1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XX XX |
8 | XX UnwindInfo XX |
9 | XX XX |
10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
12 | */ |
13 | |
14 | #include "jitpch.h" |
15 | #ifdef _MSC_VER |
16 | #pragma hdrstop |
17 | #endif |
18 | |
19 | #if defined(_TARGET_ARM_) && defined(_TARGET_UNIX_) |
20 | int Compiler::mapRegNumToDwarfReg(regNumber reg) |
21 | { |
22 | int dwarfReg = DWARF_REG_ILLEGAL; |
23 | |
24 | switch (reg) |
25 | { |
26 | case REG_R0: |
27 | dwarfReg = 0; |
28 | break; |
29 | case REG_R1: |
30 | dwarfReg = 1; |
31 | break; |
32 | case REG_R2: |
33 | dwarfReg = 2; |
34 | break; |
35 | case REG_R3: |
36 | dwarfReg = 3; |
37 | break; |
38 | case REG_R4: |
39 | dwarfReg = 4; |
40 | break; |
41 | case REG_R5: |
42 | dwarfReg = 5; |
43 | break; |
44 | case REG_R6: |
45 | dwarfReg = 6; |
46 | break; |
47 | case REG_R7: |
48 | dwarfReg = 7; |
49 | break; |
50 | case REG_R8: |
51 | dwarfReg = 8; |
52 | break; |
53 | case REG_R9: |
54 | dwarfReg = 9; |
55 | break; |
56 | case REG_R10: |
57 | dwarfReg = 10; |
58 | break; |
59 | case REG_R11: |
60 | dwarfReg = 11; |
61 | break; |
62 | case REG_R12: |
63 | dwarfReg = 12; |
64 | break; |
65 | case REG_R13: |
66 | dwarfReg = 13; |
67 | break; |
68 | case REG_R14: |
69 | dwarfReg = 14; |
70 | break; |
71 | case REG_R15: |
72 | dwarfReg = 15; |
73 | break; |
74 | case REG_F0: |
75 | dwarfReg = 64; |
76 | break; |
77 | case REG_F1: |
78 | dwarfReg = 65; |
79 | break; |
80 | case REG_F2: |
81 | dwarfReg = 66; |
82 | break; |
83 | case REG_F3: |
84 | dwarfReg = 67; |
85 | break; |
86 | case REG_F4: |
87 | dwarfReg = 68; |
88 | break; |
89 | case REG_F5: |
90 | dwarfReg = 69; |
91 | break; |
92 | case REG_F6: |
93 | dwarfReg = 70; |
94 | break; |
95 | case REG_F7: |
96 | dwarfReg = 71; |
97 | break; |
98 | case REG_F8: |
99 | dwarfReg = 72; |
100 | break; |
101 | case REG_F9: |
102 | dwarfReg = 73; |
103 | break; |
104 | case REG_F10: |
105 | dwarfReg = 74; |
106 | break; |
107 | case REG_F11: |
108 | dwarfReg = 75; |
109 | break; |
110 | case REG_F12: |
111 | dwarfReg = 76; |
112 | break; |
113 | case REG_F13: |
114 | dwarfReg = 77; |
115 | break; |
116 | case REG_F14: |
117 | dwarfReg = 78; |
118 | break; |
119 | case REG_F15: |
120 | dwarfReg = 79; |
121 | break; |
122 | case REG_F16: |
123 | dwarfReg = 80; |
124 | break; |
125 | case REG_F17: |
126 | dwarfReg = 81; |
127 | break; |
128 | case REG_F18: |
129 | dwarfReg = 82; |
130 | break; |
131 | case REG_F19: |
132 | dwarfReg = 83; |
133 | break; |
134 | case REG_F20: |
135 | dwarfReg = 84; |
136 | break; |
137 | case REG_F21: |
138 | dwarfReg = 85; |
139 | break; |
140 | case REG_F22: |
141 | dwarfReg = 86; |
142 | break; |
143 | case REG_F23: |
144 | dwarfReg = 87; |
145 | break; |
146 | case REG_F24: |
147 | dwarfReg = 88; |
148 | break; |
149 | case REG_F25: |
150 | dwarfReg = 89; |
151 | break; |
152 | case REG_F26: |
153 | dwarfReg = 90; |
154 | break; |
155 | case REG_F27: |
156 | dwarfReg = 91; |
157 | break; |
158 | case REG_F28: |
159 | dwarfReg = 92; |
160 | break; |
161 | case REG_F29: |
162 | dwarfReg = 93; |
163 | break; |
164 | case REG_F30: |
165 | dwarfReg = 94; |
166 | break; |
167 | case REG_F31: |
168 | dwarfReg = 95; |
169 | break; |
170 | default: |
171 | noway_assert(!"unexpected REG_NUM" ); |
172 | } |
173 | |
174 | return dwarfReg; |
175 | } |
176 | #endif // _TARGET_ARM_ && _TARGET_UNIX_ |
177 | |
178 | #ifdef _TARGET_ARMARCH_ |
179 | |
180 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
181 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
182 | XX XX |
183 | XX Unwind APIs XX |
184 | XX XX |
185 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
186 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
187 | */ |
188 | |
189 | void Compiler::unwindBegProlog() |
190 | { |
191 | assert(compGeneratingProlog); |
192 | |
193 | #if defined(_TARGET_UNIX_) |
194 | if (generateCFIUnwindCodes()) |
195 | { |
196 | unwindBegPrologCFI(); |
197 | return; |
198 | } |
199 | #endif // _TARGET_UNIX_ |
200 | |
201 | FuncInfoDsc* func = funCurrentFunc(); |
202 | |
203 | // There is only one prolog for a function/funclet, and it comes first. So now is |
204 | // a good time to initialize all the unwind data structures. |
205 | |
206 | emitLocation* startLoc; |
207 | emitLocation* endLoc; |
208 | unwindGetFuncLocations(func, true, &startLoc, &endLoc); |
209 | |
210 | func->uwi.InitUnwindInfo(this, startLoc, endLoc); |
211 | func->uwi.CaptureLocation(); |
212 | |
213 | func->uwiCold = NULL; // No cold data yet |
214 | } |
215 | |
216 | void Compiler::unwindEndProlog() |
217 | { |
218 | assert(compGeneratingProlog); |
219 | } |
220 | |
221 | void Compiler::unwindBegEpilog() |
222 | { |
223 | assert(compGeneratingEpilog); |
224 | |
225 | #if defined(_TARGET_UNIX_) |
226 | if (generateCFIUnwindCodes()) |
227 | { |
228 | return; |
229 | } |
230 | #endif // _TARGET_UNIX_ |
231 | |
232 | funCurrentFunc()->uwi.AddEpilog(); |
233 | } |
234 | |
235 | void Compiler::unwindEndEpilog() |
236 | { |
237 | assert(compGeneratingEpilog); |
238 | } |
239 | |
240 | #if defined(_TARGET_ARM_) |
241 | |
242 | void Compiler::unwindPushPopMaskInt(regMaskTP maskInt, bool useOpsize16) |
243 | { |
244 | // floating point registers cannot be specified in 'maskInt' |
245 | assert((maskInt & RBM_ALLFLOAT) == 0); |
246 | |
247 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
248 | |
249 | if (useOpsize16) |
250 | { |
251 | // The 16-bit opcode only encode R0-R7 and LR |
252 | assert((maskInt & ~(RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3 | RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_LR)) == 0); |
253 | |
254 | bool shortFormat = false; |
255 | BYTE val = 0; |
256 | |
257 | if ((maskInt & (RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3)) == 0) |
258 | { |
259 | regMaskTP matchMask = maskInt & (RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7); |
260 | regMaskTP valMask = RBM_R4; |
261 | while (val < 4) |
262 | { |
263 | if (matchMask == valMask) |
264 | { |
265 | shortFormat = true; |
266 | break; |
267 | } |
268 | |
269 | valMask <<= 1; |
270 | valMask |= RBM_R4; |
271 | |
272 | val++; |
273 | } |
274 | } |
275 | |
276 | if (shortFormat) |
277 | { |
278 | // D0-D7 : pop {r4-rX,lr} (X=4-7) (opsize 16) |
279 | pu->AddCode(0xD0 | ((maskInt >> 12) & 0x4) | val); |
280 | } |
281 | else |
282 | { |
283 | // EC-ED : pop {r0-r7,lr} (opsize 16) |
284 | pu->AddCode(0xEC | ((maskInt >> 14) & 0x1), (BYTE)maskInt); |
285 | } |
286 | } |
287 | else |
288 | { |
289 | assert((maskInt & |
290 | ~(RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3 | RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8 | RBM_R9 | RBM_R10 | |
291 | RBM_R11 | RBM_R12 | RBM_LR)) == 0); |
292 | |
293 | bool shortFormat = false; |
294 | BYTE val = 0; |
295 | |
296 | if (((maskInt & (RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3)) == 0) && |
297 | ((maskInt & (RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8)) == (RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8))) |
298 | { |
299 | regMaskTP matchMask = maskInt & (RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8 | RBM_R9 | RBM_R10 | RBM_R11); |
300 | regMaskTP valMask = RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8; |
301 | while (val < 4) |
302 | { |
303 | if (matchMask == valMask) |
304 | { |
305 | shortFormat = true; |
306 | break; |
307 | } |
308 | |
309 | valMask <<= 1; |
310 | valMask |= RBM_R4; |
311 | |
312 | val++; |
313 | } |
314 | } |
315 | |
316 | if (shortFormat) |
317 | { |
318 | // D8-DF : pop {r4-rX,lr} (X=8-11) (opsize 32) |
319 | pu->AddCode(0xD8 | ((maskInt >> 12) & 0x4) | val); |
320 | } |
321 | else |
322 | { |
323 | // 80-BF : pop {r0-r12,lr} (opsize 32) |
324 | pu->AddCode(0x80 | ((maskInt >> 8) & 0x1F) | ((maskInt >> 9) & 0x20), (BYTE)maskInt); |
325 | } |
326 | } |
327 | } |
328 | |
329 | void Compiler::unwindPushPopMaskFloat(regMaskTP maskFloat) |
330 | { |
331 | // Only floating pointer registers can be specified in 'maskFloat' |
332 | assert((maskFloat & ~RBM_ALLFLOAT) == 0); |
333 | |
334 | // If the maskFloat is zero there is no unwind code to emit |
335 | // |
336 | if (maskFloat == RBM_NONE) |
337 | { |
338 | return; |
339 | } |
340 | |
341 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
342 | |
343 | BYTE val = 0; |
344 | regMaskTP valMask = (RBM_F16 | RBM_F17); |
345 | |
346 | while (maskFloat != valMask) |
347 | { |
348 | valMask <<= 2; |
349 | valMask |= (RBM_F16 | RBM_F17); |
350 | |
351 | val++; |
352 | |
353 | if (val == 8) |
354 | { |
355 | noway_assert(!"Illegal maskFloat" ); |
356 | } |
357 | } |
358 | |
359 | // E0-E7 : vpop {d8-dX} (X=8-15) (opsize 32) |
360 | assert(0 <= val && val <= 7); |
361 | pu->AddCode(0xE0 | val); |
362 | } |
363 | |
364 | void Compiler::unwindPushMaskInt(regMaskTP maskInt) |
365 | { |
366 | // Only r0-r12 and lr are supported |
367 | assert((maskInt & |
368 | ~(RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3 | RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8 | RBM_R9 | RBM_R10 | |
369 | RBM_R11 | RBM_R12 | RBM_LR)) == 0); |
370 | |
371 | #if defined(_TARGET_UNIX_) |
372 | if (generateCFIUnwindCodes()) |
373 | { |
374 | // If we are pushing LR, we should give unwind codes in terms of caller's PC |
375 | if (maskInt & RBM_LR) |
376 | { |
377 | maskInt = (maskInt & ~RBM_LR) | RBM_PC; |
378 | } |
379 | unwindPushPopMaskCFI(maskInt, false); |
380 | return; |
381 | } |
382 | #endif // _TARGET_UNIX_ |
383 | |
384 | bool useOpsize16 = ((maskInt & (RBM_LOW_REGS | RBM_LR)) == maskInt); // Can PUSH use the 16-bit encoding? |
385 | unwindPushPopMaskInt(maskInt, useOpsize16); |
386 | } |
387 | |
388 | void Compiler::unwindPushMaskFloat(regMaskTP maskFloat) |
389 | { |
390 | // Only floating point registers should be in maskFloat |
391 | assert((maskFloat & RBM_ALLFLOAT) == maskFloat); |
392 | |
393 | #if defined(_TARGET_UNIX_) |
394 | if (generateCFIUnwindCodes()) |
395 | { |
396 | unwindPushPopMaskCFI(maskFloat, true); |
397 | return; |
398 | } |
399 | #endif // _TARGET_UNIX_ |
400 | |
401 | unwindPushPopMaskFloat(maskFloat); |
402 | } |
403 | |
404 | void Compiler::unwindPopMaskInt(regMaskTP maskInt) |
405 | { |
406 | #if defined(_TARGET_UNIX_) |
407 | if (generateCFIUnwindCodes()) |
408 | { |
409 | return; |
410 | } |
411 | #endif // _TARGET_UNIX_ |
412 | |
413 | // Only r0-r12 and lr and pc are supported (pc is mapped to lr when encoding) |
414 | assert((maskInt & |
415 | ~(RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3 | RBM_R4 | RBM_R5 | RBM_R6 | RBM_R7 | RBM_R8 | RBM_R9 | RBM_R10 | |
416 | RBM_R11 | RBM_R12 | RBM_LR | RBM_PC)) == 0); |
417 | |
418 | bool useOpsize16 = ((maskInt & (RBM_LOW_REGS | RBM_PC)) == maskInt); // Can POP use the 16-bit encoding? |
419 | |
420 | // If we are popping PC, then we'll return from the function. In this case, we assume |
421 | // the first thing the prolog did was push LR, so give the unwind codes in terms of |
422 | // the LR that was pushed. Note that the epilog unwind codes are meant to reverse |
423 | // the effect of the prolog. For "pop {pc}", the prolog had "push {lr}", so we need |
424 | // an epilog code to model the reverse of that. |
425 | if (maskInt & RBM_PC) |
426 | { |
427 | maskInt = (maskInt & ~RBM_PC) | RBM_LR; |
428 | } |
429 | unwindPushPopMaskInt(maskInt, useOpsize16); |
430 | } |
431 | |
432 | void Compiler::unwindPopMaskFloat(regMaskTP maskFloat) |
433 | { |
434 | #if defined(_TARGET_UNIX_) |
435 | if (generateCFIUnwindCodes()) |
436 | { |
