| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // |
| 6 | // SIMD Support |
| 7 | // |
| 8 | // IMPORTANT NOTES AND CAVEATS: |
| 9 | // |
| 10 | // This implementation is preliminary, and may change dramatically. |
| 11 | // |
| 12 | // New JIT types, TYP_SIMDxx, are introduced, and the SIMD intrinsics are created as GT_SIMD nodes. |
| 13 | // Nodes of SIMD types will be typed as TYP_SIMD* (e.g. TYP_SIMD8, TYP_SIMD16, etc.). |
| 14 | // |
| 15 | // Note that currently the "reference implementation" is the same as the runtime dll. As such, it is currently |
| 16 | // providing implementations for those methods not currently supported by the JIT as intrinsics. |
| 17 | // |
| 18 | // These are currently recognized using string compares, in order to provide an implementation in the JIT |
| 19 | // without taking a dependency on the VM. |
| 20 | // Furthermore, in the CTP, in order to limit the impact of doing these string compares |
| 21 | // against assembly names, we only look for the SIMDVector assembly if we are compiling a class constructor. This |
| 22 | // makes it somewhat more "pay for play" but is a significant usability compromise. |
| 23 | // This has been addressed for RTM by doing the assembly recognition in the VM. |
| 24 | // -------------------------------------------------------------------------------------- |
| 25 | |
| 26 | #include "jitpch.h" |
| 27 | #include "simd.h" |
| 28 | |
| 29 | #ifdef _MSC_VER |
| 30 | #pragma hdrstop |
| 31 | #endif |
| 32 | |
| 33 | #ifdef FEATURE_SIMD |
| 34 | |
| 35 | // Intrinsic Id to intrinsic info map |
| 36 | const SIMDIntrinsicInfo simdIntrinsicInfoArray[] = { |
| 37 | #define SIMD_INTRINSIC(mname, inst, id, name, retType, argCount, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, \ |
| 38 | t10) \ |
| 39 | {SIMDIntrinsic##id, mname, inst, retType, argCount, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, |
| 40 | #include "simdintrinsiclist.h" |
| 41 | }; |
| 42 | |
| 43 | //------------------------------------------------------------------------ |
| 44 | // getSIMDVectorLength: Get the length (number of elements of base type) of |
| 45 | // SIMD Vector given its size and base (element) type. |
| 46 | // |
| 47 | // Arguments: |
| 48 | // simdSize - size of the SIMD vector |
| 49 | // baseType - type of the elements of the SIMD vector |
| 50 | // |
| 51 | // static |
| 52 | int Compiler::getSIMDVectorLength(unsigned simdSize, var_types baseType) |
| 53 | { |
| 54 | return simdSize / genTypeSize(baseType); |
| 55 | } |
| 56 | |
| 57 | //------------------------------------------------------------------------ |
| 58 | // Get the length (number of elements of base type) of SIMD Vector given by typeHnd. |
| 59 | // |
| 60 | // Arguments: |
| 61 | // typeHnd - type handle of the SIMD vector |
| 62 | // |
| 63 | int Compiler::getSIMDVectorLength(CORINFO_CLASS_HANDLE typeHnd) |
| 64 | { |
| 65 | unsigned sizeBytes = 0; |
| 66 | var_types baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, &sizeBytes); |
| 67 | return getSIMDVectorLength(sizeBytes, baseType); |
| 68 | } |
| 69 | |
| 70 | //------------------------------------------------------------------------ |
| 71 | // Get the preferred alignment of SIMD vector type for better performance. |
| 72 | // |
| 73 | // Arguments: |
| 74 | // typeHnd - type handle of the SIMD vector |
| 75 | // |
| 76 | int Compiler::getSIMDTypeAlignment(var_types simdType) |
| 77 | { |
| 78 | #ifdef _TARGET_XARCH_ |
| 79 | // Fixed length vectors have the following alignment preference |
| 80 | // Vector2 = 8 byte alignment |
| 81 | // Vector3/4 = 16-byte alignment |
| 82 | unsigned size = genTypeSize(simdType); |
| 83 | |
| 84 | // preferred alignment for SSE2 128-bit vectors is 16-bytes |
| 85 | if (size == 8) |
| 86 | { |
| 87 | return 8; |
| 88 | } |
| 89 | else if (size <= 16) |
| 90 | { |
| 91 | assert((size == 12) || (size == 16)); |
| 92 | return 16; |
| 93 | } |
| 94 | else |
| 95 | { |
| 96 | assert(size == 32); |
| 97 | return 32; |
| 98 | } |
| 99 | #elif defined(_TARGET_ARM64_) |
| 100 | return 16; |
| 101 | #else |
| 102 | assert(!"getSIMDTypeAlignment() unimplemented on target arch" ); |
| 103 | unreached(); |
| 104 | #endif |
| 105 | } |
| 106 | |
| 107 | //---------------------------------------------------------------------------------- |
| 108 | // Return the base type and size of SIMD vector type given its type handle. |
| 109 | // |
| 110 | // Arguments: |
| 111 | // typeHnd - The handle of the type we're interested in. |
| 112 | // sizeBytes - out param |
| 113 | // |
| 114 | // Return Value: |
| 115 | // base type of SIMD vector. |
| 116 | // sizeBytes if non-null is set to size in bytes. |
| 117 | // |
| 118 | // TODO-Throughput: current implementation parses class name to find base type. Change |
| 119 | // this when we implement SIMD intrinsic identification for the final |
| 120 | // product. |
| 121 | // |
| 122 | var_types Compiler::getBaseTypeAndSizeOfSIMDType(CORINFO_CLASS_HANDLE typeHnd, unsigned* sizeBytes /*= nullptr */) |
| 123 | { |
| 124 | assert(featureSIMD); |
| 125 | |
| 126 | if (m_simdHandleCache == nullptr) |
| 127 | { |
| 128 | if (impInlineInfo == nullptr) |
| 129 | { |
| 130 | m_simdHandleCache = new (this, CMK_Generic) SIMDHandlesCache(); |
| 131 | } |
| 132 | else |
| 133 | { |
| 134 | // Steal the inliner compiler's cache (create it if not available). |
| 135 | |
| 136 | if (impInlineInfo->InlineRoot->m_simdHandleCache == nullptr) |
| 137 | { |
| 138 | impInlineInfo->InlineRoot->m_simdHandleCache = new (this, CMK_Generic) SIMDHandlesCache(); |
| 139 | } |
| 140 | |
| 141 | m_simdHandleCache = impInlineInfo->InlineRoot->m_simdHandleCache; |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | if (typeHnd == nullptr) |
| 146 | { |
| 147 | return TYP_UNKNOWN; |
| 148 | } |
| 149 | |
| 150 | // fast path search using cached type handles of important types |
| 151 | var_types simdBaseType = TYP_UNKNOWN; |
| 152 | unsigned size = 0; |
| 153 | |
| 154 | // TODO - Optimize SIMD type recognition by IntrinsicAttribute |
| 155 | if (isSIMDClass(typeHnd)) |
| 156 | { |
| 157 | // The most likely to be used type handles are looked up first followed by |
| 158 | // less likely to be used type handles |
| 159 | if (typeHnd == m_simdHandleCache->SIMDFloatHandle) |
| 160 | { |
| 161 | simdBaseType = TYP_FLOAT; |
| 162 | JITDUMP(" Known type SIMD Vector<Float>\n" ); |
| 163 | } |
| 164 | else if (typeHnd == m_simdHandleCache->SIMDIntHandle) |
| 165 | { |
| 166 | simdBaseType = TYP_INT; |
| 167 | JITDUMP(" Known type SIMD Vector<Int>\n" ); |
| 168 | } |
| 169 | else if (typeHnd == m_simdHandleCache->SIMDVector2Handle) |
| 170 | { |
| 171 | simdBaseType = TYP_FLOAT; |
| 172 | size = 2 * genTypeSize(TYP_FLOAT); |
| 173 | assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE)); |
| 174 | JITDUMP(" Known type Vector2\n" ); |
| 175 | } |
| 176 | else if (typeHnd == m_simdHandleCache->SIMDVector3Handle) |
| 177 | { |
| 178 | simdBaseType = TYP_FLOAT; |
| 179 | size = 3 * genTypeSize(TYP_FLOAT); |
| 180 | assert(size == info.compCompHnd->getClassSize(typeHnd)); |
| 181 | JITDUMP(" Known type Vector3\n" ); |
| 182 | } |
| 183 | else if (typeHnd == m_simdHandleCache->SIMDVector4Handle) |
| 184 | { |
| 185 | simdBaseType = TYP_FLOAT; |
| 186 | size = 4 * genTypeSize(TYP_FLOAT); |
| 187 | assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE)); |
| 188 | JITDUMP(" Known type Vector4\n" ); |
| 189 | } |
| 190 | else if (typeHnd == m_simdHandleCache->SIMDVectorHandle) |
| 191 | { |
| 192 | JITDUMP(" Known type Vector\n" ); |
| 193 | } |
| 194 | else if (typeHnd == m_simdHandleCache->SIMDUShortHandle) |
| 195 | { |
| 196 | simdBaseType = TYP_USHORT; |
| 197 | JITDUMP(" Known type SIMD Vector<ushort>\n" ); |
| 198 | } |
| 199 | else if (typeHnd == m_simdHandleCache->SIMDUByteHandle) |
| 200 | { |
| 201 | simdBaseType = TYP_UBYTE; |
| 202 | JITDUMP(" Known type SIMD Vector<ubyte>\n" ); |
| 203 | } |
| 204 | else if (typeHnd == m_simdHandleCache->SIMDDoubleHandle) |
| 205 | { |
| 206 | simdBaseType = TYP_DOUBLE; |
| 207 | JITDUMP(" Known type SIMD Vector<Double>\n" ); |
| 208 | } |
| 209 | else if (typeHnd == m_simdHandleCache->SIMDLongHandle) |
| 210 | { |
| 211 | simdBaseType = TYP_LONG; |
| 212 | JITDUMP(" Known type SIMD Vector<Long>\n" ); |
| 213 | } |
| 214 | else if (typeHnd == m_simdHandleCache->SIMDShortHandle) |
| 215 | { |
| 216 | simdBaseType = TYP_SHORT; |
| 217 | JITDUMP(" Known type SIMD Vector<short>\n" ); |
| 218 | } |
| 219 | else if (typeHnd == m_simdHandleCache->SIMDByteHandle) |
| 220 | { |
| 221 | simdBaseType = TYP_BYTE; |
| 222 | JITDUMP(" Known type SIMD Vector<byte>\n" ); |
| 223 | } |
| 224 | else if (typeHnd == m_simdHandleCache->SIMDUIntHandle) |
| 225 | { |
| 226 | simdBaseType = TYP_UINT; |
| 227 | JITDUMP(" Known type SIMD Vector<uint>\n" ); |
| 228 | } |
| 229 | else if (typeHnd == m_simdHandleCache->SIMDULongHandle) |
| 230 | { |
| 231 | simdBaseType = TYP_ULONG; |
| 232 | JITDUMP(" Known type SIMD Vector<ulong>\n" ); |
| 233 | } |
| 234 | |
| 235 | // slow path search |
| 236 | if (simdBaseType == TYP_UNKNOWN) |
| 237 | { |
| 238 | // Doesn't match with any of the cached type handles. |
| 239 | // Obtain base type by parsing fully qualified class name. |
| 240 | // |
| 241 | // TODO-Throughput: implement product shipping solution to query base type. |
| 242 | WCHAR className[256] = {0}; |
| 243 | WCHAR* pbuf = &className[0]; |
| 244 | int len = _countof(className); |
| 245 | info.compCompHnd->appendClassName(&pbuf, &len, typeHnd, TRUE, FALSE, FALSE); |
| 246 | noway_assert(pbuf < &className[256]); |
| 247 | JITDUMP("SIMD Candidate Type %S\n" , className); |
| 248 | |
| 249 | if (wcsncmp(className, W("System.Numerics." ), 16) == 0) |
| 250 | { |
| 251 | if (wcsncmp(&(className[16]), W("Vector`1[" ), 9) == 0) |
| 252 | { |
| 253 | if (wcsncmp(&(className[25]), W("System.Single" ), 13) == 0) |
| 254 | { |
| 255 | m_simdHandleCache->SIMDFloatHandle = typeHnd; |
| 256 | simdBaseType = TYP_FLOAT; |
| 257 | JITDUMP(" Found type SIMD Vector<Float>\n" ); |
| 258 | } |
| 259 | else if (wcsncmp(&(className[25]), W("System.Int32" ), 12) == 0) |
| 260 | { |
| 261 | m_simdHandleCache->SIMDIntHandle = typeHnd; |
| 262 | simdBaseType = TYP_INT; |
| 263 | JITDUMP(" Found type SIMD Vector<Int>\n" ); |
| 264 | } |
| 265 | else if (wcsncmp(&(className[25]), W("System.UInt16" ), 13) == 0) |
| 266 | { |
| 267 | m_simdHandleCache->SIMDUShortHandle = typeHnd; |
| 268 | simdBaseType = TYP_USHORT; |
| 269 | JITDUMP(" Found type SIMD Vector<ushort>\n" ); |
| 270 | } |
| 271 | else if (wcsncmp(&(className[25]), W("System.Byte" ), 11) == 0) |
| 272 | { |
| 273 | m_simdHandleCache->SIMDUByteHandle = typeHnd; |
| 274 | simdBaseType = TYP_UBYTE; |
| 275 | JITDUMP(" Found type SIMD Vector<ubyte>\n" ); |
| 276 | } |
| 277 | else if (wcsncmp(&(className[25]), W("System.Double" ), 13) == 0) |
| 278 | { |
| 279 | m_simdHandleCache->SIMDDoubleHandle = typeHnd; |
| 280 | simdBaseType = TYP_DOUBLE; |
| 281 | JITDUMP(" Found type SIMD Vector<Double>\n" ); |
| 282 | } |
| 283 | else if (wcsncmp(&(className[25]), W("System.Int64" ), 12) == 0) |
| 284 | { |
| 285 | m_simdHandleCache->SIMDLongHandle = typeHnd; |
| 286 | simdBaseType = TYP_LONG; |
| 287 | JITDUMP(" Found type SIMD Vector<Long>\n" ); |
| 288 | } |
| 289 | else if (wcsncmp(&(className[25]), W("System.Int16" ), 12) == 0) |
| 290 | { |
| 291 | m_simdHandleCache->SIMDShortHandle = typeHnd; |
| 292 | simdBaseType = TYP_SHORT; |
| 293 | JITDUMP(" Found type SIMD Vector<short>\n" ); |
| 294 | } |
| 295 | else if (wcsncmp(&(className[25]), W("System.SByte" ), 12) == 0) |
| 296 | { |
| 297 | m_simdHandleCache->SIMDByteHandle = typeHnd; |
| 298 | simdBaseType = TYP_BYTE; |
| 299 | JITDUMP(" Found type SIMD Vector<byte>\n" ); |
| 300 | } |
| 301 | else if (wcsncmp(&(className[25]), W("System.UInt32" ), 13) == 0) |
| 302 | { |
| 303 | m_simdHandleCache->SIMDUIntHandle = typeHnd; |
| 304 | simdBaseType = TYP_UINT; |
| 305 | JITDUMP(" Found type SIMD Vector<uint>\n" ); |
| 306 | } |
| 307 | else if (wcsncmp(&(className[25]), W("System.UInt64" ), 13) == 0) |
| 308 | { |
| 309 | m_simdHandleCache->SIMDULongHandle = typeHnd; |
| 310 | simdBaseType = TYP_ULONG; |
| 311 | JITDUMP(" Found type SIMD Vector<ulong>\n" ); |
| 312 | } |
| 313 | else |
| 314 | { |
| 315 | JITDUMP(" Unknown SIMD Vector<T>\n" ); |
| 316 | } |
| 317 | } |
| 318 | else if (wcsncmp(&(className[16]), W("Vector2" ), 8) == 0) |
| 319 | { |
| 320 | m_simdHandleCache->SIMDVector2Handle = typeHnd; |
| 321 | |
| 322 | simdBaseType = TYP_FLOAT; |
| 323 | size = 2 * genTypeSize(TYP_FLOAT); |
| 324 | assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE)); |
| 325 | JITDUMP(" Found Vector2\n" ); |
| 326 | } |
| 327 | else if (wcsncmp(&(className[16]), W("Vector3" ), 8) == 0) |
| 328 | { |
| 329 | m_simdHandleCache->SIMDVector3Handle = typeHnd; |
| 330 | |
| 331 | simdBaseType = TYP_FLOAT; |
| 332 | size = 3 * genTypeSize(TYP_FLOAT); |
| 333 | assert(size == info.compCompHnd->getClassSize(typeHnd)); |
| 334 | JITDUMP(" Found Vector3\n" ); |
| 335 | } |
| 336 | else if (wcsncmp(&(className[16]), W("Vector4" ), 8) == 0) |
| 337 | { |
| 338 | m_simdHandleCache->SIMDVector4Handle = typeHnd; |
| 339 | |
| 340 | simdBaseType = TYP_FLOAT; |
| 341 | size = 4 * genTypeSize(TYP_FLOAT); |
| 342 | assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE)); |
| 343 | JITDUMP(" Found Vector4\n" ); |
| 344 | } |
| 345 | else if (wcsncmp(&(className[16]), W("Vector" ), 6) == 0) |
| 346 | { |
| 347 | m_simdHandleCache->SIMDVectorHandle = typeHnd; |
| 348 | JITDUMP(" Found type Vector\n" ); |
| 349 | } |
| 350 | else |
| 351 | { |
| 352 | JITDUMP(" Unknown SIMD Type\n" ); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | if (simdBaseType != TYP_UNKNOWN && sizeBytes != nullptr) |
| 357 | { |
| 358 | // If not a fixed size vector then its size is same as SIMD vector |
| 359 | // register length in bytes |
| 360 | if (size == 0) |
| 361 | { |
| 362 | size = getSIMDVectorRegisterByteLength(); |
| 363 | } |
| 364 | |
| 365 | *sizeBytes = size; |
| 366 | setUsesSIMDTypes(true); |
| 367 | } |
| 368 | } |
| 369 | #ifdef FEATURE_HW_INTRINSICS |
| 370 | else if (isIntrinsicType(typeHnd)) |
| 371 | { |
| 372 | const size_t Vector64SizeBytes = 64 / 8; |
| 373 | const size_t Vector128SizeBytes = 128 / 8; |
| 374 | const size_t Vector256SizeBytes = 256 / 8; |
| 375 | |
| 376 | #if defined(_TARGET_XARCH_) |
| 377 | static_assert_no_msg(YMM_REGSIZE_BYTES == Vector256SizeBytes); |
| 378 | static_assert_no_msg(XMM_REGSIZE_BYTES == Vector128SizeBytes); |
| 379 | |
| 380 | if (typeHnd == m_simdHandleCache->Vector256FloatHandle) |
| 381 | { |
| 382 | simdBaseType = TYP_FLOAT; |
| 383 | size = Vector256SizeBytes; |
| 384 | JITDUMP(" Known type Vector256<float>\n" ); |
| 385 | } |
| 386 | else if (typeHnd == m_simdHandleCache->Vector256DoubleHandle) |
| 387 | { |
| 388 | simdBaseType = TYP_DOUBLE; |
| 389 | size = Vector256SizeBytes; |
| 390 | JITDUMP(" Known type Vector256<double>\n" ); |
| 391 | } |
| 392 | else if (typeHnd == m_simdHandleCache->Vector256IntHandle) |
| 393 | { |
| 394 | simdBaseType = TYP_INT; |
| 395 | size = Vector256SizeBytes; |
| 396 | JITDUMP(" Known type Vector256<int>\n" ); |
| 397 | } |
| 398 | else if (typeHnd == m_simdHandleCache->Vector256UIntHandle) |
| 399 | { |
| 400 | simdBaseType = TYP_UINT; |
| 401 | size = Vector256SizeBytes; |
| 402 | JITDUMP(" Known type Vector256<uint>\n" ); |
| 403 | } |
| 404 | else if (typeHnd == m_simdHandleCache->Vector256ShortHandle) |
| 405 | { |
| 406 | simdBaseType = TYP_SHORT; |
| 407 | size = Vector256SizeBytes; |
| 408 | JITDUMP(" Known type Vector256<short>\n" ); |
| 409 | } |
| 410 | else if (typeHnd == m_simdHandleCache->Vector256UShortHandle) |
| 411 | { |
| 412 | simdBaseType = TYP_USHORT; |
| 413 | size = Vector256SizeBytes; |
| 414 | JITDUMP(" Known type Vector256<ushort>\n" ); |
| 415 | } |
| 416 | else if (typeHnd == m_simdHandleCache->Vector256ByteHandle) |
| 417 | { |
| 418 | simdBaseType = TYP_BYTE; |
| 419 | size = Vector256SizeBytes; |
| 420 | JITDUMP(" Known type Vector256<sbyte>\n" ); |
| 421 | } |
| 422 | else if (typeHnd == m_simdHandleCache->Vector256UByteHandle) |
| 423 | { |
| 424 | simdBaseType = TYP_UBYTE; |
| 425 | size = Vector256SizeBytes; |
| 426 | JITDUMP(" Known type Vector256<byte>\n" ); |
