStoreInd(GenTree* tree) |
| 980 | { |
| 981 | // Must be a non floating-point type binary operator since SSE2 doesn't support RMW memory ops |
| 982 | assert(!varTypeIsFloating(tree)); |
| 983 | assert(GenTree::OperIsBinary(tree->OperGet())); |
| 984 | |
| 985 | // Cheap bail out check before more expensive checks are performed. |
| 986 | // RMW memory op pattern requires that one of the operands of binOp to be GT_IND. |
| 987 | if (tree->gtGetOp1()->OperGet() != GT_IND && tree->gtGetOp2()->OperGet() != GT_IND) |
| 988 | { |
| 989 | return false; |
| 990 | } |
| 991 | |
| 992 | LIR::Use use; |
| 993 | if (!BlockRange().TryGetUse(tree, &use) || use.User()->OperGet() != GT_STOREIND || use.User()->gtGetOp2() != tree) |
| 994 | { |
| 995 | return false; |
| 996 | } |
| 997 | |
| 998 | // Since it is not relatively cheap to recognize RMW memory op pattern, we |
| 999 | // cache the result in GT_STOREIND node so that while lowering GT_STOREIND |
| 1000 | // we can use the result. |
| 1001 | GenTree* indirCandidate = nullptr; |
| 1002 | GenTree* indirOpSource = nullptr; |
| 1003 | return IsRMWMemOpRootedAtStoreInd(use.User(), &indirCandidate, &indirOpSource); |
| 1004 | } |
| 1005 | |
| 1006 | //---------------------------------------------------------------------------------------------- |
| 1007 | // This method recognizes the case where we have a treeNode with the following structure: |
| 1008 | // storeInd(IndirDst, binOp(gtInd(IndirDst), indirOpSource)) OR |
| 1009 | // storeInd(IndirDst, binOp(indirOpSource, gtInd(IndirDst)) in case of commutative operations OR |
| 1010 | // storeInd(IndirDst, unaryOp(gtInd(IndirDst)) in case of unary operations |
| 1011 | // |
| 1012 | // Terminology: |
| 1013 | // indirDst = memory write of an addr mode (i.e. storeind destination) |
| 1014 | // indirSrc = value being written to memory (i.e. storeind source which could either be a binary or unary op) |
| 1015 | // indirCandidate = memory read i.e. a gtInd of an addr mode |
| 1016 | // indirOpSource = source operand used in binary/unary op (i.e. source operand of indirSrc node) |
| 1017 | // |
| 1018 | // In x86/x64 this storeInd pattern can be effectively encoded in a single instruction of the |
| 1019 | // following form in case of integer operations: |
| 1020 | // binOp [addressing mode], RegIndirOpSource |
| 1021 | // binOp [addressing mode], immediateVal |
| 1022 | // where RegIndirOpSource is the register where indirOpSource was computed. |
| 1023 | // |
| 1024 | // Right now, we recognize few cases: |
| 1025 | // a) The gtInd child is a lea/lclVar/lclVarAddr/clsVarAddr/constant |
| 1026 | // b) BinOp is either add, sub, xor, or, and, shl, rsh, rsz. |
| 1027 | // c) unaryOp is either not/neg |
| 1028 | // |
| 1029 | // Implementation Note: The following routines need to be in sync for RMW memory op optimization |
| 1030 | // to be correct and functional. |
| 1031 | // IndirsAreEquivalent() |
| 1032 | // NodesAreEquivalentLeaves() |
| 1033 | // Codegen of GT_STOREIND and genCodeForShiftRMW() |
| 1034 | // emitInsRMW() |
| 1035 | // |
| 1036 | // TODO-CQ: Enable support for more complex indirections (if needed) or use the value numbering |
| 1037 | // package to perform more complex tree recognition. |
| 1038 | // |
| 1039 | // TODO-XArch-CQ: Add support for RMW of lcl fields (e.g. lclfield binop= source) |
| 1040 | // |
| 1041 | // Parameters: |
| 1042 | // tree - GT_STOREIND node |
| 1043 | // outIndirCandidate - out param set to indirCandidate as described above |
| 1044 | // ouutIndirOpSource - out param set to indirOpSource as described above |
| 1045 | // |
| 1046 | // Return value |
| 1047 | // True if there is a RMW memory operation rooted at a GT_STOREIND tree |
| 1048 | // and out params indirCandidate and indirOpSource are set to non-null values. |
| 1049 | // Otherwise, returns false with indirCandidate and indirOpSource set to null. |
| 1050 | // Also updates flags of GT_STOREIND tree with its RMW status. |
| 1051 | // |
| 1052 | bool Lowering::IsRMWMemOpRootedAtStoreInd(GenTree* tree, GenTree** outIndirCandidate, GenTree** outIndirOpSource) |
| 1053 | { |
| 1054 | assert(!varTypeIsFloating(tree)); |
| 1055 | assert(outIndirCandidate != nullptr); |
| 1056 | assert(outIndirOpSource != nullptr); |
| 1057 | |
| 1058 | *outIndirCandidate = nullptr; |
| 1059 | *outIndirOpSource = nullptr; |
| 1060 | |
| 1061 | // Early out if storeInd is already known to be a non-RMW memory op |
| 1062 | GenTreeStoreInd* storeInd = tree->AsStoreInd(); |
| 1063 | if (storeInd->IsNonRMWMemoryOp()) |
| 1064 | { |
| 1065 | return false; |
| 1066 | } |
| 1067 | |
| 1068 | GenTree* indirDst = storeInd->gtGetOp1(); |
| 1069 | GenTree* indirSrc = storeInd->gtGetOp2(); |
| 1070 | genTreeOps oper = indirSrc->OperGet(); |
| 1071 | |
| 1072 | // Early out if it is already known to be a RMW memory op |
| 1073 | if (storeInd->IsRMWMemoryOp()) |
| 1074 | { |
| 1075 | if (GenTree::OperIsBinary(oper)) |
| 1076 | { |
| 1077 | if (storeInd->IsRMWDstOp1()) |
| 1078 | { |
| 1079 | *outIndirCandidate = indirSrc->gtGetOp1(); |
| 1080 | *outIndirOpSource = indirSrc->gtGetOp2(); |
| 1081 | } |
| 1082 | else |
| 1083 | { |
| 1084 | assert(storeInd->IsRMWDstOp2()); |
| 1085 | *outIndirCandidate = indirSrc->gtGetOp2(); |
| 1086 | *outIndirOpSource = indirSrc->gtGetOp1(); |
| 1087 | } |
| 1088 | assert(IndirsAreEquivalent(*outIndirCandidate, storeInd)); |
| 1089 | } |
| 1090 | else |
| 1091 | { |
| 1092 | assert(GenTree::OperIsUnary(oper)); |
| 1093 | assert(IndirsAreEquivalent(indirSrc->gtGetOp1(), storeInd)); |
| 1094 | *outIndirCandidate = indirSrc->gtGetOp1(); |
| 1095 | *outIndirOpSource = indirSrc->gtGetOp1(); |
| 1096 | } |
| 1097 | |
| 1098 | return true; |
| 1099 | } |
| 1100 | |
| 1101 | // If reached here means that we do not know RMW status of tree rooted at storeInd |
| 1102 | assert(storeInd->IsRMWStatusUnknown()); |
| 1103 | |
| 1104 | // Early out if indirDst is not one of the supported memory operands. |
| 1105 | if (indirDst->OperGet() != GT_LEA && indirDst->OperGet() != GT_LCL_VAR && indirDst->OperGet() != GT_LCL_VAR_ADDR && |
| 1106 | indirDst->OperGet() != GT_CLS_VAR_ADDR && indirDst->OperGet() != GT_CNS_INT) |
| 1107 | { |
| 1108 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR); |
| 1109 | return false; |
| 1110 | } |
| 1111 | |
| 1112 | // We can not use Read-Modify-Write instruction forms with overflow checking instructions |
| 1113 | // because we are not allowed to modify the target until after the overflow check. |
| 1114 | if (indirSrc->gtOverflowEx()) |
| 1115 | { |
| 1116 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER); |
| 1117 | return false; |
| 1118 | } |
| 1119 | |
| 1120 | // At this point we can match one of two patterns: |
| 1121 | // |
| 1122 | // t_ind = indir t_addr_0 |
| 1123 | // ... |
| 1124 | // t_value = binop t_ind, t_other |
| 1125 | // ... |
| 1126 | // storeIndir t_addr_1, t_value |
| 1127 | // |
| 1128 | // or |
| 1129 | // |
| 1130 | // t_ind = indir t_addr_0 |
| 1131 | // ... |
| 1132 | // t_value = unop t_ind |
| 1133 | // ... |
| 1134 | // storeIndir t_addr_1, t_value |
| 1135 | // |
| 1136 | // In all cases, we will eventually make the binop that produces t_value and the entire dataflow tree rooted at |
| 1137 | // t_ind contained by t_value. |
| 1138 | |
| 1139 | GenTree* indirCandidate = nullptr; |
| 1140 | GenTree* indirOpSource = nullptr; |
| 1141 | RMWStatus status = STOREIND_RMW_STATUS_UNKNOWN; |
| 1142 | if (GenTree::OperIsBinary(oper)) |
| 1143 | { |
| 1144 | // Return if binary op is not one of the supported operations for RMW of memory. |
| 1145 | if (!GenTree::OperIsRMWMemOp(oper)) |
| 1146 | { |
| 1147 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER); |
| 1148 | return false; |
| 1149 | } |
| 1150 | |
| 1151 | if (GenTree::OperIsShiftOrRotate(oper) && varTypeIsSmall(storeInd)) |
| 1152 | { |
| 1153 | // In ldind, Integer values smaller than 4 bytes, a boolean, or a character converted to 4 bytes |
| 1154 | // by sign or zero-extension as appropriate. If we directly shift the short type data using sar, we |
| 1155 | // will lose the sign or zero-extension bits. |
| 1156 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_TYPE); |
| 1157 | return false; |
| 1158 | } |
| 1159 | |
| 1160 | // In the common case, the second operand to the binop will be the indir candidate. |
| 1161 | GenTreeOp* binOp = indirSrc->AsOp(); |
| 1162 | if (GenTree::OperIsCommutative(oper) && IsRMWIndirCandidate(binOp->gtOp2, storeInd)) |
| 1163 | { |
| 1164 | indirCandidate = binOp->gtOp2; |
| 1165 | indirOpSource = binOp->gtOp1; |
| 1166 | status = STOREIND_RMW_DST_IS_OP2; |
| 1167 | } |
| 1168 | else if (IsRMWIndirCandidate(binOp->gtOp1, storeInd)) |
| 1169 | { |
| 1170 | indirCandidate = binOp->gtOp1; |
| 1171 | indirOpSource = binOp->gtOp2; |
| 1172 | status = STOREIND_RMW_DST_IS_OP1; |
| 1173 | } |
| 1174 | else |
| 1175 | { |
| 1176 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR); |
| 1177 | return false; |
| 1178 | } |
| 1179 | } |
| 1180 | else if (GenTree::OperIsUnary(oper)) |
| 1181 | { |
| 1182 | // Nodes other than GT_NOT and GT_NEG are not yet supported. |
| 1183 | if (oper != GT_NOT && oper != GT_NEG) |
| 1184 | { |
| 1185 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER); |
| 1186 | return false; |
| 1187 | } |
| 1188 | |
| 1189 | if (indirSrc->gtGetOp1()->OperGet() != GT_IND) |
| 1190 | { |
| 1191 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR); |
| 1192 | return false; |
| 1193 | } |
| 1194 | |
| 1195 | GenTreeUnOp* unOp = indirSrc->AsUnOp(); |
| 1196 | if (IsRMWIndirCandidate(unOp->gtOp1, storeInd)) |
| 1197 | { |
| 1198 | // src and dest are the same in case of unary ops |
| 1199 | indirCandidate = unOp->gtOp1; |
| 1200 | indirOpSource = unOp->gtOp1; |
| 1201 | status = STOREIND_RMW_DST_IS_OP1; |
| 1202 | } |
| 1203 | else |
| 1204 | { |
| 1205 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR); |
| 1206 | return false; |
| 1207 | } |
| 1208 | } |
| 1209 | else |
| 1210 | { |
| 1211 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_OPER); |
| 1212 | return false; |
| 1213 | } |
| 1214 | |
| 1215 | // By this point we've verified that we have a supported operand with a supported address. Now we need to ensure |
| 1216 | // that we're able to move the destination address for the source indirection forwards. |
| 1217 | if (!IsSafeToContainMem(storeInd, indirDst)) |
| 1218 | { |
| 1219 | storeInd->SetRMWStatus(STOREIND_RMW_UNSUPPORTED_ADDR); |
| 1220 | return false; |
| 1221 | } |
| 1222 | |
| 1223 | assert(indirCandidate != nullptr); |
| 1224 | assert(indirOpSource != nullptr); |
| 1225 | assert(status != STOREIND_RMW_STATUS_UNKNOWN); |
| 1226 | |
| 1227 | *outIndirCandidate = indirCandidate; |
| 1228 | *outIndirOpSource = indirOpSource; |
| 1229 | storeInd->SetRMWStatus(status); |
| 1230 | return true; |
| 1231 | } |
| 1232 | |
| 1233 | // anything is in range for AMD64 |
| 1234 | bool Lowering::IsCallTargetInRange(void* addr) |
| 1235 | { |
| 1236 | return true; |
| 1237 | } |
| 1238 | |
| 1239 | // return true if the immediate can be folded into an instruction, for example small enough and non-relocatable |