437 | return; |
438 | } |
439 | #endif // _TARGET_UNIX_ |
440 | |
441 | // Only floating point registers should be in maskFloat |
442 | assert((maskFloat & RBM_ALLFLOAT) == maskFloat); |
443 | unwindPushPopMaskFloat(maskFloat); |
444 | } |
445 | |
446 | void Compiler::unwindAllocStack(unsigned size) |
447 | { |
448 | #if defined(_TARGET_UNIX_) |
449 | if (generateCFIUnwindCodes()) |
450 | { |
451 | if (compGeneratingProlog) |
452 | { |
453 | unwindAllocStackCFI(size); |
454 | } |
455 | return; |
456 | } |
457 | #endif // _TARGET_UNIX_ |
458 | |
459 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
460 | |
461 | assert(size % 4 == 0); |
462 | size /= 4; |
463 | |
464 | if (size <= 0x7F) |
465 | { |
466 | // 00-7F : add sp, sp, #X*4 (opsize 16) |
467 | pu->AddCode((BYTE)size); |
468 | } |
469 | else if (size <= 0x3FF) |
470 | { |
471 | // E8-EB : addw sp, sp, #X*4 (opsize 32) |
472 | pu->AddCode(0xE8 | (BYTE)(size >> 8), (BYTE)size); |
473 | } |
474 | else if (size <= 0xFFFF) |
475 | { |
476 | // F7 : add sp, sp, #X*4 (opsize 16) |
477 | // F9 : add sp, sp, #X*4 (opsize 32) |
478 | // |
479 | // For large stack size, the most significant bits |
480 | // are stored first (and next to the opCode (F9)) per the unwind spec. |
481 | unsigned instrSizeInBytes = pu->GetInstructionSize(); |
482 | BYTE b1 = (instrSizeInBytes == 2) ? 0xF7 : 0xF9; |
483 | pu->AddCode(b1, |
484 | (BYTE)(size >> 8), // msb |
485 | (BYTE)size); // lsb |
486 | } |
487 | else |
488 | { |
489 | // F8 : add sp, sp, #X*4 (opsize 16) |
490 | // FA : add sp, sp, #X*4 (opsize 32) |
491 | // |
492 | // For large stack size, the most significant bits |
493 | // are stored first (and next to the opCode (FA)) per the unwind spec. |
494 | unsigned instrSizeInBytes = pu->GetInstructionSize(); |
495 | BYTE b1 = (instrSizeInBytes == 2) ? 0xF8 : 0xFA; |
496 | pu->AddCode(b1, (BYTE)(size >> 16), (BYTE)(size >> 8), (BYTE)size); |
497 | } |
498 | } |
499 | |
500 | void Compiler::unwindSetFrameReg(regNumber reg, unsigned offset) |
501 | { |
502 | #if defined(_TARGET_UNIX_) |
503 | if (generateCFIUnwindCodes()) |
504 | { |
505 | if (compGeneratingProlog) |
506 | { |
507 | unwindSetFrameRegCFI(reg, offset); |
508 | } |
509 | return; |
510 | } |
511 | #endif // _TARGET_UNIX_ |
512 | |
513 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
514 | |
515 | // Arm unwind info does not allow offset |
516 | assert(offset == 0); |
517 | assert(0 <= reg && reg <= 15); |
518 | |
519 | // C0-CF : mov sp, rX (opsize 16) |
520 | pu->AddCode((BYTE)(0xC0 + reg)); |
521 | } |
522 | |
523 | void Compiler::unwindSaveReg(regNumber reg, unsigned offset) |
524 | { |
525 | unreached(); |
526 | } |
527 | |
528 | void Compiler::unwindBranch16() |
529 | { |
530 | #if defined(_TARGET_UNIX_) |
531 | if (generateCFIUnwindCodes()) |
532 | { |
533 | return; |
534 | } |
535 | #endif // _TARGET_UNIX_ |
536 | |
537 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
538 | |
539 | // TODO-CQ: need to handle changing the exit code from 0xFF to 0xFD. Currently, this will waste an extra 0xFF at the |
540 | // end, automatically added. |
541 | pu->AddCode(0xFD); |
542 | } |
543 | |
544 | void Compiler::unwindNop(unsigned codeSizeInBytes) // codeSizeInBytes is 2 or 4 bytes for Thumb2 instruction |
545 | { |
546 | #if defined(_TARGET_UNIX_) |
547 | if (generateCFIUnwindCodes()) |
548 | { |
549 | return; |
550 | } |
551 | #endif // _TARGET_UNIX_ |
552 | |
553 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
554 | |
555 | #ifdef DEBUG |
556 | if (verbose) |
557 | { |
558 | printf("unwindNop: adding NOP for %d byte instruction\n" , codeSizeInBytes); |
559 | } |
560 | #endif |
561 | |
562 | INDEBUG(pu->uwiAddingNOP = true); |
563 | |
564 | if (codeSizeInBytes == 2) |
565 | { |
566 | // FB : nop (opsize 16) |
567 | pu->AddCode(0xFB); |
568 | } |
569 | else |
570 | { |
571 | noway_assert(codeSizeInBytes == 4); |
572 | |
573 | // FC : nop (opsize 32) |
574 | pu->AddCode(0xFC); |
575 | } |
576 | |
577 | INDEBUG(pu->uwiAddingNOP = false); |
578 | } |
579 | |
580 | #endif // defined(_TARGET_ARM_) |
581 | |
582 | // The instructions between the last captured "current state" and the current instruction |
583 | // are in the prolog but have no effect for unwinding. Emit the appropriate NOP unwind codes |
584 | // for them. |
585 | void Compiler::unwindPadding() |
586 | { |
587 | #if defined(_TARGET_UNIX_) |
588 | if (generateCFIUnwindCodes()) |
589 | { |
590 | return; |
591 | } |
592 | #endif // _TARGET_UNIX_ |
593 | |
594 | UnwindInfo* pu = &funCurrentFunc()->uwi; |
595 | genEmitter->emitUnwindNopPadding(pu->GetCurrentEmitterLocation(), this); |
596 | } |
597 | |
598 | // Ask the VM to reserve space for the unwind information for the function and |
599 | // all its funclets. |
600 | void Compiler::unwindReserve() |
601 | { |
602 | assert(!compGeneratingProlog); |
603 | assert(!compGeneratingEpilog); |
604 | |
605 | assert(compFuncInfoCount > 0); |
606 | for (unsigned funcIdx = 0; funcIdx < compFuncInfoCount; funcIdx++) |
607 | { |
608 | unwindReserveFunc(funGetFunc(funcIdx)); |
609 | } |
610 | } |
611 | |
612 | void Compiler::unwindReserveFunc(FuncInfoDsc* func) |
613 | { |
614 | BOOL isFunclet = (func->funKind == FUNC_ROOT) ? FALSE : TRUE; |
615 | bool funcHasColdSection = false; |
616 | |
617 | #if defined(_TARGET_UNIX_) |
618 | if (generateCFIUnwindCodes()) |
619 | { |
620 | DWORD unwindCodeBytes = 0; |
621 | if (fgFirstColdBlock != nullptr) |
622 | { |
623 | eeReserveUnwindInfo(isFunclet, true /*isColdCode*/, unwindCodeBytes); |
624 | } |
625 | unwindCodeBytes = (DWORD)(func->cfiCodes->size() * sizeof(CFI_CODE)); |
626 | eeReserveUnwindInfo(isFunclet, false /*isColdCode*/, unwindCodeBytes); |
627 | |
628 | return; |
629 | } |
630 | #endif // _TARGET_UNIX_ |
631 | |
632 | // If there is cold code, split the unwind data between the hot section and the |
633 | // cold section. This needs to be done before we split into fragments, as each |
634 | // of the hot and cold sections can have multiple fragments. |
635 | |
636 | if (fgFirstColdBlock != NULL) |
637 | { |
638 | assert(!isFunclet); // TODO-CQ: support hot/cold splitting with EH |
639 | |
640 | emitLocation* startLoc; |
641 | emitLocation* endLoc; |
642 | unwindGetFuncLocations(func, false, &startLoc, &endLoc); |
643 | |
644 | func->uwiCold = new (this, CMK_UnwindInfo) UnwindInfo(); |
645 | func->uwiCold->InitUnwindInfo(this, startLoc, endLoc); |
646 | func->uwiCold->HotColdSplitCodes(&func->uwi); |
647 | |
648 | funcHasColdSection = true; |
649 | } |
650 | |
651 | // First we need to split the function or funclet into fragments that are no larger |
652 | // than 512K, so the fragment size will fit in the unwind data "Function Length" field. |
653 | // The ARM Exception Data specification "Function Fragments" section describes this. |
654 | func->uwi.Split(); |
655 | |
656 | func->uwi.Reserve(isFunclet, true); |
657 | |
658 | // After the hot section, split and reserve the cold section |
659 | |
660 | if (funcHasColdSection) |
661 | { |
662 | assert(func->uwiCold != NULL); |
663 | |
664 | func->uwiCold->Split(); |
665 | func->uwiCold->Reserve(isFunclet, false); |
666 | } |
667 | } |
668 | |
669 | // unwindEmit: Report all the unwind information to the VM. |
670 | // Arguments: |
671 | // pHotCode: Pointer to the beginning of the memory with the function and funclet hot code |
672 | // pColdCode: Pointer to the beginning of the memory with the function and funclet cold code. |
673 | |
674 | void Compiler::unwindEmit(void* pHotCode, void* pColdCode) |
675 | { |
676 | assert(compFuncInfoCount > 0); |
677 | for (unsigned funcIdx = 0; funcIdx < compFuncInfoCount; funcIdx++) |
678 | { |
679 | unwindEmitFunc(funGetFunc(funcIdx), pHotCode, pColdCode); |
680 | } |
681 | } |
682 | |
683 | void Compiler::unwindEmitFunc(FuncInfoDsc* func, void* pHotCode, void* pColdCode) |
684 | { |
685 | // Verify that the JIT enum is in sync with the JIT-EE interface enum |
686 | static_assert_no_msg(FUNC_ROOT == (FuncKind)CORJIT_FUNC_ROOT); |
687 | static_assert_no_msg(FUNC_HANDLER == (FuncKind)CORJIT_FUNC_HANDLER); |
688 | static_assert_no_msg(FUNC_FILTER == (FuncKind)CORJIT_FUNC_FILTER); |
689 | |
690 | #if defined(_TARGET_UNIX_) |
691 | if (generateCFIUnwindCodes()) |
692 | { |
693 | unwindEmitFuncCFI(func, pHotCode, pColdCode); |
694 | return; |
695 | } |
696 | #endif // _TARGET_UNIX_ |
697 | |
698 | func->uwi.Allocate((CorJitFuncKind)func->funKind, pHotCode, pColdCode, true); |
699 | |
700 | if (func->uwiCold != NULL) |
701 | { |
702 | func->uwiCold->Allocate((CorJitFuncKind)func->funKind, pHotCode, pColdCode, false); |
703 | } |
704 | } |
705 | |
706 | #if defined(_TARGET_ARM_) |
707 | |
708 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
709 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
710 | XX XX |
711 | XX Unwind Info Debug helpers XX |
712 | XX XX |
713 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
714 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
715 | */ |
716 | |
717 | #ifdef DEBUG |
718 | |
719 | // Return the opcode size of an instruction, in bytes, given the first byte of |
720 | // its corresponding unwind code. |
721 | |
722 | unsigned GetOpcodeSizeFromUnwindHeader(BYTE b1) |
723 | { |
724 | static BYTE s_UnwindOpsize[256] = { |
725 | // array of opsizes, in bytes (as specified in the ARM unwind specification) |
726 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 00-0F |
727 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 10-1F |
728 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 20-2F |
729 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 30-3F |
730 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 40-4F |
731 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 50-5F |
732 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 60-6F |
733 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 70-7F |
734 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // 80-8F |
735 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // 90-9F |
736 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // A0-AF |
737 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // B0-BF |
738 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0-CF |
739 | 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, // D0-DF |
740 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 4, // E0-EF |
741 | 0, 0, 0, 0, 0, 4, 4, 2, 2, 4, 4, 2, 4, 2, 4, 0 // F0-FF |
742 | }; |
743 | |
744 | BYTE opsize = s_UnwindOpsize[b1]; |
745 | assert(opsize == 2 || |
746 | opsize == 4); // We shouldn't get a code with no opsize (the 0xFF end code is handled specially) |
747 | return opsize; |
748 | } |
749 | |
750 | // Return the size of the unwind code (from 1 to 4 bytes), given the first byte of the unwind bytes |
751 | |
752 | unsigned GetUnwindSizeFromUnwindHeader(BYTE b1) |
753 | { |
754 | static BYTE s_UnwindSize[256] = { |
755 | // array of unwind sizes, in bytes (as specified in the ARM unwind specification) |
756 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 00-0F |
757 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 10-1F |
758 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 20-2F |
759 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 30-3F |
760 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 40-4F |
761 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 50-5F |
762 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 60-6F |
763 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 70-7F |