| 427 | } |
| 428 | else if (typeHnd == m_simdHandleCache->Vector256LongHandle) |
| 429 | { |
| 430 | simdBaseType = TYP_LONG; |
| 431 | size = Vector256SizeBytes; |
| 432 | JITDUMP(" Known type Vector256<long>\n" ); |
| 433 | } |
| 434 | else if (typeHnd == m_simdHandleCache->Vector256ULongHandle) |
| 435 | { |
| 436 | simdBaseType = TYP_ULONG; |
| 437 | size = Vector256SizeBytes; |
| 438 | JITDUMP(" Known type Vector256<ulong>\n" ); |
| 439 | } |
| 440 | else |
| 441 | #endif // defined(_TARGET_XARCH) |
| 442 | if (typeHnd == m_simdHandleCache->Vector128FloatHandle) |
| 443 | { |
| 444 | simdBaseType = TYP_FLOAT; |
| 445 | size = Vector128SizeBytes; |
| 446 | JITDUMP(" Known type Vector128<float>\n" ); |
| 447 | } |
| 448 | else if (typeHnd == m_simdHandleCache->Vector128DoubleHandle) |
| 449 | { |
| 450 | simdBaseType = TYP_DOUBLE; |
| 451 | size = Vector128SizeBytes; |
| 452 | JITDUMP(" Known type Vector128<double>\n" ); |
| 453 | } |
| 454 | else if (typeHnd == m_simdHandleCache->Vector128IntHandle) |
| 455 | { |
| 456 | simdBaseType = TYP_INT; |
| 457 | size = Vector128SizeBytes; |
| 458 | JITDUMP(" Known type Vector128<int>\n" ); |
| 459 | } |
| 460 | else if (typeHnd == m_simdHandleCache->Vector128UIntHandle) |
| 461 | { |
| 462 | simdBaseType = TYP_UINT; |
| 463 | size = Vector128SizeBytes; |
| 464 | JITDUMP(" Known type Vector128<uint>\n" ); |
| 465 | } |
| 466 | else if (typeHnd == m_simdHandleCache->Vector128ShortHandle) |
| 467 | { |
| 468 | simdBaseType = TYP_SHORT; |
| 469 | size = Vector128SizeBytes; |
| 470 | JITDUMP(" Known type Vector128<short>\n" ); |
| 471 | } |
| 472 | else if (typeHnd == m_simdHandleCache->Vector128UShortHandle) |
| 473 | { |
| 474 | simdBaseType = TYP_USHORT; |
| 475 | size = Vector128SizeBytes; |
| 476 | JITDUMP(" Known type Vector128<ushort>\n" ); |
| 477 | } |
| 478 | else if (typeHnd == m_simdHandleCache->Vector128ByteHandle) |
| 479 | { |
| 480 | simdBaseType = TYP_BYTE; |
| 481 | size = Vector128SizeBytes; |
| 482 | JITDUMP(" Known type Vector128<sbyte>\n" ); |
| 483 | } |
| 484 | else if (typeHnd == m_simdHandleCache->Vector128UByteHandle) |
| 485 | { |
| 486 | simdBaseType = TYP_UBYTE; |
| 487 | size = Vector128SizeBytes; |
| 488 | JITDUMP(" Known type Vector128<byte>\n" ); |
| 489 | } |
| 490 | else if (typeHnd == m_simdHandleCache->Vector128LongHandle) |
| 491 | { |
| 492 | simdBaseType = TYP_LONG; |
| 493 | size = Vector128SizeBytes; |
| 494 | JITDUMP(" Known type Vector128<long>\n" ); |
| 495 | } |
| 496 | else if (typeHnd == m_simdHandleCache->Vector128ULongHandle) |
| 497 | { |
| 498 | simdBaseType = TYP_ULONG; |
| 499 | size = Vector128SizeBytes; |
| 500 | JITDUMP(" Known type Vector128<ulong>\n" ); |
| 501 | } |
| 502 | else |
| 503 | #if defined(_TARGET_ARM64_) |
| 504 | if (typeHnd == m_simdHandleCache->Vector64FloatHandle) |
| 505 | { |
| 506 | simdBaseType = TYP_FLOAT; |
| 507 | size = Vector64SizeBytes; |
| 508 | JITDUMP(" Known type Vector64<float>\n" ); |
| 509 | } |
| 510 | else if (typeHnd == m_simdHandleCache->Vector64IntHandle) |
| 511 | { |
| 512 | simdBaseType = TYP_INT; |
| 513 | size = Vector64SizeBytes; |
| 514 | JITDUMP(" Known type Vector64<int>\n" ); |
| 515 | } |
| 516 | else if (typeHnd == m_simdHandleCache->Vector64UIntHandle) |
| 517 | { |
| 518 | simdBaseType = TYP_UINT; |
| 519 | size = Vector64SizeBytes; |
| 520 | JITDUMP(" Known type Vector64<uint>\n" ); |
| 521 | } |
| 522 | else if (typeHnd == m_simdHandleCache->Vector64ShortHandle) |
| 523 | { |
| 524 | simdBaseType = TYP_SHORT; |
| 525 | size = Vector64SizeBytes; |
| 526 | JITDUMP(" Known type Vector64<short>\n" ); |
| 527 | } |
| 528 | else if (typeHnd == m_simdHandleCache->Vector64UShortHandle) |
| 529 | { |
| 530 | simdBaseType = TYP_USHORT; |
| 531 | size = Vector64SizeBytes; |
| 532 | JITDUMP(" Known type Vector64<ushort>\n" ); |
| 533 | } |
| 534 | else if (typeHnd == m_simdHandleCache->Vector64ByteHandle) |
| 535 | { |
| 536 | simdBaseType = TYP_BYTE; |
| 537 | size = Vector64SizeBytes; |
| 538 | JITDUMP(" Known type Vector64<sbyte>\n" ); |
| 539 | } |
| 540 | else if (typeHnd == m_simdHandleCache->Vector64UByteHandle) |
| 541 | { |
| 542 | simdBaseType = TYP_UBYTE; |
| 543 | size = Vector64SizeBytes; |
| 544 | JITDUMP(" Known type Vector64<byte>\n" ); |
| 545 | } |
| 546 | #endif // defined(_TARGET_ARM64_) |
| 547 | |
| 548 | // slow path search |
| 549 | if (simdBaseType == TYP_UNKNOWN) |
| 550 | { |
| 551 | // Doesn't match with any of the cached type handles. |
| 552 | const char* className = getClassNameFromMetadata(typeHnd, nullptr); |
| 553 | CORINFO_CLASS_HANDLE baseTypeHnd = getTypeInstantiationArgument(typeHnd, 0); |
| 554 | |
| 555 | if (baseTypeHnd != nullptr) |
| 556 | { |
| 557 | CorInfoType type = info.compCompHnd->getTypeForPrimitiveNumericClass(baseTypeHnd); |
| 558 | |
| 559 | JITDUMP("HW Intrinsic SIMD Candidate Type %s with Base Type %s\n" , className, |
| 560 | getClassNameFromMetadata(baseTypeHnd, nullptr)); |
| 561 | |
| 562 | #if defined(_TARGET_XARCH_) |
| 563 | if (strcmp(className, "Vector256`1" ) == 0) |
| 564 | { |
| 565 | size = Vector256SizeBytes; |
| 566 | switch (type) |
| 567 | { |
| 568 | case CORINFO_TYPE_FLOAT: |
| 569 | m_simdHandleCache->Vector256FloatHandle = typeHnd; |
| 570 | simdBaseType = TYP_FLOAT; |
| 571 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<float>\n" ); |
| 572 | break; |
| 573 | case CORINFO_TYPE_DOUBLE: |
| 574 | m_simdHandleCache->Vector256DoubleHandle = typeHnd; |
| 575 | simdBaseType = TYP_DOUBLE; |
| 576 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<double>\n" ); |
| 577 | break; |
| 578 | case CORINFO_TYPE_INT: |
| 579 | m_simdHandleCache->Vector256IntHandle = typeHnd; |
| 580 | simdBaseType = TYP_INT; |
| 581 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<int>\n" ); |
| 582 | break; |
| 583 | case CORINFO_TYPE_UINT: |
| 584 | m_simdHandleCache->Vector256UIntHandle = typeHnd; |
| 585 | simdBaseType = TYP_UINT; |
| 586 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<uint>\n" ); |
| 587 | break; |
| 588 | case CORINFO_TYPE_SHORT: |
| 589 | m_simdHandleCache->Vector256ShortHandle = typeHnd; |
| 590 | simdBaseType = TYP_SHORT; |
| 591 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<short>\n" ); |
| 592 | break; |
| 593 | case CORINFO_TYPE_USHORT: |
| 594 | m_simdHandleCache->Vector256UShortHandle = typeHnd; |
| 595 | simdBaseType = TYP_USHORT; |
| 596 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<ushort>\n" ); |
| 597 | break; |
| 598 | case CORINFO_TYPE_LONG: |
| 599 | m_simdHandleCache->Vector256LongHandle = typeHnd; |
| 600 | simdBaseType = TYP_LONG; |
| 601 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<long>\n" ); |
| 602 | break; |
| 603 | case CORINFO_TYPE_ULONG: |
| 604 | m_simdHandleCache->Vector256ULongHandle = typeHnd; |
| 605 | simdBaseType = TYP_ULONG; |
| 606 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<ulong>\n" ); |
| 607 | break; |
| 608 | case CORINFO_TYPE_UBYTE: |
| 609 | m_simdHandleCache->Vector256UByteHandle = typeHnd; |
| 610 | simdBaseType = TYP_UBYTE; |
| 611 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<byte>\n" ); |
| 612 | break; |
| 613 | case CORINFO_TYPE_BYTE: |
| 614 | m_simdHandleCache->Vector256ByteHandle = typeHnd; |
| 615 | simdBaseType = TYP_BYTE; |
| 616 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector256<sbyte>\n" ); |
| 617 | break; |
| 618 | |
| 619 | default: |
| 620 | JITDUMP(" Unknown Hardware Intrinsic SIMD Type Vector256<T>\n" ); |
| 621 | } |
| 622 | } |
| 623 | else |
| 624 | #endif // defined(_TARGET_XARCH_) |
| 625 | if (strcmp(className, "Vector128`1" ) == 0) |
| 626 | { |
| 627 | size = Vector128SizeBytes; |
| 628 | switch (type) |
| 629 | { |
| 630 | case CORINFO_TYPE_FLOAT: |
| 631 | m_simdHandleCache->Vector128FloatHandle = typeHnd; |
| 632 | simdBaseType = TYP_FLOAT; |
| 633 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<float>\n" ); |
| 634 | break; |
| 635 | case CORINFO_TYPE_DOUBLE: |
| 636 | m_simdHandleCache->Vector128DoubleHandle = typeHnd; |
| 637 | simdBaseType = TYP_DOUBLE; |
| 638 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<double>\n" ); |
| 639 | break; |
| 640 | case CORINFO_TYPE_INT: |
| 641 | m_simdHandleCache->Vector128IntHandle = typeHnd; |
| 642 | simdBaseType = TYP_INT; |
| 643 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<int>\n" ); |
| 644 | break; |
| 645 | case CORINFO_TYPE_UINT: |
| 646 | m_simdHandleCache->Vector128UIntHandle = typeHnd; |
| 647 | simdBaseType = TYP_UINT; |
| 648 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<uint>\n" ); |
| 649 | break; |
| 650 | case CORINFO_TYPE_SHORT: |
| 651 | m_simdHandleCache->Vector128ShortHandle = typeHnd; |
| 652 | simdBaseType = TYP_SHORT; |
| 653 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<short>\n" ); |
| 654 | break; |
| 655 | case CORINFO_TYPE_USHORT: |
| 656 | m_simdHandleCache->Vector128UShortHandle = typeHnd; |
| 657 | simdBaseType = TYP_USHORT; |
| 658 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<ushort>\n" ); |
| 659 | break; |
| 660 | case CORINFO_TYPE_LONG: |
| 661 | m_simdHandleCache->Vector128LongHandle = typeHnd; |
| 662 | simdBaseType = TYP_LONG; |
| 663 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<long>\n" ); |
| 664 | break; |
| 665 | case CORINFO_TYPE_ULONG: |
| 666 | m_simdHandleCache->Vector128ULongHandle = typeHnd; |
| 667 | simdBaseType = TYP_ULONG; |
| 668 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<ulong>\n" ); |
| 669 | break; |
| 670 | case CORINFO_TYPE_UBYTE: |
| 671 | m_simdHandleCache->Vector128UByteHandle = typeHnd; |
| 672 | simdBaseType = TYP_UBYTE; |
| 673 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<byte>\n" ); |
| 674 | break; |
| 675 | case CORINFO_TYPE_BYTE: |
| 676 | m_simdHandleCache->Vector128ByteHandle = typeHnd; |
| 677 | simdBaseType = TYP_BYTE; |
| 678 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector128<sbyte>\n" ); |
| 679 | break; |
| 680 | |
| 681 | default: |
| 682 | JITDUMP(" Unknown Hardware Intrinsic SIMD Type Vector128<T>\n" ); |
| 683 | } |
| 684 | } |
| 685 | #if defined(_TARGET_ARM64_) |
| 686 | else if (strcmp(className, "Vector64`1" ) == 0) |
| 687 | { |
| 688 | size = Vector64SizeBytes; |
| 689 | switch (type) |
| 690 | { |
| 691 | case CORINFO_TYPE_FLOAT: |
| 692 | m_simdHandleCache->Vector64FloatHandle = typeHnd; |
| 693 | simdBaseType = TYP_FLOAT; |
| 694 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<float>\n" ); |
| 695 | break; |
| 696 | case CORINFO_TYPE_INT: |
| 697 | m_simdHandleCache->Vector64IntHandle = typeHnd; |
| 698 | simdBaseType = TYP_INT; |
| 699 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<int>\n" ); |
| 700 | break; |
| 701 | case CORINFO_TYPE_UINT: |
| 702 | m_simdHandleCache->Vector64UIntHandle = typeHnd; |
| 703 | simdBaseType = TYP_UINT; |
| 704 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<uint>\n" ); |
| 705 | break; |
| 706 | case CORINFO_TYPE_SHORT: |
| 707 | m_simdHandleCache->Vector64ShortHandle = typeHnd; |
| 708 | simdBaseType = TYP_SHORT; |
| 709 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<short>\n" ); |
| 710 | break; |
| 711 | case CORINFO_TYPE_USHORT: |
| 712 | m_simdHandleCache->Vector64UShortHandle = typeHnd; |
| 713 | simdBaseType = TYP_USHORT; |
| 714 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<ushort>\n" ); |
| 715 | break; |
| 716 | case CORINFO_TYPE_UBYTE: |
| 717 | m_simdHandleCache->Vector64UByteHandle = typeHnd; |
| 718 | simdBaseType = TYP_UBYTE; |
| 719 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<byte>\n" ); |
| 720 | break; |
| 721 | case CORINFO_TYPE_BYTE: |
| 722 | m_simdHandleCache->Vector64ByteHandle = typeHnd; |
| 723 | simdBaseType = TYP_BYTE; |
| 724 | JITDUMP(" Found type Hardware Intrinsic SIMD Vector64<sbyte>\n" ); |
| 725 | break; |
| 726 | |
| 727 | default: |
| 728 | JITDUMP(" Unknown Hardware Intrinsic SIMD Type Vector64<T>\n" ); |
| 729 | } |
| 730 | } |
| 731 | #endif // defined(_TARGET_ARM64_) |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | if (sizeBytes != nullptr) |
| 736 | { |
| 737 | *sizeBytes = size; |
| 738 | } |
| 739 | |
| 740 | if (simdBaseType != TYP_UNKNOWN) |
| 741 | { |
| 742 | setUsesSIMDTypes(true); |
| 743 | } |
| 744 | } |
| 745 | #endif // FEATURE_HW_INTRINSICS |
| 746 | |
| 747 | return simdBaseType; |
| 748 | } |
| 749 | |
| 750 | //-------------------------------------------------------------------------------------- |
| 751 | // getSIMDIntrinsicInfo: get SIMD intrinsic info given the method handle. |
| 752 | // |
| 753 | // Arguments: |
| 754 | // inOutTypeHnd - The handle of the type on which the method is invoked. This is an in-out param. |
| 755 | // methodHnd - The handle of the method we're interested in. |
| 756 | // sig - method signature info |
| 757 | // isNewObj - whether this call represents a newboj constructor call |
| 758 | // argCount - argument count - out pram |
| 759 | // baseType - base type of the intrinsic - out param |
| 760 | // sizeBytes - size of SIMD vector type on which the method is invoked - out param |
| 761 | // |
| 762 | // Return Value: |
| 763 | // SIMDIntrinsicInfo struct initialized corresponding to methodHnd. |
| 764 | // Sets SIMDIntrinsicInfo.id to SIMDIntrinsicInvalid if methodHnd doesn't correspond |
| 765 | // to any SIMD intrinsic. Also, sets the out params inOutTypeHnd, argCount, baseType and |
| 766 | // sizeBytes. |
| 767 | // |
| 768 | // Note that VectorMath class doesn't have a base type and first argument of the method |
| 769 | // determines the SIMD vector type on which intrinsic is invoked. In such a case inOutTypeHnd |
| 770 | // is modified by this routine. |
| 771 | // |
| 772 | // TODO-Throughput: The current implementation is based on method name string parsing. |
| 773 | // Although we now have type identification from the VM, the parsing of intrinsic names |
| 774 | // could be made more efficient. |
| 775 | // |
| 776 | const SIMDIntrinsicInfo* Compiler::getSIMDIntrinsicInfo(CORINFO_CLASS_HANDLE* inOutTypeHnd, |
| 777 | CORINFO_METHOD_HANDLE methodHnd, |
| 778 | CORINFO_SIG_INFO* sig, |
| 779 | bool isNewObj, |
| 780 | unsigned* argCount, |
| 781 | var_types* baseType, |
| 782 | unsigned* sizeBytes) |
| 783 | { |
| 784 | assert(featureSIMD); |
| 785 | assert(baseType != nullptr); |
| 786 | assert(sizeBytes != nullptr); |
| 787 | |
| 788 | // get baseType and size of the type |
| 789 | CORINFO_CLASS_HANDLE typeHnd = *inOutTypeHnd; |
| 790 | *baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, sizeBytes); |
| 791 | |
| 792 | if (typeHnd == m_simdHandleCache->SIMDVectorHandle) |
| 793 | { |
| 794 | // All of the supported intrinsics on this static class take a first argument that's a vector, |
| 795 | // which determines the baseType. |
| 796 | // The exception is the IsHardwareAccelerated property, which is handled as a special case. |
| 797 | assert(*baseType == TYP_UNKNOWN); |
| 798 | if (sig->numArgs == 0) |
| 799 | { |
| 800 | const SIMDIntrinsicInfo* hwAccelIntrinsicInfo = &(simdIntrinsicInfoArray[SIMDIntrinsicHWAccel]); |
| 801 | if ((strcmp(eeGetMethodName(methodHnd, nullptr), hwAccelIntrinsicInfo->methodName) == 0) && |
| 802 | JITtype2varType(sig->retType) == hwAccelIntrinsicInfo->retType) |
| 803 | { |
| 804 | // Sanity check |
| 805 | assert(hwAccelIntrinsicInfo->argCount == 0 && hwAccelIntrinsicInfo->isInstMethod == false); |
| 806 | return hwAccelIntrinsicInfo; |
| 807 | } |
| 808 | return nullptr; |
| 809 | } |
| 810 | else |
| 811 | { |
| 812 | typeHnd = info.compCompHnd->getArgClass(sig, sig->args); |
| 813 | *inOutTypeHnd = typeHnd; |
| 814 | *baseType = getBaseTypeAndSizeOfSIMDType(typeHnd, sizeBytes); |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | if (*baseType == TYP_UNKNOWN) |
| 819 | { |
| 820 | JITDUMP("NOT a SIMD Intrinsic: unsupported baseType\n" ); |
| 821 | return nullptr; |
| 822 | } |
| 823 | |
| 824 | // account for implicit "this" arg |
| 825 | *argCount = sig->numArgs; |
| 826 | if (sig->hasThis()) |
| 827 | { |
| 828 | *argCount += 1; |
| 829 | } |
| 830 | |
| 831 | // Get the Intrinsic Id by parsing method name. |
| 832 | // |
| 833 | // TODO-Throughput: replace sequential search by binary search by arranging entries |
| 834 | // sorted by method name. |
| 835 | SIMDIntrinsicID intrinsicId = SIMDIntrinsicInvalid; |
| 836 | const char* methodName = eeGetMethodName(methodHnd, nullptr); |