| 1240 | bool Lowering::IsContainableImmed(GenTree* parentNode, GenTree* childNode) |
| 1241 | { |
| 1242 | if (!childNode->IsIntCnsFitsInI32()) |
| 1243 | { |
| 1244 | return false; |
| 1245 | } |
| 1246 | |
| 1247 | // At this point we know that it is an int const fits within 4-bytes and hence can safely cast to IntConCommon. |
| 1248 | // Icons that need relocation should never be marked as contained immed |
| 1249 | if (childNode->AsIntConCommon()->ImmedValNeedsReloc(comp)) |
| 1250 | { |
| 1251 | return false; |
| 1252 | } |
| 1253 | |
| 1254 | return true; |
| 1255 | } |
| 1256 | |
| 1257 | //----------------------------------------------------------------------- |
| 1258 | // PreferredRegOptionalOperand: returns one of the operands of given |
| 1259 | // binary oper that is to be preferred for marking as reg optional. |
| 1260 | // |
| 1261 | // Since only one of op1 or op2 can be a memory operand on xarch, only |
| 1262 | // one of them have to be marked as reg optional. Since Lower doesn't |
| 1263 | // know apriori which of op1 or op2 is not likely to get a register, it |
| 1264 | // has to make a guess. This routine encapsulates heuristics that |
| 1265 | // guess whether it is likely to be beneficial to mark op1 or op2 as |
| 1266 | // reg optional. |
| 1267 | // |
| 1268 | // |
| 1269 | // Arguments: |
| 1270 | // tree - a binary-op tree node that is either commutative |
| 1271 | // or a compare oper. |
| 1272 | // |
| 1273 | // Returns: |
| 1274 | // Returns op1 or op2 of tree node that is preferred for |
| 1275 | // marking as reg optional. |
| 1276 | // |
| 1277 | // Note: if the tree oper is neither commutative nor a compare oper |
| 1278 | // then only op2 can be reg optional on xarch and hence no need to |
| 1279 | // call this routine. |
| 1280 | GenTree* Lowering::PreferredRegOptionalOperand(GenTree* tree) |
| 1281 | { |
| 1282 | assert(GenTree::OperIsBinary(tree->OperGet())); |
| 1283 | assert(tree->OperIsCommutative() || tree->OperIsCompare() || tree->OperIs(GT_CMP)); |
| 1284 | |
| 1285 | GenTree* op1 = tree->gtGetOp1(); |
| 1286 | GenTree* op2 = tree->gtGetOp2(); |
| 1287 | assert(!op1->IsRegOptional() && !op2->IsRegOptional()); |
| 1288 | |
| 1289 | // We default to op1, as op2 is likely to have the shorter lifetime. |
| 1290 | GenTree* preferredOp = op1; |
| 1291 | |
| 1292 | // This routine uses the following heuristics: |
| 1293 | // |
| 1294 | // a) If both are register candidates, marking the one with lower weighted |
| 1295 | // ref count as reg-optional would likely be beneficial as it has |
| 1296 | // higher probability of not getting a register. Note that we use !lvDoNotEnregister |
| 1297 | // here because this is being done while we are adding lclVars for Lowering. |
| 1298 | // |
| 1299 | // b) op1 = tracked local and op2 = untracked local: LSRA creates two |
| 1300 | // ref positions for op2: a def and use position. op2's def position |
| 1301 | // requires a reg and it is allocated a reg by spilling another |
| 1302 | // interval (if required) and that could be even op1. For this reason |
| 1303 | // it is beneficial to mark op1 as reg optional. |
| 1304 | // |
| 1305 | // TODO: It is not always mandatory for a def position of an untracked |
| 1306 | // local to be allocated a register if it is on rhs of an assignment |
| 1307 | // and its use position is reg-optional and has not been assigned a |
| 1308 | // register. Reg optional def positions is currently not yet supported. |
| 1309 | // |
| 1310 | // c) op1 = untracked local and op2 = tracked local: marking op1 as |
| 1311 | // reg optional is beneficial, since its use position is less likely |
| 1312 | // to get a register. |
| 1313 | // |
| 1314 | // d) If both are untracked locals (i.e. treated like tree temps by |
| 1315 | // LSRA): though either of them could be marked as reg optional, |
| 1316 | // marking op1 as reg optional is likely to be beneficial because |
| 1317 | // while allocating op2's def position, there is a possibility of |
| 1318 | // spilling op1's def and in which case op1 is treated as contained |
| 1319 | // memory operand rather than requiring to reload. |
| 1320 | // |
| 1321 | // e) If only one of them is a local var, prefer to mark it as |
| 1322 | // reg-optional. This is heuristic is based on the results |
| 1323 | // obtained against CQ perf benchmarks. |
| 1324 | // |
| 1325 | // f) If neither of them are local vars (i.e. tree temps), prefer to |
| 1326 | // mark op1 as reg optional for the same reason as mentioned in (d) above. |
| 1327 | if (op1->OperGet() == GT_LCL_VAR && op2->OperGet() == GT_LCL_VAR) |
| 1328 | { |
| 1329 | LclVarDsc* v1 = comp->lvaTable + op1->AsLclVarCommon()->GetLclNum(); |
| 1330 | LclVarDsc* v2 = comp->lvaTable + op2->AsLclVarCommon()->GetLclNum(); |
| 1331 | |
| 1332 | bool v1IsRegCandidate = !v1->lvDoNotEnregister; |
| 1333 | bool v2IsRegCandidate = !v2->lvDoNotEnregister; |
| 1334 | if (v1IsRegCandidate && v2IsRegCandidate) |
| 1335 | { |
| 1336 | // Both are enregisterable locals. The one with lower weight is less likely |
| 1337 | // to get a register and hence beneficial to mark the one with lower |
| 1338 | // weight as reg optional. |
| 1339 | // If either is not tracked, it may be that it was introduced after liveness |
| 1340 | // was run, in which case we will always prefer op1 (should we use raw refcnt??). |
| 1341 | if (v1->lvTracked && v2->lvTracked && (v1->lvRefCntWtd() >= v2->lvRefCntWtd())) |
| 1342 | { |
| 1343 | preferredOp = op2; |
| 1344 | } |
| 1345 | } |
| 1346 | } |
| 1347 | else if (!(op1->OperGet() == GT_LCL_VAR) && (op2->OperGet() == GT_LCL_VAR)) |
| 1348 | { |
| 1349 | preferredOp = op2; |
| 1350 | } |
| 1351 | |
| 1352 | return preferredOp; |
| 1353 | } |
| 1354 | |
| 1355 | //------------------------------------------------------------------------ |
| 1356 | // Containment analysis |
| 1357 | //------------------------------------------------------------------------ |
| 1358 | |
| 1359 | //------------------------------------------------------------------------ |
| 1360 | // ContainCheckCallOperands: Determine whether operands of a call should be contained. |
| 1361 | // |
| 1362 | // Arguments: |
| 1363 | // call - The call node of interest |
| 1364 | // |
| 1365 | // Return Value: |
| 1366 | // None. |
| 1367 | // |
| 1368 | void Lowering::ContainCheckCallOperands(GenTreeCall* call) |
| 1369 | { |
| 1370 | GenTree* ctrlExpr = call->gtControlExpr; |
| 1371 | if (call->gtCallType == CT_INDIRECT) |
| 1372 | { |
| 1373 | // either gtControlExpr != null or gtCallAddr != null. |
| 1374 | // Both cannot be non-null at the same time. |
| 1375 | assert(ctrlExpr == nullptr); |
| 1376 | assert(call->gtCallAddr != nullptr); |
| 1377 | ctrlExpr = call->gtCallAddr; |
| 1378 | |
| 1379 | #ifdef _TARGET_X86_ |
| 1380 | // Fast tail calls aren't currently supported on x86, but if they ever are, the code |
| 1381 | // below that handles indirect VSD calls will need to be fixed. |
| 1382 | assert(!call->IsFastTailCall() || !call->IsVirtualStub()); |
| 1383 | #endif // _TARGET_X86_ |
| 1384 | } |
| 1385 | |
| 1386 | // set reg requirements on call target represented as control sequence. |
| 1387 | if (ctrlExpr != nullptr) |
| 1388 | { |
| 1389 | // we should never see a gtControlExpr whose type is void. |
| 1390 | assert(ctrlExpr->TypeGet() != TYP_VOID); |
| 1391 | |
| 1392 | // In case of fast tail implemented as jmp, make sure that gtControlExpr is |
| 1393 | // computed into a register. |
| 1394 | if (!call->IsFastTailCall()) |
| 1395 | { |
| 1396 | #ifdef _TARGET_X86_ |
| 1397 | // On x86, we need to generate a very specific pattern for indirect VSD calls: |
| 1398 | // |
| 1399 | // 3-byte nop |
| 1400 | // call dword ptr [eax] |
| 1401 | // |
| 1402 | // Where EAX is also used as an argument to the stub dispatch helper. Make |
| 1403 | // sure that the call target address is computed into EAX in this case. |
| 1404 | if (call->IsVirtualStub() && (call->gtCallType == CT_INDIRECT)) |
| 1405 | { |
| 1406 | assert(ctrlExpr->isIndir()); |
| 1407 | MakeSrcContained(call, ctrlExpr); |
| 1408 | } |
| 1409 | else |
| 1410 | #endif // _TARGET_X86_ |
| 1411 | if (ctrlExpr->isIndir()) |
| 1412 | { |
| 1413 | // We may have cases where we have set a register target on the ctrlExpr, but if it |
| 1414 | // contained we must clear it. |
| 1415 | ctrlExpr->gtRegNum = REG_NA; |
| 1416 | MakeSrcContained(call, ctrlExpr); |
| 1417 | } |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | GenTree* args = call->gtCallArgs; |
| 1422 | while (args) |
| 1423 | { |
| 1424 | GenTree* arg = args->gtOp.gtOp1; |
| 1425 | if (arg->gtOper == GT_PUTARG_STK) |
| 1426 | { |
| 1427 | LowerPutArgStk(arg->AsPutArgStk()); |
| 1428 | } |
| 1429 | args = args->gtOp.gtOp2; |
| 1430 | } |
| 1431 | args = call->gtCallLateArgs; |
| 1432 | while (args) |
| 1433 | { |
| 1434 | GenTree* arg = args->gtOp.gtOp1; |
| 1435 | if (arg->gtOper == GT_PUTARG_STK) |
| 1436 | { |
| 1437 | LowerPutArgStk(arg->AsPutArgStk()); |
| 1438 | } |
| 1439 | args = args->gtOp.gtOp2; |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | //------------------------------------------------------------------------ |
| 1444 | // ContainCheckIndir: Determine whether operands of an indir should be contained. |
| 1445 | // |
| 1446 | // Arguments: |
| 1447 | // node - The indirection node of interest |
| 1448 | // |
| 1449 | // Notes: |
| 1450 | // This is called for both store and load indirections. In the former case, it is assumed that |
| 1451 | // LowerStoreIndir() has already been called to check for RMW opportunities. |
| 1452 | // |
| 1453 | // Return Value: |
| 1454 | // None. |
| 1455 | // |
| 1456 | void Lowering::ContainCheckIndir(GenTreeIndir* node) |
| 1457 | { |
| 1458 | GenTree* addr = node->Addr(); |
| 1459 | |
| 1460 | // If this is the rhs of a block copy it will be handled when we handle the store. |
| 1461 | if (node->TypeGet() == TYP_STRUCT) |
| 1462 | { |
| 1463 | return; |
| 1464 | } |
| 1465 | |
| 1466 | #ifdef FEATURE_SIMD |
| 1467 | // If indirTree is of TYP_SIMD12, don't mark addr as contained |
| 1468 | // so that it always get computed to a register. This would |
| 1469 | // mean codegen side logic doesn't need to handle all possible |
| 1470 | // addr expressions that could be contained. |
| 1471 | // |
| 1472 | // TODO-XArch-CQ: handle other addr mode expressions that could be marked |
| 1473 | // as contained. |
| 1474 | if (node->TypeGet() == TYP_SIMD12) |
| 1475 | { |
| 1476 | return; |
| 1477 | } |
| 1478 | #endif // FEATURE_SIMD |
| 1479 | |
| 1480 | if ((node->gtFlags & GTF_IND_REQ_ADDR_IN_REG) != 0) |
| 1481 | { |
| 1482 | // The address of an indirection that requires its address in a reg. |
| 1483 | // Skip any further processing that might otherwise make it contained. |
| 1484 | } |
| 1485 | else if ((addr->OperGet() == GT_CLS_VAR_ADDR) || (addr->OperGet() == GT_LCL_VAR_ADDR)) |
| 1486 | { |
| 1487 | // These nodes go into an addr mode: |
| 1488 | // - GT_CLS_VAR_ADDR turns into a constant. |
| 1489 | // - GT_LCL_VAR_ADDR is a stack addr mode. |
| 1490 | |
| 1491 | // make this contained, it turns into a constant that goes into an addr mode |
| 1492 | MakeSrcContained(node, addr); |
| 1493 | } |