764 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 80-8F |
765 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 90-9F |
766 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // A0-AF |
767 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // B0-BF |
768 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C0-CF |
769 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D0-DF |
770 | 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, // E0-EF |
771 | 1, 1, 1, 1, 1, 2, 2, 3, 4, 3, 4, 1, 1, 1, 1, 1 // F0-FF |
772 | }; |
773 | |
774 | unsigned size = s_UnwindSize[b1]; |
775 | assert(1 <= size && size <= 4); |
776 | return size; |
777 | } |
778 | |
779 | #endif // DEBUG |
780 | |
781 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
782 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
783 | XX XX |
784 | XX Unwind Info Support Classes XX |
785 | XX XX |
786 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
787 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
788 | */ |
789 | |
790 | /////////////////////////////////////////////////////////////////////////////// |
791 | // |
792 | // UnwindCodesBase |
793 | // |
794 | /////////////////////////////////////////////////////////////////////////////// |
795 | |
796 | #ifdef DEBUG |
797 | |
798 | // Walk the prolog codes and calculate the size of the prolog or epilog, in bytes. |
799 | // The 0xFD and 0xFE "end + NOP" codes need to be handled differently between |
800 | // the prolog and epilog. They count as pure "end" codes in a prolog, but they |
801 | // count as 16 and 32 bit NOPs (respectively), as well as an "end", in an epilog. |
802 | unsigned UnwindCodesBase::GetCodeSizeFromUnwindCodes(bool isProlog) |
803 | { |
804 | BYTE* pCodesStart = GetCodes(); |
805 | BYTE* pCodes = pCodesStart; |
806 | unsigned size = 0; |
807 | for (;;) |
808 | { |
809 | BYTE b1 = *pCodes; |
810 | if (b1 >= 0xFD) |
811 | { |
812 | // 0xFD, 0xFE, 0xFF are "end" codes |
813 | |
814 | if (!isProlog && (b1 == 0xFD || b1 == 0xFE)) |
815 | { |
816 | // Count the special "end + NOP" code size in the epilog |
817 | size += GetOpcodeSizeFromUnwindHeader(b1); |
818 | } |
819 | |
820 | break; // We hit an "end" code; we're done |
821 | } |
822 | size += GetOpcodeSizeFromUnwindHeader(b1); |
823 | pCodes += GetUnwindSizeFromUnwindHeader(b1); |
824 | assert(pCodes - pCodesStart < 256); // 255 is the absolute maximum number of code bytes allowed |
825 | } |
826 | return size; |
827 | } |
828 | |
829 | #endif // DEBUG |
830 | |
831 | #endif // defined(_TARGET_ARM_) |
832 | |
833 | /////////////////////////////////////////////////////////////////////////////// |
834 | // |
835 | // UnwindPrologCodes |
836 | // |
837 | /////////////////////////////////////////////////////////////////////////////// |
838 | |
839 | // We're going to use the prolog codes memory to store the final unwind data. |
840 | // Ensure we have enough memory to store everything. If 'epilogBytes' > 0, then |
841 | // move the prolog codes so there are 'epilogBytes' bytes after the prolog codes. |
842 | // Set the header pointer for future use, adding the header bytes (this pointer |
843 | // is updated when a header byte is added), and remember the index that points |
844 | // to the beginning of the header. |
845 | |
846 | void UnwindPrologCodes::SetFinalSize(int , int epilogBytes) |
847 | { |
848 | #ifdef DEBUG |
849 | // We're done adding codes. Check that we didn't accidentally create a bigger prolog. |
850 | unsigned codeSize = GetCodeSizeFromUnwindCodes(true); |
851 | assert(codeSize <= MAX_PROLOG_SIZE_BYTES); |
852 | #endif // DEBUG |
853 | |
854 | int prologBytes = Size(); |
855 | |
856 | EnsureSize(headerBytes + prologBytes + epilogBytes + 3); // 3 = padding bytes for alignment |
857 | |
858 | upcUnwindBlockSlot = upcCodeSlot - headerBytes - epilogBytes; // Index of the first byte of the unwind header |
859 | |
860 | assert(upcMemSize == upcUnwindBlockSlot + headerBytes + prologBytes + epilogBytes + 3); |
861 | |
862 | upcHeaderSlot = upcUnwindBlockSlot - 1; // upcHeaderSlot is always incremented before storing |
863 | assert(upcHeaderSlot >= -1); |
864 | |
865 | if (epilogBytes > 0) |
866 | { |
867 | // The prolog codes that are already at the end of the array need to get moved to the middle, |
868 | // with space for the non-matching epilog codes to follow. |
869 | |
870 | memmove_s(&upcMem[upcUnwindBlockSlot + headerBytes], upcMemSize - (upcUnwindBlockSlot + headerBytes), |
871 | &upcMem[upcCodeSlot], prologBytes); |
872 | |
873 | // Note that the three UWC_END padding bytes still exist at the end of the array. |
874 | CLANG_FORMAT_COMMENT_ANCHOR; |
875 | |
876 | #ifdef DEBUG |
877 | // Zero out the epilog codes memory, to ensure we've copied the right bytes. Don't zero the padding bytes. |
878 | memset(&upcMem[upcUnwindBlockSlot + headerBytes + prologBytes], 0, epilogBytes); |
879 | #endif // DEBUG |
880 | |
881 | upcEpilogSlot = |
882 | upcUnwindBlockSlot + headerBytes + prologBytes; // upcEpilogSlot points to the next epilog location to fill |
883 | |
884 | // Update upcCodeSlot to point at the new beginning of the prolog codes |
885 | upcCodeSlot = upcUnwindBlockSlot + headerBytes; |
886 | } |
887 | } |
888 | |
889 | // Add a header word. Header words are added starting at the beginning, in order: first to last. |
890 | // This is in contrast to the prolog unwind codes, which are added in reverse order. |
891 | void UnwindPrologCodes::(DWORD d) |
892 | { |
893 | assert(-1 <= upcHeaderSlot); |
894 | assert(upcHeaderSlot + 4 < upcCodeSlot); // Don't collide with the unwind codes that are already there! |
895 | |
896 | // Store it byte-by-byte in little-endian format. We've already ensured there is enough space |
897 | // in SetFinalSize(). |
898 | upcMem[++upcHeaderSlot] = (BYTE)d; |
899 | upcMem[++upcHeaderSlot] = (BYTE)(d >> 8); |
900 | upcMem[++upcHeaderSlot] = (BYTE)(d >> 16); |
901 | upcMem[++upcHeaderSlot] = (BYTE)(d >> 24); |
902 | } |
903 | |
904 | // AppendEpilog: copy the epilog bytes to the next epilog bytes slot |
905 | void UnwindPrologCodes::AppendEpilog(UnwindEpilogInfo* pEpi) |
906 | { |
907 | assert(upcEpilogSlot != -1); |
908 | |
909 | int epiSize = pEpi->Size(); |
910 | memcpy_s(&upcMem[upcEpilogSlot], upcMemSize - upcEpilogSlot - 3, pEpi->GetCodes(), |
911 | epiSize); // -3 to avoid writing to the alignment padding |
912 | assert(pEpi->GetStartIndex() == |
913 | upcEpilogSlot - upcCodeSlot); // Make sure we copied it where we expected to copy it. |
914 | |
915 | upcEpilogSlot += epiSize; |
916 | assert(upcEpilogSlot <= upcMemSize - 3); |
917 | } |
918 | |
919 | // GetFinalInfo: return a pointer to the final unwind info to hand to the VM, and the size of this info in bytes |
920 | void UnwindPrologCodes::GetFinalInfo(/* OUT */ BYTE** ppUnwindBlock, /* OUT */ ULONG* pUnwindBlockSize) |
921 | { |
922 | assert(upcHeaderSlot + 1 == upcCodeSlot); // We better have filled in the header before asking for the final data! |
923 | |
924 | *ppUnwindBlock = &upcMem[upcUnwindBlockSlot]; |
925 | |
926 | // We put 4 'end' codes at the end for padding, so we can ensure we have an |
927 | // unwind block that is a multiple of 4 bytes in size. Subtract off three 'end' |
928 | // codes (leave one), and then align the size up to a multiple of 4. |
929 | *pUnwindBlockSize = AlignUp((UINT)(upcMemSize - upcUnwindBlockSlot - 3), sizeof(DWORD)); |
930 | } |
931 | |
932 | // Do the argument unwind codes match our unwind codes? |
933 | // If they don't match, return -1. If they do, return the offset into |
934 | // our codes at which they match. Note that this means that the |
935 | // argument codes can match a subset of our codes. The subset needs to be at |
936 | // the end, for the "end" code to match. |
937 | // |
938 | // This is similar to UnwindEpilogInfo::Match(). |
939 | // |
940 | #if defined(_TARGET_ARM_) |
941 | // Note that if we wanted to handle 0xFD and 0xFE codes, by converting |
942 | // an existing 0xFF code to one of those, we might do that here. |
943 | #endif // defined(_TARGET_ARM_) |
944 | |
945 | int UnwindPrologCodes::Match(UnwindEpilogInfo* pEpi) |
946 | { |
947 | if (Size() < pEpi->Size()) |
948 | { |
949 | return -1; |
950 | } |
951 | |
952 | int matchIndex = Size() - pEpi->Size(); |
953 | |
954 | if (0 == memcmp(GetCodes() + matchIndex, pEpi->GetCodes(), pEpi->Size())) |
955 | { |
956 | return matchIndex; |
957 | } |
958 | |
959 | return -1; |
960 | } |
961 | |
962 | // Copy the prolog codes from another prolog. The only time this is legal is |
963 | // if we are at the initial state and no prolog codes have been added. |
964 | // This is used to create the 'phantom' prolog for non-first fragments. |
965 | |
966 | void UnwindPrologCodes::CopyFrom(UnwindPrologCodes* pCopyFrom) |
967 | { |
968 | assert(uwiComp == pCopyFrom->uwiComp); |
969 | assert(upcMem == upcMemLocal); |
970 | assert(upcMemSize == UPC_LOCAL_COUNT); |
971 | assert(upcHeaderSlot == -1); |
972 | assert(upcEpilogSlot == -1); |
973 | |
974 | // Copy the codes |
975 | EnsureSize(pCopyFrom->upcMemSize); |
976 | assert(upcMemSize == pCopyFrom->upcMemSize); |
977 | memcpy_s(upcMem, upcMemSize, pCopyFrom->upcMem, pCopyFrom->upcMemSize); |
978 | |
979 | // Copy the other data |
980 | upcCodeSlot = pCopyFrom->upcCodeSlot; |
981 | upcHeaderSlot = pCopyFrom->upcHeaderSlot; |
982 | upcEpilogSlot = pCopyFrom->upcEpilogSlot; |
983 | upcUnwindBlockSlot = pCopyFrom->upcUnwindBlockSlot; |
984 | } |
985 | |
986 | void UnwindPrologCodes::EnsureSize(int requiredSize) |
987 | { |
988 | if (requiredSize > upcMemSize) |
989 | { |
990 | // Reallocate, and copy everything to a new array. |
991 | |
992 | // Choose the next power of two size. This may or may not be the best choice. |
993 | noway_assert((requiredSize & 0xC0000000) == 0); // too big! |
994 | int newSize; |
995 | for (newSize = upcMemSize << 1; newSize < requiredSize; newSize <<= 1) |
996 | { |
997 | // do nothing |
998 | } |
999 | |
1000 | BYTE* newUnwindCodes = new (uwiComp, CMK_UnwindInfo) BYTE[newSize]; |
1001 | memcpy_s(newUnwindCodes + newSize - upcMemSize, upcMemSize, upcMem, |
1002 | upcMemSize); // copy the existing data to the end |
1003 | #ifdef DEBUG |
1004 | // Clear the old unwind codes; nobody should be looking at them |
1005 | memset(upcMem, 0xFF, upcMemSize); |
1006 | #endif // DEBUG |
1007 | upcMem = newUnwindCodes; // we don't free anything that used to be there since we have a no-release allocator |
1008 | upcCodeSlot += newSize - upcMemSize; |
1009 | upcMemSize = newSize; |
1010 | } |
1011 | } |
1012 | |
1013 | #ifdef DEBUG |
1014 | void UnwindPrologCodes::Dump(int indent) |
1015 | { |
1016 | printf("%*sUnwindPrologCodes @0x%08p, size:%d:\n" , indent, "" , dspPtr(this), sizeof(*this)); |
1017 | printf("%*s uwiComp: 0x%08p\n" , indent, "" , dspPtr(uwiComp)); |
1018 | printf("%*s &upcMemLocal[0]: 0x%08p\n" , indent, "" , dspPtr(&upcMemLocal[0])); |
1019 | printf("%*s upcMem: 0x%08p\n" , indent, "" , dspPtr(upcMem)); |
1020 | printf("%*s upcMemSize: %d\n" , indent, "" , upcMemSize); |
1021 | printf("%*s upcCodeSlot: %d\n" , indent, "" , upcCodeSlot); |
1022 | printf("%*s upcHeaderSlot: %d\n" , indent, "" , upcHeaderSlot); |
1023 | printf("%*s upcEpilogSlot: %d\n" , indent, "" , upcEpilogSlot); |
1024 | printf("%*s upcUnwindBlockSlot: %d\n" , indent, "" , upcUnwindBlockSlot); |
1025 | |
1026 | if (upcMemSize > 0) |
1027 | { |
1028 | printf("%*s codes:" , indent, "" ); |
1029 | for (int i = 0; i < upcMemSize; i++) |
1030 | { |