| 837 | for (int i = SIMDIntrinsicNone + 1; i < SIMDIntrinsicInvalid; ++i) |
| 838 | { |
| 839 | if (strcmp(methodName, simdIntrinsicInfoArray[i].methodName) == 0) |
| 840 | { |
| 841 | // Found an entry for the method; further check whether it is one of |
| 842 | // the supported base types. |
| 843 | bool found = false; |
| 844 | for (int j = 0; j < SIMD_INTRINSIC_MAX_BASETYPE_COUNT; ++j) |
| 845 | { |
| 846 | // Convention: if there are fewer base types supported than MAX_BASETYPE_COUNT, |
| 847 | // the end of the list is marked by TYP_UNDEF. |
| 848 | if (simdIntrinsicInfoArray[i].supportedBaseTypes[j] == TYP_UNDEF) |
| 849 | { |
| 850 | break; |
| 851 | } |
| 852 | |
| 853 | if (simdIntrinsicInfoArray[i].supportedBaseTypes[j] == *baseType) |
| 854 | { |
| 855 | found = true; |
| 856 | break; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | if (!found) |
| 861 | { |
| 862 | continue; |
| 863 | } |
| 864 | |
| 865 | // Now, check the arguments. |
| 866 | unsigned int fixedArgCnt = simdIntrinsicInfoArray[i].argCount; |
| 867 | unsigned int expectedArgCnt = fixedArgCnt; |
| 868 | |
| 869 | // First handle SIMDIntrinsicInitN, where the arg count depends on the type. |
| 870 | // The listed arg types include the vector and the first two init values, which is the expected number |
| 871 | // for Vector2. For other cases, we'll check their types here. |
| 872 | if (*argCount > expectedArgCnt) |
| 873 | { |
| 874 | if (i == SIMDIntrinsicInitN) |
| 875 | { |
| 876 | if (*argCount == 3 && typeHnd == m_simdHandleCache->SIMDVector2Handle) |
| 877 | { |
| 878 | expectedArgCnt = 3; |
| 879 | } |
| 880 | else if (*argCount == 4 && typeHnd == m_simdHandleCache->SIMDVector3Handle) |
| 881 | { |
| 882 | expectedArgCnt = 4; |
| 883 | } |
| 884 | else if (*argCount == 5 && typeHnd == m_simdHandleCache->SIMDVector4Handle) |
| 885 | { |
| 886 | expectedArgCnt = 5; |
| 887 | } |
| 888 | } |
| 889 | else if (i == SIMDIntrinsicInitFixed) |
| 890 | { |
| 891 | if (*argCount == 4 && typeHnd == m_simdHandleCache->SIMDVector4Handle) |
| 892 | { |
| 893 | expectedArgCnt = 4; |
| 894 | } |
| 895 | } |
| 896 | } |
| 897 | if (*argCount != expectedArgCnt) |
| 898 | { |
| 899 | continue; |
| 900 | } |
| 901 | |
| 902 | // Validate the types of individual args passed are what is expected of. |
| 903 | // If any of the types don't match with what is expected, don't consider |
| 904 | // as an intrinsic. This will make an older JIT with SIMD capabilities |
| 905 | // resilient to breaking changes to SIMD managed API. |
| 906 | // |
| 907 | // Note that from IL type stack, args get popped in right to left order |
| 908 | // whereas args get listed in method signatures in left to right order. |
| 909 | |
| 910 | int stackIndex = (expectedArgCnt - 1); |
| 911 | |
| 912 | // Track the arguments from the signature - we currently only use this to distinguish |
| 913 | // integral and pointer types, both of which will by TYP_I_IMPL on the importer stack. |
| 914 | CORINFO_ARG_LIST_HANDLE argLst = sig->args; |
| 915 | |
| 916 | CORINFO_CLASS_HANDLE argClass; |
| 917 | for (unsigned int argIndex = 0; found == true && argIndex < expectedArgCnt; argIndex++) |
| 918 | { |
| 919 | bool isThisPtr = ((argIndex == 0) && sig->hasThis()); |
| 920 | |
| 921 | // In case of "newobj SIMDVector<T>(T val)", thisPtr won't be present on type stack. |
| 922 | // We don't check anything in that case. |
| 923 | if (!isThisPtr || !isNewObj) |
| 924 | { |
| 925 | GenTree* arg = impStackTop(stackIndex).val; |
| 926 | var_types argType = arg->TypeGet(); |
| 927 | |
| 928 | var_types expectedArgType; |
| 929 | if (argIndex < fixedArgCnt) |
| 930 | { |
| 931 | // Convention: |
| 932 | // - intrinsicInfo.argType[i] == TYP_UNDEF - intrinsic doesn't have a valid arg at position i |
| 933 | // - intrinsicInfo.argType[i] == TYP_UNKNOWN - arg type should be same as basetype |
| 934 | // Note that we pop the args off in reverse order. |
| 935 | expectedArgType = simdIntrinsicInfoArray[i].argType[argIndex]; |
| 936 | assert(expectedArgType != TYP_UNDEF); |
| 937 | if (expectedArgType == TYP_UNKNOWN) |
| 938 | { |
| 939 | // The type of the argument will be genActualType(*baseType). |
| 940 | expectedArgType = genActualType(*baseType); |
| 941 | argType = genActualType(argType); |
| 942 | } |
| 943 | } |
| 944 | else |
| 945 | { |
| 946 | expectedArgType = *baseType; |
| 947 | } |
| 948 | |
| 949 | if (!isThisPtr && argType == TYP_I_IMPL) |
| 950 | { |
| 951 | // The reference implementation has a constructor that takes a pointer. |
| 952 | // We don't want to recognize that one. This requires us to look at the CorInfoType |
| 953 | // in order to distinguish a signature with a pointer argument from one with an |
| 954 | // integer argument of pointer size, both of which will be TYP_I_IMPL on the stack. |
| 955 | // TODO-Review: This seems quite fragile. We should consider beefing up the checking |
| 956 | // here. |
| 957 | CorInfoType corType = strip(info.compCompHnd->getArgType(sig, argLst, &argClass)); |
| 958 | if (corType == CORINFO_TYPE_PTR) |
| 959 | { |
| 960 | found = false; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | if (varTypeIsSIMD(argType)) |
| 965 | { |
| 966 | argType = TYP_STRUCT; |
| 967 | } |
| 968 | if (argType != expectedArgType) |
| 969 | { |
| 970 | found = false; |
| 971 | } |
| 972 | } |
| 973 | if (argIndex != 0 || !sig->hasThis()) |
| 974 | { |
| 975 | argLst = info.compCompHnd->getArgNext(argLst); |
| 976 | } |
| 977 | stackIndex--; |
| 978 | } |
| 979 | |
| 980 | // Cross check return type and static vs. instance is what we are expecting. |
| 981 | // If not, don't consider it as an intrinsic. |
| 982 | // Note that ret type of TYP_UNKNOWN means that it is not known apriori and must be same as baseType |
| 983 | if (found) |
| 984 | { |
| 985 | var_types expectedRetType = simdIntrinsicInfoArray[i].retType; |
| 986 | if (expectedRetType == TYP_UNKNOWN) |
| 987 | { |
| 988 | // JIT maps uint/ulong type vars to TYP_INT/TYP_LONG. |
| 989 | expectedRetType = |
| 990 | (*baseType == TYP_UINT || *baseType == TYP_ULONG) ? genActualType(*baseType) : *baseType; |
| 991 | } |
| 992 | |
| 993 | if (JITtype2varType(sig->retType) != expectedRetType || |
| 994 | sig->hasThis() != simdIntrinsicInfoArray[i].isInstMethod) |
| 995 | { |
| 996 | found = false; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | if (found) |
| 1001 | { |
| 1002 | intrinsicId = (SIMDIntrinsicID)i; |
| 1003 | break; |
| 1004 | } |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | if (intrinsicId != SIMDIntrinsicInvalid) |
| 1009 | { |
| 1010 | JITDUMP("Method %s maps to SIMD intrinsic %s\n" , methodName, simdIntrinsicNames[intrinsicId]); |
| 1011 | return &simdIntrinsicInfoArray[intrinsicId]; |
| 1012 | } |
| 1013 | else |
| 1014 | { |
| 1015 | JITDUMP("Method %s is NOT a SIMD intrinsic\n" , methodName); |
| 1016 | } |
| 1017 | |
| 1018 | return nullptr; |
| 1019 | } |
| 1020 | |
| 1021 | // Pops and returns GenTree node from importer's type stack. |
| 1022 | // Normalizes TYP_STRUCT value in case of GT_CALL, GT_RET_EXPR and arg nodes. |
| 1023 | // |
| 1024 | // Arguments: |
| 1025 | // type - the type of value that the caller expects to be popped off the stack. |
| 1026 | // expectAddr - if true indicates we are expecting type stack entry to be a TYP_BYREF. |
| 1027 | // structType - the class handle to use when normalizing if it is not the same as the stack entry class handle; |
| 1028 | // this can happen for certain scenarios, such as folding away a static cast, where we want the |
| 1029 | // value popped to have the type that would have been returned. |
| 1030 | // |
| 1031 | // Notes: |
| 1032 | // If the popped value is a struct, and the expected type is a simd type, it will be set |
| 1033 | // to that type, otherwise it will assert if the type being popped is not the expected type. |
| 1034 | |
| 1035 | GenTree* Compiler::impSIMDPopStack(var_types type, bool expectAddr, CORINFO_CLASS_HANDLE structType) |
| 1036 | { |
| 1037 | StackEntry se = impPopStack(); |
| 1038 | typeInfo ti = se.seTypeInfo; |
| 1039 | GenTree* tree = se.val; |
| 1040 | |
| 1041 | // If expectAddr is true implies what we have on stack is address and we need |
| 1042 | // SIMD type struct that it points to. |
| 1043 | if (expectAddr) |
| 1044 | { |
| 1045 | assert(tree->TypeGet() == TYP_BYREF); |
| 1046 | if (tree->OperGet() == GT_ADDR) |
| 1047 | { |
| 1048 | tree = tree->gtGetOp1(); |
| 1049 | } |
| 1050 | else |
| 1051 | { |
| 1052 | tree = gtNewOperNode(GT_IND, type, tree); |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | bool isParam = false; |
| 1057 | |
| 1058 | // If we have a ldobj of a SIMD local we need to transform it. |
| 1059 | if (tree->OperGet() == GT_OBJ) |
| 1060 | { |
| 1061 | GenTree* addr = tree->gtOp.gtOp1; |
| 1062 | if ((addr->OperGet() == GT_ADDR) && isSIMDTypeLocal(addr->gtOp.gtOp1)) |
| 1063 | { |
| 1064 | tree = addr->gtOp.gtOp1; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | if (tree->OperGet() == GT_LCL_VAR) |
| 1069 | { |
| 1070 | unsigned lclNum = tree->AsLclVarCommon()->GetLclNum(); |
| 1071 | LclVarDsc* lclVarDsc = &lvaTable[lclNum]; |
| 1072 | isParam = lclVarDsc->lvIsParam; |
| 1073 | } |
| 1074 | |
| 1075 | // normalize TYP_STRUCT value |
| 1076 | if (varTypeIsStruct(tree) && ((tree->OperGet() == GT_RET_EXPR) || (tree->OperGet() == GT_CALL) || isParam)) |
| 1077 | { |
| 1078 | assert(ti.IsType(TI_STRUCT)); |
| 1079 | |
| 1080 | if (structType == nullptr) |
| 1081 | { |
| 1082 | structType = ti.GetClassHandleForValueClass(); |
| 1083 | } |
| 1084 | |
| 1085 | tree = impNormStructVal(tree, structType, (unsigned)CHECK_SPILL_ALL); |
| 1086 | } |
| 1087 | |
| 1088 | // Now set the type of the tree to the specialized SIMD struct type, if applicable. |
| 1089 | if (genActualType(tree->gtType) != genActualType(type)) |
| 1090 | { |
| 1091 | assert(tree->gtType == TYP_STRUCT); |
| 1092 | tree->gtType = type; |
| 1093 | } |
| 1094 | else if (tree->gtType == TYP_BYREF) |
| 1095 | { |
| 1096 | assert(tree->IsLocal() || (tree->OperGet() == GT_RET_EXPR) || (tree->OperGet() == GT_CALL) || |
| 1097 | ((tree->gtOper == GT_ADDR) && varTypeIsSIMD(tree->gtGetOp1()))); |
| 1098 | } |
| 1099 | |
| 1100 | return tree; |
| 1101 | } |
| 1102 | |
| 1103 | // impSIMDGetFixed: Create a GT_SIMD tree for a Get property of SIMD vector with a fixed index. |
| 1104 | // |
| 1105 | // Arguments: |
| 1106 | // baseType - The base (element) type of the SIMD vector. |
| 1107 | // simdSize - The total size in bytes of the SIMD vector. |
| 1108 | // index - The index of the field to get. |
| 1109 | // |
| 1110 | // Return Value: |
| 1111 | // Returns a GT_SIMD node with the SIMDIntrinsicGetItem intrinsic id. |
| 1112 | // |
| 1113 | GenTreeSIMD* Compiler::impSIMDGetFixed(var_types simdType, var_types baseType, unsigned simdSize, int index) |
| 1114 | { |
| 1115 | assert(simdSize >= ((index + 1) * genTypeSize(baseType))); |
| 1116 | |
| 1117 | // op1 is a SIMD source. |
| 1118 | GenTree* op1 = impSIMDPopStack(simdType, true); |
| 1119 | |
| 1120 | GenTree* op2 = gtNewIconNode(index); |
| 1121 | GenTreeSIMD* simdTree = gtNewSIMDNode(baseType, op1, op2, SIMDIntrinsicGetItem, baseType, simdSize); |
| 1122 | return simdTree; |
| 1123 | } |
| 1124 | |
| 1125 | #ifdef _TARGET_XARCH_ |
| 1126 | // impSIMDLongRelOpEqual: transforms operands and returns the SIMD intrinsic to be applied on |
| 1127 | // transformed operands to obtain == comparison result. |
| 1128 | // |
| 1129 | // Arguments: |
| 1130 | // typeHnd - type handle of SIMD vector |
| 1131 | // size - SIMD vector size |
| 1132 | // op1 - in-out parameter; first operand |
| 1133 | // op2 - in-out parameter; second operand |
| 1134 | // |
| 1135 | // Return Value: |
| 1136 | // Modifies in-out params op1, op2 and returns intrinsic ID to be applied to modified operands |
| 1137 | // |
| 1138 | SIMDIntrinsicID Compiler::impSIMDLongRelOpEqual(CORINFO_CLASS_HANDLE typeHnd, |
| 1139 | unsigned size, |
| 1140 | GenTree** pOp1, |
| 1141 | GenTree** pOp2) |
| 1142 | { |
| 1143 | var_types simdType = (*pOp1)->TypeGet(); |
| 1144 | assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType)); |
| 1145 | |
| 1146 | // There is no direct SSE2 support for comparing TYP_LONG vectors. |
| 1147 | // These have to be implemented in terms of TYP_INT vector comparison operations. |
| 1148 | // |
| 1149 | // Equality(v1, v2): |
| 1150 | // tmp = (v1 == v2) i.e. compare for equality as if v1 and v2 are vector<int> |
| 1151 | // result = BitwiseAnd(t, shuffle(t, (2, 3, 0, 1))) |
| 1152 | // Shuffle is meant to swap the comparison results of low-32-bits and high 32-bits of respective long elements. |
| 1153 | |
| 1154 | // Compare vector<long> as if they were vector<int> and assign the result to a temp |
| 1155 | GenTree* compResult = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicEqual, TYP_INT, size); |
| 1156 | unsigned lclNum = lvaGrabTemp(true DEBUGARG("SIMD Long ==" )); |
| 1157 | lvaSetStruct(lclNum, typeHnd, false); |
| 1158 | GenTree* tmp = gtNewLclvNode(lclNum, simdType); |
| 1159 | GenTree* asg = gtNewTempAssign(lclNum, compResult); |
| 1160 | |
| 1161 | // op1 = GT_COMMA(tmp=compResult, tmp) |
| 1162 | // op2 = Shuffle(tmp, 0xB1) |
| 1163 | // IntrinsicId = BitwiseAnd |
| 1164 | *pOp1 = gtNewOperNode(GT_COMMA, simdType, asg, tmp); |
| 1165 | *pOp2 = gtNewSIMDNode(simdType, gtNewLclvNode(lclNum, simdType), gtNewIconNode(SHUFFLE_ZWXY, TYP_INT), |
| 1166 | SIMDIntrinsicShuffleSSE2, TYP_INT, size); |
| 1167 | return SIMDIntrinsicBitwiseAnd; |
| 1168 | } |
| 1169 | |
| 1170 | // impSIMDLongRelOpGreaterThan: transforms operands and returns the SIMD intrinsic to be applied on |
| 1171 | // transformed operands to obtain > comparison result. |
| 1172 | // |
| 1173 | // Arguments: |
| 1174 | // typeHnd - type handle of SIMD vector |
| 1175 | // size - SIMD vector size |
| 1176 | // pOp1 - in-out parameter; first operand |
| 1177 | // pOp2 - in-out parameter; second operand |
| 1178 | // |
| 1179 | // Return Value: |
| 1180 | // Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands |
| 1181 | // |
| 1182 | SIMDIntrinsicID Compiler::impSIMDLongRelOpGreaterThan(CORINFO_CLASS_HANDLE typeHnd, |
| 1183 | unsigned size, |
| 1184 | GenTree** pOp1, |
| 1185 | GenTree** pOp2) |
| 1186 | { |
| 1187 | var_types simdType = (*pOp1)->TypeGet(); |
| 1188 | assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType)); |
| 1189 | |
| 1190 | // GreaterThan(v1, v2) where v1 and v2 are vector long. |
| 1191 | // Let us consider the case of single long element comparison. |
| 1192 | // say L1 = (x1, y1) and L2 = (x2, y2) where x1, y1, x2, and y2 are 32-bit integers that comprise the longs L1 and |
| 1193 | // L2. |
| 1194 | // |
| 1195 | // GreaterThan(L1, L2) can be expressed in terms of > relationship between 32-bit integers that comprise L1 and L2 |
| 1196 | // as |
| 1197 | // = (x1, y1) > (x2, y2) |
| 1198 | // = (x1 > x2) || [(x1 == x2) && (y1 > y2)] - eq (1) |
| 1199 | // |
| 1200 | // t = (v1 > v2) 32-bit signed comparison |
| 1201 | // u = (v1 == v2) 32-bit sized element equality |
| 1202 | // v = (v1 > v2) 32-bit unsigned comparison |
| 1203 | // |
| 1204 | // z = shuffle(t, (3, 3, 1, 1)) - This corresponds to (x1 > x2) in eq(1) above |
| 1205 | // t1 = Shuffle(v, (2, 2, 0, 0)) - This corresponds to (y1 > y2) in eq(1) above |
| 1206 | // u1 = Shuffle(u, (3, 3, 1, 1)) - This corresponds to (x1 == x2) in eq(1) above |
| 1207 | // w = And(t1, u1) - This corresponds to [(x1 == x2) && (y1 > y2)] in eq(1) above |
| 1208 | // Result = BitwiseOr(z, w) |
| 1209 | |
| 1210 | // Since op1 and op2 gets used multiple times, make sure side effects are computed. |
| 1211 | GenTree* dupOp1 = nullptr; |
| 1212 | GenTree* dupOp2 = nullptr; |
| 1213 | GenTree* dupDupOp1 = nullptr; |
| 1214 | GenTree* dupDupOp2 = nullptr; |
| 1215 | |
| 1216 | if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1217 | { |
| 1218 | dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd); |
| 1219 | dupDupOp1 = gtNewLclvNode(dupOp1->AsLclVarCommon()->GetLclNum(), simdType); |
| 1220 | } |
| 1221 | else |
| 1222 | { |
| 1223 | dupOp1 = gtCloneExpr(*pOp1); |
| 1224 | dupDupOp1 = gtCloneExpr(*pOp1); |
| 1225 | } |
| 1226 | |
| 1227 | if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1228 | { |