| 1494 | else if (addr->IsCnsIntOrI() && addr->AsIntConCommon()->FitsInAddrBase(comp)) |
| 1495 | { |
| 1496 | // Amd64: |
| 1497 | // We can mark any pc-relative 32-bit addr as containable, except for a direct VSD call address. |
| 1498 | // (i.e. those VSD calls for which stub addr is known during JIT compilation time). In this case, |
| 1499 | // VM requires us to pass stub addr in VirtualStubParam.reg - see LowerVirtualStubCall(). For |
| 1500 | // that reason we cannot mark such an addr as contained. Note that this is not an issue for |
| 1501 | // indirect VSD calls since morphArgs() is explicitly materializing hidden param as a non-standard |
| 1502 | // argument. |
| 1503 | // |
| 1504 | // Workaround: |
| 1505 | // Note that LowerVirtualStubCall() sets addr->gtRegNum to VirtualStubParam.reg and Lowering::doPhase() |
| 1506 | // sets destination candidates on such nodes and resets addr->gtRegNum to REG_NA. |
| 1507 | // Ideally we should set a flag on addr nodes that shouldn't be marked as contained |
| 1508 | // (in LowerVirtualStubCall()), but we don't have any GTF_* flags left for that purpose. As a workaround |
| 1509 | // an explicit check is made here. |
| 1510 | // |
| 1511 | // On x86, direct VSD is done via a relative branch, and in fact it MUST be contained. |
| 1512 | MakeSrcContained(node, addr); |
| 1513 | } |
| 1514 | else if ((addr->OperGet() == GT_LEA) && IsSafeToContainMem(node, addr)) |
| 1515 | { |
| 1516 | MakeSrcContained(node, addr); |
| 1517 | } |
| 1518 | } |
| 1519 | |
| 1520 | //------------------------------------------------------------------------ |
| 1521 | // ContainCheckStoreIndir: determine whether the sources of a STOREIND node should be contained. |
| 1522 | // |
| 1523 | // Arguments: |
| 1524 | // node - pointer to the node |
| 1525 | // |
| 1526 | void Lowering::ContainCheckStoreIndir(GenTreeIndir* node) |
| 1527 | { |
| 1528 | // If the source is a containable immediate, make it contained, unless it is |
| 1529 | // an int-size or larger store of zero to memory, because we can generate smaller code |
| 1530 | // by zeroing a register and then storing it. |
| 1531 | GenTree* src = node->gtOp.gtOp2; |
| 1532 | if (IsContainableImmed(node, src) && |
| 1533 | (!src->IsIntegralConst(0) || varTypeIsSmall(node) || node->gtGetOp1()->OperGet() == GT_CLS_VAR_ADDR)) |
| 1534 | { |
| 1535 | MakeSrcContained(node, src); |
| 1536 | } |
| 1537 | ContainCheckIndir(node); |
| 1538 | } |
| 1539 | |
| 1540 | //------------------------------------------------------------------------ |
| 1541 | // ContainCheckMul: determine whether the sources of a MUL node should be contained. |
| 1542 | // |
| 1543 | // Arguments: |
| 1544 | // node - pointer to the node |
| 1545 | // |
| 1546 | void Lowering::ContainCheckMul(GenTreeOp* node) |
| 1547 | { |
| 1548 | #if defined(_TARGET_X86_) |
| 1549 | assert(node->OperIs(GT_MUL, GT_MULHI, GT_MUL_LONG)); |
| 1550 | #else |
| 1551 | assert(node->OperIs(GT_MUL, GT_MULHI)); |
| 1552 | #endif |
| 1553 | |
| 1554 | // Case of float/double mul. |
| 1555 | if (varTypeIsFloating(node->TypeGet())) |
| 1556 | { |
| 1557 | ContainCheckFloatBinary(node); |
| 1558 | return; |
| 1559 | } |
| 1560 | |
| 1561 | GenTree* op1 = node->gtOp.gtOp1; |
| 1562 | GenTree* op2 = node->gtOp.gtOp2; |
| 1563 | |
| 1564 | bool isSafeToContainOp1 = true; |
| 1565 | bool isSafeToContainOp2 = true; |
| 1566 | |
| 1567 | bool isUnsignedMultiply = ((node->gtFlags & GTF_UNSIGNED) != 0); |
| 1568 | bool requiresOverflowCheck = node->gtOverflowEx(); |
| 1569 | bool useLeaEncoding = false; |
| 1570 | GenTree* memOp = nullptr; |
| 1571 | |
| 1572 | bool hasImpliedFirstOperand = false; |
| 1573 | GenTreeIntConCommon* imm = nullptr; |
| 1574 | GenTree* other = nullptr; |
| 1575 | |
| 1576 | // Multiply should never be using small types |
| 1577 | assert(!varTypeIsSmall(node->TypeGet())); |
| 1578 | |
| 1579 | // We do use the widening multiply to implement |
| 1580 | // the overflow checking for unsigned multiply |
| 1581 | // |
| 1582 | if (isUnsignedMultiply && requiresOverflowCheck) |
| 1583 | { |
| 1584 | hasImpliedFirstOperand = true; |
| 1585 | } |
| 1586 | else if (node->OperGet() == GT_MULHI) |
| 1587 | { |
| 1588 | hasImpliedFirstOperand = true; |
| 1589 | } |
| 1590 | #if defined(_TARGET_X86_) |
| 1591 | else if (node->OperGet() == GT_MUL_LONG) |
| 1592 | { |
| 1593 | hasImpliedFirstOperand = true; |
| 1594 | } |
| 1595 | #endif |
| 1596 | else if (IsContainableImmed(node, op2) || IsContainableImmed(node, op1)) |
| 1597 | { |
| 1598 | if (IsContainableImmed(node, op2)) |
| 1599 | { |
| 1600 | imm = op2->AsIntConCommon(); |
| 1601 | other = op1; |
| 1602 | } |
| 1603 | else |
| 1604 | { |
| 1605 | imm = op1->AsIntConCommon(); |
| 1606 | other = op2; |
| 1607 | } |
| 1608 | |
| 1609 | // CQ: We want to rewrite this into a LEA |
| 1610 | ssize_t immVal = imm->AsIntConCommon()->IconValue(); |
| 1611 | if (!requiresOverflowCheck && (immVal == 3 || immVal == 5 || immVal == 9)) |
| 1612 | { |
| 1613 | useLeaEncoding = true; |
| 1614 | } |
| 1615 | |
| 1616 | MakeSrcContained(node, imm); // The imm is always contained |
| 1617 | if (IsContainableMemoryOp(other)) |
| 1618 | { |
| 1619 | memOp = other; // memOp may be contained below |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | // We allow one operand to be a contained memory operand. |
| 1624 | // The memory op type must match with the 'node' type. |
| 1625 | // This is because during codegen we use 'node' type to derive EmitTypeSize. |
| 1626 | // E.g op1 type = byte, op2 type = byte but GT_MUL node type is int. |
| 1627 | // |
| 1628 | if (memOp == nullptr) |
| 1629 | { |
| 1630 | if ((op2->TypeGet() == node->TypeGet()) && IsContainableMemoryOp(op2)) |
| 1631 | { |
| 1632 | isSafeToContainOp2 = IsSafeToContainMem(node, op2); |
| 1633 | if (isSafeToContainOp2) |
| 1634 | { |
| 1635 | memOp = op2; |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | if ((memOp == nullptr) && (op1->TypeGet() == node->TypeGet()) && IsContainableMemoryOp(op1)) |
| 1640 | { |
| 1641 | isSafeToContainOp1 = IsSafeToContainMem(node, op1); |
| 1642 | if (isSafeToContainOp1) |
| 1643 | { |
| 1644 | memOp = op1; |
| 1645 | } |
| 1646 | } |
| 1647 | } |
| 1648 | else |
| 1649 | { |
| 1650 | if ((memOp->TypeGet() != node->TypeGet())) |
| 1651 | { |
| 1652 | memOp = nullptr; |
| 1653 | } |
| 1654 | else if (!IsSafeToContainMem(node, memOp)) |
| 1655 | { |
| 1656 | if (memOp == op1) |
| 1657 | { |
| 1658 | isSafeToContainOp1 = false; |
| 1659 | } |
| 1660 | else |
| 1661 | { |
| 1662 | isSafeToContainOp2 = false; |
| 1663 | } |
| 1664 | memOp = nullptr; |
| 1665 | } |
| 1666 | } |
| 1667 | // To generate an LEA we need to force memOp into a register |
| 1668 | // so don't allow memOp to be 'contained' |
| 1669 | // |
| 1670 | if (!useLeaEncoding) |
| 1671 | { |
| 1672 | if (memOp != nullptr) |
| 1673 | { |
| 1674 | MakeSrcContained(node, memOp); |
| 1675 | } |
| 1676 | else |
| 1677 | { |
| 1678 | // IsSafeToContainMem is expensive so we call it at most once for each operand |
| 1679 | // in this method. If we already called IsSafeToContainMem, it must have returned false; |
| 1680 | // otherwise, memOp would be set to the corresponding operand (op1 or op2). |
| 1681 | if (imm != nullptr) |
| 1682 | { |
| 1683 | // Has a contained immediate operand. |
| 1684 | // Only 'other' operand can be marked as reg optional. |
| 1685 | assert(other != nullptr); |
| 1686 | |
| 1687 | isSafeToContainOp1 = ((other == op1) && isSafeToContainOp1 && IsSafeToContainMem(node, op1)); |
| 1688 | isSafeToContainOp2 = ((other == op2) && isSafeToContainOp2 && IsSafeToContainMem(node, op2)); |
| 1689 | } |
| 1690 | else if (hasImpliedFirstOperand) |
| 1691 | { |
| 1692 | // Only op2 can be marked as reg optional. |
| 1693 | isSafeToContainOp1 = false; |
| 1694 | isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2); |
| 1695 | } |
| 1696 | else |
| 1697 | { |
| 1698 | // If there are no containable operands, we can make either of op1 or op2 |
| 1699 | // as reg optional. |
| 1700 | isSafeToContainOp1 = isSafeToContainOp1 && IsSafeToContainMem(node, op1); |
| 1701 | isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2); |
| 1702 | } |
| 1703 | SetRegOptionalForBinOp(node, isSafeToContainOp1, isSafeToContainOp2); |
| 1704 | } |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | //------------------------------------------------------------------------ |
| 1709 | // ContainCheckDivOrMod: determine which operands of a div/mod should be contained. |
| 1710 | // |
| 1711 | // Arguments: |
| 1712 | // node - pointer to the node |
| 1713 | // |
| 1714 | void Lowering::ContainCheckDivOrMod(GenTreeOp* node) |
| 1715 | { |
| 1716 | assert(node->OperIs(GT_DIV, GT_MOD, GT_UDIV, GT_UMOD)); |
| 1717 | |
| 1718 | if (varTypeIsFloating(node->TypeGet())) |
| 1719 | { |
| 1720 | ContainCheckFloatBinary(node); |
| 1721 | return; |
| 1722 | } |
| 1723 | |
| 1724 | GenTree* dividend = node->gtGetOp1(); |
| 1725 | GenTree* divisor = node->gtGetOp2(); |
| 1726 | |
| 1727 | bool divisorCanBeRegOptional = true; |
| 1728 | #ifdef _TARGET_X86_ |
| 1729 | if (dividend->OperGet() == GT_LONG) |
| 1730 | { |
| 1731 | divisorCanBeRegOptional = false; |
| 1732 | MakeSrcContained(node, dividend); |
| 1733 | } |
| 1734 | #endif |
| 1735 | |
| 1736 | // divisor can be an r/m, but the memory indirection must be of the same size as the divide |
| 1737 | if (IsContainableMemoryOp(divisor) && (divisor->TypeGet() == node->TypeGet())) |
| 1738 | { |
| 1739 | MakeSrcContained(node, divisor); |
| 1740 | } |
| 1741 | else if (divisorCanBeRegOptional) |
| 1742 | { |
| 1743 | // If there are no containable operands, we can make an operand reg optional. |
| 1744 | // Div instruction allows only divisor to be a memory op. |
| 1745 | divisor->SetRegOptional(); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | //------------------------------------------------------------------------ |
| 1750 | // ContainCheckShiftRotate: determine whether the sources of a shift/rotate node should be contained. |
| 1751 | // |
| 1752 | // Arguments: |
| 1753 | // node - pointer to the node |
| 1754 | // |
| 1755 | void Lowering::ContainCheckShiftRotate(GenTreeOp* node) |
| 1756 | { |
| 1757 | assert(node->OperIsShiftOrRotate()); |
| 1758 | #ifdef _TARGET_X86_ |
| 1759 | GenTree* source = node->gtOp1; |
| 1760 | if (node->OperIsShiftLong()) |
| 1761 | { |
| 1762 | assert(source->OperGet() == GT_LONG); |
| 1763 | MakeSrcContained(node, source); |
| 1764 | } |
| 1765 | #endif // !_TARGET_X86_ |
| 1766 | |
| 1767 | GenTree* shiftBy = node->gtOp2; |
| 1768 | if (IsContainableImmed(node, shiftBy) && (shiftBy->gtIntConCommon.IconValue() <= 255) && |
| 1769 | (shiftBy->gtIntConCommon.IconValue() >= 0)) |
| 1770 | { |
| 1771 | MakeSrcContained(node, shiftBy); |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | //------------------------------------------------------------------------ |
| 1776 | // ContainCheckStoreLoc: determine whether the source of a STORE_LCL* should be contained. |
| 1777 | // |
| 1778 | // Arguments: |
| 1779 | // node - pointer to the node |
| 1780 | // |
| 1781 | void Lowering::ContainCheckStoreLoc(GenTreeLclVarCommon* storeLoc) |