1031 | printf(" %02x" , upcMem[i]); |
1032 | if (i == upcCodeSlot) |
1033 | printf(" <-C" ); |
1034 | else if (i == upcHeaderSlot) |
1035 | printf(" <-H" ); |
1036 | else if (i == upcEpilogSlot) |
1037 | printf(" <-E" ); |
1038 | else if (i == upcUnwindBlockSlot) |
1039 | printf(" <-U" ); |
1040 | } |
1041 | printf("\n" ); |
1042 | } |
1043 | } |
1044 | #endif // DEBUG |
1045 | |
1046 | /////////////////////////////////////////////////////////////////////////////// |
1047 | // |
1048 | // UnwindEpilogCodes |
1049 | // |
1050 | /////////////////////////////////////////////////////////////////////////////// |
1051 | |
1052 | void UnwindEpilogCodes::EnsureSize(int requiredSize) |
1053 | { |
1054 | if (requiredSize > uecMemSize) |
1055 | { |
1056 | // Reallocate, and copy everything to a new array. |
1057 | |
1058 | // Choose the next power of two size. This may or may not be the best choice. |
1059 | noway_assert((requiredSize & 0xC0000000) == 0); // too big! |
1060 | int newSize; |
1061 | for (newSize = uecMemSize << 1; newSize < requiredSize; newSize <<= 1) |
1062 | { |
1063 | // do nothing |
1064 | } |
1065 | |
1066 | BYTE* newUnwindCodes = new (uwiComp, CMK_UnwindInfo) BYTE[newSize]; |
1067 | memcpy_s(newUnwindCodes, newSize, uecMem, uecMemSize); |
1068 | #ifdef DEBUG |
1069 | // Clear the old unwind codes; nobody should be looking at them |
1070 | memset(uecMem, 0xFF, uecMemSize); |
1071 | #endif // DEBUG |
1072 | uecMem = newUnwindCodes; // we don't free anything that used to be there since we have a no-release allocator |
1073 | // uecCodeSlot stays the same |
1074 | uecMemSize = newSize; |
1075 | } |
1076 | } |
1077 | |
1078 | #ifdef DEBUG |
1079 | void UnwindEpilogCodes::Dump(int indent) |
1080 | { |
1081 | printf("%*sUnwindEpilogCodes @0x%08p, size:%d:\n" , indent, "" , dspPtr(this), sizeof(*this)); |
1082 | printf("%*s uwiComp: 0x%08p\n" , indent, "" , dspPtr(uwiComp)); |
1083 | printf("%*s &uecMemLocal[0]: 0x%08p\n" , indent, "" , dspPtr(&uecMemLocal[0])); |
1084 | printf("%*s uecMem: 0x%08p\n" , indent, "" , dspPtr(uecMem)); |
1085 | printf("%*s uecMemSize: %d\n" , indent, "" , uecMemSize); |
1086 | printf("%*s uecCodeSlot: %d\n" , indent, "" , uecCodeSlot); |
1087 | printf("%*s uecFinalized: %s\n" , indent, "" , dspBool(uecFinalized)); |
1088 | |
1089 | if (uecMemSize > 0) |
1090 | { |
1091 | printf("%*s codes:" , indent, "" ); |
1092 | for (int i = 0; i < uecMemSize; i++) |
1093 | { |
1094 | printf(" %02x" , uecMem[i]); |
1095 | if (i == uecCodeSlot) |
1096 | printf(" <-C" ); // Indicate the current pointer |
1097 | } |
1098 | printf("\n" ); |
1099 | } |
1100 | } |
1101 | #endif // DEBUG |
1102 | |
1103 | /////////////////////////////////////////////////////////////////////////////// |
1104 | // |
1105 | // UnwindEpilogInfo |
1106 | // |
1107 | /////////////////////////////////////////////////////////////////////////////// |
1108 | |
1109 | // Do the current unwind codes match those of the argument epilog? |
1110 | // If they don't match, return -1. If they do, return the offset into |
1111 | // our codes at which the argument codes match. Note that this means that |
1112 | // the argument codes can match a subset of our codes. The subset needs to be at |
1113 | // the end, for the "end" code to match. |
1114 | // |
1115 | // Note that if we wanted to handle 0xFD and 0xFE codes, by converting |
1116 | // an existing 0xFF code to one of those, we might do that here. |
1117 | |
1118 | int UnwindEpilogInfo::Match(UnwindEpilogInfo* pEpi) |
1119 | { |
1120 | if (Matches()) |
1121 | { |
1122 | // We are already matched to someone else, and won't provide codes to the final layout |
1123 | return -1; |
1124 | } |
1125 | |
1126 | if (Size() < pEpi->Size()) |
1127 | { |
1128 | return -1; |
1129 | } |
1130 | |
1131 | int matchIndex = Size() - pEpi->Size(); |
1132 | |
1133 | if (0 == memcmp(GetCodes() + matchIndex, pEpi->GetCodes(), pEpi->Size())) |
1134 | { |
1135 | return matchIndex; |
1136 | } |
1137 | |
1138 | return -1; |
1139 | } |
1140 | |
1141 | void UnwindEpilogInfo::CaptureEmitLocation() |
1142 | { |
1143 | noway_assert(epiEmitLocation == NULL); // This function is only called once per epilog |
1144 | epiEmitLocation = new (uwiComp, CMK_UnwindInfo) emitLocation(); |
1145 | epiEmitLocation->CaptureLocation(uwiComp->genEmitter); |
1146 | } |
1147 | |
1148 | void UnwindEpilogInfo::FinalizeOffset() |
1149 | { |
1150 | epiStartOffset = epiEmitLocation->CodeOffset(uwiComp->genEmitter); |
1151 | } |
1152 | |
1153 | #ifdef DEBUG |
1154 | void UnwindEpilogInfo::Dump(int indent) |
1155 | { |
1156 | printf("%*sUnwindEpilogInfo @0x%08p, size:%d:\n" , indent, "" , dspPtr(this), sizeof(*this)); |
1157 | printf("%*s uwiComp: 0x%08p\n" , indent, "" , dspPtr(uwiComp)); |
1158 | printf("%*s epiNext: 0x%08p\n" , indent, "" , dspPtr(epiNext)); |
1159 | printf("%*s epiEmitLocation: 0x%08p\n" , indent, "" , dspPtr(epiEmitLocation)); |
1160 | printf("%*s epiStartOffset: 0x%x\n" , indent, "" , epiStartOffset); |
1161 | printf("%*s epiMatches: %s\n" , indent, "" , dspBool(epiMatches)); |
1162 | printf("%*s epiStartIndex: %d\n" , indent, "" , epiStartIndex); |
1163 | |
1164 | epiCodes.Dump(indent + 2); |
1165 | } |
1166 | #endif // DEBUG |
1167 | |
1168 | /////////////////////////////////////////////////////////////////////////////// |
1169 | // |
1170 | // UnwindFragmentInfo |
1171 | // |
1172 | /////////////////////////////////////////////////////////////////////////////// |
1173 | |
1174 | UnwindFragmentInfo::UnwindFragmentInfo(Compiler* comp, emitLocation* emitLoc, bool hasPhantomProlog) |
1175 | : UnwindBase(comp) |
1176 | , ufiNext(NULL) |
1177 | , ufiEmitLoc(emitLoc) |
1178 | , ufiHasPhantomProlog(hasPhantomProlog) |
1179 | , ufiPrologCodes(comp) |
1180 | , ufiEpilogFirst(comp) |
1181 | , ufiEpilogList(NULL) |
1182 | , ufiEpilogLast(NULL) |
1183 | , ufiCurCodes(&ufiPrologCodes) |
1184 | , ufiSize(0) |
1185 | , ufiStartOffset(UFI_ILLEGAL_OFFSET) |
1186 | { |
1187 | #ifdef DEBUG |
1188 | ufiNum = 1; |
1189 | ufiInProlog = true; |
1190 | ufiInitialized = UFI_INITIALIZED_PATTERN; |
1191 | #endif // DEBUG |
1192 | } |
1193 | |
1194 | void UnwindFragmentInfo::FinalizeOffset() |
1195 | { |
1196 | if (ufiEmitLoc == NULL) |
1197 | { |
1198 | // NULL emit location means the beginning of the code. This is to handle the first fragment prolog. |
1199 | ufiStartOffset = 0; |
1200 | } |
1201 | else |
1202 | { |
1203 | ufiStartOffset = ufiEmitLoc->CodeOffset(uwiComp->genEmitter); |
1204 | } |
1205 | |
1206 | for (UnwindEpilogInfo* pEpi = ufiEpilogList; pEpi != NULL; pEpi = pEpi->epiNext) |
1207 | { |
1208 | pEpi->FinalizeOffset(); |
1209 | } |
1210 | } |
1211 | |
1212 | void UnwindFragmentInfo::AddEpilog() |
1213 | { |
1214 | assert(ufiInitialized == UFI_INITIALIZED_PATTERN); |
1215 | |
1216 | #ifdef DEBUG |
1217 | if (ufiInProlog) |
1218 | { |
1219 | assert(ufiEpilogList == NULL); |
1220 | ufiInProlog = false; |
1221 | } |
1222 | else |
1223 | { |
1224 | assert(ufiEpilogList != NULL); |
1225 | } |
1226 | #endif // DEBUG |
1227 | |
1228 | // Either allocate a new epilog object, or, for the first one, use the |
1229 | // preallocated one that is a member of the UnwindFragmentInfo class. |
1230 | |
1231 | UnwindEpilogInfo* newepi; |
1232 | |
1233 | if (ufiEpilogList == NULL) |
1234 | { |
1235 | // Use the epilog that's in the class already. Be sure to initialize it! |
1236 | newepi = ufiEpilogList = &ufiEpilogFirst; |
1237 | } |
1238 | else |
1239 | { |
1240 | newepi = new (uwiComp, CMK_UnwindInfo) UnwindEpilogInfo(uwiComp); |
1241 | } |
1242 | |
1243 | // Put the new epilog at the end of the epilog list |
1244 | |
1245 | if (ufiEpilogLast != NULL) |
1246 | { |
1247 | ufiEpilogLast->epiNext = newepi; |
1248 | } |
1249 | |
1250 | ufiEpilogLast = newepi; |
1251 | |
1252 | // What is the starting code offset of the epilog? Store an emitter location |
1253 | // so we can ask the emitter later, after codegen. |
1254 | |
1255 | newepi->CaptureEmitLocation(); |
1256 | |
1257 | // Put subsequent unwind codes in this new epilog |
1258 | |
1259 | ufiCurCodes = &newepi->epiCodes; |
1260 | } |
1261 | |
1262 | // Copy the prolog codes from the 'pCopyFrom' fragment. These prolog codes will |
1263 | // become 'phantom' prolog codes in this fragment. Note that this fragment should |
1264 | // not have any prolog codes currently; it is at the initial state. |
1265 | |
1266 | void UnwindFragmentInfo::CopyPrologCodes(UnwindFragmentInfo* pCopyFrom) |
1267 | { |
1268 | ufiPrologCodes.CopyFrom(&pCopyFrom->ufiPrologCodes); |
1269 | #ifdef _TARGET_ARM64_ |
1270 | ufiPrologCodes.AddCode(UWC_END_C); |
1271 | #endif |
1272 | } |
1273 | |
1274 | // Split the epilog codes that currently exist in 'pSplitFrom'. The ones that represent |
1275 | // epilogs that start at or after the location represented by 'emitLoc' are removed |
1276 | // from 'pSplitFrom' and moved to this fragment. Note that this fragment should not have |
1277 | // any epilog codes currently; it is at the initial state. |
1278 | |
1279 | void UnwindFragmentInfo::SplitEpilogCodes(emitLocation* emitLoc, UnwindFragmentInfo* pSplitFrom) |
1280 | { |
1281 | UnwindEpilogInfo* pEpiPrev; |
1282 | UnwindEpilogInfo* pEpi; |
1283 | |
1284 | UNATIVE_OFFSET splitOffset = emitLoc->CodeOffset(uwiComp->genEmitter); |
1285 | |
1286 | for (pEpiPrev = NULL, pEpi = pSplitFrom->ufiEpilogList; pEpi != NULL; pEpiPrev = pEpi, pEpi = pEpi->epiNext) |
1287 | { |
1288 | pEpi->FinalizeOffset(); // Get the offset of the epilog from the emitter so we can compare it |
1289 | if (pEpi->GetStartOffset() >= splitOffset) |
1290 | { |
1291 | // This epilog and all following epilogs, which must be in order of increasing offsets, |
1292 | // get moved to this fragment. |
1293 | |
1294 | // Splice in the epilogs to this fragment. Set the head of the epilog |
1295 | // list to this epilog. |
1296 | ufiEpilogList = pEpi; // In this case, don't use 'ufiEpilogFirst' |
1297 | ufiEpilogLast = pSplitFrom->ufiEpilogLast; |
1298 | |
1299 | // Splice out the tail of the list from the 'pSplitFrom' epilog list |
1300 | pSplitFrom->ufiEpilogLast = pEpiPrev; |
1301 | if (pSplitFrom->ufiEpilogLast == NULL) |
1302 | { |
1303 | pSplitFrom->ufiEpilogList = NULL; |
1304 | } |
1305 | else |
1306 | { |
1307 | pSplitFrom->ufiEpilogLast->epiNext = NULL; |
1308 | } |
1309 | |
1310 | // No more codes should be added once we start splitting |
1311 | pSplitFrom->ufiCurCodes = NULL; |
1312 | ufiCurCodes = NULL; |
1313 | |
1314 | break; |
1315 | } |
1316 | } |
1317 | } |
1318 | |
1319 | // Is this epilog at the end of an unwind fragment? Ask the emitter. |
1320 | // Note that we need to know this before all code offsets are finalized, |
1321 | // so we can determine whether we can omit an epilog scope word for a |
1322 | // single matching epilog. |
1323 | |
1324 | bool UnwindFragmentInfo::IsAtFragmentEnd(UnwindEpilogInfo* pEpi) |
1325 | { |
1326 | return uwiComp->genEmitter->emitIsFuncEnd(pEpi->epiEmitLocation, (ufiNext == NULL) ? NULL : ufiNext->ufiEmitLoc); |
1327 | } |
1328 | |
1329 | // Merge the unwind codes as much as possible. |
1330 | // This function is called before all offsets are final. |
1331 | // Also, compute the size of the final unwind block. Store this |
1332 | // and some other data for later, when we actually emit the |
1333 | // unwind block. |
1334 | |
1335 | void UnwindFragmentInfo::MergeCodes() |
1336 | { |
1337 | assert(ufiInitialized == UFI_INITIALIZED_PATTERN); |
1338 | |
1339 | unsigned epilogCount = 0; |