| 1229 | dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd); |
| 1230 | dupDupOp2 = gtNewLclvNode(dupOp2->AsLclVarCommon()->GetLclNum(), simdType); |
| 1231 | } |
| 1232 | else |
| 1233 | { |
| 1234 | dupOp2 = gtCloneExpr(*pOp2); |
| 1235 | dupDupOp2 = gtCloneExpr(*pOp2); |
| 1236 | } |
| 1237 | |
| 1238 | assert(dupDupOp1 != nullptr && dupDupOp2 != nullptr); |
| 1239 | assert(dupOp1 != nullptr && dupOp2 != nullptr); |
| 1240 | assert(*pOp1 != nullptr && *pOp2 != nullptr); |
| 1241 | |
| 1242 | // v1GreaterThanv2Signed - signed 32-bit comparison |
| 1243 | GenTree* v1GreaterThanv2Signed = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicGreaterThan, TYP_INT, size); |
| 1244 | |
| 1245 | // v1Equalsv2 - 32-bit equality |
| 1246 | GenTree* v1Equalsv2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, SIMDIntrinsicEqual, TYP_INT, size); |
| 1247 | |
| 1248 | // v1GreaterThanv2Unsigned - unsigned 32-bit comparison |
| 1249 | var_types tempBaseType = TYP_UINT; |
| 1250 | SIMDIntrinsicID sid = impSIMDRelOp(SIMDIntrinsicGreaterThan, typeHnd, size, &tempBaseType, &dupDupOp1, &dupDupOp2); |
| 1251 | GenTree* v1GreaterThanv2Unsigned = gtNewSIMDNode(simdType, dupDupOp1, dupDupOp2, sid, tempBaseType, size); |
| 1252 | |
| 1253 | GenTree* z = gtNewSIMDNode(simdType, v1GreaterThanv2Signed, gtNewIconNode(SHUFFLE_WWYY, TYP_INT), |
| 1254 | SIMDIntrinsicShuffleSSE2, TYP_FLOAT, size); |
| 1255 | GenTree* t1 = gtNewSIMDNode(simdType, v1GreaterThanv2Unsigned, gtNewIconNode(SHUFFLE_ZZXX, TYP_INT), |
| 1256 | SIMDIntrinsicShuffleSSE2, TYP_FLOAT, size); |
| 1257 | GenTree* u1 = gtNewSIMDNode(simdType, v1Equalsv2, gtNewIconNode(SHUFFLE_WWYY, TYP_INT), SIMDIntrinsicShuffleSSE2, |
| 1258 | TYP_FLOAT, size); |
| 1259 | GenTree* w = gtNewSIMDNode(simdType, u1, t1, SIMDIntrinsicBitwiseAnd, TYP_INT, size); |
| 1260 | |
| 1261 | *pOp1 = z; |
| 1262 | *pOp2 = w; |
| 1263 | return SIMDIntrinsicBitwiseOr; |
| 1264 | } |
| 1265 | |
| 1266 | // impSIMDLongRelOpGreaterThanOrEqual: transforms operands and returns the SIMD intrinsic to be applied on |
| 1267 | // transformed operands to obtain >= comparison result. |
| 1268 | // |
| 1269 | // Arguments: |
| 1270 | // typeHnd - type handle of SIMD vector |
| 1271 | // size - SIMD vector size |
| 1272 | // pOp1 - in-out parameter; first operand |
| 1273 | // pOp2 - in-out parameter; second operand |
| 1274 | // |
| 1275 | // Return Value: |
| 1276 | // Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands |
| 1277 | // |
| 1278 | SIMDIntrinsicID Compiler::impSIMDLongRelOpGreaterThanOrEqual(CORINFO_CLASS_HANDLE typeHnd, |
| 1279 | unsigned size, |
| 1280 | GenTree** pOp1, |
| 1281 | GenTree** pOp2) |
| 1282 | { |
| 1283 | var_types simdType = (*pOp1)->TypeGet(); |
| 1284 | assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType)); |
| 1285 | |
| 1286 | // expand this to (a == b) | (a > b) |
| 1287 | GenTree* dupOp1 = nullptr; |
| 1288 | GenTree* dupOp2 = nullptr; |
| 1289 | |
| 1290 | if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1291 | { |
| 1292 | dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd); |
| 1293 | } |
| 1294 | else |
| 1295 | { |
| 1296 | dupOp1 = gtCloneExpr(*pOp1); |
| 1297 | } |
| 1298 | |
| 1299 | if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1300 | { |
| 1301 | dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd); |
| 1302 | } |
| 1303 | else |
| 1304 | { |
| 1305 | dupOp2 = gtCloneExpr(*pOp2); |
| 1306 | } |
| 1307 | |
| 1308 | assert(dupOp1 != nullptr && dupOp2 != nullptr); |
| 1309 | assert(*pOp1 != nullptr && *pOp2 != nullptr); |
| 1310 | |
| 1311 | // (a==b) |
| 1312 | SIMDIntrinsicID id = impSIMDLongRelOpEqual(typeHnd, size, pOp1, pOp2); |
| 1313 | *pOp1 = gtNewSIMDNode(simdType, *pOp1, *pOp2, id, TYP_LONG, size); |
| 1314 | |
| 1315 | // (a > b) |
| 1316 | id = impSIMDLongRelOpGreaterThan(typeHnd, size, &dupOp1, &dupOp2); |
| 1317 | *pOp2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, id, TYP_LONG, size); |
| 1318 | |
| 1319 | return SIMDIntrinsicBitwiseOr; |
| 1320 | } |
| 1321 | |
| 1322 | // impSIMDInt32OrSmallIntRelOpGreaterThanOrEqual: transforms operands and returns the SIMD intrinsic to be applied on |
| 1323 | // transformed operands to obtain >= comparison result in case of integer base type vectors |
| 1324 | // |
| 1325 | // Arguments: |
| 1326 | // typeHnd - type handle of SIMD vector |
| 1327 | // size - SIMD vector size |
| 1328 | // baseType - base type of SIMD vector |
| 1329 | // pOp1 - in-out parameter; first operand |
| 1330 | // pOp2 - in-out parameter; second operand |
| 1331 | // |
| 1332 | // Return Value: |
| 1333 | // Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands |
| 1334 | // |
| 1335 | SIMDIntrinsicID Compiler::impSIMDIntegralRelOpGreaterThanOrEqual( |
| 1336 | CORINFO_CLASS_HANDLE typeHnd, unsigned size, var_types baseType, GenTree** pOp1, GenTree** pOp2) |
| 1337 | { |
| 1338 | var_types simdType = (*pOp1)->TypeGet(); |
| 1339 | assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType)); |
| 1340 | |
| 1341 | // This routine should be used only for integer base type vectors |
| 1342 | assert(varTypeIsIntegral(baseType)); |
| 1343 | if ((getSIMDSupportLevel() == SIMD_SSE2_Supported) && ((baseType == TYP_LONG) || baseType == TYP_UBYTE)) |
| 1344 | { |
| 1345 | return impSIMDLongRelOpGreaterThanOrEqual(typeHnd, size, pOp1, pOp2); |
| 1346 | } |
| 1347 | |
| 1348 | // expand this to (a == b) | (a > b) |
| 1349 | GenTree* dupOp1 = nullptr; |
| 1350 | GenTree* dupOp2 = nullptr; |
| 1351 | |
| 1352 | if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1353 | { |
| 1354 | dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd); |
| 1355 | } |
| 1356 | else |
| 1357 | { |
| 1358 | dupOp1 = gtCloneExpr(*pOp1); |
| 1359 | } |
| 1360 | |
| 1361 | if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1362 | { |
| 1363 | dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd); |
| 1364 | } |
| 1365 | else |
| 1366 | { |
| 1367 | dupOp2 = gtCloneExpr(*pOp2); |
| 1368 | } |
| 1369 | |
| 1370 | assert(dupOp1 != nullptr && dupOp2 != nullptr); |
| 1371 | assert(*pOp1 != nullptr && *pOp2 != nullptr); |
| 1372 | |
| 1373 | // (a==b) |
| 1374 | *pOp1 = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicEqual, baseType, size); |
| 1375 | |
| 1376 | // (a > b) |
| 1377 | *pOp2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, SIMDIntrinsicGreaterThan, baseType, size); |
| 1378 | |
| 1379 | return SIMDIntrinsicBitwiseOr; |
| 1380 | } |
| 1381 | #endif // _TARGET_XARCH_ |
| 1382 | |
| 1383 | // Transforms operands and returns the SIMD intrinsic to be applied on |
| 1384 | // transformed operands to obtain given relop result. |
| 1385 | // |
| 1386 | // Arguments: |
| 1387 | // relOpIntrinsicId - Relational operator SIMD intrinsic |
| 1388 | // typeHnd - type handle of SIMD vector |
| 1389 | // size - SIMD vector size |
| 1390 | // inOutBaseType - base type of SIMD vector |
| 1391 | // pOp1 - in-out parameter; first operand |
| 1392 | // pOp2 - in-out parameter; second operand |
| 1393 | // |
| 1394 | // Return Value: |
| 1395 | // Modifies in-out params pOp1, pOp2, inOutBaseType and returns intrinsic ID to be applied to modified operands |
| 1396 | // |
| 1397 | SIMDIntrinsicID Compiler::impSIMDRelOp(SIMDIntrinsicID relOpIntrinsicId, |
| 1398 | CORINFO_CLASS_HANDLE typeHnd, |
| 1399 | unsigned size, |
| 1400 | var_types* inOutBaseType, |
| 1401 | GenTree** pOp1, |
| 1402 | GenTree** pOp2) |
| 1403 | { |
| 1404 | var_types simdType = (*pOp1)->TypeGet(); |
| 1405 | assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType)); |
| 1406 | |
| 1407 | assert(isRelOpSIMDIntrinsic(relOpIntrinsicId)); |
| 1408 | |
| 1409 | SIMDIntrinsicID intrinsicID = relOpIntrinsicId; |
| 1410 | #ifdef _TARGET_XARCH_ |
| 1411 | var_types baseType = *inOutBaseType; |
| 1412 | |
| 1413 | if (varTypeIsFloating(baseType)) |
| 1414 | { |
| 1415 | // SSE2/AVX doesn't support > and >= on vector float/double. |
| 1416 | // Therefore, we need to use < and <= with swapped operands |
| 1417 | if (relOpIntrinsicId == SIMDIntrinsicGreaterThan || relOpIntrinsicId == SIMDIntrinsicGreaterThanOrEqual) |
| 1418 | { |
| 1419 | GenTree* tmp = *pOp1; |
| 1420 | *pOp1 = *pOp2; |
| 1421 | *pOp2 = tmp; |
| 1422 | |
| 1423 | intrinsicID = |
| 1424 | (relOpIntrinsicId == SIMDIntrinsicGreaterThan) ? SIMDIntrinsicLessThan : SIMDIntrinsicLessThanOrEqual; |
| 1425 | } |
| 1426 | } |
| 1427 | else if (varTypeIsIntegral(baseType)) |
| 1428 | { |
| 1429 | // SSE/AVX doesn't support < and <= on integer base type vectors. |
| 1430 | // Therefore, we need to use > and >= with swapped operands. |
| 1431 | if (intrinsicID == SIMDIntrinsicLessThan || intrinsicID == SIMDIntrinsicLessThanOrEqual) |
| 1432 | { |
| 1433 | GenTree* tmp = *pOp1; |
| 1434 | *pOp1 = *pOp2; |
| 1435 | *pOp2 = tmp; |
| 1436 | |
| 1437 | intrinsicID = (relOpIntrinsicId == SIMDIntrinsicLessThan) ? SIMDIntrinsicGreaterThan |
| 1438 | : SIMDIntrinsicGreaterThanOrEqual; |
| 1439 | } |
| 1440 | |
| 1441 | if ((getSIMDSupportLevel() == SIMD_SSE2_Supported) && baseType == TYP_LONG) |
| 1442 | { |
| 1443 | // There is no direct SSE2 support for comparing TYP_LONG vectors. |
| 1444 | // These have to be implemented interms of TYP_INT vector comparison operations. |
| 1445 | if (intrinsicID == SIMDIntrinsicEqual) |
| 1446 | { |
| 1447 | intrinsicID = impSIMDLongRelOpEqual(typeHnd, size, pOp1, pOp2); |
| 1448 | } |
| 1449 | else if (intrinsicID == SIMDIntrinsicGreaterThan) |
| 1450 | { |
| 1451 | intrinsicID = impSIMDLongRelOpGreaterThan(typeHnd, size, pOp1, pOp2); |
| 1452 | } |
| 1453 | else if (intrinsicID == SIMDIntrinsicGreaterThanOrEqual) |
| 1454 | { |
| 1455 | intrinsicID = impSIMDLongRelOpGreaterThanOrEqual(typeHnd, size, pOp1, pOp2); |
| 1456 | } |
| 1457 | else |
| 1458 | { |
| 1459 | unreached(); |
| 1460 | } |
| 1461 | } |
| 1462 | // SSE2 and AVX direct support for signed comparison of int32, int16 and int8 types |
| 1463 | else if (!varTypeIsUnsigned(baseType)) |
| 1464 | { |
| 1465 | if (intrinsicID == SIMDIntrinsicGreaterThanOrEqual) |
| 1466 | { |
| 1467 | intrinsicID = impSIMDIntegralRelOpGreaterThanOrEqual(typeHnd, size, baseType, pOp1, pOp2); |
| 1468 | } |
| 1469 | } |
| 1470 | else // unsigned |
| 1471 | { |
| 1472 | // Vector<byte>, Vector<ushort>, Vector<uint> and Vector<ulong>: |
| 1473 | // SSE2 supports > for signed comparison. Therefore, to use it for |
| 1474 | // comparing unsigned numbers, we subtract a constant from both the |
| 1475 | // operands such that the result fits within the corresponding signed |
| 1476 | // type. The resulting signed numbers are compared using SSE2 signed |
| 1477 | // comparison. |
| 1478 | // |
| 1479 | // Vector<byte>: constant to be subtracted is 2^7 |
| 1480 | // Vector<ushort> constant to be subtracted is 2^15 |
| 1481 | // Vector<uint> constant to be subtracted is 2^31 |
| 1482 | // Vector<ulong> constant to be subtracted is 2^63 |
| 1483 | // |
| 1484 | // We need to treat op1 and op2 as signed for comparison purpose after |
| 1485 | // the transformation. |
| 1486 | __int64 constVal = 0; |
| 1487 | switch (baseType) |
| 1488 | { |
| 1489 | case TYP_UBYTE: |
| 1490 | constVal = 0x80808080; |
| 1491 | *inOutBaseType = TYP_BYTE; |
| 1492 | break; |
| 1493 | case TYP_USHORT: |
| 1494 | constVal = 0x80008000; |
| 1495 | *inOutBaseType = TYP_SHORT; |
| 1496 | break; |
| 1497 | case TYP_UINT: |
| 1498 | constVal = 0x80000000; |
| 1499 | *inOutBaseType = TYP_INT; |
| 1500 | break; |
| 1501 | case TYP_ULONG: |
| 1502 | constVal = 0x8000000000000000LL; |
| 1503 | *inOutBaseType = TYP_LONG; |
| 1504 | break; |
| 1505 | default: |
| 1506 | unreached(); |
| 1507 | break; |
| 1508 | } |
| 1509 | assert(constVal != 0); |
| 1510 | |
| 1511 | // This transformation is not required for equality. |
| 1512 | if (intrinsicID != SIMDIntrinsicEqual) |
| 1513 | { |
| 1514 | // For constructing const vector use either long or int base type. |
| 1515 | var_types tempBaseType; |
| 1516 | GenTree* initVal; |
| 1517 | if (baseType == TYP_ULONG) |
| 1518 | { |
| 1519 | tempBaseType = TYP_LONG; |
| 1520 | initVal = gtNewLconNode(constVal); |
| 1521 | } |
| 1522 | else |
| 1523 | { |
| 1524 | tempBaseType = TYP_INT; |
| 1525 | initVal = gtNewIconNode((ssize_t)constVal); |
| 1526 | } |
| 1527 | initVal->gtType = tempBaseType; |
| 1528 | GenTree* constVector = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, tempBaseType, size); |
| 1529 | |
| 1530 | // Assign constVector to a temp, since we intend to use it more than once |
| 1531 | // TODO-CQ: We have quite a few such constant vectors constructed during |
| 1532 | // the importation of SIMD intrinsics. Make sure that we have a single |
| 1533 | // temp per distinct constant per method. |
| 1534 | GenTree* tmp = fgInsertCommaFormTemp(&constVector, typeHnd); |
| 1535 | |
| 1536 | // op1 = op1 - constVector |
| 1537 | // op2 = op2 - constVector |
| 1538 | *pOp1 = gtNewSIMDNode(simdType, *pOp1, constVector, SIMDIntrinsicSub, baseType, size); |
| 1539 | *pOp2 = gtNewSIMDNode(simdType, *pOp2, tmp, SIMDIntrinsicSub, baseType, size); |
| 1540 | } |
| 1541 | |
| 1542 | return impSIMDRelOp(intrinsicID, typeHnd, size, inOutBaseType, pOp1, pOp2); |
| 1543 | } |
| 1544 | } |
| 1545 | #elif defined(_TARGET_ARM64_) |
| 1546 | // TODO-ARM64-CQ handle comparisons against zero |
| 1547 | |
| 1548 | // _TARGET_ARM64_ doesn't support < and <= on register register comparisons |
| 1549 | // Therefore, we need to use > and >= with swapped operands. |
| 1550 | if (intrinsicID == SIMDIntrinsicLessThan || intrinsicID == SIMDIntrinsicLessThanOrEqual) |
| 1551 | { |
| 1552 | GenTree* tmp = *pOp1; |
| 1553 | *pOp1 = *pOp2; |
| 1554 | *pOp2 = tmp; |
| 1555 | |
| 1556 | intrinsicID = |
| 1557 | (intrinsicID == SIMDIntrinsicLessThan) ? SIMDIntrinsicGreaterThan : SIMDIntrinsicGreaterThanOrEqual; |
| 1558 | } |
| 1559 | #else // !_TARGET_XARCH_ |
| 1560 | assert(!"impSIMDRelOp() unimplemented on target arch" ); |
| 1561 | unreached(); |
| 1562 | #endif // !_TARGET_XARCH_ |
| 1563 | |
| 1564 | return intrinsicID; |
| 1565 | } |
| 1566 | |
| 1567 | //------------------------------------------------------------------------- |
| 1568 | // impSIMDAbs: creates GT_SIMD node to compute Abs value of a given vector. |
| 1569 | // |
| 1570 | // Arguments: |
| 1571 | // typeHnd - type handle of SIMD vector |
| 1572 | // baseType - base type of vector |
| 1573 | // size - vector size in bytes |
| 1574 | // op1 - operand of Abs intrinsic |
| 1575 | // |
| 1576 | GenTree* Compiler::impSIMDAbs(CORINFO_CLASS_HANDLE typeHnd, var_types baseType, unsigned size, GenTree* op1) |
| 1577 | { |
| 1578 | assert(varTypeIsSIMD(op1)); |
| 1579 | |
| 1580 | var_types simdType = op1->TypeGet(); |
| 1581 | GenTree* retVal = nullptr; |
| 1582 | |
| 1583 | #ifdef _TARGET_XARCH_ |
| 1584 | // When there is no direct support, Abs(v) could be computed |
| 1585 | // on integer vectors as follows: |
| 1586 | // BitVector = v < vector.Zero |
| 1587 | // result = ConditionalSelect(BitVector, vector.Zero - v, v) |
| 1588 | |
| 1589 | bool useConditionalSelect = false; |
| 1590 | if (getSIMDSupportLevel() == SIMD_SSE2_Supported) |
| 1591 | { |
| 1592 | // SSE2 doesn't support abs on signed integer type vectors. |
| 1593 | if (baseType == TYP_LONG || baseType == TYP_INT || baseType == TYP_SHORT || baseType == TYP_BYTE) |
| 1594 | { |
| 1595 | useConditionalSelect = true; |
| 1596 | } |
| 1597 | } |
| 1598 | else |
| 1599 | { |
| 1600 | assert(getSIMDSupportLevel() >= SIMD_SSE4_Supported); |
| 1601 | if (baseType == TYP_LONG) |
| 1602 | { |
| 1603 | // SSE4/AVX2 don't support abs on long type vector. |
| 1604 | useConditionalSelect = true; |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | if (useConditionalSelect) |
| 1609 | { |
| 1610 | // This works only on integer vectors not on float/double vectors. |
| 1611 | assert(varTypeIsIntegral(baseType)); |
| 1612 | |
| 1613 | GenTree* op1Assign; |
| 1614 | unsigned op1LclNum; |
| 1615 | |
| 1616 | if (op1->OperGet() == GT_LCL_VAR) |
| 1617 | { |
| 1618 | op1LclNum = op1->gtLclVarCommon.gtLclNum; |
| 1619 | op1Assign = nullptr; |
| 1620 | } |
| 1621 | else |
| 1622 | { |
| 1623 | op1LclNum = lvaGrabTemp(true DEBUGARG("SIMD Abs op1" )); |
| 1624 | lvaSetStruct(op1LclNum, typeHnd, false); |
| 1625 | op1Assign = gtNewTempAssign(op1LclNum, op1); |
| 1626 | op1 = gtNewLclvNode(op1LclNum, op1->TypeGet()); |