| 1782 | { |
| 1783 | assert(storeLoc->OperIsLocalStore()); |
| 1784 | GenTree* op1 = storeLoc->gtGetOp1(); |
| 1785 | |
| 1786 | #ifdef FEATURE_SIMD |
| 1787 | if (varTypeIsSIMD(storeLoc)) |
| 1788 | { |
| 1789 | if (op1->IsCnsIntOrI()) |
| 1790 | { |
| 1791 | // For an InitBlk we want op1 to be contained; otherwise we want it to |
| 1792 | // be evaluated into an xmm register. |
| 1793 | MakeSrcContained(storeLoc, op1); |
| 1794 | } |
| 1795 | return; |
| 1796 | } |
| 1797 | #endif // FEATURE_SIMD |
| 1798 | |
| 1799 | // If the source is a containable immediate, make it contained, unless it is |
| 1800 | // an int-size or larger store of zero to memory, because we can generate smaller code |
| 1801 | // by zeroing a register and then storing it. |
| 1802 | if (IsContainableImmed(storeLoc, op1) && (!op1->IsIntegralConst(0) || varTypeIsSmall(storeLoc))) |
| 1803 | { |
| 1804 | MakeSrcContained(storeLoc, op1); |
| 1805 | } |
| 1806 | #ifdef _TARGET_X86_ |
| 1807 | else if (op1->OperGet() == GT_LONG) |
| 1808 | { |
| 1809 | MakeSrcContained(storeLoc, op1); |
| 1810 | } |
| 1811 | #endif // _TARGET_X86_ |
| 1812 | } |
| 1813 | |
| 1814 | //------------------------------------------------------------------------ |
| 1815 | // ContainCheckCast: determine whether the source of a CAST node should be contained. |
| 1816 | // |
| 1817 | // Arguments: |
| 1818 | // node - pointer to the node |
| 1819 | // |
| 1820 | void Lowering::ContainCheckCast(GenTreeCast* node) |
| 1821 | { |
| 1822 | GenTree* castOp = node->CastOp(); |
| 1823 | var_types castToType = node->CastToType(); |
| 1824 | var_types srcType = castOp->TypeGet(); |
| 1825 | |
| 1826 | // force the srcType to unsigned if GT_UNSIGNED flag is set |
| 1827 | if (node->gtFlags & GTF_UNSIGNED) |
| 1828 | { |
| 1829 | srcType = genUnsignedType(srcType); |
| 1830 | } |
| 1831 | |
| 1832 | if (!node->gtOverflow() && (varTypeIsFloating(castToType) || varTypeIsFloating(srcType))) |
| 1833 | { |
| 1834 | #ifdef DEBUG |
| 1835 | // If converting to float/double, the operand must be 4 or 8 byte in size. |
| 1836 | if (varTypeIsFloating(castToType)) |
| 1837 | { |
| 1838 | unsigned opSize = genTypeSize(srcType); |
| 1839 | assert(opSize == 4 || opSize == 8); |
| 1840 | } |
| 1841 | #endif // DEBUG |
| 1842 | |
| 1843 | // U8 -> R8 conversion requires that the operand be in a register. |
| 1844 | if (srcType != TYP_ULONG) |
| 1845 | { |
| 1846 | if (IsContainableMemoryOp(castOp) || castOp->IsCnsNonZeroFltOrDbl()) |
| 1847 | { |
| 1848 | MakeSrcContained(node, castOp); |
| 1849 | } |
| 1850 | else |
| 1851 | { |
| 1852 | // Mark castOp as reg optional to indicate codegen |
| 1853 | // can still generate code if it is on stack. |
| 1854 | castOp->SetRegOptional(); |
| 1855 | } |
| 1856 | } |
| 1857 | } |
| 1858 | #if !defined(_TARGET_64BIT_) |
| 1859 | if (varTypeIsLong(srcType)) |
| 1860 | { |
| 1861 | noway_assert(castOp->OperGet() == GT_LONG); |
| 1862 | castOp->SetContained(); |
| 1863 | } |
| 1864 | #endif // !defined(_TARGET_64BIT_) |
| 1865 | } |
| 1866 | |
| 1867 | //------------------------------------------------------------------------ |
| 1868 | // ContainCheckCompare: determine whether the sources of a compare node should be contained. |
| 1869 | // |
| 1870 | // Arguments: |
| 1871 | // node - pointer to the node |
| 1872 | // |
| 1873 | void Lowering::ContainCheckCompare(GenTreeOp* cmp) |
| 1874 | { |
| 1875 | assert(cmp->OperIsCompare() || cmp->OperIs(GT_CMP)); |
| 1876 | |
| 1877 | GenTree* op1 = cmp->gtOp.gtOp1; |
| 1878 | GenTree* op2 = cmp->gtOp.gtOp2; |
| 1879 | var_types op1Type = op1->TypeGet(); |
| 1880 | var_types op2Type = op2->TypeGet(); |
| 1881 | |
| 1882 | // If either of op1 or op2 is floating point values, then we need to use |
| 1883 | // ucomiss or ucomisd to compare, both of which support the following form: |
| 1884 | // ucomis[s|d] xmm, xmm/mem |
| 1885 | // That is only the second operand can be a memory op. |
| 1886 | // |
| 1887 | // Second operand is a memory Op: Note that depending on comparison operator, |
| 1888 | // the operands of ucomis[s|d] need to be reversed. Therefore, either op1 or |
| 1889 | // op2 can be a memory op depending on the comparison operator. |
| 1890 | if (varTypeIsFloating(op1Type)) |
| 1891 | { |
| 1892 | // The type of the operands has to be the same and no implicit conversions at this stage. |
| 1893 | assert(op1Type == op2Type); |
| 1894 | |
| 1895 | bool reverseOps; |
| 1896 | if ((cmp->gtFlags & GTF_RELOP_NAN_UN) != 0) |
| 1897 | { |
| 1898 | // Unordered comparison case |
| 1899 | reverseOps = cmp->OperIs(GT_GT, GT_GE); |
| 1900 | } |
| 1901 | else |
| 1902 | { |
| 1903 | reverseOps = cmp->OperIs(GT_LT, GT_LE); |
| 1904 | } |
| 1905 | |
| 1906 | GenTree* otherOp; |
| 1907 | if (reverseOps) |
| 1908 | { |
| 1909 | otherOp = op1; |
| 1910 | } |
| 1911 | else |
| 1912 | { |
| 1913 | otherOp = op2; |
| 1914 | } |
| 1915 | |
| 1916 | assert(otherOp != nullptr); |
| 1917 | bool isSafeToContainOtherOp = true; |
| 1918 | if (otherOp->IsCnsNonZeroFltOrDbl()) |
| 1919 | { |
| 1920 | MakeSrcContained(cmp, otherOp); |
| 1921 | } |
| 1922 | else if (IsContainableMemoryOp(otherOp)) |
| 1923 | { |
| 1924 | isSafeToContainOtherOp = IsSafeToContainMem(cmp, otherOp); |
| 1925 | if (isSafeToContainOtherOp) |
| 1926 | { |
| 1927 | MakeSrcContained(cmp, otherOp); |
| 1928 | } |
| 1929 | } |
| 1930 | |
| 1931 | if (!otherOp->isContained() && isSafeToContainOtherOp && IsSafeToContainMem(cmp, otherOp)) |
| 1932 | { |
| 1933 | // SSE2 allows only otherOp to be a memory-op. Since otherOp is not |
| 1934 | // contained, we can mark it reg-optional. |
| 1935 | // IsSafeToContainMem is expensive so we call it at most once for otherOp. |
| 1936 | // If we already called IsSafeToContainMem, it must have returned false; |
| 1937 | // otherwise, otherOp would be contained. |
| 1938 | otherOp->SetRegOptional(); |
| 1939 | } |
| 1940 | |
| 1941 | return; |
| 1942 | } |
| 1943 | |
| 1944 | // TODO-XArch-CQ: factor out cmp optimization in 'genCondSetFlags' to be used here |
| 1945 | // or in other backend. |
| 1946 | |
| 1947 | if (CheckImmedAndMakeContained(cmp, op2)) |
| 1948 | { |
| 1949 | // If the types are the same, or if the constant is of the correct size, |
| 1950 | // we can treat the MemoryOp as contained. |
| 1951 | if (op1Type == op2Type) |
| 1952 | { |
| 1953 | if (IsContainableMemoryOp(op1)) |
| 1954 | { |
| 1955 | MakeSrcContained(cmp, op1); |
| 1956 | } |
| 1957 | else |
| 1958 | { |
| 1959 | op1->SetRegOptional(); |
| 1960 | } |
| 1961 | } |
| 1962 | } |
| 1963 | else if (op1Type == op2Type) |
| 1964 | { |
| 1965 | // Note that TEST does not have a r,rm encoding like CMP has but we can still |
| 1966 | // contain the second operand because the emitter maps both r,rm and rm,r to |
| 1967 | // the same instruction code. This avoids the need to special case TEST here. |
| 1968 | |
| 1969 | bool isSafeToContainOp1 = true; |
| 1970 | bool isSafeToContainOp2 = true; |
| 1971 | |
| 1972 | if (IsContainableMemoryOp(op2)) |
| 1973 | { |
| 1974 | isSafeToContainOp2 = IsSafeToContainMem(cmp, op2); |
| 1975 | if (isSafeToContainOp2) |
| 1976 | { |
| 1977 | MakeSrcContained(cmp, op2); |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | if (!op2->isContained() && IsContainableMemoryOp(op1)) |
| 1982 | { |
| 1983 | isSafeToContainOp1 = IsSafeToContainMem(cmp, op1); |
| 1984 | if (isSafeToContainOp1) |
| 1985 | { |
| 1986 | MakeSrcContained(cmp, op1); |
| 1987 | } |
| 1988 | } |
| 1989 | |
| 1990 | if (!op1->isContained() && !op2->isContained()) |
| 1991 | { |
| 1992 | // One of op1 or op2 could be marked as reg optional |
| 1993 | // to indicate that codegen can still generate code |
| 1994 | // if one of them is on stack. |
| 1995 | GenTree* regOptionalCandidate = op1->IsCnsIntOrI() ? op2 : PreferredRegOptionalOperand(cmp); |
| 1996 | |
| 1997 | // IsSafeToContainMem is expensive so we call it at most once for each operand |
| 1998 | // in this method. If we already called IsSafeToContainMem, it must have returned false; |
| 1999 | // otherwise, the corresponding operand (op1 or op2) would be contained. |
| 2000 | bool setRegOptional = (regOptionalCandidate == op1) ? isSafeToContainOp1 && IsSafeToContainMem(cmp, op1) |
| 2001 | : isSafeToContainOp2 && IsSafeToContainMem(cmp, op2); |
| 2002 | if (setRegOptional) |
| 2003 | { |
| 2004 | regOptionalCandidate->SetRegOptional(); |
| 2005 | } |
| 2006 | } |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | //------------------------------------------------------------------------ |
| 2011 | // LowerRMWMemOp: Determine if this is a valid RMW mem op, and if so lower it accordingly |
| 2012 | // |
| 2013 | // Arguments: |
| 2014 | // node - The indirect store node (GT_STORE_IND) of interest |
| 2015 | // |
| 2016 | // Return Value: |
| 2017 | // Returns true if 'node' is a valid RMW mem op; false otherwise. |
| 2018 | // |
| 2019 | bool Lowering::LowerRMWMemOp(GenTreeIndir* storeInd) |
| 2020 | { |
| 2021 | assert(storeInd->OperGet() == GT_STOREIND); |
| 2022 | |
| 2023 | // SSE2 doesn't support RMW on float values |
| 2024 | assert(!varTypeIsFloating(storeInd)); |
| 2025 | |
| 2026 | // Terminology: |
| 2027 | // indirDst = memory write of an addr mode (i.e. storeind destination) |
| 2028 | // indirSrc = value being written to memory (i.e. storeind source which could a binary/unary op) |
| 2029 | // indirCandidate = memory read i.e. a gtInd of an addr mode |
| 2030 | // indirOpSource = source operand used in binary/unary op (i.e. source operand of indirSrc node) |
| 2031 | |
| 2032 | GenTree* indirCandidate = nullptr; |
| 2033 | GenTree* indirOpSource = nullptr; |
| 2034 | |
| 2035 | if (!IsRMWMemOpRootedAtStoreInd(storeInd, &indirCandidate, &indirOpSource)) |
| 2036 | { |
| 2037 | JITDUMP("Lower of StoreInd didn't mark the node as self contained for reason: %d\n" , |
| 2038 | storeInd->AsStoreInd()->GetRMWStatus()); |
| 2039 | DISPTREERANGE(BlockRange(), storeInd); |
| 2040 | return false; |
| 2041 | } |
| 2042 | |
| 2043 | GenTree* indirDst = storeInd->gtGetOp1(); |
| 2044 | GenTree* indirSrc = storeInd->gtGetOp2(); |
| 2045 | genTreeOps oper = indirSrc->OperGet(); |
| 2046 | |
| 2047 | // At this point we have successfully detected a RMW memory op of one of the following forms |
| 2048 | // storeInd(indirDst, indirSrc(indirCandidate, indirOpSource)) OR |
| 2049 | // storeInd(indirDst, indirSrc(indirOpSource, indirCandidate) in case of commutative operations OR |
| 2050 | // storeInd(indirDst, indirSrc(indirCandidate) in case of unary operations |
| 2051 | // |
| 2052 | // Here indirSrc = one of the supported binary or unary operation for RMW of memory |
| 2053 | // indirCandidate = a GT_IND node |
| 2054 | // indirCandidateChild = operand of GT_IND indirCandidate |
| 2055 | // |
| 2056 | // The logic below does the following |
| 2057 | // Make indirOpSource contained. |
| 2058 | // Make indirSrc contained. |
| 2059 | // Make indirCandidate contained. |
| 2060 | // Make indirCandidateChild contained. |
| 2061 | // Make indirDst contained except when it is a GT_LCL_VAR or GT_CNS_INT that doesn't fit within addr |
| 2062 | // base. |
| 2063 | // |
| 2064 | |