1340 | unsigned epilogCodeBytes = 0; // The total number of unwind code bytes used by epilogs that don't match the |
1341 | // prolog codes |
1342 | unsigned epilogIndex = ufiPrologCodes.Size(); // The "Epilog Start Index" for the next non-matching epilog codes |
1343 | UnwindEpilogInfo* pEpi; |
1344 | |
1345 | for (pEpi = ufiEpilogList; pEpi != NULL; pEpi = pEpi->epiNext) |
1346 | { |
1347 | ++epilogCount; |
1348 | |
1349 | pEpi->FinalizeCodes(); |
1350 | |
1351 | // Does this epilog match the prolog? |
1352 | // NOTE: for the purpose of matching, we don't handle the 0xFD and 0xFE end codes that allow slightly unequal |
1353 | // prolog and epilog codes. |
1354 | |
1355 | int matchIndex; |
1356 | |
1357 | matchIndex = ufiPrologCodes.Match(pEpi); |
1358 | if (matchIndex != -1) |
1359 | { |
1360 | pEpi->SetMatches(); |
1361 | pEpi->SetStartIndex(matchIndex); // Prolog codes start at zero, so matchIndex is exactly the start index |
1362 | } |
1363 | else |
1364 | { |
1365 | // The epilog codes don't match the prolog codes. Do they match any of the epilogs |
1366 | // we've seen so far? |
1367 | |
1368 | bool matched = false; |
1369 | for (UnwindEpilogInfo* pEpi2 = ufiEpilogList; pEpi2 != pEpi; pEpi2 = pEpi2->epiNext) |
1370 | { |
1371 | matchIndex = pEpi2->Match(pEpi); |
1372 | if (matchIndex != -1) |
1373 | { |
1374 | // Use the same epilog index as the one we matched, as it has already been set. |
1375 | pEpi->SetMatches(); |
1376 | pEpi->SetStartIndex(pEpi2->GetStartIndex() + matchIndex); // We might match somewhere inside pEpi2's |
1377 | // codes, in which case matchIndex > 0 |
1378 | matched = true; |
1379 | break; |
1380 | } |
1381 | } |
1382 | |
1383 | if (!matched) |
1384 | { |
1385 | pEpi->SetStartIndex(epilogIndex); // We'll copy these codes to the next available location |
1386 | epilogCodeBytes += pEpi->Size(); |
1387 | epilogIndex += pEpi->Size(); |
1388 | } |
1389 | } |
1390 | } |
1391 | |
1392 | DWORD codeBytes = ufiPrologCodes.Size() + epilogCodeBytes; |
1393 | codeBytes = AlignUp(codeBytes, sizeof(DWORD)); |
1394 | |
1395 | DWORD codeWords = |
1396 | codeBytes / sizeof(DWORD); // This is how many words we need to store all the unwind codes in the unwind block |
1397 | |
1398 | // Do we need the 2nd header word for "Extended Code Words" or "Extended Epilog Count"? |
1399 | |
1400 | bool needExtendedCodeWordsEpilogCount = |
1401 | (codeWords > UW_MAX_CODE_WORDS_COUNT) || (epilogCount > UW_MAX_EPILOG_COUNT); |
1402 | |
1403 | // How many epilog scope words do we need? |
1404 | |
1405 | bool setEBit = false; // do we need to set the E bit? |
1406 | unsigned epilogScopes = epilogCount; // Note that this could be zero if we have no epilogs! |
1407 | |
1408 | if (epilogCount == 1) |
1409 | { |
1410 | assert(ufiEpilogList != NULL); |
1411 | assert(ufiEpilogList->epiNext == NULL); |
1412 | |
1413 | if (ufiEpilogList->Matches() && (ufiEpilogList->GetStartIndex() == 0) && // The match is with the prolog |
1414 | !needExtendedCodeWordsEpilogCount && IsAtFragmentEnd(ufiEpilogList)) |
1415 | { |
1416 | epilogScopes = 0; // Don't need any epilog scope words |
1417 | setEBit = true; |
1418 | } |
1419 | } |
1420 | |
1421 | DWORD = (1 // Always need first header DWORD |
1422 | + (needExtendedCodeWordsEpilogCount ? 1 : 0) // Do we need the 2nd DWORD for Extended Code |
1423 | // Words or Extended Epilog Count? |
1424 | + epilogScopes // One DWORD per epilog scope, for EBit = 0 |
1425 | ) * |
1426 | sizeof(DWORD); // convert it to bytes |
1427 | |
1428 | DWORD finalSize = headerBytes + codeBytes; // Size of actual unwind codes, aligned up to 4-byte words, |
1429 | // including end padding if necessary |
1430 | |
1431 | // Construct the final unwind information. |
1432 | |
1433 | // We re-use the memory for the prolog unwind codes to construct the full unwind data. If all the epilogs |
1434 | // match the prolog, this is easy: we just prepend the header. If there are epilog codes that don't match |
1435 | // the prolog, we still use the prolog codes memory, but it's a little more complicated, since the |
1436 | // unwind info is ordered as: (a) header, (b) prolog codes, (c) non-matching epilog codes. And, the prolog |
1437 | // codes array is filled in from end-to-beginning. So, we compute the size of memory we need, ensure we |
1438 | // have that much memory, and then copy the prolog codes to the right place, appending the non-matching |
1439 | // epilog codes and prepending the header. |
1440 | |
1441 | ufiPrologCodes.SetFinalSize(headerBytes, epilogCodeBytes); |
1442 | |
1443 | if (epilogCodeBytes != 0) |
1444 | { |
1445 | // We need to copy the epilog code bytes to their final memory location |
1446 | |
1447 | for (pEpi = ufiEpilogList; pEpi != NULL; pEpi = pEpi->epiNext) |
1448 | { |
1449 | if (!pEpi->Matches()) |
1450 | { |
1451 | ufiPrologCodes.AppendEpilog(pEpi); |
1452 | } |
1453 | } |
1454 | } |
1455 | |
1456 | // Save some data for later |
1457 | |
1458 | ufiSize = finalSize; |
1459 | ufiSetEBit = setEBit; |
1460 | ufiNeedExtendedCodeWordsEpilogCount = needExtendedCodeWordsEpilogCount; |
1461 | ufiCodeWords = codeWords; |
1462 | ufiEpilogScopes = epilogScopes; |
1463 | } |
1464 | |
1465 | // Finalize: Prepare the unwind information for the VM. Compute and prepend the unwind header. |
1466 | |
1467 | void UnwindFragmentInfo::Finalize(UNATIVE_OFFSET functionLength) |
1468 | { |
1469 | assert(ufiInitialized == UFI_INITIALIZED_PATTERN); |
1470 | |
1471 | #ifdef DEBUG |
1472 | if (0 && uwiComp->verbose) |
1473 | { |
1474 | printf("*************** Before fragment #%d finalize\n" , ufiNum); |
1475 | Dump(); |
1476 | } |
1477 | #endif |
1478 | |
1479 | // Compute the header |
1480 | |
1481 | #if defined(_TARGET_ARM_) |
1482 | noway_assert((functionLength & 1) == 0); |
1483 | DWORD headerFunctionLength = functionLength / 2; |
1484 | #elif defined(_TARGET_ARM64_) |
1485 | noway_assert((functionLength & 3) == 0); |
1486 | DWORD = functionLength / 4; |
1487 | #endif // _TARGET_ARM64_ |
1488 | |
1489 | DWORD = 0; // Version of the unwind info is zero. No other version number is currently defined. |
1490 | DWORD = 0; // We never generate "exception data", but the VM might add some. |
1491 | DWORD ; |
1492 | #if defined(_TARGET_ARM_) |
1493 | DWORD headerFBit = ufiHasPhantomProlog ? 1 : 0; // Is this data a fragment in the sense of the unwind data |
1494 | // specification? That is, do the prolog codes represent a real |
1495 | // prolog or not? |
1496 | #endif // defined(_TARGET_ARM_) |
1497 | DWORD ; // This depends on how we set headerEBit. |
1498 | DWORD ; |
1499 | DWORD = 0; // This depends on how we set headerEBit. |
1500 | DWORD = 0; |
1501 | |
1502 | if (ufiSetEBit) |
1503 | { |
1504 | headerEBit = 1; |
1505 | headerEpilogCount = ufiEpilogList->GetStartIndex(); // probably zero -- the start of the prolog codes! |
1506 | headerCodeWords = ufiCodeWords; |
1507 | } |
1508 | else |
1509 | { |
1510 | headerEBit = 0; |
1511 | |
1512 | if (ufiNeedExtendedCodeWordsEpilogCount) |
1513 | { |
1514 | headerEpilogCount = 0; |
1515 | headerCodeWords = 0; |
1516 | headerExtendedEpilogCount = ufiEpilogScopes; |
1517 | headerExtendedCodeWords = ufiCodeWords; |
1518 | } |
1519 | else |
1520 | { |
1521 | headerEpilogCount = ufiEpilogScopes; |
1522 | headerCodeWords = ufiCodeWords; |
1523 | } |
1524 | } |
1525 | |
1526 | // Start writing the header |
1527 | |
1528 | noway_assert(headerFunctionLength <= |
1529 | 0x3FFFFU); // We create fragments to prevent this from firing, so if it hits, we have an internal error |
1530 | |
1531 | if ((headerEpilogCount > UW_MAX_EPILOG_COUNT) || (headerCodeWords > UW_MAX_CODE_WORDS_COUNT)) |
1532 | { |
1533 | IMPL_LIMITATION("unwind data too large" ); |
1534 | } |
1535 | |
1536 | #if defined(_TARGET_ARM_) |
1537 | DWORD header = headerFunctionLength | (headerVers << 18) | (headerXBit << 20) | (headerEBit << 21) | |
1538 | (headerFBit << 22) | (headerEpilogCount << 23) | (headerCodeWords << 28); |
1539 | #elif defined(_TARGET_ARM64_) |
1540 | DWORD = headerFunctionLength | (headerVers << 18) | (headerXBit << 20) | (headerEBit << 21) | |
1541 | (headerEpilogCount << 22) | (headerCodeWords << 27); |
1542 | #endif // defined(_TARGET_ARM64_) |
1543 | |
1544 | ufiPrologCodes.AddHeaderWord(header); |
1545 | |
1546 | // Construct the second header word, if needed |
1547 | |
1548 | if (ufiNeedExtendedCodeWordsEpilogCount) |
1549 | { |
1550 | noway_assert(headerEBit == 0); |
1551 | noway_assert(headerEpilogCount == 0); |
1552 | noway_assert(headerCodeWords == 0); |
1553 | noway_assert((headerExtendedEpilogCount > UW_MAX_EPILOG_COUNT) || |
1554 | (headerExtendedCodeWords > UW_MAX_CODE_WORDS_COUNT)); |
1555 | |
1556 | if ((headerExtendedEpilogCount > UW_MAX_EXTENDED_EPILOG_COUNT) || |
1557 | (headerExtendedCodeWords > UW_MAX_EXTENDED_CODE_WORDS_COUNT)) |
1558 | { |
1559 | IMPL_LIMITATION("unwind data too large" ); |
1560 | } |
1561 | |
1562 | DWORD = headerExtendedEpilogCount | (headerExtendedCodeWords << 16); |
1563 | |
1564 | ufiPrologCodes.AddHeaderWord(header2); |
1565 | } |
1566 | |
1567 | // Construct the epilog scope words, if needed |
1568 | |
1569 | if (!ufiSetEBit) |
1570 | { |
1571 | for (UnwindEpilogInfo* pEpi = ufiEpilogList; pEpi != NULL; pEpi = pEpi->epiNext) |
1572 | { |
1573 | #if defined(_TARGET_ARM_) |
1574 | DWORD headerCondition = 0xE; // The epilog is unconditional. We don't have epilogs under the IT instruction. |
1575 | #endif // defined(_TARGET_ARM_) |
1576 | |
1577 | // The epilog must strictly follow the prolog. The prolog is in the first fragment of |
1578 | // the hot section. If this epilog is at the start of a fragment, it can't be the |
1579 | // first fragment in the hot section. We actually don't know if we're processing |
1580 | // the hot or cold section (or a funclet), so we can't distinguish these cases. Thus, |
1581 | // we just assert that the epilog starts within the fragment. |
1582 | assert(pEpi->GetStartOffset() >= GetStartOffset()); |
1583 | |
1584 | // We report the offset of an epilog as the offset from the beginning of the function/funclet fragment, |
1585 | // NOT the offset from the beginning of the main function. |
1586 | DWORD = pEpi->GetStartOffset() - GetStartOffset(); |
1587 | |
1588 | #if defined(_TARGET_ARM_) |
1589 | noway_assert((headerEpilogStartOffset & 1) == 0); |
1590 | headerEpilogStartOffset /= 2; // The unwind data stores the actual offset divided by 2 (since the low bit of |
1591 | // the actual offset is always zero) |
1592 | #elif defined(_TARGET_ARM64_) |
1593 | noway_assert((headerEpilogStartOffset & 3) == 0); |
1594 | headerEpilogStartOffset /= 4; // The unwind data stores the actual offset divided by 4 (since the low 2 bits |
1595 | // of the actual offset is always zero) |
1596 | #endif // defined(_TARGET_ARM64_) |
1597 | |
1598 | DWORD = pEpi->GetStartIndex(); |
1599 | |
1600 | if ((headerEpilogStartOffset > UW_MAX_EPILOG_START_OFFSET) || |
1601 | (headerEpilogStartIndex > UW_MAX_EPILOG_START_INDEX)) |
1602 | { |
1603 | IMPL_LIMITATION("unwind data too large" ); |
1604 | } |
1605 | |
1606 | #if defined(_TARGET_ARM_) |
1607 | DWORD epilogScopeWord = headerEpilogStartOffset | (headerCondition << 20) | (headerEpilogStartIndex << 24); |
1608 | #elif defined(_TARGET_ARM64_) |
1609 | DWORD epilogScopeWord = headerEpilogStartOffset | (headerEpilogStartIndex << 22); |
1610 | #endif // defined(_TARGET_ARM64_) |
1611 | |
1612 | ufiPrologCodes.AddHeaderWord(epilogScopeWord); |
1613 | } |
1614 | } |
1615 | |
1616 | // The unwind code words are already here, following the header, so we're done! |