| 1627 | } |
| 1628 | |
| 1629 | // Assign Vector.Zero to a temp since it is needed more than once |
| 1630 | GenTree* vecZero = gtNewSIMDVectorZero(simdType, baseType, size); |
| 1631 | unsigned vecZeroLclNum = lvaGrabTemp(true DEBUGARG("SIMD Abs VecZero" )); |
| 1632 | lvaSetStruct(vecZeroLclNum, typeHnd, false); |
| 1633 | GenTree* vecZeroAssign = gtNewTempAssign(vecZeroLclNum, vecZero); |
| 1634 | |
| 1635 | // Construct BitVector = v < vector.Zero |
| 1636 | GenTree* bitVecOp1 = op1; |
| 1637 | GenTree* bitVecOp2 = gtNewLclvNode(vecZeroLclNum, vecZero->TypeGet()); |
| 1638 | var_types relOpBaseType = baseType; |
| 1639 | SIMDIntrinsicID relOpIntrinsic = |
| 1640 | impSIMDRelOp(SIMDIntrinsicLessThan, typeHnd, size, &relOpBaseType, &bitVecOp1, &bitVecOp2); |
| 1641 | GenTree* bitVec = gtNewSIMDNode(simdType, bitVecOp1, bitVecOp2, relOpIntrinsic, relOpBaseType, size); |
| 1642 | unsigned bitVecLclNum = lvaGrabTemp(true DEBUGARG("SIMD Abs bitVec" )); |
| 1643 | lvaSetStruct(bitVecLclNum, typeHnd, false); |
| 1644 | GenTree* bitVecAssign = gtNewTempAssign(bitVecLclNum, bitVec); |
| 1645 | bitVec = gtNewLclvNode(bitVecLclNum, bitVec->TypeGet()); |
| 1646 | |
| 1647 | // Construct condSelectOp1 = vector.Zero - v |
| 1648 | GenTree* subOp1 = gtNewLclvNode(vecZeroLclNum, vecZero->TypeGet()); |
| 1649 | GenTree* subOp2 = gtNewLclvNode(op1LclNum, op1->TypeGet()); |
| 1650 | GenTree* negVec = gtNewSIMDNode(simdType, subOp1, subOp2, SIMDIntrinsicSub, baseType, size); |
| 1651 | |
| 1652 | // Construct ConditionalSelect(bitVec, vector.Zero - v, v) |
| 1653 | GenTree* vec = gtNewLclvNode(op1LclNum, op1->TypeGet()); |
| 1654 | retVal = impSIMDSelect(typeHnd, baseType, size, bitVec, negVec, vec); |
| 1655 | |
| 1656 | // Prepend bitVec assignment to retVal. |
| 1657 | // retVal = (tmp2 = v < tmp1), CondSelect(tmp2, tmp1 - v, v) |
| 1658 | retVal = gtNewOperNode(GT_COMMA, simdType, bitVecAssign, retVal); |
| 1659 | |
| 1660 | // Prepend vecZero assignment to retVal. |
| 1661 | // retVal = (tmp1 = vector.Zero), (tmp2 = v < tmp1), CondSelect(tmp2, tmp1 - v, v) |
| 1662 | retVal = gtNewOperNode(GT_COMMA, simdType, vecZeroAssign, retVal); |
| 1663 | |
| 1664 | // If op1 was assigned to a temp, prepend that to retVal. |
| 1665 | if (op1Assign != nullptr) |
| 1666 | { |
| 1667 | // retVal = (v=op1), (tmp1 = vector.Zero), (tmp2 = v < tmp1), CondSelect(tmp2, tmp1 - v, v) |
| 1668 | retVal = gtNewOperNode(GT_COMMA, simdType, op1Assign, retVal); |
| 1669 | } |
| 1670 | } |
| 1671 | else if (varTypeIsFloating(baseType)) |
| 1672 | { |
| 1673 | // Abs(vf) = vf & new SIMDVector<float>(0x7fffffff); |
| 1674 | // Abs(vd) = vf & new SIMDVector<double>(0x7fffffffffffffff); |
| 1675 | GenTree* bitMask = nullptr; |
| 1676 | if (baseType == TYP_FLOAT) |
| 1677 | { |
| 1678 | float f; |
| 1679 | static_assert_no_msg(sizeof(float) == sizeof(int)); |
| 1680 | *((int*)&f) = 0x7fffffff; |
| 1681 | bitMask = gtNewDconNode(f); |
| 1682 | } |
| 1683 | else if (baseType == TYP_DOUBLE) |
| 1684 | { |
| 1685 | double d; |
| 1686 | static_assert_no_msg(sizeof(double) == sizeof(__int64)); |
| 1687 | *((__int64*)&d) = 0x7fffffffffffffffLL; |
| 1688 | bitMask = gtNewDconNode(d); |
| 1689 | } |
| 1690 | |
| 1691 | assert(bitMask != nullptr); |
| 1692 | bitMask->gtType = baseType; |
| 1693 | GenTree* bitMaskVector = gtNewSIMDNode(simdType, bitMask, SIMDIntrinsicInit, baseType, size); |
| 1694 | retVal = gtNewSIMDNode(simdType, op1, bitMaskVector, SIMDIntrinsicBitwiseAnd, baseType, size); |
| 1695 | } |
| 1696 | else if (baseType == TYP_USHORT || baseType == TYP_UBYTE || baseType == TYP_UINT || baseType == TYP_ULONG) |
| 1697 | { |
| 1698 | // Abs is a no-op on unsigned integer type vectors |
| 1699 | retVal = op1; |
| 1700 | } |
| 1701 | else |
| 1702 | { |
| 1703 | assert(getSIMDSupportLevel() >= SIMD_SSE4_Supported); |
| 1704 | assert(baseType != TYP_LONG); |
| 1705 | |
| 1706 | retVal = gtNewSIMDNode(simdType, op1, SIMDIntrinsicAbs, baseType, size); |
| 1707 | } |
| 1708 | #elif defined(_TARGET_ARM64_) |
| 1709 | if (varTypeIsUnsigned(baseType)) |
| 1710 | { |
| 1711 | // Abs is a no-op on unsigned integer type vectors |
| 1712 | retVal = op1; |
| 1713 | } |
| 1714 | else |
| 1715 | { |
| 1716 | retVal = gtNewSIMDNode(simdType, op1, SIMDIntrinsicAbs, baseType, size); |
| 1717 | } |
| 1718 | #else // !defined(_TARGET_XARCH)_ && !defined(_TARGET_ARM64_) |
| 1719 | assert(!"Abs intrinsic on non-xarch target not implemented" ); |
| 1720 | #endif // !_TARGET_XARCH_ |
| 1721 | |
| 1722 | return retVal; |
| 1723 | } |
| 1724 | |
| 1725 | // Creates a GT_SIMD tree for Select operation |
| 1726 | // |
| 1727 | // Arguments: |
| 1728 | // typeHnd - type handle of SIMD vector |
| 1729 | // baseType - base type of SIMD vector |
| 1730 | // size - SIMD vector size |
| 1731 | // op1 - first operand = Condition vector vc |
| 1732 | // op2 - second operand = va |
| 1733 | // op3 - third operand = vb |
| 1734 | // |
| 1735 | // Return Value: |
| 1736 | // Returns GT_SIMD tree that computes Select(vc, va, vb) |
| 1737 | // |
| 1738 | GenTree* Compiler::impSIMDSelect( |
| 1739 | CORINFO_CLASS_HANDLE typeHnd, var_types baseType, unsigned size, GenTree* op1, GenTree* op2, GenTree* op3) |
| 1740 | { |
| 1741 | assert(varTypeIsSIMD(op1)); |
| 1742 | var_types simdType = op1->TypeGet(); |
| 1743 | assert(op2->TypeGet() == simdType); |
| 1744 | assert(op3->TypeGet() == simdType); |
| 1745 | |
| 1746 | // TODO-ARM64-CQ Support generating select instruction for SIMD |
| 1747 | |
| 1748 | // Select(BitVector vc, va, vb) = (va & vc) | (vb & !vc) |
| 1749 | // Select(op1, op2, op3) = (op2 & op1) | (op3 & !op1) |
| 1750 | // = SIMDIntrinsicBitwiseOr(SIMDIntrinsicBitwiseAnd(op2, op1), |
| 1751 | // SIMDIntrinsicBitwiseAndNot(op3, op1)) |
| 1752 | // |
| 1753 | // If Op1 has side effect, create an assignment to a temp |
| 1754 | GenTree* tmp = op1; |
| 1755 | GenTree* asg = nullptr; |
| 1756 | if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1757 | { |
| 1758 | unsigned lclNum = lvaGrabTemp(true DEBUGARG("SIMD Select" )); |
| 1759 | lvaSetStruct(lclNum, typeHnd, false); |
| 1760 | tmp = gtNewLclvNode(lclNum, op1->TypeGet()); |
| 1761 | asg = gtNewTempAssign(lclNum, op1); |
| 1762 | } |
| 1763 | |
| 1764 | GenTree* andExpr = gtNewSIMDNode(simdType, op2, tmp, SIMDIntrinsicBitwiseAnd, baseType, size); |
| 1765 | GenTree* dupOp1 = gtCloneExpr(tmp); |
| 1766 | assert(dupOp1 != nullptr); |
| 1767 | #ifdef _TARGET_ARM64_ |
| 1768 | // ARM64 implements SIMDIntrinsicBitwiseAndNot as Left & ~Right |
| 1769 | GenTree* andNotExpr = gtNewSIMDNode(simdType, op3, dupOp1, SIMDIntrinsicBitwiseAndNot, baseType, size); |
| 1770 | #else |
| 1771 | // XARCH implements SIMDIntrinsicBitwiseAndNot as ~Left & Right |
| 1772 | GenTree* andNotExpr = gtNewSIMDNode(simdType, dupOp1, op3, SIMDIntrinsicBitwiseAndNot, baseType, size); |
| 1773 | #endif |
| 1774 | GenTree* simdTree = gtNewSIMDNode(simdType, andExpr, andNotExpr, SIMDIntrinsicBitwiseOr, baseType, size); |
| 1775 | |
| 1776 | // If asg not null, create a GT_COMMA tree. |
| 1777 | if (asg != nullptr) |
| 1778 | { |
| 1779 | simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), asg, simdTree); |
| 1780 | } |
| 1781 | |
| 1782 | return simdTree; |
| 1783 | } |
| 1784 | |
| 1785 | // Creates a GT_SIMD tree for Min/Max operation |
| 1786 | // |
| 1787 | // Arguments: |
| 1788 | // IntrinsicId - SIMD intrinsic Id, either Min or Max |
| 1789 | // typeHnd - type handle of SIMD vector |
| 1790 | // baseType - base type of SIMD vector |
| 1791 | // size - SIMD vector size |
| 1792 | // op1 - first operand = va |
| 1793 | // op2 - second operand = vb |
| 1794 | // |
| 1795 | // Return Value: |
| 1796 | // Returns GT_SIMD tree that computes Max(va, vb) |
| 1797 | // |
| 1798 | GenTree* Compiler::impSIMDMinMax(SIMDIntrinsicID intrinsicId, |
| 1799 | CORINFO_CLASS_HANDLE typeHnd, |
| 1800 | var_types baseType, |
| 1801 | unsigned size, |
| 1802 | GenTree* op1, |
| 1803 | GenTree* op2) |
| 1804 | { |
| 1805 | assert(intrinsicId == SIMDIntrinsicMin || intrinsicId == SIMDIntrinsicMax); |
| 1806 | assert(varTypeIsSIMD(op1)); |
| 1807 | var_types simdType = op1->TypeGet(); |
| 1808 | assert(op2->TypeGet() == simdType); |
| 1809 | |
| 1810 | #if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 1811 | GenTree* simdTree = nullptr; |
| 1812 | |
| 1813 | #ifdef _TARGET_XARCH_ |
| 1814 | // SSE2 has direct support for float/double/signed word/unsigned byte. |
| 1815 | // SSE4.1 has direct support for int32/uint32/signed byte/unsigned word. |
| 1816 | // For other integer types we compute min/max as follows |
| 1817 | // |
| 1818 | // int32/uint32 (SSE2) |
| 1819 | // int64/uint64 (SSE2&SSE4): |
| 1820 | // compResult = (op1 < op2) in case of Min |
| 1821 | // (op1 > op2) in case of Max |
| 1822 | // Min/Max(op1, op2) = Select(compResult, op1, op2) |
| 1823 | // |
| 1824 | // unsigned word (SSE2): |
| 1825 | // op1 = op1 - 2^15 ; to make it fit within a signed word |
| 1826 | // op2 = op2 - 2^15 ; to make it fit within a signed word |
| 1827 | // result = SSE2 signed word Min/Max(op1, op2) |
| 1828 | // result = result + 2^15 ; readjust it back |
| 1829 | // |
| 1830 | // signed byte (SSE2): |
| 1831 | // op1 = op1 + 2^7 ; to make it unsigned |
| 1832 | // op1 = op1 + 2^7 ; to make it unsigned |
| 1833 | // result = SSE2 unsigned byte Min/Max(op1, op2) |
| 1834 | // result = result - 2^15 ; readjust it back |
| 1835 | |
| 1836 | if (varTypeIsFloating(baseType) || baseType == TYP_SHORT || baseType == TYP_UBYTE || |
| 1837 | (getSIMDSupportLevel() >= SIMD_SSE4_Supported && |
| 1838 | (baseType == TYP_BYTE || baseType == TYP_INT || baseType == TYP_UINT || baseType == TYP_USHORT))) |
| 1839 | { |
| 1840 | // SSE2 or SSE4.1 has direct support |
| 1841 | simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, baseType, size); |
| 1842 | } |
| 1843 | else if (baseType == TYP_USHORT || baseType == TYP_BYTE) |
| 1844 | { |
| 1845 | assert(getSIMDSupportLevel() == SIMD_SSE2_Supported); |
| 1846 | int constVal; |
| 1847 | SIMDIntrinsicID operIntrinsic; |
| 1848 | SIMDIntrinsicID adjustIntrinsic; |
| 1849 | var_types minMaxOperBaseType; |
| 1850 | if (baseType == TYP_USHORT) |
| 1851 | { |
| 1852 | constVal = 0x80008000; |
| 1853 | operIntrinsic = SIMDIntrinsicSub; |
| 1854 | adjustIntrinsic = SIMDIntrinsicAdd; |
| 1855 | minMaxOperBaseType = TYP_SHORT; |
| 1856 | } |
| 1857 | else |
| 1858 | { |
| 1859 | assert(baseType == TYP_BYTE); |
| 1860 | constVal = 0x80808080; |
| 1861 | operIntrinsic = SIMDIntrinsicAdd; |
| 1862 | adjustIntrinsic = SIMDIntrinsicSub; |
| 1863 | minMaxOperBaseType = TYP_UBYTE; |
| 1864 | } |
| 1865 | |
| 1866 | GenTree* initVal = gtNewIconNode(constVal); |
| 1867 | GenTree* constVector = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, TYP_INT, size); |
| 1868 | |
| 1869 | // Assign constVector to a temp, since we intend to use it more than once |
| 1870 | // TODO-CQ: We have quite a few such constant vectors constructed during |
| 1871 | // the importation of SIMD intrinsics. Make sure that we have a single |
| 1872 | // temp per distinct constant per method. |
| 1873 | GenTree* tmp = fgInsertCommaFormTemp(&constVector, typeHnd); |
| 1874 | |
| 1875 | // op1 = op1 - constVector |
| 1876 | // op2 = op2 - constVector |
| 1877 | op1 = gtNewSIMDNode(simdType, op1, constVector, operIntrinsic, baseType, size); |
| 1878 | op2 = gtNewSIMDNode(simdType, op2, tmp, operIntrinsic, baseType, size); |
| 1879 | |
| 1880 | // compute min/max of op1 and op2 considering them as if minMaxOperBaseType |
| 1881 | simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, minMaxOperBaseType, size); |
| 1882 | |
| 1883 | // re-adjust the value by adding or subtracting constVector |
| 1884 | tmp = gtNewLclvNode(tmp->AsLclVarCommon()->GetLclNum(), tmp->TypeGet()); |
| 1885 | simdTree = gtNewSIMDNode(simdType, simdTree, tmp, adjustIntrinsic, baseType, size); |
| 1886 | } |
| 1887 | #elif defined(_TARGET_ARM64_) |
| 1888 | // Arm64 has direct support for all types except int64/uint64 |
| 1889 | // For which we compute min/max as follows |
| 1890 | // |
| 1891 | // int64/uint64 |
| 1892 | // compResult = (op1 < op2) in case of Min |
| 1893 | // (op1 > op2) in case of Max |
| 1894 | // Min/Max(op1, op2) = Select(compResult, op1, op2) |
| 1895 | if (baseType != TYP_ULONG && baseType != TYP_LONG) |
| 1896 | { |
| 1897 | simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, baseType, size); |
| 1898 | } |
| 1899 | #endif |
| 1900 | else |
| 1901 | { |
| 1902 | GenTree* dupOp1 = nullptr; |
| 1903 | GenTree* dupOp2 = nullptr; |
| 1904 | GenTree* op1Assign = nullptr; |
| 1905 | GenTree* op2Assign = nullptr; |
| 1906 | unsigned op1LclNum; |
| 1907 | unsigned op2LclNum; |
| 1908 | |
| 1909 | if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1910 | { |
| 1911 | op1LclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max" )); |
| 1912 | dupOp1 = gtNewLclvNode(op1LclNum, op1->TypeGet()); |
| 1913 | lvaSetStruct(op1LclNum, typeHnd, false); |
| 1914 | op1Assign = gtNewTempAssign(op1LclNum, op1); |
| 1915 | op1 = gtNewLclvNode(op1LclNum, op1->TypeGet()); |
| 1916 | } |
| 1917 | else |
| 1918 | { |
| 1919 | dupOp1 = gtCloneExpr(op1); |
| 1920 | } |
| 1921 | |
| 1922 | if ((op2->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 1923 | { |
| 1924 | op2LclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max" )); |
| 1925 | dupOp2 = gtNewLclvNode(op2LclNum, op2->TypeGet()); |
| 1926 | lvaSetStruct(op2LclNum, typeHnd, false); |
| 1927 | op2Assign = gtNewTempAssign(op2LclNum, op2); |
| 1928 | op2 = gtNewLclvNode(op2LclNum, op2->TypeGet()); |
| 1929 | } |
| 1930 | else |
| 1931 | { |
| 1932 | dupOp2 = gtCloneExpr(op2); |
| 1933 | } |
| 1934 | |
| 1935 | SIMDIntrinsicID relOpIntrinsic = |
| 1936 | (intrinsicId == SIMDIntrinsicMin) ? SIMDIntrinsicLessThan : SIMDIntrinsicGreaterThan; |
| 1937 | var_types relOpBaseType = baseType; |
| 1938 | |
| 1939 | // compResult = op1 relOp op2 |
| 1940 | // simdTree = Select(compResult, op1, op2); |
| 1941 | assert(dupOp1 != nullptr); |
| 1942 | assert(dupOp2 != nullptr); |
| 1943 | relOpIntrinsic = impSIMDRelOp(relOpIntrinsic, typeHnd, size, &relOpBaseType, &dupOp1, &dupOp2); |
| 1944 | GenTree* compResult = gtNewSIMDNode(simdType, dupOp1, dupOp2, relOpIntrinsic, relOpBaseType, size); |
| 1945 | unsigned compResultLclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max" )); |
| 1946 | lvaSetStruct(compResultLclNum, typeHnd, false); |
| 1947 | GenTree* compResultAssign = gtNewTempAssign(compResultLclNum, compResult); |
| 1948 | compResult = gtNewLclvNode(compResultLclNum, compResult->TypeGet()); |
| 1949 | simdTree = impSIMDSelect(typeHnd, baseType, size, compResult, op1, op2); |
| 1950 | simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), compResultAssign, simdTree); |
| 1951 | |
| 1952 | // Now create comma trees if we have created assignments of op1/op2 to temps |
| 1953 | if (op2Assign != nullptr) |
| 1954 | { |
| 1955 | simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), op2Assign, simdTree); |
| 1956 | } |
| 1957 | |
| 1958 | if (op1Assign != nullptr) |
| 1959 | { |
| 1960 | simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), op1Assign, simdTree); |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | assert(simdTree != nullptr); |
| 1965 | return simdTree; |
| 1966 | #else // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) |
| 1967 | assert(!"impSIMDMinMax() unimplemented on target arch" ); |
| 1968 | unreached(); |
| 1969 | #endif // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) |
| 1970 | } |
| 1971 | |
| 1972 | //------------------------------------------------------------------------ |
| 1973 | // getOp1ForConstructor: Get the op1 for a constructor call. |
| 1974 | // |
| 1975 | // Arguments: |
| 1976 | // opcode - the opcode being handled (needed to identify the CEE_NEWOBJ case) |
| 1977 | // newobjThis - For CEE_NEWOBJ, this is the temp grabbed for the allocated uninitalized object. |
| 1978 | // clsHnd - The handle of the class of the method. |
| 1979 | // |
| 1980 | // Return Value: |
| 1981 | // The tree node representing the object to be initialized with the constructor. |
| 1982 | // |
| 1983 | // Notes: |
| 1984 | // This method handles the differences between the CEE_NEWOBJ and constructor cases. |
| 1985 | // |