| 2065 | // We have already done containment analysis on the indirSrc op. |
| 2066 | // If any of its operands are marked regOptional, reset that now. |
| 2067 | indirSrc->AsOp()->gtOp1->ClearRegOptional(); |
| 2068 | if (GenTree::OperIsBinary(oper)) |
| 2069 | { |
| 2070 | // On Xarch RMW operations require the source to be an immediate or in a register. |
| 2071 | // Therefore, if we have previously marked the indirOpSource as contained while lowering |
| 2072 | // the binary node, we need to reset that now. |
| 2073 | if (IsContainableMemoryOp(indirOpSource)) |
| 2074 | { |
| 2075 | indirOpSource->ClearContained(); |
| 2076 | } |
| 2077 | indirSrc->AsOp()->gtOp2->ClearRegOptional(); |
| 2078 | JITDUMP("Lower succesfully detected an assignment of the form: *addrMode BinOp= source\n" ); |
| 2079 | } |
| 2080 | else |
| 2081 | { |
| 2082 | assert(GenTree::OperIsUnary(oper)); |
| 2083 | JITDUMP("Lower succesfully detected an assignment of the form: *addrMode = UnaryOp(*addrMode)\n" ); |
| 2084 | } |
| 2085 | DISPTREERANGE(BlockRange(), storeInd); |
| 2086 | |
| 2087 | indirSrc->SetContained(); |
| 2088 | indirCandidate->SetContained(); |
| 2089 | |
| 2090 | GenTree* indirCandidateChild = indirCandidate->gtGetOp1(); |
| 2091 | indirCandidateChild->SetContained(); |
| 2092 | |
| 2093 | if (indirCandidateChild->OperGet() == GT_LEA) |
| 2094 | { |
| 2095 | GenTreeAddrMode* addrMode = indirCandidateChild->AsAddrMode(); |
| 2096 | |
| 2097 | if (addrMode->HasBase()) |
| 2098 | { |
| 2099 | assert(addrMode->Base()->OperIsLeaf()); |
| 2100 | addrMode->Base()->SetContained(); |
| 2101 | } |
| 2102 | |
| 2103 | if (addrMode->HasIndex()) |
| 2104 | { |
| 2105 | assert(addrMode->Index()->OperIsLeaf()); |
| 2106 | addrMode->Index()->SetContained(); |
| 2107 | } |
| 2108 | |
| 2109 | indirDst->SetContained(); |
| 2110 | } |
| 2111 | else |
| 2112 | { |
| 2113 | assert(indirCandidateChild->OperGet() == GT_LCL_VAR || indirCandidateChild->OperGet() == GT_LCL_VAR_ADDR || |
| 2114 | indirCandidateChild->OperGet() == GT_CLS_VAR_ADDR || indirCandidateChild->OperGet() == GT_CNS_INT); |
| 2115 | |
| 2116 | // If it is a GT_LCL_VAR, it still needs the reg to hold the address. |
| 2117 | // We would still need a reg for GT_CNS_INT if it doesn't fit within addressing mode base. |
| 2118 | // For GT_CLS_VAR_ADDR, we don't need a reg to hold the address, because field address value is known at jit |
| 2119 | // time. Also, we don't need a reg for GT_CLS_VAR_ADDR. |
| 2120 | if (indirCandidateChild->OperGet() == GT_LCL_VAR_ADDR || indirCandidateChild->OperGet() == GT_CLS_VAR_ADDR) |
| 2121 | { |
| 2122 | indirDst->SetContained(); |
| 2123 | } |
| 2124 | else if (indirCandidateChild->IsCnsIntOrI() && indirCandidateChild->AsIntConCommon()->FitsInAddrBase(comp)) |
| 2125 | { |
| 2126 | indirDst->SetContained(); |
| 2127 | } |
| 2128 | } |
| 2129 | return true; |
| 2130 | } |
| 2131 | |
| 2132 | //------------------------------------------------------------------------ |
| 2133 | // ContainCheckBinary: Determine whether a binary op's operands should be contained. |
| 2134 | // |
| 2135 | // Arguments: |
| 2136 | // node - the node we care about |
| 2137 | // |
| 2138 | void Lowering::ContainCheckBinary(GenTreeOp* node) |
| 2139 | { |
| 2140 | assert(node->OperIsBinary()); |
| 2141 | |
| 2142 | if (varTypeIsFloating(node)) |
| 2143 | { |
| 2144 | assert(node->OperIs(GT_ADD, GT_SUB)); |
| 2145 | ContainCheckFloatBinary(node); |
| 2146 | return; |
| 2147 | } |
| 2148 | |
| 2149 | GenTree* op1 = node->gtOp1; |
| 2150 | GenTree* op2 = node->gtOp2; |
| 2151 | |
| 2152 | // We can directly encode the second operand if it is either a containable constant or a memory-op. |
| 2153 | // In case of memory-op, we can encode it directly provided its type matches with 'tree' type. |
| 2154 | // This is because during codegen, type of 'tree' is used to determine emit Type size. If the types |
| 2155 | // do not match, they get normalized (i.e. sign/zero extended) on load into a register. |
| 2156 | bool directlyEncodable = false; |
| 2157 | bool binOpInRMW = false; |
| 2158 | GenTree* operand = nullptr; |
| 2159 | bool isSafeToContainOp1 = true; |
| 2160 | bool isSafeToContainOp2 = true; |
| 2161 | |
| 2162 | if (IsContainableImmed(node, op2)) |
| 2163 | { |
| 2164 | directlyEncodable = true; |
| 2165 | operand = op2; |
| 2166 | } |
| 2167 | else |
| 2168 | { |
| 2169 | binOpInRMW = IsBinOpInRMWStoreInd(node); |
| 2170 | if (!binOpInRMW) |
| 2171 | { |
| 2172 | const unsigned operatorSize = genTypeSize(node->TypeGet()); |
| 2173 | if ((genTypeSize(op2->TypeGet()) == operatorSize) && IsContainableMemoryOp(op2)) |
| 2174 | { |
| 2175 | isSafeToContainOp2 = IsSafeToContainMem(node, op2); |
| 2176 | if (isSafeToContainOp2) |
| 2177 | { |
| 2178 | directlyEncodable = true; |
| 2179 | operand = op2; |
| 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | if ((operand == nullptr) && node->OperIsCommutative()) |
| 2184 | { |
| 2185 | // If it is safe, we can reverse the order of operands of commutative operations for efficient |
| 2186 | // codegen |
| 2187 | if (IsContainableImmed(node, op1)) |
| 2188 | { |
| 2189 | directlyEncodable = true; |
| 2190 | operand = op1; |
| 2191 | } |
| 2192 | else if ((genTypeSize(op1->TypeGet()) == operatorSize) && IsContainableMemoryOp(op1)) |
| 2193 | { |
| 2194 | isSafeToContainOp1 = IsSafeToContainMem(node, op1); |
| 2195 | if (isSafeToContainOp1) |
| 2196 | { |
| 2197 | directlyEncodable = true; |
| 2198 | operand = op1; |
| 2199 | } |
| 2200 | } |
| 2201 | } |
| 2202 | } |
| 2203 | } |
| 2204 | |
| 2205 | if (directlyEncodable) |
| 2206 | { |
| 2207 | assert(operand != nullptr); |
| 2208 | MakeSrcContained(node, operand); |
| 2209 | } |
| 2210 | else if (!binOpInRMW) |
| 2211 | { |
| 2212 | // If this binary op neither has contained operands, nor is a |
| 2213 | // Read-Modify-Write (RMW) operation, we can mark its operands |
| 2214 | // as reg optional. |
| 2215 | |
| 2216 | // IsSafeToContainMem is expensive so we call it at most once for each operand |
| 2217 | // in this method. If we already called IsSafeToContainMem, it must have returned false; |
| 2218 | // otherwise, directlyEncodable would be true. |
| 2219 | isSafeToContainOp1 = isSafeToContainOp1 && IsSafeToContainMem(node, op1); |
| 2220 | isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2); |
| 2221 | |
| 2222 | SetRegOptionalForBinOp(node, isSafeToContainOp1, isSafeToContainOp2); |
| 2223 | } |
| 2224 | } |
| 2225 | |
| 2226 | //------------------------------------------------------------------------ |
| 2227 | // ContainCheckBoundsChk: determine whether any source of a bounds check node should be contained. |
| 2228 | // |
| 2229 | // Arguments: |
| 2230 | // node - pointer to the node |
| 2231 | // |
| 2232 | void Lowering::ContainCheckBoundsChk(GenTreeBoundsChk* node) |
| 2233 | { |
| 2234 | assert(node->OperIsBoundsCheck()); |
| 2235 | GenTree* other; |
| 2236 | if (CheckImmedAndMakeContained(node, node->gtIndex)) |
| 2237 | { |
| 2238 | other = node->gtArrLen; |
| 2239 | } |
| 2240 | else if (CheckImmedAndMakeContained(node, node->gtArrLen)) |
| 2241 | { |
| 2242 | other = node->gtIndex; |
| 2243 | } |
| 2244 | else if (IsContainableMemoryOp(node->gtIndex)) |
| 2245 | { |
| 2246 | other = node->gtIndex; |
| 2247 | } |
| 2248 | else |
| 2249 | { |
| 2250 | other = node->gtArrLen; |
| 2251 | } |
| 2252 | |
| 2253 | if (node->gtIndex->TypeGet() == node->gtArrLen->TypeGet()) |
| 2254 | { |
| 2255 | if (IsContainableMemoryOp(other)) |
| 2256 | { |
| 2257 | MakeSrcContained(node, other); |
| 2258 | } |
| 2259 | else |
| 2260 | { |
| 2261 | // We can mark 'other' as reg optional, since it is not contained. |
| 2262 | other->SetRegOptional(); |
| 2263 | } |
| 2264 | } |
| 2265 | } |
| 2266 | |
| 2267 | //------------------------------------------------------------------------ |
| 2268 | // ContainCheckIntrinsic: determine whether the source of an INTRINSIC node should be contained. |
| 2269 | // |
| 2270 | // Arguments: |
| 2271 | // node - pointer to the node |
| 2272 | // |
| 2273 | void Lowering::ContainCheckIntrinsic(GenTreeOp* node) |
| 2274 | { |
| 2275 | assert(node->OperIs(GT_INTRINSIC)); |
| 2276 | |
| 2277 | CorInfoIntrinsics intrinsicId = node->gtIntrinsic.gtIntrinsicId; |
| 2278 | |
| 2279 | if (intrinsicId == CORINFO_INTRINSIC_Sqrt || intrinsicId == CORINFO_INTRINSIC_Round || |
| 2280 | intrinsicId == CORINFO_INTRINSIC_Ceiling || intrinsicId == CORINFO_INTRINSIC_Floor) |
| 2281 | { |
| 2282 | GenTree* op1 = node->gtGetOp1(); |
| 2283 | if (IsContainableMemoryOp(op1) || op1->IsCnsNonZeroFltOrDbl()) |
| 2284 | { |
| 2285 | MakeSrcContained(node, op1); |
| 2286 | } |
| 2287 | else |
| 2288 | { |
| 2289 | // Mark the operand as reg optional since codegen can still |
| 2290 | // generate code if op1 is on stack. |
| 2291 | op1->SetRegOptional(); |
| 2292 | } |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | #ifdef FEATURE_SIMD |
| 2297 | //---------------------------------------------------------------------------------------------- |
| 2298 | // ContainCheckSIMD: Perform containment analysis for a SIMD intrinsic node. |
| 2299 | // |
| 2300 | // Arguments: |
| 2301 | // simdNode - The SIMD intrinsic node. |
| 2302 | // |
| 2303 | void Lowering::ContainCheckSIMD(GenTreeSIMD* simdNode) |
| 2304 | { |
| 2305 | switch (simdNode->gtSIMDIntrinsicID) |
| 2306 | { |
| 2307 | GenTree* op1; |
| 2308 | GenTree* op2; |
| 2309 | |
| 2310 | case SIMDIntrinsicInit: |
| 2311 | { |
| 2312 | op1 = simdNode->gtOp.gtOp1; |
| 2313 | #ifndef _TARGET_64BIT_ |
| 2314 | if (op1->OperGet() == GT_LONG) |
| 2315 | { |
| 2316 | MakeSrcContained(simdNode, op1); |
| 2317 | GenTree* op1lo = op1->gtGetOp1(); |
| 2318 | GenTree* op1hi = op1->gtGetOp2(); |
| 2319 | |
| 2320 | if ((op1lo->IsIntegralConst(0) && op1hi->IsIntegralConst(0)) || |
| 2321 | (op1lo->IsIntegralConst(-1) && op1hi->IsIntegralConst(-1))) |
| 2322 | { |
| 2323 | MakeSrcContained(op1, op1lo); |
| 2324 | MakeSrcContained(op1, op1hi); |
| 2325 | } |
| 2326 | } |
| 2327 | else |
| 2328 | #endif // !_TARGET_64BIT_ |
| 2329 | if (op1->IsFPZero() || op1->IsIntegralConst(0) || |
| 2330 | (varTypeIsIntegral(simdNode->gtSIMDBaseType) && op1->IsIntegralConst(-1))) |
| 2331 | { |
| 2332 | MakeSrcContained(simdNode, op1); |
| 2333 | } |
| 2334 | else if ((comp->getSIMDSupportLevel() == SIMD_AVX2_Supported) && |
| 2335 | ((simdNode->gtSIMDSize == 16) || (simdNode->gtSIMDSize == 32))) |
| 2336 | { |
| 2337 | // Either op1 is a float or dbl constant or an addr |
| 2338 | if (op1->IsCnsFltOrDbl() || op1->OperIsLocalAddr()) |
| 2339 | { |
| 2340 | MakeSrcContained(simdNode, op1); |
| 2341 | } |
| 2342 | } |
| 2343 | } |
| 2344 | break; |
| 2345 | |
| 2346 | case SIMDIntrinsicInitArray: |
| 2347 | // We have an array and an index, which may be contained. |
| 2348 | CheckImmedAndMakeContained(simdNode, simdNode->gtGetOp2()); |
| 2349 | break; |
| 2350 | |
| 2351 | case SIMDIntrinsicOpEquality: |
| 2352 | case SIMDIntrinsicOpInEquality: |
| 2353 | // On SSE4/AVX, we can generate optimal code for (in)equality |
| 2354 | // against zero using ptest. We can safely do this optimization |
| 2355 | // for integral vectors but not for floating-point for the reason |