1617 | } |
1618 | |
1619 | void UnwindFragmentInfo::Reserve(BOOL isFunclet, bool isHotCode) |
1620 | { |
1621 | assert(isHotCode || !isFunclet); // TODO-CQ: support hot/cold splitting in functions with EH |
1622 | |
1623 | MergeCodes(); |
1624 | |
1625 | BOOL isColdCode = isHotCode ? FALSE : TRUE; |
1626 | |
1627 | ULONG unwindSize = Size(); |
1628 | |
1629 | #ifdef DEBUG |
1630 | if (uwiComp->verbose) |
1631 | { |
1632 | if (ufiNum != 1) |
1633 | printf("reserveUnwindInfo: fragment #%d:\n" , ufiNum); |
1634 | } |
1635 | #endif |
1636 | |
1637 | uwiComp->eeReserveUnwindInfo(isFunclet, isColdCode, unwindSize); |
1638 | } |
1639 | |
1640 | // Allocate the unwind info for a fragment with the VM. |
1641 | // Arguments: |
1642 | // funKind: funclet kind |
1643 | // pHotCode: hot section code buffer |
1644 | // pColdCode: cold section code buffer |
1645 | // funcEndOffset: offset of the end of this function/funclet. Used if this fragment is the last one for a |
1646 | // function/funclet. |
1647 | // isHotCode: are we allocating the unwind info for the hot code section? |
1648 | |
1649 | void UnwindFragmentInfo::Allocate( |
1650 | CorJitFuncKind funKind, void* pHotCode, void* pColdCode, UNATIVE_OFFSET funcEndOffset, bool isHotCode) |
1651 | { |
1652 | UNATIVE_OFFSET startOffset; |
1653 | UNATIVE_OFFSET endOffset; |
1654 | UNATIVE_OFFSET codeSize; |
1655 | |
1656 | // We don't support hot/cold splitting with EH, so if there is cold code, this |
1657 | // better not be a funclet! |
1658 | // TODO-CQ: support funclets in cold code |
1659 | |
1660 | noway_assert(isHotCode || funKind == CORJIT_FUNC_ROOT); |
1661 | |
1662 | // Compute the final size, and start and end offsets of the fragment |
1663 | |
1664 | startOffset = GetStartOffset(); |
1665 | |
1666 | if (ufiNext == NULL) |
1667 | { |
1668 | // This is the last fragment, so the fragment extends to the end of the function/fragment. |
1669 | assert(funcEndOffset != 0); |
1670 | endOffset = funcEndOffset; |
1671 | } |
1672 | else |
1673 | { |
1674 | // The fragment length is all the code between the beginning of this fragment |
1675 | // and the beginning of the next fragment. Note that all fragments have had their |
1676 | // offsets computed before any fragment is allocated. |
1677 | endOffset = ufiNext->GetStartOffset(); |
1678 | } |
1679 | |
1680 | assert(endOffset > startOffset); |
1681 | codeSize = endOffset - startOffset; |
1682 | |
1683 | // Finalize the fragment unwind block to hand to the VM |
1684 | |
1685 | Finalize(codeSize); |
1686 | |
1687 | // Get the final unwind information and hand it to the VM |
1688 | |
1689 | ULONG unwindBlockSize; |
1690 | BYTE* pUnwindBlock; |
1691 | |
1692 | GetFinalInfo(&pUnwindBlock, &unwindBlockSize); |
1693 | |
1694 | #ifdef DEBUG |
1695 | if (uwiComp->opts.dspUnwind) |
1696 | { |
1697 | DumpUnwindInfo(uwiComp, isHotCode, startOffset, endOffset, pUnwindBlock, unwindBlockSize); |
1698 | } |
1699 | #endif // DEBUG |
1700 | |
1701 | // Adjust for cold or hot code: |
1702 | // 1. The VM doesn't want the cold code pointer unless this is cold code. |
1703 | // 2. The startOffset and endOffset need to be from the base of the hot section for hot code |
1704 | // and from the base of the cold section for cold code |
1705 | |
1706 | if (isHotCode) |
1707 | { |
1708 | assert(endOffset <= uwiComp->info.compTotalHotCodeSize); |
1709 | pColdCode = NULL; |
1710 | } |
1711 | else |
1712 | { |
1713 | assert(startOffset >= uwiComp->info.compTotalHotCodeSize); |
1714 | startOffset -= uwiComp->info.compTotalHotCodeSize; |
1715 | endOffset -= uwiComp->info.compTotalHotCodeSize; |
1716 | } |
1717 | |
1718 | #ifdef DEBUG |
1719 | if (uwiComp->verbose) |
1720 | { |
1721 | if (ufiNum != 1) |
1722 | printf("unwindEmit: fragment #%d:\n" , ufiNum); |
1723 | } |
1724 | #endif // DEBUG |
1725 | |
1726 | uwiComp->eeAllocUnwindInfo((BYTE*)pHotCode, (BYTE*)pColdCode, startOffset, endOffset, unwindBlockSize, pUnwindBlock, |
1727 | funKind); |
1728 | } |
1729 | |
1730 | #ifdef DEBUG |
1731 | void UnwindFragmentInfo::Dump(int indent) |
1732 | { |
1733 | unsigned count; |
1734 | UnwindEpilogInfo* pEpi; |
1735 | |
1736 | count = 0; |
1737 | for (pEpi = ufiEpilogList; pEpi != NULL; pEpi = pEpi->epiNext) |
1738 | { |
1739 | ++count; |
1740 | } |
1741 | |
1742 | printf("%*sUnwindFragmentInfo #%d, @0x%08p, size:%d:\n" , indent, "" , ufiNum, dspPtr(this), sizeof(*this)); |
1743 | printf("%*s uwiComp: 0x%08p\n" , indent, "" , dspPtr(uwiComp)); |
1744 | printf("%*s ufiNext: 0x%08p\n" , indent, "" , dspPtr(ufiNext)); |
1745 | printf("%*s ufiEmitLoc: 0x%08p\n" , indent, "" , dspPtr(ufiEmitLoc)); |
1746 | printf("%*s ufiHasPhantomProlog: %s\n" , indent, "" , dspBool(ufiHasPhantomProlog)); |
1747 | printf("%*s %d epilog%s\n" , indent, "" , count, (count != 1) ? "s" : "" ); |
1748 | printf("%*s ufiEpilogList: 0x%08p\n" , indent, "" , dspPtr(ufiEpilogList)); |
1749 | printf("%*s ufiEpilogLast: 0x%08p\n" , indent, "" , dspPtr(ufiEpilogLast)); |
1750 | printf("%*s ufiCurCodes: 0x%08p\n" , indent, "" , dspPtr(ufiCurCodes)); |
1751 | printf("%*s ufiSize: %u\n" , indent, "" , ufiSize); |
1752 | printf("%*s ufiSetEBit: %s\n" , indent, "" , dspBool(ufiSetEBit)); |
1753 | printf("%*s ufiNeedExtendedCodeWordsEpilogCount: %s\n" , indent, "" , dspBool(ufiNeedExtendedCodeWordsEpilogCount)); |
1754 | printf("%*s ufiCodeWords: %u\n" , indent, "" , ufiCodeWords); |
1755 | printf("%*s ufiEpilogScopes: %u\n" , indent, "" , ufiEpilogScopes); |
1756 | printf("%*s ufiStartOffset: 0x%x\n" , indent, "" , ufiStartOffset); |
1757 | printf("%*s ufiInProlog: %s\n" , indent, "" , dspBool(ufiInProlog)); |
1758 | printf("%*s ufiInitialized: 0x%08x\n" , indent, "" , ufiInitialized); |
1759 | |
1760 | ufiPrologCodes.Dump(indent + 2); |
1761 | |
1762 | for (pEpi = ufiEpilogList; pEpi != NULL; pEpi = pEpi->epiNext) |
1763 | { |
1764 | pEpi->Dump(indent + 2); |
1765 | } |
1766 | } |
1767 | #endif // DEBUG |
1768 | |
1769 | /////////////////////////////////////////////////////////////////////////////// |
1770 | // |
1771 | // UnwindInfo |
1772 | // |
1773 | /////////////////////////////////////////////////////////////////////////////// |
1774 | |
1775 | void UnwindInfo::InitUnwindInfo(Compiler* comp, emitLocation* startLoc, emitLocation* endLoc) |
1776 | { |
1777 | uwiComp = comp; |
1778 | |
1779 | // The first fragment is a member of UnwindInfo, so it doesn't need to be allocated. |
1780 | // However, its constructor needs to be explicitly called, since the constructor for |
1781 | // UnwindInfo is not called. |
1782 | |
1783 | uwiFragmentFirst.UnwindFragmentInfo::UnwindFragmentInfo(comp, startLoc, false); |
1784 | |
1785 | uwiFragmentLast = &uwiFragmentFirst; |
1786 | |
1787 | uwiEndLoc = endLoc; |
1788 | |
1789 | // Allocate an emitter location object. It is initialized to something |
1790 | // invalid: it has a null 'ig' that needs to get set before it can be used. |
1791 | // Note that when we create an UnwindInfo for the cold section, this never |
1792 | // gets initialized with anything useful, since we never add unwind codes |
1793 | // to the cold section; we simply distribute the existing (previously added) codes. |
1794 | uwiCurLoc = new (uwiComp, CMK_UnwindInfo) emitLocation(); |
1795 | |
1796 | #ifdef DEBUG |
1797 | uwiInitialized = UWI_INITIALIZED_PATTERN; |
1798 | uwiAddingNOP = false; |
1799 | #endif // DEBUG |
1800 | } |
1801 | |
1802 | // Split the unwind codes in 'puwi' into those that are in the hot section (leave them in 'puwi') |
1803 | // and those that are in the cold section (move them to 'this'). There is exactly one fragment |
1804 | // in each UnwindInfo; the fragments haven't been split for size, yet. |
1805 | |
1806 | void UnwindInfo::HotColdSplitCodes(UnwindInfo* puwi) |
1807 | { |
1808 | // Ensure that there is exactly a single fragment in both the hot and the cold sections |
1809 | assert(&uwiFragmentFirst == uwiFragmentLast); |
1810 | assert(&puwi->uwiFragmentFirst == puwi->uwiFragmentLast); |
1811 | assert(uwiFragmentLast->ufiNext == NULL); |
1812 | assert(puwi->uwiFragmentLast->ufiNext == NULL); |
1813 | |
1814 | // The real prolog is in the hot section, so this, cold, section has a phantom prolog |
1815 | uwiFragmentLast->ufiHasPhantomProlog = true; |
1816 | uwiFragmentLast->CopyPrologCodes(puwi->uwiFragmentLast); |
1817 | |
1818 | // Now split the epilog codes |
1819 | uwiFragmentLast->SplitEpilogCodes(uwiFragmentLast->ufiEmitLoc, puwi->uwiFragmentLast); |
1820 | } |
1821 | |
1822 | // Split the function or funclet into fragments that are no larger than 512K, |
1823 | // so the fragment size will fit in the unwind data "Function Length" field. |
1824 | // The ARM Exception Data specification "Function Fragments" section describes this. |
1825 | // We split the function so that it is no larger than 512K bytes, or the value of |
1826 | // the COMPlus_JitSplitFunctionSize value, if defined (and smaller). We must determine |
1827 | // how to split the function/funclet before we issue the instructions, so we can |
1828 | // reserve the unwind space with the VM. The instructions issued may shrink (but not |
1829 | // expand!) during issuing (although this is extremely rare in any case, and may not |
1830 | // actually occur on ARM), so we don't finalize actual sizes or offsets. |
1831 | // |
1832 | // ARM64 has very similar limitations, except functions can be up to 1MB. TODO-ARM64-Bug?: make sure this works! |
1833 | // |
1834 | // We don't split any prolog or epilog. Ideally, we might not split an instruction, |
1835 | // although that doesn't matter because the unwind at any point would still be |
1836 | // well-defined. |
1837 | |
1838 | void UnwindInfo::Split() |
1839 | { |
1840 | UNATIVE_OFFSET maxFragmentSize; // The maximum size of a code fragment in bytes |
1841 | |
1842 | maxFragmentSize = UW_MAX_FRAGMENT_SIZE_BYTES; |
1843 | |
1844 | #ifdef DEBUG |
1845 | // Consider COMPlus_JitSplitFunctionSize |
1846 | unsigned splitFunctionSize = (unsigned)JitConfig.JitSplitFunctionSize(); |
1847 | |
1848 | if (splitFunctionSize != 0) |
1849 | if (splitFunctionSize < maxFragmentSize) |
1850 | maxFragmentSize = splitFunctionSize; |
1851 | #endif // DEBUG |
1852 | |
1853 | // Now, there should be exactly one fragment. |
1854 | |
1855 | assert(uwiFragmentLast != NULL); |
1856 | assert(uwiFragmentLast == &uwiFragmentFirst); |
1857 | assert(uwiFragmentLast->ufiNext == NULL); |
1858 | |
1859 | // Find the code size of this function/funclet. |
1860 | |
1861 | UNATIVE_OFFSET startOffset; |
1862 | UNATIVE_OFFSET endOffset; |
1863 | UNATIVE_OFFSET codeSize; |
1864 | |
1865 | if (uwiFragmentLast->ufiEmitLoc == NULL) |
1866 | { |
1867 | // NULL emit location means the beginning of the code. This is to handle the first fragment prolog. |
1868 | startOffset = 0; |
1869 | } |
1870 | else |
1871 | { |
1872 | startOffset = uwiFragmentLast->ufiEmitLoc->CodeOffset(uwiComp->genEmitter); |
1873 | } |
1874 | |
1875 | if (uwiEndLoc == NULL) |
1876 | { |
1877 | // Note that compTotalHotCodeSize and compTotalColdCodeSize are computed before issuing instructions |
1878 | // from the emitter instruction group offsets, and will be accurate unless the issued code shrinks. |
1879 | // compNativeCodeSize is precise, but is only set after instructions are issued, which is too late |
1880 | // for us, since we need to decide how many fragments we need before the code memory is allocated |
1881 | // (which is before instruction issuing). |
1882 | UNATIVE_OFFSET estimatedTotalCodeSize = |