| 1986 | GenTree* Compiler::getOp1ForConstructor(OPCODE opcode, GenTree* newobjThis, CORINFO_CLASS_HANDLE clsHnd) |
| 1987 | { |
| 1988 | GenTree* op1; |
| 1989 | if (opcode == CEE_NEWOBJ) |
| 1990 | { |
| 1991 | op1 = newobjThis; |
| 1992 | assert(newobjThis->gtOper == GT_ADDR && newobjThis->gtOp.gtOp1->gtOper == GT_LCL_VAR); |
| 1993 | |
| 1994 | // push newobj result on type stack |
| 1995 | unsigned tmp = op1->gtOp.gtOp1->gtLclVarCommon.gtLclNum; |
| 1996 | impPushOnStack(gtNewLclvNode(tmp, lvaGetRealType(tmp)), verMakeTypeInfo(clsHnd).NormaliseForStack()); |
| 1997 | } |
| 1998 | else |
| 1999 | { |
| 2000 | op1 = impSIMDPopStack(TYP_BYREF); |
| 2001 | } |
| 2002 | assert(op1->TypeGet() == TYP_BYREF); |
| 2003 | return op1; |
| 2004 | } |
| 2005 | |
| 2006 | //------------------------------------------------------------------- |
| 2007 | // Set the flag that indicates that the lclVar referenced by this tree |
| 2008 | // is used in a SIMD intrinsic. |
| 2009 | // Arguments: |
| 2010 | // tree - GenTree* |
| 2011 | |
| 2012 | void Compiler::setLclRelatedToSIMDIntrinsic(GenTree* tree) |
| 2013 | { |
| 2014 | assert(tree->OperIsLocal()); |
| 2015 | unsigned lclNum = tree->AsLclVarCommon()->GetLclNum(); |
| 2016 | LclVarDsc* lclVarDsc = &lvaTable[lclNum]; |
| 2017 | lclVarDsc->lvUsedInSIMDIntrinsic = true; |
| 2018 | } |
| 2019 | |
| 2020 | //------------------------------------------------------------- |
| 2021 | // Check if two field nodes reference at the same memory location. |
| 2022 | // Notice that this check is just based on pattern matching. |
| 2023 | // Arguments: |
| 2024 | // op1 - GenTree*. |
| 2025 | // op2 - GenTree*. |
| 2026 | // Return Value: |
| 2027 | // If op1's parents node and op2's parents node are at the same location, return true. Otherwise, return false |
| 2028 | |
| 2029 | bool areFieldsParentsLocatedSame(GenTree* op1, GenTree* op2) |
| 2030 | { |
| 2031 | assert(op1->OperGet() == GT_FIELD); |
| 2032 | assert(op2->OperGet() == GT_FIELD); |
| 2033 | |
| 2034 | GenTree* op1ObjRef = op1->gtField.gtFldObj; |
| 2035 | GenTree* op2ObjRef = op2->gtField.gtFldObj; |
| 2036 | while (op1ObjRef != nullptr && op2ObjRef != nullptr) |
| 2037 | { |
| 2038 | |
| 2039 | if (op1ObjRef->OperGet() != op2ObjRef->OperGet()) |
| 2040 | { |
| 2041 | break; |
| 2042 | } |
| 2043 | else if (op1ObjRef->OperGet() == GT_ADDR) |
| 2044 | { |
| 2045 | op1ObjRef = op1ObjRef->gtOp.gtOp1; |
| 2046 | op2ObjRef = op2ObjRef->gtOp.gtOp1; |
| 2047 | } |
| 2048 | |
| 2049 | if (op1ObjRef->OperIsLocal() && op2ObjRef->OperIsLocal() && |
| 2050 | op1ObjRef->AsLclVarCommon()->GetLclNum() == op2ObjRef->AsLclVarCommon()->GetLclNum()) |
| 2051 | { |
| 2052 | return true; |
| 2053 | } |
| 2054 | else if (op1ObjRef->OperGet() == GT_FIELD && op2ObjRef->OperGet() == GT_FIELD && |
| 2055 | op1ObjRef->gtField.gtFldHnd == op2ObjRef->gtField.gtFldHnd) |
| 2056 | { |
| 2057 | op1ObjRef = op1ObjRef->gtField.gtFldObj; |
| 2058 | op2ObjRef = op2ObjRef->gtField.gtFldObj; |
| 2059 | continue; |
| 2060 | } |
| 2061 | else |
| 2062 | { |
| 2063 | break; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | return false; |
| 2068 | } |
| 2069 | |
| 2070 | //---------------------------------------------------------------------- |
| 2071 | // Check whether two field are contiguous |
| 2072 | // Arguments: |
| 2073 | // first - GenTree*. The Type of the node should be TYP_FLOAT |
| 2074 | // second - GenTree*. The Type of the node should be TYP_FLOAT |
| 2075 | // Return Value: |
| 2076 | // if the first field is located before second field, and they are located contiguously, |
| 2077 | // then return true. Otherwise, return false. |
| 2078 | |
| 2079 | bool Compiler::areFieldsContiguous(GenTree* first, GenTree* second) |
| 2080 | { |
| 2081 | assert(first->OperGet() == GT_FIELD); |
| 2082 | assert(second->OperGet() == GT_FIELD); |
| 2083 | assert(first->gtType == TYP_FLOAT); |
| 2084 | assert(second->gtType == TYP_FLOAT); |
| 2085 | |
| 2086 | var_types firstFieldType = first->gtType; |
| 2087 | var_types secondFieldType = second->gtType; |
| 2088 | |
| 2089 | unsigned firstFieldEndOffset = first->gtField.gtFldOffset + genTypeSize(firstFieldType); |
| 2090 | unsigned secondFieldOffset = second->gtField.gtFldOffset; |
| 2091 | if (firstFieldEndOffset == secondFieldOffset && firstFieldType == secondFieldType && |
| 2092 | areFieldsParentsLocatedSame(first, second)) |
| 2093 | { |
| 2094 | return true; |
| 2095 | } |
| 2096 | |
| 2097 | return false; |
| 2098 | } |
| 2099 | |
| 2100 | //------------------------------------------------------------------------------- |
| 2101 | // Check whether two array element nodes are located contiguously or not. |
| 2102 | // Arguments: |
| 2103 | // op1 - GenTree*. |
| 2104 | // op2 - GenTree*. |
| 2105 | // Return Value: |
| 2106 | // if the array element op1 is located before array element op2, and they are contiguous, |
| 2107 | // then return true. Otherwise, return false. |
| 2108 | // TODO-CQ: |
| 2109 | // Right this can only check array element with const number as index. In future, |
| 2110 | // we should consider to allow this function to check the index using expression. |
| 2111 | |
| 2112 | bool Compiler::areArrayElementsContiguous(GenTree* op1, GenTree* op2) |
| 2113 | { |
| 2114 | noway_assert(op1->gtOper == GT_INDEX); |
| 2115 | noway_assert(op2->gtOper == GT_INDEX); |
| 2116 | GenTreeIndex* op1Index = op1->AsIndex(); |
| 2117 | GenTreeIndex* op2Index = op2->AsIndex(); |
| 2118 | |
| 2119 | GenTree* op1ArrayRef = op1Index->Arr(); |
| 2120 | GenTree* op2ArrayRef = op2Index->Arr(); |
| 2121 | assert(op1ArrayRef->TypeGet() == TYP_REF); |
| 2122 | assert(op2ArrayRef->TypeGet() == TYP_REF); |
| 2123 | |
| 2124 | GenTree* op1IndexNode = op1Index->Index(); |
| 2125 | GenTree* op2IndexNode = op2Index->Index(); |
| 2126 | if ((op1IndexNode->OperGet() == GT_CNS_INT && op2IndexNode->OperGet() == GT_CNS_INT) && |
| 2127 | op1IndexNode->gtIntCon.gtIconVal + 1 == op2IndexNode->gtIntCon.gtIconVal) |
| 2128 | { |
| 2129 | if (op1ArrayRef->OperGet() == GT_FIELD && op2ArrayRef->OperGet() == GT_FIELD && |
| 2130 | areFieldsParentsLocatedSame(op1ArrayRef, op2ArrayRef)) |
| 2131 | { |
| 2132 | return true; |
| 2133 | } |
| 2134 | else if (op1ArrayRef->OperIsLocal() && op2ArrayRef->OperIsLocal() && |
| 2135 | op1ArrayRef->AsLclVarCommon()->GetLclNum() == op2ArrayRef->AsLclVarCommon()->GetLclNum()) |
| 2136 | { |
| 2137 | return true; |
| 2138 | } |
| 2139 | } |
| 2140 | return false; |
| 2141 | } |
| 2142 | |
| 2143 | //------------------------------------------------------------------------------- |
| 2144 | // Check whether two argument nodes are contiguous or not. |
| 2145 | // Arguments: |
| 2146 | // op1 - GenTree*. |
| 2147 | // op2 - GenTree*. |
| 2148 | // Return Value: |
| 2149 | // if the argument node op1 is located before argument node op2, and they are located contiguously, |
| 2150 | // then return true. Otherwise, return false. |
| 2151 | // TODO-CQ: |
| 2152 | // Right now this can only check field and array. In future we should add more cases. |
| 2153 | // |
| 2154 | |
| 2155 | bool Compiler::areArgumentsContiguous(GenTree* op1, GenTree* op2) |
| 2156 | { |
| 2157 | if (op1->OperGet() == GT_INDEX && op2->OperGet() == GT_INDEX) |
| 2158 | { |
| 2159 | return areArrayElementsContiguous(op1, op2); |
| 2160 | } |
| 2161 | else if (op1->OperGet() == GT_FIELD && op2->OperGet() == GT_FIELD) |
| 2162 | { |
| 2163 | return areFieldsContiguous(op1, op2); |
| 2164 | } |
| 2165 | return false; |
| 2166 | } |
| 2167 | |
| 2168 | //-------------------------------------------------------------------------------------------------------- |
| 2169 | // createAddressNodeForSIMDInit: Generate the address node(GT_LEA) if we want to intialize vector2, vector3 or vector4 |
| 2170 | // from first argument's address. |
| 2171 | // |
| 2172 | // Arguments: |
| 2173 | // tree - GenTree*. This the tree node which is used to get the address for indir. |
| 2174 | // simdsize - unsigned. This the simd vector size. |
| 2175 | // arrayElementsCount - unsigned. This is used for generating the boundary check for array. |
| 2176 | // |
| 2177 | // Return value: |
| 2178 | // return the address node. |
| 2179 | // |
| 2180 | // TODO-CQ: |
| 2181 | // 1. Currently just support for GT_FIELD and GT_INDEX, because we can only verify the GT_INDEX node or GT_Field |
| 2182 | // are located contiguously or not. In future we should support more cases. |
| 2183 | // 2. Though it happens to just work fine front-end phases are not aware of GT_LEA node. Therefore, convert these |
| 2184 | // to use GT_ADDR. |
| 2185 | GenTree* Compiler::createAddressNodeForSIMDInit(GenTree* tree, unsigned simdSize) |
| 2186 | { |
| 2187 | assert(tree->OperGet() == GT_FIELD || tree->OperGet() == GT_INDEX); |
| 2188 | GenTree* byrefNode = nullptr; |
| 2189 | GenTree* startIndex = nullptr; |
| 2190 | unsigned offset = 0; |
| 2191 | var_types baseType = tree->gtType; |
| 2192 | |
| 2193 | if (tree->OperGet() == GT_FIELD) |
| 2194 | { |
| 2195 | GenTree* objRef = tree->gtField.gtFldObj; |
| 2196 | if (objRef != nullptr && objRef->gtOper == GT_ADDR) |
| 2197 | { |
| 2198 | GenTree* obj = objRef->gtOp.gtOp1; |
| 2199 | |
| 2200 | // If the field is directly from a struct, then in this case, |
| 2201 | // we should set this struct's lvUsedInSIMDIntrinsic as true, |
| 2202 | // so that this sturct won't be promoted. |
| 2203 | // e.g. s.x x is a field, and s is a struct, then we should set the s's lvUsedInSIMDIntrinsic as true. |
| 2204 | // so that s won't be promoted. |
| 2205 | // Notice that if we have a case like s1.s2.x. s1 s2 are struct, and x is a field, then it is possible that |
| 2206 | // s1 can be promoted, so that s2 can be promoted. The reason for that is if we don't allow s1 to be |
| 2207 | // promoted, then this will affect the other optimizations which are depend on s1's struct promotion. |
| 2208 | // TODO-CQ: |
| 2209 | // In future, we should optimize this case so that if there is a nested field like s1.s2.x and s1.s2.x's |
| 2210 | // address is used for initializing the vector, then s1 can be promoted but s2 can't. |
| 2211 | if (varTypeIsSIMD(obj) && obj->OperIsLocal()) |
| 2212 | { |
| 2213 | setLclRelatedToSIMDIntrinsic(obj); |
| 2214 | } |
| 2215 | } |
| 2216 | |
| 2217 | byrefNode = gtCloneExpr(tree->gtField.gtFldObj); |
| 2218 | assert(byrefNode != nullptr); |
| 2219 | offset = tree->gtField.gtFldOffset; |
| 2220 | } |
| 2221 | else if (tree->OperGet() == GT_INDEX) |
| 2222 | { |
| 2223 | |
| 2224 | GenTree* index = tree->AsIndex()->Index(); |
| 2225 | assert(index->OperGet() == GT_CNS_INT); |
| 2226 | |
| 2227 | GenTree* checkIndexExpr = nullptr; |
| 2228 | unsigned indexVal = (unsigned)(index->gtIntCon.gtIconVal); |
| 2229 | offset = indexVal * genTypeSize(tree->TypeGet()); |
| 2230 | GenTree* arrayRef = tree->AsIndex()->Arr(); |
| 2231 | |
| 2232 | // Generate the boundary check exception. |
| 2233 | // The length for boundary check should be the maximum index number which should be |
| 2234 | // (first argument's index number) + (how many array arguments we have) - 1 |
| 2235 | // = indexVal + arrayElementsCount - 1 |
| 2236 | unsigned arrayElementsCount = simdSize / genTypeSize(baseType); |
| 2237 | checkIndexExpr = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, indexVal + arrayElementsCount - 1); |
| 2238 | GenTreeArrLen* arrLen = gtNewArrLen(TYP_INT, arrayRef, (int)OFFSETOF__CORINFO_Array__length); |
| 2239 | GenTreeBoundsChk* arrBndsChk = new (this, GT_ARR_BOUNDS_CHECK) |
| 2240 | GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, checkIndexExpr, arrLen, SCK_RNGCHK_FAIL); |
| 2241 | |
| 2242 | offset += OFFSETOF__CORINFO_Array__data; |
| 2243 | byrefNode = gtNewOperNode(GT_COMMA, arrayRef->TypeGet(), arrBndsChk, gtCloneExpr(arrayRef)); |
| 2244 | } |
| 2245 | else |
| 2246 | { |
| 2247 | unreached(); |
| 2248 | } |
| 2249 | GenTree* address = |
| 2250 | new (this, GT_LEA) GenTreeAddrMode(TYP_BYREF, byrefNode, startIndex, genTypeSize(tree->TypeGet()), offset); |
| 2251 | return address; |
| 2252 | } |
| 2253 | |
| 2254 | //------------------------------------------------------------------------------- |
| 2255 | // impMarkContiguousSIMDFieldAssignments: Try to identify if there are contiguous |
| 2256 | // assignments from SIMD field to memory. If there are, then mark the related |
| 2257 | // lclvar so that it won't be promoted. |
| 2258 | // |
| 2259 | // Arguments: |
| 2260 | // stmt - GenTree*. Input statement node. |
| 2261 | |
| 2262 | void Compiler::impMarkContiguousSIMDFieldAssignments(GenTree* stmt) |
| 2263 | { |
| 2264 | if (!featureSIMD || opts.OptimizationDisabled()) |
| 2265 | { |
| 2266 | return; |
| 2267 | } |
| 2268 | GenTree* expr = stmt->gtStmt.gtStmtExpr; |
| 2269 | if (expr->OperGet() == GT_ASG && expr->TypeGet() == TYP_FLOAT) |
| 2270 | { |
| 2271 | GenTree* curDst = expr->gtOp.gtOp1; |
| 2272 | GenTree* curSrc = expr->gtOp.gtOp2; |
| 2273 | unsigned index = 0; |
| 2274 | var_types baseType = TYP_UNKNOWN; |
| 2275 | unsigned simdSize = 0; |
| 2276 | GenTree* srcSimdStructNode = getSIMDStructFromField(curSrc, &baseType, &index, &simdSize, true); |
| 2277 | if (srcSimdStructNode == nullptr || baseType != TYP_FLOAT) |
| 2278 | { |
| 2279 | fgPreviousCandidateSIMDFieldAsgStmt = nullptr; |
| 2280 | } |
| 2281 | else if (index == 0 && isSIMDTypeLocal(srcSimdStructNode)) |
| 2282 | { |
| 2283 | fgPreviousCandidateSIMDFieldAsgStmt = stmt; |
| 2284 | } |
| 2285 | else if (fgPreviousCandidateSIMDFieldAsgStmt != nullptr) |
| 2286 | { |
| 2287 | assert(index > 0); |
| 2288 | GenTree* prevAsgExpr = fgPreviousCandidateSIMDFieldAsgStmt->gtStmt.gtStmtExpr; |
| 2289 | GenTree* prevDst = prevAsgExpr->gtOp.gtOp1; |
| 2290 | GenTree* prevSrc = prevAsgExpr->gtOp.gtOp2; |
| 2291 | if (!areArgumentsContiguous(prevDst, curDst) || !areArgumentsContiguous(prevSrc, curSrc)) |
| 2292 | { |
| 2293 | fgPreviousCandidateSIMDFieldAsgStmt = nullptr; |
| 2294 | } |
| 2295 | else |
| 2296 | { |
| 2297 | if (index == (simdSize / genTypeSize(baseType) - 1)) |
| 2298 | { |
| 2299 | // Successfully found the pattern, mark the lclvar as UsedInSIMDIntrinsic |
| 2300 | if (srcSimdStructNode->OperIsLocal()) |
| 2301 | { |
| 2302 | setLclRelatedToSIMDIntrinsic(srcSimdStructNode); |
| 2303 | } |
| 2304 | |
| 2305 | if (curDst->OperGet() == GT_FIELD) |
| 2306 | { |
| 2307 | GenTree* objRef = curDst->gtField.gtFldObj; |
| 2308 | if (objRef != nullptr && objRef->gtOper == GT_ADDR) |
| 2309 | { |
| 2310 | GenTree* obj = objRef->gtOp.gtOp1; |
| 2311 | if (varTypeIsStruct(obj) && obj->OperIsLocal()) |
| 2312 | { |
| 2313 | setLclRelatedToSIMDIntrinsic(obj); |
| 2314 | } |
| 2315 | } |
| 2316 | } |
| 2317 | } |
| 2318 | else |
| 2319 | { |
| 2320 | fgPreviousCandidateSIMDFieldAsgStmt = stmt; |
| 2321 | } |
| 2322 | } |
| 2323 | } |
| 2324 | } |
| 2325 | else |
| 2326 | { |
| 2327 | fgPreviousCandidateSIMDFieldAsgStmt = nullptr; |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | //------------------------------------------------------------------------ |
| 2332 | // impSIMDIntrinsic: Check method to see if it is a SIMD method |
| 2333 | // |
| 2334 | // Arguments: |
| 2335 | // opcode - the opcode being handled (needed to identify the CEE_NEWOBJ case) |
| 2336 | // newobjThis - For CEE_NEWOBJ, this is the temp grabbed for the allocated uninitalized object. |
| 2337 | // clsHnd - The handle of the class of the method. |
| 2338 | // method - The handle of the method. |
| 2339 | // sig - The call signature for the method. |
| 2340 | // memberRef - The memberRef token for the method reference. |
| 2341 | // |
| 2342 | // Return Value: |
| 2343 | // If clsHnd is a known SIMD type, and 'method' is one of the methods that are |
| 2344 | // implemented as an intrinsic in the JIT, then return the tree that implements |
| 2345 | // it. |
| 2346 | // |
| 2347 | GenTree* Compiler::impSIMDIntrinsic(OPCODE opcode, |
| 2348 | GenTree* newobjThis, |
| 2349 | CORINFO_CLASS_HANDLE clsHnd, |
| 2350 | CORINFO_METHOD_HANDLE methodHnd, |
| 2351 | CORINFO_SIG_INFO* sig, |
| 2352 | unsigned methodFlags, |
| 2353 | int memberRef) |
| 2354 | { |
| 2355 | assert(featureSIMD); |
| 2356 | |
| 2357 | // Exit early if we are not in one of the SIMD types. |
| 2358 | if (!isSIMDClass(clsHnd)) |
| 2359 | { |
| 2360 | return nullptr; |
| 2361 | } |
| 2362 | |