| 2356 | // that we have +0.0 and -0.0 and +0.0 == -0.0 |
| 2357 | op2 = simdNode->gtGetOp2(); |
| 2358 | if ((comp->getSIMDSupportLevel() >= SIMD_SSE4_Supported) && op2->IsIntegralConstVector(0)) |
| 2359 | { |
| 2360 | MakeSrcContained(simdNode, op2); |
| 2361 | } |
| 2362 | break; |
| 2363 | |
| 2364 | case SIMDIntrinsicGetItem: |
| 2365 | { |
| 2366 | // This implements get_Item method. The sources are: |
| 2367 | // - the source SIMD struct |
| 2368 | // - index (which element to get) |
| 2369 | // The result is baseType of SIMD struct. |
| 2370 | op1 = simdNode->gtOp.gtOp1; |
| 2371 | op2 = simdNode->gtOp.gtOp2; |
| 2372 | |
| 2373 | if (op1->OperGet() == GT_IND) |
| 2374 | { |
| 2375 | assert((op1->gtFlags & GTF_IND_REQ_ADDR_IN_REG) != 0); |
| 2376 | op1->AsIndir()->Addr()->ClearContained(); |
| 2377 | } |
| 2378 | // If the index is a constant, mark it as contained. |
| 2379 | CheckImmedAndMakeContained(simdNode, op2); |
| 2380 | |
| 2381 | if (IsContainableMemoryOp(op1)) |
| 2382 | { |
| 2383 | MakeSrcContained(simdNode, op1); |
| 2384 | if (op1->OperGet() == GT_IND) |
| 2385 | { |
| 2386 | op1->AsIndir()->Addr()->ClearContained(); |
| 2387 | } |
| 2388 | } |
| 2389 | } |
| 2390 | break; |
| 2391 | |
| 2392 | case SIMDIntrinsicShuffleSSE2: |
| 2393 | // Second operand is an integer constant and marked as contained. |
| 2394 | assert(simdNode->gtOp.gtOp2->IsCnsIntOrI()); |
| 2395 | MakeSrcContained(simdNode, simdNode->gtOp.gtOp2); |
| 2396 | break; |
| 2397 | |
| 2398 | default: |
| 2399 | break; |
| 2400 | } |
| 2401 | } |
| 2402 | #endif // FEATURE_SIMD |
| 2403 | |
| 2404 | #ifdef FEATURE_HW_INTRINSICS |
| 2405 | //---------------------------------------------------------------------------------------------- |
| 2406 | // IsContainableHWIntrinsicOp: Return true if 'node' is a containable HWIntrinsic op. |
| 2407 | // |
| 2408 | // Arguments: |
| 2409 | // containingNode - The hardware intrinsic node which contains 'node' |
| 2410 | // node - The node to check |
| 2411 | // [Out] supportsRegOptional - On return, this will be true if 'containingNode' supports regOptional operands; |
| 2412 | // otherwise, false. |
| 2413 | // |
| 2414 | // Return Value: |
| 2415 | // true if 'node' is a containable hardware intrinsic node; otherwise, false. |
| 2416 | // |
| 2417 | bool Lowering::IsContainableHWIntrinsicOp(GenTreeHWIntrinsic* containingNode, GenTree* node, bool* supportsRegOptional) |
| 2418 | { |
| 2419 | NamedIntrinsic containingIntrinsicId = containingNode->gtHWIntrinsicId; |
| 2420 | HWIntrinsicCategory category = HWIntrinsicInfo::lookupCategory(containingIntrinsicId); |
| 2421 | |
| 2422 | // We shouldn't have called in here if containingNode doesn't support containment |
| 2423 | assert(HWIntrinsicInfo::SupportsContainment(containingIntrinsicId)); |
| 2424 | |
| 2425 | // containingNode supports nodes that read from an aligned memory address |
| 2426 | // |
| 2427 | // This will generally be an explicit LoadAligned instruction and is generally |
| 2428 | // false for machines with VEX support. This is because there is currently no way |
| 2429 | // to guarantee that the address read from will always be aligned and we could silently |
| 2430 | // change the behavior of the program in the case where an Access Violation would have |
| 2431 | // otherwise occurred. |
| 2432 | bool supportsAlignedSIMDLoads = false; |
| 2433 | |
| 2434 | // containingNode supports nodes that read from general memory |
| 2435 | // |
| 2436 | // We currently have to assume all "general" loads are unaligned. As such, this is |
| 2437 | // generally used to determine if we can mark the node as `regOptional` in the case |
| 2438 | // where `node` is not containable. However, this can also be used to determine whether |
| 2439 | // we can mark other types of reads as contained (such as when directly reading a local). |
| 2440 | bool supportsGeneralLoads = false; |
| 2441 | |
| 2442 | // containingNode supports nodes that read from a scalar memory address |
| 2443 | // |
| 2444 | // This will generally be an explicit LoadScalar instruction but is also used to determine |
| 2445 | // whether we can read an address of type T (we don't support this when the load would |
| 2446 | // read more than sizeof(T) bytes). |
| 2447 | bool supportsSIMDScalarLoads = false; |
| 2448 | |
| 2449 | // containingNode supports nodes that read from an unaligned memory address |
| 2450 | // |
| 2451 | // This will generally be an explicit Load instruction and is generally false for machines |
| 2452 | // without VEX support. This is because older hardware required that the SIMD operand always |
| 2453 | // be aligned to the 'natural alignment' of the type. |
| 2454 | bool supportsUnalignedSIMDLoads = false; |
| 2455 | |
| 2456 | switch (category) |
| 2457 | { |
| 2458 | case HW_Category_SimpleSIMD: |
| 2459 | { |
| 2460 | // These intrinsics only expect 16 or 32-byte nodes for containment |
| 2461 | assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32)); |
| 2462 | assert(supportsSIMDScalarLoads == false); |
| 2463 | |
| 2464 | supportsAlignedSIMDLoads = |
| 2465 | !comp->canUseVexEncoding() && (containingIntrinsicId != NI_SSE2_ConvertToVector128Double); |
| 2466 | supportsUnalignedSIMDLoads = !supportsAlignedSIMDLoads; |
| 2467 | supportsGeneralLoads = supportsUnalignedSIMDLoads; |
| 2468 | |
| 2469 | break; |
| 2470 | } |
| 2471 | |
| 2472 | case HW_Category_IMM: |
| 2473 | { |
| 2474 | switch (containingIntrinsicId) |
| 2475 | { |
| 2476 | case NI_SSE_Shuffle: |
| 2477 | case NI_SSE2_CompareLessThan: |
| 2478 | case NI_SSE2_ShiftLeftLogical: |
| 2479 | case NI_SSE2_ShiftRightArithmetic: |
| 2480 | case NI_SSE2_ShiftRightLogical: |
| 2481 | case NI_SSE2_Shuffle: |
| 2482 | case NI_SSE2_ShuffleHigh: |
| 2483 | case NI_SSE2_ShuffleLow: |
| 2484 | case NI_SSSE3_AlignRight: |
| 2485 | case NI_SSE41_Blend: |
| 2486 | case NI_SSE41_DotProduct: |
| 2487 | case NI_SSE41_MultipleSumAbsoluteDifferences: |
| 2488 | case NI_AES_KeygenAssist: |
| 2489 | case NI_PCLMULQDQ_CarrylessMultiply: |
| 2490 | case NI_AVX_Blend: |
| 2491 | case NI_AVX_Compare: |
| 2492 | case NI_AVX_DotProduct: |
| 2493 | case NI_AVX_InsertVector128: |
| 2494 | case NI_AVX_Permute: |
| 2495 | case NI_AVX_Permute2x128: |
| 2496 | case NI_AVX2_Blend: |
| 2497 | case NI_AVX2_InsertVector128: |
| 2498 | case NI_AVX2_MultipleSumAbsoluteDifferences: |
| 2499 | case NI_AVX2_Permute2x128: |
| 2500 | case NI_AVX2_Permute4x64: |
| 2501 | case NI_AVX2_ShiftLeftLogical: |
| 2502 | case NI_AVX2_ShiftRightArithmetic: |
| 2503 | case NI_AVX2_ShiftRightLogical: |
| 2504 | case NI_AVX2_ShuffleHigh: |
| 2505 | case NI_AVX2_ShuffleLow: |
| 2506 | { |
| 2507 | // These intrinsics only expect 16 or 32-byte nodes for containment |
| 2508 | assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32)); |
| 2509 | assert(supportsSIMDScalarLoads == false); |
| 2510 | |
| 2511 | supportsAlignedSIMDLoads = !comp->canUseVexEncoding(); |
| 2512 | supportsUnalignedSIMDLoads = !supportsAlignedSIMDLoads; |
| 2513 | supportsGeneralLoads = supportsUnalignedSIMDLoads; |
| 2514 | |
| 2515 | break; |
| 2516 | } |
| 2517 | |
| 2518 | case NI_SSE2_Insert: |
| 2519 | case NI_SSE41_Insert: |
| 2520 | case NI_SSE41_X64_Insert: |
| 2521 | { |
| 2522 | if (containingNode->gtSIMDBaseType == TYP_FLOAT) |
| 2523 | { |
| 2524 | assert(containingIntrinsicId == NI_SSE41_Insert); |
| 2525 | assert(genTypeSize(node->TypeGet()) == 16); |
| 2526 | |
| 2527 | // Sse41.Insert(V128<float>, V128<float>, byte) is a bit special |
| 2528 | // in that it has different behavior depending on whether the |
| 2529 | // second operand is coming from a register or memory. When coming |
| 2530 | // from a register, all 4 elements of the vector can be used and it |
| 2531 | // is effectively a regular `SimpleSIMD` operation; but when loading |
| 2532 | // from memory, it only works with the lowest element and is effectively |
| 2533 | // a `SIMDScalar`. |
| 2534 | |
| 2535 | assert(supportsAlignedSIMDLoads == false); |
| 2536 | assert(supportsUnalignedSIMDLoads == false); |
| 2537 | assert(supportsGeneralLoads == false); |
| 2538 | assert(supportsSIMDScalarLoads == false); |
| 2539 | |
| 2540 | GenTree* op1 = containingNode->gtGetOp1(); |
| 2541 | GenTree* op2 = nullptr; |
| 2542 | GenTree* op3 = nullptr; |
| 2543 | |
| 2544 | assert(op1->OperIsList()); |
| 2545 | assert(containingNode->gtGetOp2() == nullptr); |
| 2546 | |
| 2547 | GenTreeArgList* argList = op1->AsArgList(); |
| 2548 | |
| 2549 | op1 = argList->Current(); |
| 2550 | argList = argList->Rest(); |
| 2551 | |
| 2552 | op2 = argList->Current(); |
| 2553 | argList = argList->Rest(); |
| 2554 | |
| 2555 | assert(node == op2); |
| 2556 | |
| 2557 | op3 = argList->Current(); |
| 2558 | |
| 2559 | // The upper two bits of the immediate value are ignored if |
| 2560 | // op2 comes from memory. In order to support using the upper |
| 2561 | // bits, we need to disable containment support if op3 is not |
| 2562 | // constant or if the constant is greater than 0x3F (which means |
| 2563 | // at least one of the upper two bits is set). |
| 2564 | |
| 2565 | if (op3->IsCnsIntOrI()) |
| 2566 | { |
| 2567 | ssize_t ival = op3->AsIntCon()->IconValue(); |
| 2568 | assert((ival >= 0) && (ival <= 255)); |
| 2569 | |
| 2570 | supportsSIMDScalarLoads = (ival <= 0x3F); |
| 2571 | supportsGeneralLoads = supportsSIMDScalarLoads; |
| 2572 | } |
| 2573 | break; |
| 2574 | } |
| 2575 | |
| 2576 | // We should only get here for integral nodes. |
| 2577 | assert(varTypeIsIntegral(node->TypeGet())); |
| 2578 | |
| 2579 | assert(supportsAlignedSIMDLoads == false); |
| 2580 | assert(supportsUnalignedSIMDLoads == false); |
| 2581 | assert(supportsSIMDScalarLoads == false); |
| 2582 | |
| 2583 | const unsigned expectedSize = genTypeSize(containingNode->gtSIMDBaseType); |
| 2584 | const unsigned operandSize = genTypeSize(node->TypeGet()); |
| 2585 | |
| 2586 | supportsGeneralLoads = (operandSize >= expectedSize); |
| 2587 | break; |
| 2588 | } |
| 2589 | |
| 2590 | case NI_AVX_CompareScalar: |
| 2591 | { |
| 2592 | // These intrinsics only expect 16 or 32-byte nodes for containment |
| 2593 | assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32)); |
| 2594 | |
| 2595 | assert(supportsAlignedSIMDLoads == false); |
| 2596 | assert(supportsUnalignedSIMDLoads == false); |
| 2597 | |
| 2598 | supportsSIMDScalarLoads = true; |
| 2599 | supportsGeneralLoads = supportsSIMDScalarLoads; |
| 2600 | break; |
| 2601 | } |
| 2602 | |
| 2603 | default: |
| 2604 | { |
| 2605 | assert(supportsAlignedSIMDLoads == false); |
| 2606 | assert(supportsGeneralLoads == false); |
| 2607 | assert(supportsSIMDScalarLoads == false); |
| 2608 | assert(supportsUnalignedSIMDLoads == false); |
| 2609 | break; |
| 2610 | } |
| 2611 | } |
| 2612 | break; |
| 2613 | } |
| 2614 | |
| 2615 | case HW_Category_SIMDScalar: |
| 2616 | { |
| 2617 | assert(supportsAlignedSIMDLoads == false); |
| 2618 | assert(supportsUnalignedSIMDLoads == false); |
| 2619 | |
| 2620 | switch (containingIntrinsicId) |
| 2621 | { |
| 2622 | case NI_Base_Vector128_CreateScalarUnsafe: |
| 2623 | case NI_Base_Vector256_CreateScalarUnsafe: |
| 2624 | { |