1883 | uwiComp->info.compTotalHotCodeSize + uwiComp->info.compTotalColdCodeSize; |
1884 | assert(estimatedTotalCodeSize != 0); |
1885 | endOffset = estimatedTotalCodeSize; |
1886 | } |
1887 | else |
1888 | { |
1889 | endOffset = uwiEndLoc->CodeOffset(uwiComp->genEmitter); |
1890 | } |
1891 | |
1892 | assert(endOffset > startOffset); // there better be at least 1 byte of code |
1893 | codeSize = endOffset - startOffset; |
1894 | |
1895 | // Now that we know the code size for this section (main function hot or cold, or funclet), |
1896 | // figure out how many fragments we're going to need. |
1897 | |
1898 | UNATIVE_OFFSET numberOfFragments = (codeSize + maxFragmentSize - 1) / maxFragmentSize; // round up |
1899 | assert(numberOfFragments > 0); |
1900 | |
1901 | if (numberOfFragments == 1) |
1902 | { |
1903 | // No need to split; we're done |
1904 | return; |
1905 | } |
1906 | |
1907 | // Now, we're going to commit to splitting the function into "numberOfFragments" fragments, |
1908 | // for the purpose of unwind information. We need to do the actual splits so we can figure out |
1909 | // the size of each piece of unwind data for the call to reserveUnwindInfo(). We won't know |
1910 | // the actual offsets of the splits since we haven't issued the instructions yet, so store |
1911 | // an emitter location instead of an offset, and "finalize" the offset in the unwindEmit() phase, |
1912 | // like we do for the function length and epilog offsets. |
1913 | CLANG_FORMAT_COMMENT_ANCHOR; |
1914 | |
1915 | #ifdef DEBUG |
1916 | if (uwiComp->verbose) |
1917 | { |
1918 | printf("Split unwind info into %d fragments (function/funclet size: %d, maximum fragment size: %d)\n" , |
1919 | numberOfFragments, codeSize, maxFragmentSize); |
1920 | } |
1921 | #endif // DEBUG |
1922 | |
1923 | // Call the emitter to do the split, and call us back for every split point it chooses. |
1924 | uwiComp->genEmitter->emitSplit(uwiFragmentLast->ufiEmitLoc, uwiEndLoc, maxFragmentSize, (void*)this, |
1925 | EmitSplitCallback); |
1926 | |
1927 | #ifdef DEBUG |
1928 | // Did the emitter split the function/funclet into as many fragments as we asked for? |
1929 | // It might be fewer if the COMPlus_JitSplitFunctionSize was used, but it better not |
1930 | // be fewer if we're splitting into 512K blocks! |
1931 | |
1932 | unsigned fragCount = 0; |
1933 | for (UnwindFragmentInfo* pFrag = &uwiFragmentFirst; pFrag != NULL; pFrag = pFrag->ufiNext) |
1934 | { |
1935 | ++fragCount; |
1936 | } |
1937 | if (fragCount < numberOfFragments) |
1938 | { |
1939 | if (uwiComp->verbose) |
1940 | { |
1941 | printf("WARNING: asked the emitter for %d fragments, but only got %d\n" , numberOfFragments, fragCount); |
1942 | } |
1943 | |
1944 | // If this fires, then we split into fewer fragments than we asked for, and we are using |
1945 | // the default, unwind-data-defined 512K maximum fragment size. We won't be able to fit |
1946 | // this fragment into the unwind data! If you set COMPlus_JitSplitFunctionSize to something |
1947 | // small, we might not be able to split into as many fragments as asked for, because we |
1948 | // can't split prologs or epilogs. |
1949 | assert(maxFragmentSize != UW_MAX_FRAGMENT_SIZE_BYTES); |
1950 | } |
1951 | #endif // DEBUG |
1952 | } |
1953 | |
1954 | /*static*/ void UnwindInfo::EmitSplitCallback(void* context, emitLocation* emitLoc) |
1955 | { |
1956 | UnwindInfo* puwi = (UnwindInfo*)context; |
1957 | puwi->AddFragment(emitLoc); |
1958 | } |
1959 | |
1960 | // Reserve space for the unwind info for all fragments |
1961 | |
1962 | void UnwindInfo::Reserve(BOOL isFunclet, bool isHotCode) |
1963 | { |
1964 | assert(uwiInitialized == UWI_INITIALIZED_PATTERN); |
1965 | assert(isHotCode || !isFunclet); |
1966 | |
1967 | for (UnwindFragmentInfo* pFrag = &uwiFragmentFirst; pFrag != NULL; pFrag = pFrag->ufiNext) |
1968 | { |
1969 | pFrag->Reserve(isFunclet, isHotCode); |
1970 | } |
1971 | } |
1972 | |
1973 | // Allocate and populate VM unwind info for all fragments |
1974 | |
1975 | void UnwindInfo::Allocate(CorJitFuncKind funKind, void* pHotCode, void* pColdCode, bool isHotCode) |
1976 | { |
1977 | assert(uwiInitialized == UWI_INITIALIZED_PATTERN); |
1978 | |
1979 | UnwindFragmentInfo* pFrag; |
1980 | |
1981 | // First, finalize all the offsets (the location of the beginning of fragments, and epilogs), |
1982 | // so a fragment can use the finalized offset of the subsequent fragment to determine its code size. |
1983 | |
1984 | UNATIVE_OFFSET endOffset; |
1985 | |
1986 | if (uwiEndLoc == NULL) |
1987 | { |
1988 | assert(uwiComp->info.compNativeCodeSize != 0); |
1989 | endOffset = uwiComp->info.compNativeCodeSize; |
1990 | } |
1991 | else |
1992 | { |
1993 | endOffset = uwiEndLoc->CodeOffset(uwiComp->genEmitter); |
1994 | } |
1995 | |
1996 | for (pFrag = &uwiFragmentFirst; pFrag != NULL; pFrag = pFrag->ufiNext) |
1997 | { |
1998 | pFrag->FinalizeOffset(); |
1999 | } |
2000 | |
2001 | for (pFrag = &uwiFragmentFirst; pFrag != NULL; pFrag = pFrag->ufiNext) |
2002 | { |
2003 | pFrag->Allocate(funKind, pHotCode, pColdCode, endOffset, isHotCode); |
2004 | } |
2005 | } |
2006 | |
2007 | void UnwindInfo::AddEpilog() |
2008 | { |
2009 | assert(uwiInitialized == UWI_INITIALIZED_PATTERN); |
2010 | assert(uwiFragmentLast != NULL); |
2011 | uwiFragmentLast->AddEpilog(); |
2012 | CaptureLocation(); |
2013 | } |
2014 | |
2015 | #if defined(_TARGET_ARM_) |
2016 | |
2017 | unsigned UnwindInfo::GetInstructionSize() |
2018 | { |
2019 | assert(uwiInitialized == UWI_INITIALIZED_PATTERN); |
2020 | return uwiComp->genEmitter->emitGetInstructionSize(uwiCurLoc); |
2021 | } |
2022 | |
2023 | #endif // defined(_TARGET_ARM_) |
2024 | |
2025 | void UnwindInfo::CaptureLocation() |
2026 | { |
2027 | assert(uwiInitialized == UWI_INITIALIZED_PATTERN); |
2028 | assert(uwiCurLoc != NULL); |
2029 | uwiCurLoc->CaptureLocation(uwiComp->genEmitter); |
2030 | } |
2031 | |
2032 | void UnwindInfo::AddFragment(emitLocation* emitLoc) |
2033 | { |
2034 | assert(uwiInitialized == UWI_INITIALIZED_PATTERN); |
2035 | assert(uwiFragmentLast != NULL); |
2036 | |
2037 | UnwindFragmentInfo* newFrag = new (uwiComp, CMK_UnwindInfo) UnwindFragmentInfo(uwiComp, emitLoc, true); |
2038 | |
2039 | #ifdef DEBUG |
2040 | newFrag->ufiNum = uwiFragmentLast->ufiNum + 1; |
2041 | #endif // DEBUG |
2042 | |
2043 | newFrag->CopyPrologCodes(&uwiFragmentFirst); |
2044 | newFrag->SplitEpilogCodes(emitLoc, uwiFragmentLast); |
2045 | |
2046 | // Link the new fragment in at the end of the fragment list |
2047 | uwiFragmentLast->ufiNext = newFrag; |
2048 | uwiFragmentLast = newFrag; |
2049 | } |
2050 | |
2051 | #ifdef DEBUG |
2052 | |
2053 | #if defined(_TARGET_ARM_) |
2054 | |
2055 | // Given the first byte of the unwind code, check that its opsize matches |
2056 | // the last instruction added in the emitter. |
2057 | void UnwindInfo::CheckOpsize(BYTE b1) |
2058 | { |
2059 | // Adding NOP padding goes through the same path, but doesn't update the location to indicate |
2060 | // the correct location of the instruction for which we are adding a NOP, so just skip the |
2061 | // assert. Should be ok, because the emitter is telling us the size of the instruction for |
2062 | // which we are adding the NOP. |
2063 | if (uwiAddingNOP) |
2064 | return; |
2065 | |
2066 | unsigned opsizeInBytes = GetOpcodeSizeFromUnwindHeader(b1); |
2067 | unsigned instrSizeInBytes = GetInstructionSize(); |
2068 | assert(opsizeInBytes == instrSizeInBytes); |
2069 | } |
2070 | |
2071 | #endif // defined(_TARGET_ARM_) |
2072 | |
2073 | void UnwindInfo::Dump(bool isHotCode, int indent) |
2074 | { |
2075 | unsigned count; |
2076 | UnwindFragmentInfo* pFrag; |
2077 | |
2078 | count = 0; |
2079 | for (pFrag = &uwiFragmentFirst; pFrag != NULL; pFrag = pFrag->ufiNext) |
2080 | { |
2081 | ++count; |
2082 | } |
2083 | |
2084 | printf("%*sUnwindInfo %s@0x%08p, size:%d:\n" , indent, "" , isHotCode ? "" : "COLD " , dspPtr(this), sizeof(*this)); |
2085 | printf("%*s uwiComp: 0x%08p\n" , indent, "" , dspPtr(uwiComp)); |
2086 | printf("%*s %d fragment%s\n" , indent, "" , count, (count != 1) ? "s" : "" ); |
2087 | printf("%*s uwiFragmentLast: 0x%08p\n" , indent, "" , dspPtr(uwiFragmentLast)); |
2088 | printf("%*s uwiEndLoc: 0x%08p\n" , indent, "" , dspPtr(uwiEndLoc)); |
2089 | printf("%*s uwiInitialized: 0x%08x\n" , indent, "" , uwiInitialized); |
2090 | |
2091 | for (pFrag = &uwiFragmentFirst; pFrag != NULL; pFrag = pFrag->ufiNext) |
2092 | { |
2093 | pFrag->Dump(indent + 2); |
2094 | } |
2095 | } |
2096 | |
2097 | #endif // DEBUG |
2098 | |
2099 | #if defined(_TARGET_ARM_) |
2100 | |
2101 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
2102 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
2103 | XX XX |
2104 | XX Debug dumpers XX |
2105 | XX XX |
2106 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
2107 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
2108 | */ |
2109 | |
2110 | #ifdef DEBUG |
2111 | |
2112 | // start is 0-based index from LSB, length is number of bits |
2113 | DWORD ExtractBits(DWORD dw, DWORD start, DWORD length) |
2114 | { |
2115 | return (dw >> start) & ((1 << length) - 1); |
2116 | } |
2117 | |
2118 | // Dump an integer register set. 'x' is an array of bits where bit 0 = r0, bit 1 = r1, etc. |
2119 | // The highest register considered is r12. |
2120 | // If 'lr' is non-zero, the "lr" register is emitted last. |
2121 | // Returns the number of characters printed. |
2122 | DWORD DumpIntRegSet(DWORD x, DWORD lr) |
2123 | { |
2124 | assert(x != 0 || lr != 0); // we must have one |
2125 | assert((x & 0xE000) == 0); // don't handle r13 (sp), r14 (lr), r15 (pc) in 'x' |
2126 | DWORD printed = 0; |
2127 | |
2128 | printf("{" ); |
2129 | ++printed; |
2130 | bool first = true; |
2131 | DWORD bitMask = 1; |
2132 | for (DWORD bitNum = 0; bitNum < 12; bitNum++) |
2133 | { |
2134 | if (x & bitMask) |
2135 | { |
2136 | if (!first) |
2137 | { |
2138 | printf("," ); |
2139 | ++printed; |
2140 | } |
2141 | printf("r%u" , bitNum); |
2142 | printed += (bitNum < 10) ? 2 : 3; |
2143 | first = false; |
2144 | } |
2145 | bitMask <<= 1; |
2146 | } |
2147 | if (lr) |
2148 | { |
2149 | if (!first) |
2150 | { |
2151 | printf("," ); |
2152 | ++printed; |
2153 | } |
2154 | printf("lr" ); |
2155 | printed += 2; |
2156 | } |
2157 | printf("}" ); |
2158 | ++printed; |
2159 | |
2160 | return printed; |
2161 | } |
2162 | |
2163 | // Dump a register set range from register 'start' to register 'end'. |
2164 | // rtype should be "r" or "d" to indicate register type. |
2165 | // If 'lr' is non-zero, the "lr" register is emitted last. (Note that |
2166 | // 'lr' should be zero for rtype == "d".) |
2167 | // Returns the number of characters printed. |
2168 | DWORD DumpRegSetRange(const char* const rtype, DWORD start, DWORD end, DWORD lr) |
2169 | { |
2170 | assert(start <= end); |
2171 | DWORD printed = 0; |
2172 | DWORD rtypeLen = (DWORD)strlen(rtype); |
2173 | |
2174 | printf("{" ); |
2175 | ++printed; |
2176 | bool first = true; |
2177 | for (DWORD reg = start; reg <= end; reg++) |
2178 | { |
2179 | if (!first) |
2180 | { |
2181 | printf("," ); |
2182 | ++printed; |
2183 | } |
2184 | printf("%s%u" , rtype, reg); |
2185 | printed += rtypeLen + ((reg < 10) ? 1 : 2); |
2186 | first = false; |
2187 | } |
2188 | if (lr) |
2189 | { |
2190 | assert(!first); // If 'lr' is set, it can't be first, since we require a non-empty range |
2191 | printf(",lr" ); |
2192 | printed += 3; |
2193 | } |
2194 | printf("}" ); |
2195 | ++printed; |