| 2363 | #ifdef FEATURE_CORECLR |
| 2364 | // For coreclr, we also exit early if the method is not a JIT Intrinsic (which requires the [Intrinsic] attribute). |
| 2365 | if ((methodFlags & CORINFO_FLG_JIT_INTRINSIC) == 0) |
| 2366 | { |
| 2367 | return nullptr; |
| 2368 | } |
| 2369 | #endif // FEATURE_CORECLR |
| 2370 | |
| 2371 | // Get base type and intrinsic Id |
| 2372 | var_types baseType = TYP_UNKNOWN; |
| 2373 | unsigned size = 0; |
| 2374 | unsigned argCount = 0; |
| 2375 | const SIMDIntrinsicInfo* intrinsicInfo = |
| 2376 | getSIMDIntrinsicInfo(&clsHnd, methodHnd, sig, (opcode == CEE_NEWOBJ), &argCount, &baseType, &size); |
| 2377 | if (intrinsicInfo == nullptr || intrinsicInfo->id == SIMDIntrinsicInvalid) |
| 2378 | { |
| 2379 | return nullptr; |
| 2380 | } |
| 2381 | |
| 2382 | SIMDIntrinsicID simdIntrinsicID = intrinsicInfo->id; |
| 2383 | var_types simdType; |
| 2384 | if (baseType != TYP_UNKNOWN) |
| 2385 | { |
| 2386 | simdType = getSIMDTypeForSize(size); |
| 2387 | } |
| 2388 | else |
| 2389 | { |
| 2390 | assert(simdIntrinsicID == SIMDIntrinsicHWAccel); |
| 2391 | simdType = TYP_UNKNOWN; |
| 2392 | } |
| 2393 | bool instMethod = intrinsicInfo->isInstMethod; |
| 2394 | var_types callType = JITtype2varType(sig->retType); |
| 2395 | if (callType == TYP_STRUCT) |
| 2396 | { |
| 2397 | // Note that here we are assuming that, if the call returns a struct, that it is the same size as the |
| 2398 | // struct on which the method is declared. This is currently true for all methods on Vector types, |
| 2399 | // but if this ever changes, we will need to determine the callType from the signature. |
| 2400 | assert(info.compCompHnd->getClassSize(sig->retTypeClass) == genTypeSize(simdType)); |
| 2401 | callType = simdType; |
| 2402 | } |
| 2403 | |
| 2404 | GenTree* simdTree = nullptr; |
| 2405 | GenTree* op1 = nullptr; |
| 2406 | GenTree* op2 = nullptr; |
| 2407 | GenTree* op3 = nullptr; |
| 2408 | GenTree* retVal = nullptr; |
| 2409 | GenTree* copyBlkDst = nullptr; |
| 2410 | bool doCopyBlk = false; |
| 2411 | |
| 2412 | switch (simdIntrinsicID) |
| 2413 | { |
| 2414 | case SIMDIntrinsicGetCount: |
| 2415 | { |
| 2416 | int length = getSIMDVectorLength(clsHnd); |
| 2417 | GenTreeIntCon* intConstTree = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, length); |
| 2418 | retVal = intConstTree; |
| 2419 | |
| 2420 | intConstTree->gtFlags |= GTF_ICON_SIMD_COUNT; |
| 2421 | } |
| 2422 | break; |
| 2423 | |
| 2424 | case SIMDIntrinsicGetZero: |
| 2425 | retVal = gtNewSIMDVectorZero(simdType, baseType, size); |
| 2426 | break; |
| 2427 | |
| 2428 | case SIMDIntrinsicGetOne: |
| 2429 | retVal = gtNewSIMDVectorOne(simdType, baseType, size); |
| 2430 | break; |
| 2431 | |
| 2432 | case SIMDIntrinsicGetAllOnes: |
| 2433 | { |
| 2434 | // Equivalent to (Vector<T>) new Vector<int>(0xffffffff); |
| 2435 | GenTree* initVal = gtNewIconNode(0xffffffff, TYP_INT); |
| 2436 | simdTree = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, TYP_INT, size); |
| 2437 | if (baseType != TYP_INT) |
| 2438 | { |
| 2439 | // cast it to required baseType if different from TYP_INT |
| 2440 | simdTree = gtNewSIMDNode(simdType, simdTree, nullptr, SIMDIntrinsicCast, baseType, size); |
| 2441 | } |
| 2442 | retVal = simdTree; |
| 2443 | } |
| 2444 | break; |
| 2445 | |
| 2446 | case SIMDIntrinsicInit: |
| 2447 | case SIMDIntrinsicInitN: |
| 2448 | { |
| 2449 | // SIMDIntrinsicInit: |
| 2450 | // op2 - the initializer value |
| 2451 | // op1 - byref of vector |
| 2452 | // |
| 2453 | // SIMDIntrinsicInitN |
| 2454 | // op2 - list of initializer values stitched into a list |
| 2455 | // op1 - byref of vector |
| 2456 | bool initFromFirstArgIndir = false; |
| 2457 | if (simdIntrinsicID == SIMDIntrinsicInit) |
| 2458 | { |
| 2459 | op2 = impSIMDPopStack(baseType); |
| 2460 | } |
| 2461 | else |
| 2462 | { |
| 2463 | assert(simdIntrinsicID == SIMDIntrinsicInitN); |
| 2464 | assert(baseType == TYP_FLOAT); |
| 2465 | |
| 2466 | unsigned initCount = argCount - 1; |
| 2467 | unsigned elementCount = getSIMDVectorLength(size, baseType); |
| 2468 | noway_assert(initCount == elementCount); |
| 2469 | GenTree* nextArg = op2; |
| 2470 | |
| 2471 | // Build a GT_LIST with the N values. |
| 2472 | // We must maintain left-to-right order of the args, but we will pop |
| 2473 | // them off in reverse order (the Nth arg was pushed onto the stack last). |
| 2474 | |
| 2475 | GenTree* list = nullptr; |
| 2476 | GenTree* firstArg = nullptr; |
| 2477 | GenTree* prevArg = nullptr; |
| 2478 | int offset = 0; |
| 2479 | bool areArgsContiguous = true; |
| 2480 | for (unsigned i = 0; i < initCount; i++) |
| 2481 | { |
| 2482 | GenTree* nextArg = impSIMDPopStack(baseType); |
| 2483 | if (areArgsContiguous) |
| 2484 | { |
| 2485 | GenTree* curArg = nextArg; |
| 2486 | firstArg = curArg; |
| 2487 | |
| 2488 | if (prevArg != nullptr) |
| 2489 | { |
| 2490 | // Recall that we are popping the args off the stack in reverse order. |
| 2491 | areArgsContiguous = areArgumentsContiguous(curArg, prevArg); |
| 2492 | } |
| 2493 | prevArg = curArg; |
| 2494 | } |
| 2495 | |
| 2496 | list = new (this, GT_LIST) GenTreeOp(GT_LIST, baseType, nextArg, list); |
| 2497 | } |
| 2498 | |
| 2499 | if (areArgsContiguous && baseType == TYP_FLOAT) |
| 2500 | { |
| 2501 | // Since Vector2, Vector3 and Vector4's arguments type are only float, |
| 2502 | // we intialize the vector from first argument address, only when |
| 2503 | // the baseType is TYP_FLOAT and the arguments are located contiguously in memory |
| 2504 | initFromFirstArgIndir = true; |
| 2505 | GenTree* op2Address = createAddressNodeForSIMDInit(firstArg, size); |
| 2506 | var_types simdType = getSIMDTypeForSize(size); |
| 2507 | op2 = gtNewOperNode(GT_IND, simdType, op2Address); |
| 2508 | } |
| 2509 | else |
| 2510 | { |
| 2511 | op2 = list; |
| 2512 | } |
| 2513 | } |
| 2514 | |
| 2515 | op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd); |
| 2516 | |
| 2517 | assert(op1->TypeGet() == TYP_BYREF); |
| 2518 | assert(genActualType(op2->TypeGet()) == genActualType(baseType) || initFromFirstArgIndir); |
| 2519 | |
| 2520 | // For integral base types of size less than TYP_INT, expand the initializer |
| 2521 | // to fill size of TYP_INT bytes. |
| 2522 | if (varTypeIsSmallInt(baseType)) |
| 2523 | { |
| 2524 | // This case should occur only for Init intrinsic. |
| 2525 | assert(simdIntrinsicID == SIMDIntrinsicInit); |
| 2526 | |
| 2527 | unsigned baseSize = genTypeSize(baseType); |
| 2528 | int multiplier; |
| 2529 | if (baseSize == 1) |
| 2530 | { |
| 2531 | multiplier = 0x01010101; |
| 2532 | } |
| 2533 | else |
| 2534 | { |
| 2535 | assert(baseSize == 2); |
| 2536 | multiplier = 0x00010001; |
| 2537 | } |
| 2538 | |
| 2539 | GenTree* t1 = nullptr; |
| 2540 | if (baseType == TYP_BYTE) |
| 2541 | { |
| 2542 | // What we have is a signed byte initializer, |
| 2543 | // which when loaded to a reg will get sign extended to TYP_INT. |
| 2544 | // But what we need is the initializer without sign extended or |
| 2545 | // rather zero extended to 32-bits. |
| 2546 | t1 = gtNewOperNode(GT_AND, TYP_INT, op2, gtNewIconNode(0xff, TYP_INT)); |
| 2547 | } |
| 2548 | else if (baseType == TYP_SHORT) |
| 2549 | { |
| 2550 | // What we have is a signed short initializer, |
| 2551 | // which when loaded to a reg will get sign extended to TYP_INT. |
| 2552 | // But what we need is the initializer without sign extended or |
| 2553 | // rather zero extended to 32-bits. |
| 2554 | t1 = gtNewOperNode(GT_AND, TYP_INT, op2, gtNewIconNode(0xffff, TYP_INT)); |
| 2555 | } |
| 2556 | else |
| 2557 | { |
| 2558 | assert(baseType == TYP_UBYTE || baseType == TYP_USHORT); |
| 2559 | t1 = gtNewCastNode(TYP_INT, op2, false, TYP_INT); |
| 2560 | } |
| 2561 | |
| 2562 | assert(t1 != nullptr); |
| 2563 | GenTree* t2 = gtNewIconNode(multiplier, TYP_INT); |
| 2564 | op2 = gtNewOperNode(GT_MUL, TYP_INT, t1, t2); |
| 2565 | |
| 2566 | // Construct a vector of TYP_INT with the new initializer and cast it back to vector of baseType |
| 2567 | simdTree = gtNewSIMDNode(simdType, op2, nullptr, simdIntrinsicID, TYP_INT, size); |
| 2568 | simdTree = gtNewSIMDNode(simdType, simdTree, nullptr, SIMDIntrinsicCast, baseType, size); |
| 2569 | } |
| 2570 | else |
| 2571 | { |
| 2572 | |
| 2573 | if (initFromFirstArgIndir) |
| 2574 | { |
| 2575 | simdTree = op2; |
| 2576 | if (op1->gtOp.gtOp1->OperIsLocal()) |
| 2577 | { |
| 2578 | // label the dst struct's lclvar is used for SIMD intrinsic, |
| 2579 | // so that this dst struct won't be promoted. |
| 2580 | setLclRelatedToSIMDIntrinsic(op1->gtOp.gtOp1); |
| 2581 | } |
| 2582 | } |
| 2583 | else |
| 2584 | { |
| 2585 | simdTree = gtNewSIMDNode(simdType, op2, nullptr, simdIntrinsicID, baseType, size); |
| 2586 | } |
| 2587 | } |
| 2588 | |
| 2589 | copyBlkDst = op1; |
| 2590 | doCopyBlk = true; |
| 2591 | } |
| 2592 | break; |
| 2593 | |
| 2594 | case SIMDIntrinsicInitArray: |
| 2595 | case SIMDIntrinsicInitArrayX: |
| 2596 | case SIMDIntrinsicCopyToArray: |
| 2597 | case SIMDIntrinsicCopyToArrayX: |
| 2598 | { |
| 2599 | // op3 - index into array in case of SIMDIntrinsicCopyToArrayX and SIMDIntrinsicInitArrayX |
| 2600 | // op2 - array itself |
| 2601 | // op1 - byref to vector struct |
| 2602 | |
| 2603 | unsigned int vectorLength = getSIMDVectorLength(size, baseType); |
| 2604 | // (This constructor takes only the zero-based arrays.) |
| 2605 | // We will add one or two bounds checks: |
| 2606 | // 1. If we have an index, we must do a check on that first. |
| 2607 | // We can't combine it with the index + vectorLength check because |
| 2608 | // a. It might be negative, and b. It may need to raise a different exception |
| 2609 | // (captured as SCK_ARG_RNG_EXCPN for CopyTo and SCK_RNGCHK_FAIL for Init). |
| 2610 | // 2. We need to generate a check (SCK_ARG_EXCPN for CopyTo and SCK_RNGCHK_FAIL for Init) |
| 2611 | // for the last array element we will access. |
| 2612 | // We'll either check against (vectorLength - 1) or (index + vectorLength - 1). |
| 2613 | |
| 2614 | GenTree* checkIndexExpr = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, vectorLength - 1); |
| 2615 | |
| 2616 | // Get the index into the array. If it has been provided, it will be on the |
| 2617 | // top of the stack. Otherwise, it is null. |
| 2618 | if (argCount == 3) |
| 2619 | { |
| 2620 | op3 = impSIMDPopStack(TYP_INT); |
| 2621 | if (op3->IsIntegralConst(0)) |
| 2622 | { |
| 2623 | op3 = nullptr; |
| 2624 | } |
| 2625 | } |
| 2626 | else |
| 2627 | { |
| 2628 | // TODO-CQ: Here, or elsewhere, check for the pattern where op2 is a newly constructed array, and |
| 2629 | // change this to the InitN form. |
| 2630 | // op3 = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, 0); |
| 2631 | op3 = nullptr; |
| 2632 | } |
| 2633 | |
| 2634 | // Clone the array for use in the bounds check. |
| 2635 | op2 = impSIMDPopStack(TYP_REF); |
| 2636 | assert(op2->TypeGet() == TYP_REF); |
| 2637 | GenTree* arrayRefForArgChk = op2; |
| 2638 | GenTree* argRngChk = nullptr; |
| 2639 | GenTree* asg = nullptr; |
| 2640 | if ((arrayRefForArgChk->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 2641 | { |
| 2642 | op2 = fgInsertCommaFormTemp(&arrayRefForArgChk); |
| 2643 | } |
| 2644 | else |
| 2645 | { |
| 2646 | op2 = gtCloneExpr(arrayRefForArgChk); |
| 2647 | } |
| 2648 | assert(op2 != nullptr); |
| 2649 | |
| 2650 | if (op3 != nullptr) |
| 2651 | { |
| 2652 | SpecialCodeKind op3CheckKind; |
| 2653 | if (simdIntrinsicID == SIMDIntrinsicInitArrayX) |
| 2654 | { |
| 2655 | op3CheckKind = SCK_RNGCHK_FAIL; |
| 2656 | } |
| 2657 | else |
| 2658 | { |
| 2659 | assert(simdIntrinsicID == SIMDIntrinsicCopyToArrayX); |
| 2660 | op3CheckKind = SCK_ARG_RNG_EXCPN; |
| 2661 | } |
| 2662 | // We need to use the original expression on this, which is the first check. |
| 2663 | GenTree* arrayRefForArgRngChk = arrayRefForArgChk; |
| 2664 | // Then we clone the clone we just made for the next check. |
| 2665 | arrayRefForArgChk = gtCloneExpr(op2); |
| 2666 | // We know we MUST have had a cloneable expression. |
| 2667 | assert(arrayRefForArgChk != nullptr); |
| 2668 | GenTree* index = op3; |
| 2669 | if ((index->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 2670 | { |
| 2671 | op3 = fgInsertCommaFormTemp(&index); |
| 2672 | } |
| 2673 | else |
| 2674 | { |
| 2675 | op3 = gtCloneExpr(index); |
| 2676 | } |
| 2677 | |
| 2678 | GenTreeArrLen* arrLen = |
| 2679 | gtNewArrLen(TYP_INT, arrayRefForArgRngChk, (int)OFFSETOF__CORINFO_Array__length); |
| 2680 | argRngChk = new (this, GT_ARR_BOUNDS_CHECK) |
| 2681 | GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, index, arrLen, op3CheckKind); |
| 2682 | // Now, clone op3 to create another node for the argChk |
| 2683 | GenTree* index2 = gtCloneExpr(op3); |
| 2684 | assert(index != nullptr); |
| 2685 | checkIndexExpr = gtNewOperNode(GT_ADD, TYP_INT, index2, checkIndexExpr); |
| 2686 | } |
| 2687 | |
| 2688 | // Insert a bounds check for index + offset - 1. |
| 2689 | // This must be a "normal" array. |
| 2690 | SpecialCodeKind op2CheckKind; |
| 2691 | if (simdIntrinsicID == SIMDIntrinsicInitArray || simdIntrinsicID == SIMDIntrinsicInitArrayX) |
| 2692 | { |
| 2693 | op2CheckKind = SCK_RNGCHK_FAIL; |
| 2694 | } |
| 2695 | else |
| 2696 | { |
| 2697 | op2CheckKind = SCK_ARG_EXCPN; |
| 2698 | } |
| 2699 | GenTreeArrLen* arrLen = gtNewArrLen(TYP_INT, arrayRefForArgChk, (int)OFFSETOF__CORINFO_Array__length); |
| 2700 | GenTreeBoundsChk* argChk = new (this, GT_ARR_BOUNDS_CHECK) |
| 2701 | GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, checkIndexExpr, arrLen, op2CheckKind); |
| 2702 | |
| 2703 | // Create a GT_COMMA tree for the bounds check(s). |
| 2704 | op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), argChk, op2); |
| 2705 | if (argRngChk != nullptr) |
| 2706 | { |
| 2707 | op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), argRngChk, op2); |
| 2708 | } |
| 2709 | |
| 2710 | if (simdIntrinsicID == SIMDIntrinsicInitArray || simdIntrinsicID == SIMDIntrinsicInitArrayX) |
| 2711 | { |
| 2712 | op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd); |
| 2713 | simdTree = gtNewSIMDNode(simdType, op2, op3, SIMDIntrinsicInitArray, baseType, size); |
| 2714 | copyBlkDst = op1; |
| 2715 | doCopyBlk = true; |
| 2716 | } |
| 2717 | else |
| 2718 | { |
| 2719 | assert(simdIntrinsicID == SIMDIntrinsicCopyToArray || simdIntrinsicID == SIMDIntrinsicCopyToArrayX); |
| 2720 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2721 | assert(op1->TypeGet() == simdType); |
| 2722 | |
| 2723 | // copy vector (op1) to array (op2) starting at index (op3) |
| 2724 | simdTree = op1; |
| 2725 | |
| 2726 | // TODO-Cleanup: Though it happens to just work fine front-end phases are not aware of GT_LEA node. |
| 2727 | // Therefore, convert these to use GT_ADDR . |
| 2728 | copyBlkDst = new (this, GT_LEA) |
| 2729 | GenTreeAddrMode(TYP_BYREF, op2, op3, genTypeSize(baseType), OFFSETOF__CORINFO_Array__data); |
| 2730 | doCopyBlk = true; |
| 2731 | } |
| 2732 | } |
| 2733 | break; |
| 2734 | |
| 2735 | case SIMDIntrinsicInitFixed: |
| 2736 | { |
| 2737 | // We are initializing a fixed-length vector VLarge with a smaller fixed-length vector VSmall, plus 1 or 2 |
| 2738 | // additional floats. |
| 2739 | // op4 (optional) - float value for VLarge.W, if VLarge is Vector4, and VSmall is Vector2 |
| 2740 | // op3 - float value for VLarge.Z or VLarge.W |
| 2741 | // op2 - VSmall |
| 2742 | // op1 - byref of VLarge |
| 2743 | assert(baseType == TYP_FLOAT); |
| 2744 | unsigned elementByteCount = 4; |
| 2745 | |
| 2746 | GenTree* op4 = nullptr; |
| 2747 | if (argCount == 4) |
| 2748 | { |
| 2749 | op4 = impSIMDPopStack(TYP_FLOAT); |
| 2750 | assert(op4->TypeGet() == TYP_FLOAT); |
| 2751 | } |
| 2752 | op3 = impSIMDPopStack(TYP_FLOAT); |
| 2753 | assert(op3->TypeGet() == TYP_FLOAT); |
| 2754 | // The input vector will either be TYP_SIMD8 or TYP_SIMD12. |
| 2755 | var_types smallSIMDType = TYP_SIMD8; |
| 2756 | if ((op4 == nullptr) && (simdType == TYP_SIMD16)) |
| 2757 | { |
| 2758 | smallSIMDType = TYP_SIMD12; |
| 2759 | } |
| 2760 | op2 = impSIMDPopStack(smallSIMDType); |
| 2761 | op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd); |
| 2762 | |
| 2763 | // We are going to redefine the operands so that: |
| 2764 | // - op3 is the value that's going into the Z position, or null if it's a Vector4 constructor with a single |