| 2625 | assert(supportsSIMDScalarLoads == false); |
| 2626 | |
| 2627 | const unsigned expectedSize = genTypeSize(genActualType(containingNode->gtSIMDBaseType)); |
| 2628 | const unsigned operandSize = genTypeSize(node->TypeGet()); |
| 2629 | |
| 2630 | supportsGeneralLoads = (operandSize == expectedSize); |
| 2631 | break; |
| 2632 | } |
| 2633 | |
| 2634 | case NI_SSE_ConvertScalarToVector128Single: |
| 2635 | case NI_SSE2_ConvertScalarToVector128Double: |
| 2636 | case NI_SSE2_ConvertScalarToVector128Int32: |
| 2637 | case NI_SSE2_ConvertScalarToVector128UInt32: |
| 2638 | case NI_SSE_X64_ConvertScalarToVector128Single: |
| 2639 | case NI_SSE2_X64_ConvertScalarToVector128Double: |
| 2640 | case NI_SSE2_X64_ConvertScalarToVector128Int64: |
| 2641 | case NI_SSE2_X64_ConvertScalarToVector128UInt64: |
| 2642 | { |
| 2643 | if (!varTypeIsIntegral(node->TypeGet())) |
| 2644 | { |
| 2645 | // The floating-point overload doesn't require any special semantics |
| 2646 | assert(containingIntrinsicId == NI_SSE2_ConvertScalarToVector128Double); |
| 2647 | supportsSIMDScalarLoads = true; |
| 2648 | supportsGeneralLoads = supportsSIMDScalarLoads; |
| 2649 | break; |
| 2650 | } |
| 2651 | |
| 2652 | assert(supportsSIMDScalarLoads == false); |
| 2653 | |
| 2654 | const unsigned expectedSize = genTypeSize(genActualType(containingNode->gtSIMDBaseType)); |
| 2655 | const unsigned operandSize = genTypeSize(node->TypeGet()); |
| 2656 | |
| 2657 | supportsGeneralLoads = (operandSize == expectedSize); |
| 2658 | break; |
| 2659 | } |
| 2660 | |
| 2661 | default: |
| 2662 | { |
| 2663 | // These intrinsics only expect 16 or 32-byte nodes for containment |
| 2664 | assert((genTypeSize(node->TypeGet()) == 16) || (genTypeSize(node->TypeGet()) == 32)); |
| 2665 | |
| 2666 | supportsSIMDScalarLoads = true; |
| 2667 | supportsGeneralLoads = supportsSIMDScalarLoads; |
| 2668 | break; |
| 2669 | } |
| 2670 | } |
| 2671 | break; |
| 2672 | } |
| 2673 | |
| 2674 | case HW_Category_Scalar: |
| 2675 | { |
| 2676 | // We should only get here for integral nodes. |
| 2677 | assert(varTypeIsIntegral(node->TypeGet())); |
| 2678 | |
| 2679 | assert(supportsAlignedSIMDLoads == false); |
| 2680 | assert(supportsUnalignedSIMDLoads == false); |
| 2681 | assert(supportsSIMDScalarLoads == false); |
| 2682 | |
| 2683 | const unsigned expectedSize = genTypeSize(containingNode->TypeGet()); |
| 2684 | const unsigned operandSize = genTypeSize(node->TypeGet()); |
| 2685 | |
| 2686 | supportsGeneralLoads = (operandSize >= expectedSize); |
| 2687 | break; |
| 2688 | } |
| 2689 | |
| 2690 | default: |
| 2691 | { |
| 2692 | assert(supportsAlignedSIMDLoads == false); |
| 2693 | assert(supportsGeneralLoads == false); |
| 2694 | assert(supportsSIMDScalarLoads == false); |
| 2695 | assert(supportsUnalignedSIMDLoads == false); |
| 2696 | break; |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | noway_assert(supportsRegOptional != nullptr); |
| 2701 | *supportsRegOptional = supportsGeneralLoads; |
| 2702 | |
| 2703 | if (!node->OperIsHWIntrinsic()) |
| 2704 | { |
| 2705 | return supportsGeneralLoads && IsContainableMemoryOp(node); |
| 2706 | } |
| 2707 | |
| 2708 | // TODO-XArch: Update this to be table driven, if possible. |
| 2709 | |
| 2710 | NamedIntrinsic intrinsicId = node->AsHWIntrinsic()->gtHWIntrinsicId; |
| 2711 | |
| 2712 | switch (intrinsicId) |
| 2713 | { |
| 2714 | case NI_SSE_LoadAlignedVector128: |
| 2715 | case NI_SSE2_LoadAlignedVector128: |
| 2716 | case NI_AVX_LoadAlignedVector256: |
| 2717 | { |
| 2718 | return supportsAlignedSIMDLoads; |
| 2719 | } |
| 2720 | |
| 2721 | case NI_SSE_LoadScalarVector128: |
| 2722 | case NI_SSE2_LoadScalarVector128: |
| 2723 | { |
| 2724 | return supportsSIMDScalarLoads; |
| 2725 | } |
| 2726 | |
| 2727 | // VEX encoding supports unaligned memory ops, so we can fold them |
| 2728 | case NI_SSE_LoadVector128: |
| 2729 | case NI_SSE2_LoadVector128: |
| 2730 | case NI_AVX_LoadVector256: |
| 2731 | { |
| 2732 | return supportsUnalignedSIMDLoads; |
| 2733 | } |
| 2734 | |
| 2735 | default: |
| 2736 | { |
| 2737 | assert(!node->isContainableHWIntrinsic()); |
| 2738 | return false; |
| 2739 | } |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | //---------------------------------------------------------------------------------------------- |
| 2744 | // ContainCheckHWIntrinsic: Perform containment analysis for a hardware intrinsic node. |
| 2745 | // |
| 2746 | // Arguments: |
| 2747 | // node - The hardware intrinsic node. |
| 2748 | // |
| 2749 | void Lowering::ContainCheckHWIntrinsic(GenTreeHWIntrinsic* node) |
| 2750 | { |
| 2751 | NamedIntrinsic intrinsicId = node->gtHWIntrinsicId; |
| 2752 | HWIntrinsicCategory category = HWIntrinsicInfo::lookupCategory(intrinsicId); |
| 2753 | int numArgs = HWIntrinsicInfo::lookupNumArgs(node); |
| 2754 | var_types baseType = node->gtSIMDBaseType; |
| 2755 | |
| 2756 | GenTree* op1 = node->gtGetOp1(); |
| 2757 | GenTree* op2 = node->gtGetOp2(); |
| 2758 | GenTree* op3 = nullptr; |
| 2759 | |
| 2760 | if (!HWIntrinsicInfo::SupportsContainment(intrinsicId)) |
| 2761 | { |
| 2762 | // AVX2 gather are not contaibable and always have constant IMM argument |
| 2763 | if (HWIntrinsicInfo::isAVX2GatherIntrinsic(intrinsicId)) |
| 2764 | { |
| 2765 | GenTree* lastOp = HWIntrinsicInfo::lookupLastOp(node); |
| 2766 | assert(lastOp != nullptr); |
| 2767 | MakeSrcContained(node, lastOp); |
| 2768 | } |
| 2769 | // Exit early if containment isn't supported |
| 2770 | return; |
| 2771 | } |
| 2772 | |
| 2773 | // TODO-XArch-CQ: Non-VEX encoded instructions can have both ops contained |
| 2774 | |
| 2775 | const bool isCommutative = HWIntrinsicInfo::IsCommutative(intrinsicId); |
| 2776 | |
| 2777 | if (numArgs == 1) |
| 2778 | { |
| 2779 | // One argument intrinsics cannot be commutative |
| 2780 | assert(!isCommutative); |
| 2781 | |
| 2782 | assert(!op1->OperIsList()); |
| 2783 | assert(op2 == nullptr); |
| 2784 | |
| 2785 | switch (category) |
| 2786 | { |
| 2787 | case HW_Category_SimpleSIMD: |
| 2788 | case HW_Category_SIMDScalar: |
| 2789 | case HW_Category_Scalar: |
| 2790 | { |
| 2791 | switch (intrinsicId) |
| 2792 | { |
| 2793 | case NI_SSE_ReciprocalScalar: |
| 2794 | case NI_SSE_ReciprocalSqrtScalar: |
| 2795 | case NI_SSE_SqrtScalar: |
| 2796 | case NI_SSE2_SqrtScalar: |
| 2797 | case NI_SSE41_CeilingScalar: |
| 2798 | case NI_SSE41_FloorScalar: |
| 2799 | case NI_SSE41_RoundCurrentDirectionScalar: |
| 2800 | case NI_SSE41_RoundToNearestIntegerScalar: |
| 2801 | case NI_SSE41_RoundToNegativeInfinityScalar: |
| 2802 | case NI_SSE41_RoundToPositiveInfinityScalar: |
| 2803 | case NI_SSE41_RoundToZeroScalar: |
| 2804 | { |
| 2805 | // These intrinsics have both 1 and 2-operand overloads. |
| 2806 | // |
| 2807 | // The 1-operand overload basically does `intrinsic(op1, op1)` |
| 2808 | // |
| 2809 | // Because of this, the operand must be loaded into a register |
| 2810 | // and cannot be contained. |
| 2811 | return; |
| 2812 | } |
| 2813 | |
| 2814 | case NI_SSE2_ConvertToInt32: |
| 2815 | case NI_SSE2_X64_ConvertToInt64: |
| 2816 | case NI_SSE2_ConvertToUInt32: |
| 2817 | case NI_SSE2_X64_ConvertToUInt64: |
| 2818 | case NI_AVX2_ConvertToInt32: |
| 2819 | case NI_AVX2_ConvertToUInt32: |
| 2820 | { |
| 2821 | if (varTypeIsIntegral(baseType)) |
| 2822 | { |
| 2823 | // These intrinsics are "ins reg/mem, xmm" and don't |
| 2824 | // currently support containment. |
| 2825 | return; |
| 2826 | } |
| 2827 | |
| 2828 | break; |
| 2829 | } |
| 2830 | |
| 2831 | default: |
| 2832 | { |
| 2833 | break; |
| 2834 | } |
| 2835 | } |
| 2836 | |
| 2837 | bool supportsRegOptional = false; |
| 2838 | |
| 2839 | if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 2840 | { |
| 2841 | MakeSrcContained(node, op1); |
| 2842 | } |
| 2843 | else if (supportsRegOptional) |
| 2844 | { |
| 2845 | op1->SetRegOptional(); |
| 2846 | } |
| 2847 | break; |
| 2848 | } |
| 2849 | |
| 2850 | default: |
| 2851 | { |
| 2852 | unreached(); |
| 2853 | break; |
| 2854 | } |
| 2855 | } |
| 2856 | } |
| 2857 | else |
| 2858 | { |
| 2859 | if (numArgs == 2) |
| 2860 | { |
| 2861 | assert(!op1->OperIsList()); |
| 2862 | assert(op2 != nullptr); |
| 2863 | assert(!op2->OperIsList()); |
| 2864 | |
| 2865 | switch (category) |
| 2866 | { |
| 2867 | case HW_Category_SimpleSIMD: |
| 2868 | case HW_Category_SIMDScalar: |
| 2869 | case HW_Category_Scalar: |
| 2870 | { |
| 2871 | if (HWIntrinsicInfo::GeneratesMultipleIns(intrinsicId)) |
| 2872 | { |
| 2873 | switch (intrinsicId) |
| 2874 | { |
| 2875 | case NI_SSE_CompareLessThanOrderedScalar: |
| 2876 | case NI_SSE_CompareLessThanUnorderedScalar: |
| 2877 | case NI_SSE_CompareLessThanOrEqualOrderedScalar: |
| 2878 | case NI_SSE_CompareLessThanOrEqualUnorderedScalar: |
| 2879 | case NI_SSE2_CompareLessThanOrderedScalar: |
| 2880 | case NI_SSE2_CompareLessThanUnorderedScalar: |
| 2881 | case NI_SSE2_CompareLessThanOrEqualOrderedScalar: |
| 2882 | case NI_SSE2_CompareLessThanOrEqualUnorderedScalar: |
| 2883 | { |
| 2884 | // We need to swap the operands for CompareLessThanOrEqual |
| 2885 | node->gtOp1 = op2; |
| 2886 | node->gtOp2 = op1; |
| 2887 | op2 = op1; |
| 2888 | break; |
| 2889 | } |
| 2890 | |
| 2891 | default: |
| 2892 | { |
| 2893 | // TODO-XArch-CQ: The Compare*OrderedScalar and Compare*UnorderedScalar methods |
| 2894 | // are commutative if you also inverse the intrinsic. |
| 2895 | break; |
| 2896 | } |
| 2897 | } |
| 2898 | } |
| 2899 | |
| 2900 | bool supportsRegOptional = false; |
| 2901 | |
| 2902 | if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 2903 | { |
| 2904 | MakeSrcContained(node, op2); |
| 2905 | } |
| 2906 | else if ((isCommutative || (intrinsicId == NI_BMI2_MultiplyNoFlags) || |
| 2907 | (intrinsicId == NI_BMI2_X64_MultiplyNoFlags)) && |
| 2908 | IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 2909 | { |
| 2910 | MakeSrcContained(node, op1); |
| 2911 | |
| 2912 | // Swap the operands here to make the containment checks in codegen significantly simpler |
| 2913 | node->gtOp1 = op2; |
| 2914 | node->gtOp2 = op1; |
| 2915 | } |
| 2916 | else if (supportsRegOptional) |
| 2917 | { |
| 2918 | op2->SetRegOptional(); |
| 2919 | |
| 2920 | // TODO-XArch-CQ: For commutative nodes, either operand can be reg-optional. |
| 2921 | // https://github.com/dotnet/coreclr/issues/6361 |
| 2922 | } |
| 2923 | break; |
| 2924 | } |
| 2925 | |
| 2926 | case HW_Category_IMM: |
| 2927 | { |
| 2928 | // We don't currently have any IMM intrinsics which are also commutative |
| 2929 | assert(!isCommutative); |
| 2930 | bool supportsRegOptional = false; |
| 2931 | |
| 2932 | switch (intrinsicId) |
| 2933 | { |
| 2934 | case NI_SSE2_ShiftLeftLogical: |
| 2935 | case NI_SSE2_ShiftRightArithmetic: |
| 2936 | case NI_SSE2_ShiftRightLogical: |
| 2937 | case NI_AVX2_ShiftLeftLogical: |
| 2938 | case NI_AVX2_ShiftRightArithmetic: |
| 2939 | case NI_AVX2_ShiftRightLogical: |
| 2940 | { |
| 2941 | // These intrinsics can have op2 be imm or reg/mem |
| 2942 | |
| 2943 | if (!HWIntrinsicInfo::isImmOp(intrinsicId, op2)) |
| 2944 | { |
| 2945 | if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 2946 | { |
| 2947 | MakeSrcContained(node, op2); |
| 2948 | } |
| 2949 | else if (supportsRegOptional) |
| 2950 | { |
| 2951 | op2->SetRegOptional(); |
| 2952 | } |
| 2953 | } |
| 2954 | break; |
| 2955 | } |
| 2956 | |
| 2957 | case NI_SSE2_Shuffle: |
| 2958 | case NI_SSE2_ShuffleHigh: |
| 2959 | case NI_SSE2_ShuffleLow: |
| 2960 | case NI_AVX2_Permute4x64: |
| 2961 | { |
| 2962 | // These intrinsics have op2 as an imm and op1 as a reg/mem |
| 2963 | |
| 2964 | if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 2965 | { |
| 2966 | MakeSrcContained(node, op1); |
| 2967 | } |
| 2968 | else if (supportsRegOptional) |
| 2969 | { |
| 2970 | op1->SetRegOptional(); |
| 2971 | } |
| 2972 | break; |
| 2973 | } |
| 2974 | |
| 2975 | case NI_AVX_Permute: |
| 2976 | { |
| 2977 | // These intrinsics can have op2 be imm or reg/mem |
| 2978 | // They also can have op1 be reg/mem and op2 be imm |
| 2979 | |
| 2980 | if (HWIntrinsicInfo::isImmOp(intrinsicId, op2)) |
| 2981 | { |
| 2982 | if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 2983 | { |
| 2984 | MakeSrcContained(node, op1); |
| 2985 | } |
| 2986 | else if (supportsRegOptional) |
| 2987 | { |
| 2988 | op1->SetRegOptional(); |
| 2989 | } |
| 2990 | } |
| 2991 | else if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 2992 | { |
| 2993 | MakeSrcContained(node, op2); |
| 2994 | } |
| 2995 | else if (supportsRegOptional) |
| 2996 | { |
| 2997 | op2->SetRegOptional(); |
| 2998 | } |
| 2999 | break; |
| 3000 | } |
| 3001 | |
| 3002 | case NI_AES_KeygenAssist: |
| 3003 | { |
| 3004 | if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 3005 | { |
| 3006 | MakeSrcContained(node, op1); |
| 3007 | } |
| 3008 | else if (supportsRegOptional) |
| 3009 | { |
| 3010 | op1->SetRegOptional(); |
| 3011 | } |
| 3012 | break; |
| 3013 | } |
| 3014 | |
| 3015 | default: |
| 3016 | { |
| 3017 | break; |
| 3018 | } |
| 3019 | } |
| 3020 | |
| 3021 | break; |
| 3022 | } |
| 3023 | |
| 3024 | case HW_Category_Special: |
| 3025 | { |
| 3026 | if (intrinsicId == NI_SSE2_CompareLessThan) |
| 3027 | { |
| 3028 | bool supportsRegOptional = false; |
| 3029 | |
| 3030 | if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 3031 | { |
| 3032 | MakeSrcContained(node, op2); |
| 3033 | } |
| 3034 | else if (supportsRegOptional) |
| 3035 | { |
| 3036 | op2->SetRegOptional(); |
| 3037 | } |
| 3038 | } |
| 3039 | else |
| 3040 | { |
| 3041 | unreached(); |
| 3042 | } |
| 3043 | break; |
| 3044 | } |
| 3045 | |
| 3046 | default: |
| 3047 | { |
| 3048 | unreached(); |
| 3049 | break; |
| 3050 | } |
| 3051 | } |
| 3052 | } |
| 3053 | else if (numArgs == 3) |
| 3054 | { |
| 3055 | // three argument intrinsics should not be marked commutative |
| 3056 | assert(!isCommutative); |
| 3057 | |
| 3058 | assert(op1->OperIsList()); |
| 3059 | assert(op2 == nullptr); |
| 3060 | |
| 3061 | GenTreeArgList* argList = op1->AsArgList(); |
| 3062 | GenTreeArgList* originalArgList = argList; |
| 3063 | |
| 3064 | op1 = argList->Current(); |
| 3065 | argList = argList->Rest(); |
| 3066 | |
| 3067 | op2 = argList->Current(); |
| 3068 | argList = argList->Rest(); |
| 3069 | |
| 3070 | op3 = argList->Current(); |
| 3071 | assert(argList->Rest() == nullptr); |
| 3072 | |
| 3073 | switch (category) |
| 3074 | { |
| 3075 | case HW_Category_SimpleSIMD: |
| 3076 | case HW_Category_SIMDScalar: |
| 3077 | case HW_Category_Scalar: |
| 3078 | { |
| 3079 | if ((intrinsicId >= NI_FMA_MultiplyAdd) && (intrinsicId <= NI_FMA_MultiplySubtractNegatedScalar)) |
| 3080 | { |
| 3081 | bool supportsRegOptional = false; |
| 3082 | |
| 3083 | if (IsContainableHWIntrinsicOp(node, op3, &supportsRegOptional)) |
| 3084 | { |
| 3085 | // 213 form: op1 = (op2 * op1) + [op3] |
| 3086 | MakeSrcContained(node, op3); |
| 3087 | } |
| 3088 | else if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 3089 | { |
| 3090 | // 132 form: op1 = (op1 * op3) + [op2] |
| 3091 | MakeSrcContained(node, op2); |
| 3092 | } |
| 3093 | else if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 3094 | { |
| 3095 | // Intrinsics with CopyUpperBits semantics cannot have op1 be contained |
| 3096 | |
| 3097 | if (!HWIntrinsicInfo::CopiesUpperBits(intrinsicId)) |
| 3098 | { |
| 3099 | // 231 form: op3 = (op2 * op3) + [op1] |
| 3100 | MakeSrcContained(node, op1); |
| 3101 | } |
| 3102 | } |
| 3103 | else |
| 3104 | { |
| 3105 | assert(supportsRegOptional); |
| 3106 | |
| 3107 | // TODO-XArch-CQ: Technically any one of the three operands can |
| 3108 | // be reg-optional. With a limitation on op1 where |
| 3109 | // it can only be so if CopyUpperBits is off. |
| 3110 | // https://github.com/dotnet/coreclr/issues/6361 |
| 3111 | |
| 3112 | // 213 form: op1 = (op2 * op1) + op3 |
| 3113 | op3->SetRegOptional(); |
| 3114 | } |
| 3115 | } |
| 3116 | else |
| 3117 | { |
| 3118 | bool supportsRegOptional = false; |
| 3119 | |
| 3120 | switch (intrinsicId) |
| 3121 | { |
| 3122 | case NI_SSE41_BlendVariable: |
| 3123 | case NI_AVX_BlendVariable: |
| 3124 | case NI_AVX2_BlendVariable: |
| 3125 | { |
| 3126 | if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 3127 | { |
| 3128 | MakeSrcContained(node, op2); |
| 3129 | } |
| 3130 | else if (supportsRegOptional) |
| 3131 | { |
| 3132 | op2->SetRegOptional(); |
| 3133 | } |
| 3134 | break; |
| 3135 | } |
| 3136 | |
| 3137 | case NI_BMI2_MultiplyNoFlags: |
| 3138 | case NI_BMI2_X64_MultiplyNoFlags: |
| 3139 | { |
| 3140 | if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 3141 | { |
| 3142 | MakeSrcContained(node, op2); |
| 3143 | } |
| 3144 | else if (IsContainableHWIntrinsicOp(node, op1, &supportsRegOptional)) |
| 3145 | { |
| 3146 | MakeSrcContained(node, op1); |
| 3147 | // MultiplyNoFlags is a Commutative operation, so swap the first two operands here |
| 3148 | // to make the containment checks in codegen significantly simpler |
| 3149 | *(originalArgList->pCurrent()) = op2; |
| 3150 | *(originalArgList->Rest()->pCurrent()) = op1; |
| 3151 | } |
| 3152 | else if (supportsRegOptional) |
| 3153 | { |
| 3154 | op2->SetRegOptional(); |
| 3155 | } |
| 3156 | break; |
| 3157 | } |
| 3158 | |
| 3159 | default: |
| 3160 | { |
| 3161 | unreached(); |
| 3162 | break; |
| 3163 | } |
| 3164 | } |
| 3165 | } |
| 3166 | } |
| 3167 | |
| 3168 | case HW_Category_IMM: |
| 3169 | { |
| 3170 | bool supportsRegOptional = false; |
| 3171 | |
| 3172 | switch (intrinsicId) |
| 3173 | { |
| 3174 | case NI_SSE_Shuffle: |
| 3175 | case NI_SSE2_Insert: |
| 3176 | case NI_SSE2_Shuffle: |
| 3177 | case NI_SSSE3_AlignRight: |
| 3178 | case NI_SSE41_Blend: |
| 3179 | case NI_SSE41_DotProduct: |
| 3180 | case NI_SSE41_Insert: |
| 3181 | case NI_SSE41_X64_Insert: |
| 3182 | case NI_SSE41_MultipleSumAbsoluteDifferences: |
| 3183 | case NI_AVX_Blend: |
| 3184 | case NI_AVX_Compare: |
| 3185 | case NI_AVX_CompareScalar: |
| 3186 | case NI_AVX_DotProduct: |
| 3187 | case NI_AVX_Permute2x128: |
| 3188 | case NI_AVX_Shuffle: |
| 3189 | case NI_AVX2_Blend: |
| 3190 | case NI_AVX2_MultipleSumAbsoluteDifferences: |
| 3191 | case NI_AVX2_Permute2x128: |
| 3192 | case NI_PCLMULQDQ_CarrylessMultiply: |
| 3193 | { |
| 3194 | if (IsContainableHWIntrinsicOp(node, op2, &supportsRegOptional)) |
| 3195 | { |
| 3196 | MakeSrcContained(node, op2); |
| 3197 | } |
| 3198 | else if (supportsRegOptional) |
| 3199 | { |
| 3200 | op2->SetRegOptional(); |
| 3201 | } |
| 3202 | break; |
| 3203 | } |
| 3204 | |
| 3205 | default: |
| 3206 | { |
| 3207 | break; |
| 3208 | } |
| 3209 | } |
| 3210 | |
| 3211 | break; |
| 3212 | } |
| 3213 | |
| 3214 | default: |
| 3215 | { |
| 3216 | unreached(); |
| 3217 | break; |
| 3218 | } |
| 3219 | } |
| 3220 | } |
| 3221 | else |
| 3222 | { |
| 3223 | unreached(); |
| 3224 | } |
| 3225 | |
| 3226 | if (HWIntrinsicInfo::lookupCategory(intrinsicId) == HW_Category_IMM) |
| 3227 | { |
| 3228 | GenTree* lastOp = HWIntrinsicInfo::lookupLastOp(node); |
| 3229 | assert(lastOp != nullptr); |
| 3230 | |
| 3231 | if (HWIntrinsicInfo::isImmOp(intrinsicId, lastOp) && lastOp->IsCnsIntOrI()) |
| 3232 | { |
| 3233 | MakeSrcContained(node, lastOp); |
| 3234 | } |
| 3235 | } |
| 3236 | } |
| 3237 | } |
| 3238 | #endif // FEATURE_HW_INTRINSICS |
| 3239 | |
| 3240 | //------------------------------------------------------------------------ |
| 3241 | // ContainCheckFloatBinary: determine whether the sources of a floating point binary node should be contained. |
| 3242 | // |
| 3243 | // Arguments: |
| 3244 | // node - pointer to the node |
| 3245 | // |
| 3246 | void Lowering::ContainCheckFloatBinary(GenTreeOp* node) |
| 3247 | { |
| 3248 | assert(node->OperIs(GT_ADD, GT_SUB, GT_MUL, GT_DIV) && varTypeIsFloating(node)); |
| 3249 | |
| 3250 | // overflow operations aren't supported on float/double types. |
| 3251 | assert(!node->gtOverflowEx()); |
| 3252 | |
| 3253 | GenTree* op1 = node->gtGetOp1(); |
| 3254 | GenTree* op2 = node->gtGetOp2(); |
| 3255 | |
| 3256 | // No implicit conversions at this stage as the expectation is that |
| 3257 | // everything is made explicit by adding casts. |
| 3258 | assert(op1->TypeGet() == op2->TypeGet()); |
| 3259 | |
| 3260 | bool isSafeToContainOp1 = true; |
| 3261 | bool isSafeToContainOp2 = true; |
| 3262 | |
| 3263 | if (op2->IsCnsNonZeroFltOrDbl()) |
| 3264 | { |
| 3265 | MakeSrcContained(node, op2); |
| 3266 | } |
| 3267 | else if (IsContainableMemoryOp(op2)) |
| 3268 | { |
| 3269 | isSafeToContainOp2 = IsSafeToContainMem(node, op2); |
| 3270 | if (isSafeToContainOp2) |
| 3271 | { |
| 3272 | MakeSrcContained(node, op2); |
| 3273 | } |
| 3274 | } |
| 3275 | |
| 3276 | if (!op2->isContained() && node->OperIsCommutative()) |
| 3277 | { |
| 3278 | // Though we have GT_ADD(op1=memOp, op2=non-memOp, we try to reorder the operands |
| 3279 | // as long as it is safe so that the following efficient code sequence is generated: |
| 3280 | // addss/sd targetReg, memOp (if op1Reg == targetReg) OR |
| 3281 | // movaps targetReg, op2Reg; addss/sd targetReg, [memOp] |
| 3282 | // |
| 3283 | // Instead of |
| 3284 | // movss op1Reg, [memOp]; addss/sd targetReg, Op2Reg (if op1Reg == targetReg) OR |
| 3285 | // movss op1Reg, [memOp]; movaps targetReg, op1Reg, addss/sd targetReg, Op2Reg |
| 3286 | |
| 3287 | if (op1->IsCnsNonZeroFltOrDbl()) |
| 3288 | { |
| 3289 | MakeSrcContained(node, op1); |
| 3290 | } |
| 3291 | else if (IsContainableMemoryOp(op1)) |
| 3292 | { |
| 3293 | isSafeToContainOp1 = IsSafeToContainMem(node, op1); |
| 3294 | if (isSafeToContainOp1) |
| 3295 | { |
| 3296 | MakeSrcContained(node, op1); |
| 3297 | } |
| 3298 | } |
| 3299 | } |
| 3300 | |
| 3301 | if (!op1->isContained() && !op2->isContained()) |
| 3302 | { |
| 3303 | // If there are no containable operands, we can make an operand reg optional. |
| 3304 | // IsSafeToContainMem is expensive so we call it at most once for each operand |
| 3305 | // in this method. If we already called IsSafeToContainMem, it must have returned false; |
| 3306 | // otherwise, the corresponding operand (op1 or op2) would be contained. |
| 3307 | isSafeToContainOp1 = isSafeToContainOp1 && IsSafeToContainMem(node, op1); |
| 3308 | isSafeToContainOp2 = isSafeToContainOp2 && IsSafeToContainMem(node, op2); |
| 3309 | SetRegOptionalForBinOp(node, isSafeToContainOp1, isSafeToContainOp2); |
| 3310 | } |
| 3311 | } |
| 3312 | |
| 3313 | #endif // _TARGET_XARCH_ |
| 3314 | |