| 2765 | // operand, and |
| 2766 | // - op4 is the W position value, or null if this is a Vector3 constructor. |
| 2767 | if (size == 16 && argCount == 3) |
| 2768 | { |
| 2769 | op4 = op3; |
| 2770 | op3 = nullptr; |
| 2771 | } |
| 2772 | |
| 2773 | simdTree = op2; |
| 2774 | if (op3 != nullptr) |
| 2775 | { |
| 2776 | simdTree = gtNewSIMDNode(simdType, simdTree, op3, SIMDIntrinsicSetZ, baseType, size); |
| 2777 | } |
| 2778 | if (op4 != nullptr) |
| 2779 | { |
| 2780 | simdTree = gtNewSIMDNode(simdType, simdTree, op4, SIMDIntrinsicSetW, baseType, size); |
| 2781 | } |
| 2782 | |
| 2783 | copyBlkDst = op1; |
| 2784 | doCopyBlk = true; |
| 2785 | } |
| 2786 | break; |
| 2787 | |
| 2788 | case SIMDIntrinsicOpEquality: |
| 2789 | case SIMDIntrinsicInstEquals: |
| 2790 | { |
| 2791 | op2 = impSIMDPopStack(simdType); |
| 2792 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2793 | |
| 2794 | assert(op1->TypeGet() == simdType); |
| 2795 | assert(op2->TypeGet() == simdType); |
| 2796 | |
| 2797 | simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, SIMDIntrinsicOpEquality, baseType, size); |
| 2798 | if (simdType == TYP_SIMD12) |
| 2799 | { |
| 2800 | simdTree->gtFlags |= GTF_SIMD12_OP; |
| 2801 | } |
| 2802 | retVal = simdTree; |
| 2803 | } |
| 2804 | break; |
| 2805 | |
| 2806 | case SIMDIntrinsicOpInEquality: |
| 2807 | { |
| 2808 | // op1 is the first operand |
| 2809 | // op2 is the second operand |
| 2810 | op2 = impSIMDPopStack(simdType); |
| 2811 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2812 | simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, SIMDIntrinsicOpInEquality, baseType, size); |
| 2813 | if (simdType == TYP_SIMD12) |
| 2814 | { |
| 2815 | simdTree->gtFlags |= GTF_SIMD12_OP; |
| 2816 | } |
| 2817 | retVal = simdTree; |
| 2818 | } |
| 2819 | break; |
| 2820 | |
| 2821 | case SIMDIntrinsicEqual: |
| 2822 | case SIMDIntrinsicLessThan: |
| 2823 | case SIMDIntrinsicLessThanOrEqual: |
| 2824 | case SIMDIntrinsicGreaterThan: |
| 2825 | case SIMDIntrinsicGreaterThanOrEqual: |
| 2826 | { |
| 2827 | op2 = impSIMDPopStack(simdType); |
| 2828 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2829 | |
| 2830 | SIMDIntrinsicID intrinsicID = impSIMDRelOp(simdIntrinsicID, clsHnd, size, &baseType, &op1, &op2); |
| 2831 | simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, intrinsicID, baseType, size); |
| 2832 | retVal = simdTree; |
| 2833 | } |
| 2834 | break; |
| 2835 | |
| 2836 | case SIMDIntrinsicAdd: |
| 2837 | case SIMDIntrinsicSub: |
| 2838 | case SIMDIntrinsicMul: |
| 2839 | case SIMDIntrinsicDiv: |
| 2840 | case SIMDIntrinsicBitwiseAnd: |
| 2841 | case SIMDIntrinsicBitwiseAndNot: |
| 2842 | case SIMDIntrinsicBitwiseOr: |
| 2843 | case SIMDIntrinsicBitwiseXor: |
| 2844 | { |
| 2845 | #if defined(DEBUG) |
| 2846 | // check for the cases where we don't support intrinsics. |
| 2847 | // This check should be done before we make modifications to type stack. |
| 2848 | // Note that this is more of a double safety check for robustness since |
| 2849 | // we expect getSIMDIntrinsicInfo() to have filtered out intrinsics on |
| 2850 | // unsupported base types. If getSIMdIntrinsicInfo() doesn't filter due |
| 2851 | // to some bug, assert in chk/dbg will fire. |
| 2852 | if (!varTypeIsFloating(baseType)) |
| 2853 | { |
| 2854 | if (simdIntrinsicID == SIMDIntrinsicMul) |
| 2855 | { |
| 2856 | #if defined(_TARGET_XARCH_) |
| 2857 | if ((baseType != TYP_INT) && (baseType != TYP_SHORT)) |
| 2858 | { |
| 2859 | // TODO-CQ: implement mul on these integer vectors. |
| 2860 | // Note that SSE2 has no direct support for these vectors. |
| 2861 | assert(!"Mul not supported on long/ulong/uint/small int vectors\n" ); |
| 2862 | return nullptr; |
| 2863 | } |
| 2864 | #endif // _TARGET_XARCH_ |
| 2865 | #if defined(_TARGET_ARM64_) |
| 2866 | if ((baseType == TYP_ULONG) && (baseType == TYP_LONG)) |
| 2867 | { |
| 2868 | // TODO-CQ: implement mul on these integer vectors. |
| 2869 | // Note that ARM64 has no direct support for these vectors. |
| 2870 | assert(!"Mul not supported on long/ulong vectors\n" ); |
| 2871 | return nullptr; |
| 2872 | } |
| 2873 | #endif // _TARGET_ARM64_ |
| 2874 | } |
| 2875 | #if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 2876 | // common to all integer type vectors |
| 2877 | if (simdIntrinsicID == SIMDIntrinsicDiv) |
| 2878 | { |
| 2879 | // SSE2 doesn't support div on non-floating point vectors. |
| 2880 | assert(!"Div not supported on integer type vectors\n" ); |
| 2881 | return nullptr; |
| 2882 | } |
| 2883 | #endif // defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 2884 | } |
| 2885 | #endif // DEBUG |
| 2886 | |
| 2887 | // op1 is the first operand; if instance method, op1 is "this" arg |
| 2888 | // op2 is the second operand |
| 2889 | op2 = impSIMDPopStack(simdType); |
| 2890 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2891 | |
| 2892 | #ifdef _TARGET_XARCH_ |
| 2893 | if (simdIntrinsicID == SIMDIntrinsicBitwiseAndNot) |
| 2894 | { |
| 2895 | // XARCH implements SIMDIntrinsicBitwiseAndNot as ~op1 & op2, while the |
| 2896 | // software implementation does op1 & ~op2, so we need to swap the operands |
| 2897 | |
| 2898 | GenTree* tmp = op2; |
| 2899 | op2 = op1; |
| 2900 | op1 = tmp; |
| 2901 | } |
| 2902 | #endif // _TARGET_XARCH_ |
| 2903 | |
| 2904 | simdTree = gtNewSIMDNode(simdType, op1, op2, simdIntrinsicID, baseType, size); |
| 2905 | retVal = simdTree; |
| 2906 | } |
| 2907 | break; |
| 2908 | |
| 2909 | case SIMDIntrinsicSelect: |
| 2910 | { |
| 2911 | // op3 is a SIMD variable that is the second source |
| 2912 | // op2 is a SIMD variable that is the first source |
| 2913 | // op1 is a SIMD variable which is the bit mask. |
| 2914 | op3 = impSIMDPopStack(simdType); |
| 2915 | op2 = impSIMDPopStack(simdType); |
| 2916 | op1 = impSIMDPopStack(simdType); |
| 2917 | |
| 2918 | retVal = impSIMDSelect(clsHnd, baseType, size, op1, op2, op3); |
| 2919 | } |
| 2920 | break; |
| 2921 | |
| 2922 | case SIMDIntrinsicMin: |
| 2923 | case SIMDIntrinsicMax: |
| 2924 | { |
| 2925 | // op1 is the first operand; if instance method, op1 is "this" arg |
| 2926 | // op2 is the second operand |
| 2927 | op2 = impSIMDPopStack(simdType); |
| 2928 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2929 | |
| 2930 | retVal = impSIMDMinMax(simdIntrinsicID, clsHnd, baseType, size, op1, op2); |
| 2931 | } |
| 2932 | break; |
| 2933 | |
| 2934 | case SIMDIntrinsicGetItem: |
| 2935 | { |
| 2936 | // op1 is a SIMD variable that is "this" arg |
| 2937 | // op2 is an index of TYP_INT |
| 2938 | op2 = impSIMDPopStack(TYP_INT); |
| 2939 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2940 | int vectorLength = getSIMDVectorLength(size, baseType); |
| 2941 | if (!op2->IsCnsIntOrI() || op2->AsIntCon()->gtIconVal >= vectorLength || op2->AsIntCon()->gtIconVal < 0) |
| 2942 | { |
| 2943 | // We need to bounds-check the length of the vector. |
| 2944 | // For that purpose, we need to clone the index expression. |
| 2945 | GenTree* index = op2; |
| 2946 | if ((index->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 2947 | { |
| 2948 | op2 = fgInsertCommaFormTemp(&index); |
| 2949 | } |
| 2950 | else |
| 2951 | { |
| 2952 | op2 = gtCloneExpr(index); |
| 2953 | } |
| 2954 | |
| 2955 | GenTree* lengthNode = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, vectorLength); |
| 2956 | GenTreeBoundsChk* simdChk = |
| 2957 | new (this, GT_SIMD_CHK) GenTreeBoundsChk(GT_SIMD_CHK, TYP_VOID, index, lengthNode, SCK_RNGCHK_FAIL); |
| 2958 | |
| 2959 | // Create a GT_COMMA tree for the bounds check. |
| 2960 | op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), simdChk, op2); |
| 2961 | } |
| 2962 | |
| 2963 | assert(op1->TypeGet() == simdType); |
| 2964 | assert(op2->TypeGet() == TYP_INT); |
| 2965 | |
| 2966 | simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, simdIntrinsicID, baseType, size); |
| 2967 | retVal = simdTree; |
| 2968 | } |
| 2969 | break; |
| 2970 | |
| 2971 | case SIMDIntrinsicDotProduct: |
| 2972 | { |
| 2973 | #if defined(_TARGET_XARCH_) |
| 2974 | // Right now dot product is supported only for float/double vectors and |
| 2975 | // int vectors on SSE4/AVX. |
| 2976 | if (!varTypeIsFloating(baseType) && !(baseType == TYP_INT && getSIMDSupportLevel() >= SIMD_SSE4_Supported)) |
| 2977 | { |
| 2978 | return nullptr; |
| 2979 | } |
| 2980 | #endif // _TARGET_XARCH_ |
| 2981 | |
| 2982 | // op1 is a SIMD variable that is the first source and also "this" arg. |
| 2983 | // op2 is a SIMD variable which is the second source. |
| 2984 | op2 = impSIMDPopStack(simdType); |
| 2985 | op1 = impSIMDPopStack(simdType, instMethod); |
| 2986 | |
| 2987 | simdTree = gtNewSIMDNode(baseType, op1, op2, simdIntrinsicID, baseType, size); |
| 2988 | if (simdType == TYP_SIMD12) |
| 2989 | { |
| 2990 | simdTree->gtFlags |= GTF_SIMD12_OP; |
| 2991 | } |
| 2992 | retVal = simdTree; |
| 2993 | } |
| 2994 | break; |
| 2995 | |
| 2996 | case SIMDIntrinsicSqrt: |
| 2997 | { |
| 2998 | #if (defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) && defined(DEBUG) |
| 2999 | // SSE/AVX/ARM64 doesn't support sqrt on integer type vectors and hence |
| 3000 | // should never be seen as an intrinsic here. See SIMDIntrinsicList.h |
| 3001 | // for supported base types for this intrinsic. |
| 3002 | if (!varTypeIsFloating(baseType)) |
| 3003 | { |
| 3004 | assert(!"Sqrt not supported on integer vectors\n" ); |
| 3005 | return nullptr; |
| 3006 | } |
| 3007 | #endif // (defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) && defined(DEBUG) |
| 3008 | |
| 3009 | op1 = impSIMDPopStack(simdType); |
| 3010 | |
| 3011 | retVal = gtNewSIMDNode(genActualType(callType), op1, nullptr, simdIntrinsicID, baseType, size); |
| 3012 | } |
| 3013 | break; |
| 3014 | |
| 3015 | case SIMDIntrinsicAbs: |
| 3016 | op1 = impSIMDPopStack(simdType); |
| 3017 | retVal = impSIMDAbs(clsHnd, baseType, size, op1); |
| 3018 | break; |
| 3019 | |
| 3020 | case SIMDIntrinsicGetW: |
| 3021 | retVal = impSIMDGetFixed(simdType, baseType, size, 3); |
| 3022 | break; |
| 3023 | |
| 3024 | case SIMDIntrinsicGetZ: |
| 3025 | retVal = impSIMDGetFixed(simdType, baseType, size, 2); |
| 3026 | break; |
| 3027 | |
| 3028 | case SIMDIntrinsicGetY: |
| 3029 | retVal = impSIMDGetFixed(simdType, baseType, size, 1); |
| 3030 | break; |
| 3031 | |
| 3032 | case SIMDIntrinsicGetX: |
| 3033 | retVal = impSIMDGetFixed(simdType, baseType, size, 0); |
| 3034 | break; |
| 3035 | |
| 3036 | case SIMDIntrinsicSetW: |
| 3037 | case SIMDIntrinsicSetZ: |
| 3038 | case SIMDIntrinsicSetY: |
| 3039 | case SIMDIntrinsicSetX: |
| 3040 | { |
| 3041 | // op2 is the value to be set at indexTemp position |
| 3042 | // op1 is SIMD vector that is going to be modified, which is a byref |
| 3043 | |
| 3044 | // If op1 has a side-effect, then don't make it an intrinsic. |
| 3045 | // It would be in-efficient to read the entire vector into xmm reg, |
| 3046 | // modify it and write back entire xmm reg. |
| 3047 | // |
| 3048 | // TODO-CQ: revisit this later. |
| 3049 | op1 = impStackTop(1).val; |
| 3050 | if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0) |
| 3051 | { |
| 3052 | return nullptr; |
| 3053 | } |
| 3054 | |
| 3055 | op2 = impSIMDPopStack(baseType); |
| 3056 | op1 = impSIMDPopStack(simdType, instMethod); |
| 3057 | |
| 3058 | GenTree* src = gtCloneExpr(op1); |
| 3059 | assert(src != nullptr); |
| 3060 | simdTree = gtNewSIMDNode(simdType, src, op2, simdIntrinsicID, baseType, size); |
| 3061 | |
| 3062 | copyBlkDst = gtNewOperNode(GT_ADDR, TYP_BYREF, op1); |
| 3063 | doCopyBlk = true; |
| 3064 | } |
| 3065 | break; |
| 3066 | |
| 3067 | // Unary operators that take and return a Vector. |
| 3068 | case SIMDIntrinsicCast: |
| 3069 | case SIMDIntrinsicConvertToSingle: |
| 3070 | case SIMDIntrinsicConvertToDouble: |
| 3071 | case SIMDIntrinsicConvertToInt32: |
| 3072 | { |
| 3073 | op1 = impSIMDPopStack(simdType, instMethod); |
| 3074 | |
| 3075 | simdTree = gtNewSIMDNode(simdType, op1, nullptr, simdIntrinsicID, baseType, size); |
| 3076 | retVal = simdTree; |
| 3077 | } |
| 3078 | break; |
| 3079 | |
| 3080 | case SIMDIntrinsicConvertToInt64: |
| 3081 | { |
| 3082 | #ifdef _TARGET_64BIT_ |
| 3083 | op1 = impSIMDPopStack(simdType, instMethod); |
| 3084 | |
| 3085 | simdTree = gtNewSIMDNode(simdType, op1, nullptr, simdIntrinsicID, baseType, size); |
| 3086 | retVal = simdTree; |
| 3087 | #else |
| 3088 | JITDUMP("SIMD Conversion to Int64 is not supported on this platform\n" ); |
| 3089 | return nullptr; |
| 3090 | #endif |
| 3091 | } |
| 3092 | break; |
| 3093 | |
| 3094 | case SIMDIntrinsicNarrow: |
| 3095 | { |
| 3096 | assert(!instMethod); |
| 3097 | op2 = impSIMDPopStack(simdType); |
| 3098 | op1 = impSIMDPopStack(simdType); |
| 3099 | // op1 and op2 are two input Vector<T>. |
| 3100 | simdTree = gtNewSIMDNode(simdType, op1, op2, simdIntrinsicID, baseType, size); |
| 3101 | retVal = simdTree; |
| 3102 | } |
| 3103 | break; |
| 3104 | |
| 3105 | case SIMDIntrinsicWiden: |
| 3106 | { |
| 3107 | GenTree* dstAddrHi = impSIMDPopStack(TYP_BYREF); |
| 3108 | GenTree* dstAddrLo = impSIMDPopStack(TYP_BYREF); |
| 3109 | op1 = impSIMDPopStack(simdType); |
| 3110 | GenTree* dupOp1 = fgInsertCommaFormTemp(&op1, gtGetStructHandleForSIMD(simdType, baseType)); |
| 3111 | |
| 3112 | // Widen the lower half and assign it to dstAddrLo. |
| 3113 | simdTree = gtNewSIMDNode(simdType, op1, nullptr, SIMDIntrinsicWidenLo, baseType, size); |
| 3114 | GenTree* loDest = |
| 3115 | new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, dstAddrLo, getSIMDTypeSizeInBytes(clsHnd)); |
| 3116 | GenTree* loAsg = gtNewBlkOpNode(loDest, simdTree, getSIMDTypeSizeInBytes(clsHnd), |
| 3117 | false, // not volatile |
| 3118 | true); // copyBlock |
| 3119 | loAsg->gtFlags |= ((simdTree->gtFlags | dstAddrLo->gtFlags) & GTF_ALL_EFFECT); |
| 3120 | |
| 3121 | // Widen the upper half and assign it to dstAddrHi. |
| 3122 | simdTree = gtNewSIMDNode(simdType, dupOp1, nullptr, SIMDIntrinsicWidenHi, baseType, size); |
| 3123 | GenTree* hiDest = |
| 3124 | new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, dstAddrHi, getSIMDTypeSizeInBytes(clsHnd)); |
| 3125 | GenTree* hiAsg = gtNewBlkOpNode(hiDest, simdTree, getSIMDTypeSizeInBytes(clsHnd), |
| 3126 | false, // not volatile |
| 3127 | true); // copyBlock |
| 3128 | hiAsg->gtFlags |= ((simdTree->gtFlags | dstAddrHi->gtFlags) & GTF_ALL_EFFECT); |
| 3129 | |
| 3130 | retVal = gtNewOperNode(GT_COMMA, simdType, loAsg, hiAsg); |
| 3131 | } |
| 3132 | break; |
| 3133 | |
| 3134 | case SIMDIntrinsicHWAccel: |
| 3135 | { |
| 3136 | GenTreeIntCon* intConstTree = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, 1); |
| 3137 | retVal = intConstTree; |
| 3138 | } |
| 3139 | break; |
| 3140 | |
| 3141 | default: |
| 3142 | assert(!"Unimplemented SIMD Intrinsic" ); |
| 3143 | return nullptr; |
| 3144 | } |
| 3145 | |
| 3146 | #if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 3147 | // XArch/Arm64: also indicate that we use floating point registers. |
| 3148 | // The need for setting this here is that a method may not have SIMD |
| 3149 | // type lclvars, but might be exercising SIMD intrinsics on fields of |
| 3150 | // SIMD type. |
| 3151 | // |
| 3152 | // e.g. public Vector<float> ComplexVecFloat::sqabs() { return this.r * this.r + this.i * this.i; } |
| 3153 | compFloatingPointUsed = true; |
| 3154 | #endif // defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_) |
| 3155 | |
| 3156 | // At this point, we have a tree that we are going to store into a destination. |
| 3157 | // TODO-1stClassStructs: This should be a simple store or assignment, and should not require |
| 3158 | // GTF_ALL_EFFECT for the dest. This is currently emulating the previous behavior of |
| 3159 | // block ops. |
| 3160 | if (doCopyBlk) |
| 3161 | { |
| 3162 | GenTree* dest = new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, copyBlkDst, getSIMDTypeSizeInBytes(clsHnd)); |
| 3163 | dest->gtFlags |= GTF_GLOB_REF; |
| 3164 | retVal = gtNewBlkOpNode(dest, simdTree, getSIMDTypeSizeInBytes(clsHnd), |
| 3165 | false, // not volatile |
| 3166 | true); // copyBlock |
| 3167 | retVal->gtFlags |= ((simdTree->gtFlags | copyBlkDst->gtFlags) & GTF_ALL_EFFECT); |
| 3168 | } |
| 3169 | |
| 3170 | return retVal; |
| 3171 | } |
| 3172 | |
| 3173 | #endif // FEATURE_SIMD |
| 3174 | |