2196 | |
2197 | return printed; |
2198 | } |
2199 | |
2200 | // Dump the opsize. |
2201 | // Returns the number of characters printed. |
2202 | DWORD DumpOpsize(DWORD padding, DWORD opsize) |
2203 | { |
2204 | if (padding > 100) // underflow? |
2205 | padding = 4; |
2206 | DWORD printed = padding; |
2207 | for (; padding > 0; padding--) |
2208 | printf(" " ); |
2209 | printf("; opsize %d\n" , opsize); |
2210 | return printed + 11; // assumes opsize is always 2 digits |
2211 | } |
2212 | |
2213 | // Dump the unwind data. |
2214 | // Arguments: |
2215 | // isHotCode: true if this unwind data is for the hot section |
2216 | // startOffset: byte offset of the code start that this unwind data represents |
2217 | // endOffset: byte offset of the code end that this unwind data represents |
2218 | // pHeader: pointer to the unwind data blob |
2219 | // unwindBlockSize: size in bytes of the unwind data blob |
2220 | |
2221 | void DumpUnwindInfo(Compiler* comp, |
2222 | bool isHotCode, |
2223 | UNATIVE_OFFSET startOffset, |
2224 | UNATIVE_OFFSET endOffset, |
2225 | const BYTE* const pHeader, |
2226 | ULONG unwindBlockSize) |
2227 | { |
2228 | printf("Unwind Info%s:\n" , isHotCode ? "" : " COLD" ); |
2229 | |
2230 | // pHeader is not guaranteed to be aligned. We put four 0xFF end codes at the end |
2231 | // to provide padding, and round down to get a multiple of 4 bytes in size. |
2232 | DWORD UNALIGNED* pdw = (DWORD UNALIGNED*)pHeader; |
2233 | DWORD dw; |
2234 | |
2235 | dw = *pdw++; |
2236 | |
2237 | DWORD codeWords = ExtractBits(dw, 28, 4); |
2238 | DWORD epilogCount = ExtractBits(dw, 23, 5); |
2239 | DWORD FBit = ExtractBits(dw, 22, 1); |
2240 | DWORD EBit = ExtractBits(dw, 21, 1); |
2241 | DWORD XBit = ExtractBits(dw, 20, 1); |
2242 | DWORD Vers = ExtractBits(dw, 18, 2); |
2243 | DWORD functionLength = ExtractBits(dw, 0, 18); |
2244 | |
2245 | printf(" >> Start offset : 0x%06x (not in unwind data)\n" , comp->dspOffset(startOffset)); |
2246 | printf(" >> End offset : 0x%06x (not in unwind data)\n" , comp->dspOffset(endOffset)); |
2247 | printf(" Code Words : %u\n" , codeWords); |
2248 | printf(" Epilog Count : %u\n" , epilogCount); |
2249 | printf(" F bit : %u\n" , FBit); |
2250 | printf(" E bit : %u\n" , EBit); |
2251 | printf(" X bit : %u\n" , XBit); |
2252 | printf(" Vers : %u\n" , Vers); |
2253 | printf(" Function Length : %u (0x%05x) Actual length = %u (0x%06x)\n" , functionLength, functionLength, |
2254 | functionLength * 2, functionLength * 2); |
2255 | |
2256 | assert(functionLength * 2 == endOffset - startOffset); |
2257 | |
2258 | if (codeWords == 0 && epilogCount == 0) |
2259 | { |
2260 | // We have an extension word specifying a larger number of Code Words or Epilog Counts |
2261 | // than can be specified in the header word. |
2262 | |
2263 | dw = *pdw++; |
2264 | |
2265 | codeWords = ExtractBits(dw, 16, 8); |
2266 | epilogCount = ExtractBits(dw, 0, 16); |
2267 | assert((dw & 0xF0000000) == 0); // reserved field should be zero |
2268 | |
2269 | printf(" ---- Extension word ----\n" ); |
2270 | printf(" Extended Code Words : %u\n" , codeWords); |
2271 | printf(" Extended Epilog Count : %u\n" , epilogCount); |
2272 | } |
2273 | |
2274 | bool epilogStartAt[256] = {}; // One byte per possible epilog start index; initialized to false |
2275 | |
2276 | if (EBit == 0) |
2277 | { |
2278 | // We have an array of epilog scopes |
2279 | |
2280 | printf(" ---- Epilog scopes ----\n" ); |
2281 | if (epilogCount == 0) |
2282 | { |
2283 | printf(" No epilogs\n" ); |
2284 | } |
2285 | else |
2286 | { |
2287 | for (DWORD scope = 0; scope < epilogCount; scope++) |
2288 | { |
2289 | dw = *pdw++; |
2290 | |
2291 | DWORD epilogStartOffset = ExtractBits(dw, 0, 18); |
2292 | DWORD res = ExtractBits(dw, 18, 2); |
2293 | DWORD condition = ExtractBits(dw, 20, 4); |
2294 | DWORD epilogStartIndex = ExtractBits(dw, 24, 8); |
2295 | |
2296 | // Note that epilogStartOffset for a funclet is the offset from the beginning |
2297 | // of the current funclet, not the offset from the beginning of the main function. |
2298 | // To help find it when looking through JitDump output, also show the offset from |
2299 | // the beginning of the main function. |
2300 | DWORD epilogStartOffsetFromMainFunctionBegin = epilogStartOffset * 2 + startOffset; |
2301 | |
2302 | assert(res == 0); |
2303 | |
2304 | printf(" ---- Scope %d\n" , scope); |
2305 | printf(" Epilog Start Offset : %u (0x%05x) Actual offset = %u (0x%06x) Offset from main " |
2306 | "function begin = %u (0x%06x)\n" , |
2307 | comp->dspOffset(epilogStartOffset), comp->dspOffset(epilogStartOffset), |
2308 | comp->dspOffset(epilogStartOffset * 2), comp->dspOffset(epilogStartOffset * 2), |
2309 | comp->dspOffset(epilogStartOffsetFromMainFunctionBegin), |
2310 | comp->dspOffset(epilogStartOffsetFromMainFunctionBegin)); |
2311 | printf(" Condition : %u (0x%x)%s\n" , condition, condition, |
2312 | (condition == 0xE) ? " (always)" : "" ); |
2313 | printf(" Epilog Start Index : %u (0x%02x)\n" , epilogStartIndex, epilogStartIndex); |
2314 | |
2315 | epilogStartAt[epilogStartIndex] = true; // an epilog starts at this offset in the unwind codes |
2316 | } |
2317 | } |
2318 | } |
2319 | else |
2320 | { |
2321 | printf(" --- One epilog, unwind codes at %u\n" , epilogCount); |
2322 | assert(epilogCount < _countof(epilogStartAt)); |
2323 | epilogStartAt[epilogCount] = true; // the one and only epilog starts its unwind codes at this offset |
2324 | } |
2325 | |
2326 | if (FBit) |
2327 | { |
2328 | printf(" ---- Note: 'F' bit is set. Prolog codes are for a 'phantom' prolog.\n" ); |
2329 | } |
2330 | |
2331 | // Dump the unwind codes |
2332 | |
2333 | printf(" ---- Unwind codes ----\n" ); |
2334 | |
2335 | DWORD countOfUnwindCodes = codeWords * 4; |
2336 | PBYTE pUnwindCode = (PBYTE)pdw; |
2337 | BYTE b1, b2, b3, b4; |
2338 | DWORD x, y; |
2339 | DWORD opsize; |
2340 | DWORD opCol = 52; |
2341 | DWORD printed; |
2342 | for (DWORD i = 0; i < countOfUnwindCodes; i++) |
2343 | { |
2344 | // Does this byte start an epilog sequence? If so, note that fact. |
2345 | if (epilogStartAt[i]) |
2346 | { |
2347 | printf(" ---- Epilog start at index %u ----\n" , i); |
2348 | } |
2349 | |
2350 | b1 = *pUnwindCode++; |
2351 | |
2352 | if ((b1 & 0x80) == 0) |
2353 | { |
2354 | // 00-7F : add sp, sp, #X*4 (opsize 16) |
2355 | x = b1 & 0x7F; |
2356 | printf(" %02X add sp, sp, #%-8d" , b1, x * 4); |
2357 | DumpOpsize(opCol - 37, 16); |
2358 | } |
2359 | else if ((b1 & 0xC0) == 0x80) |
2360 | { |
2361 | // 80-BF : pop {r0-r12,lr} (X = bitmask) (opsize 32) |
2362 | assert(i + 1 < countOfUnwindCodes); |
2363 | b2 = *pUnwindCode++; |
2364 | i++; |
2365 | |
2366 | DWORD LBit = ExtractBits(b1, 5, 1); |
2367 | x = ((DWORD)(b1 & 0x1F) << 8) | (DWORD)b2; |
2368 | |
2369 | printf(" %02X %02X pop " , b1, b2); |
2370 | printed = 20; |
2371 | printed += DumpIntRegSet(x, LBit); |
2372 | DumpOpsize(opCol - printed, 32); |
2373 | } |
2374 | else if ((b1 & 0xF0) == 0xC0) |
2375 | { |
2376 | // C0-CF : mov sp, rX (X=0-15) (opsize 16) |
2377 | x = b1 & 0xF; |
2378 | printf(" %02X mov sp, r%u" , b1, x); |
2379 | printed = 25 + ((x > 10) ? 2 : 1); |
2380 | DumpOpsize(opCol - printed, 16); |
2381 | } |
2382 | else if ((b1 & 0xF8) == 0xD0) |
2383 | { |
2384 | // D0-D7 : pop {r4-rX,lr} (X=4-7) (opsize 16) |
2385 | x = b1 & 0x3; |
2386 | DWORD LBit = b1 & 0x4; |
2387 | printf(" %02X pop " , b1); |
2388 | printed = 20; |
2389 | printed += DumpRegSetRange("r" , 4, x + 4, LBit); |
2390 | DumpOpsize(opCol - printed, 16); |
2391 | } |
2392 | else if ((b1 & 0xF8) == 0xD8) |
2393 | { |
2394 | // D8-DF : pop {r4-rX,lr} (X=8-11) (opsize 32) |
2395 | x = b1 & 0x3; |
2396 | DWORD LBit = b1 & 0x4; |
2397 | printf(" %02X pop " , b1); |
2398 | printed = 20; |
2399 | printed += DumpRegSetRange("r" , 4, x + 8, LBit); |
2400 | DumpOpsize(opCol - printed, 32); |
2401 | } |
2402 | else if ((b1 & 0xF8) == 0xE0) |
2403 | { |
2404 | // E0-E7 : vpop {d8-dX} (X=8-15) (opsize 32) |
2405 | x = b1 & 0x7; |
2406 | printf(" %02X vpop " , b1); |
2407 | printed = 21; |
2408 | printed += DumpRegSetRange("d" , 8, x + 8, 0); |
2409 | DumpOpsize(opCol - printed, 32); |
2410 | } |
2411 | else if ((b1 & 0xFC) == 0xE8) |
2412 | { |
2413 | // E8-EB : addw sp, sp, #X*4 (opsize 32) |
2414 | assert(i + 1 < countOfUnwindCodes); |
2415 | b2 = *pUnwindCode++; |
2416 | i++; |
2417 | |
2418 | x = ((DWORD)(b1 & 0x3) << 8) | (DWORD)b2; |
2419 | |
2420 | printf(" %02X %02X addw sp, sp, #%-8u" , b1, b2, x * 4); |
2421 | DumpOpsize(opCol - 38, 32); |
2422 | } |
2423 | else if ((b1 & 0xFE) == 0xEC) |
2424 | { |
2425 | // EC-ED : pop {r0-r7,lr} (X = bitmask) (opsize 16) |
2426 | assert(i + 1 < countOfUnwindCodes); |
2427 | b2 = *pUnwindCode++; |
2428 | i++; |
2429 | |
2430 | DWORD LBit = ExtractBits(b1, 0, 1); |
2431 | x = (DWORD)b2; |
2432 | |
2433 | printf(" %02X %02X pop " , b1, b2); |
2434 | printed = 20; |
2435 | printed += DumpIntRegSet(x, LBit); |
2436 | DumpOpsize(opCol - printed, 16); |
2437 | } |
2438 | else if (b1 == 0xEE) |
2439 | { |
2440 | assert(i + 1 < countOfUnwindCodes); |
2441 | b2 = *pUnwindCode++; |
2442 | i++; |
2443 | |
2444 | if ((b2 & 0xF0) == 0) |
2445 | { |
2446 | // EE/0x (opsize 16) |
2447 | x = b2 & 0xF; |
2448 | printf(" %02X %02X Microsoft-specific (x = %02X)" , b1, b2, x); |
2449 | DumpOpsize(4, 16); |
2450 | } |
2451 | else |
2452 | { |
2453 | // EE/xy (opsize 16) |
2454 | x = ExtractBits(b2, 4, 4); |
2455 | y = ExtractBits(b2, 0, 4); |
2456 | printf(" %02X %02X Available (x = %02X, y = %02X)" , b1, b2, x, y); |
2457 | DumpOpsize(4, 16); |
2458 | } |
2459 | } |
2460 | else if (b1 == 0xEF) |
2461 | { |
2462 | assert(i + 1 < countOfUnwindCodes); |
2463 | b2 = *pUnwindCode++; |
2464 | i++; |
2465 | |
2466 | if ((b2 & 0xF0) == 0) |
2467 | { |
2468 | // EF/0x : ldr lr, [sp], #X*4 (opsize 32) |
2469 | x = b2 & 0xF; |
2470 | printf(" %02X %02X ldr lr, [sp], #%-8u" , b1, b2, x * 4); |
2471 | DumpOpsize(opCol - 39, 32); |
2472 | } |
2473 | else |
2474 | { |
2475 | // EF/xy (opsize 32) |
2476 | x = ExtractBits(b2, 4, 4); |
2477 | y = ExtractBits(b2, 0, 4); |
2478 | printf(" %02X %02X Available (x = %02X, y = %02X)" , b1, b2, x, y); |
2479 | DumpOpsize(4, 32); |
2480 | } |
2481 | } |
2482 | else if ((b1 & 0xF7) == 0xF0) |
2483 | { |
2484 | // F0-F4 |
2485 | x = b1 & 0x7; |
2486 | printf(" %02X Available (x = %02X)\n" , b1, x); |
2487 | } |
2488 | else if (b1 == 0xF5) |
2489 | { |
2490 | // F5 : vpop {dS-dE} (opsize 32) |
2491 | |
2492 | assert(i + 1 < countOfUnwindCodes); |
2493 | b2 = *pUnwindCode++; |
2494 | i++; |
2495 | |
2496 | DWORD s = ExtractBits(b2, 4, 4); |
2497 | DWORD e = ExtractBits(b2, 0, 4); |
2498 | |
2499 | printf(" %02X %02X vpop " , b1, b2); |
2500 | printed = 21; |
2501 | printed += DumpRegSetRange("d" , s, e, 0); |
2502 | DumpOpsize(opCol - printed, 32); |
2503 | } |
2504 | else if (b1 == 0xF6) |
2505 | { |
2506 | // F6 : vpop {d(S+16)-d(E+16)} (opsize 32) |
2507 | |
2508 | assert(i + 1 < countOfUnwindCodes); |
2509 | b2 = *pUnwindCode++; |
2510 | i++; |
2511 | |
2512 | DWORD s = ExtractBits(b2, 4, 4); |
2513 | DWORD e = ExtractBits(b2, 0, 4); |
2514 | |
2515 | printf(" %02X %02X vpop " , b1, b2); |
2516 | printed = 21; |
2517 | printed += DumpRegSetRange("d" , s + 16, e + 16, 0); |
2518 | DumpOpsize(opCol - printed, 32); |
2519 | } |
2520 | else if (b1 == 0xF7 || b1 == 0xF9) |
2521 | { |
2522 | // F7, F9 : add sp, sp, #X*4 |
2523 | // 0xF7 has opsize 16, 0xF9 has opsize 32 |
2524 | |
2525 | assert(i + 2 < countOfUnwindCodes); |
2526 | b2 = *pUnwindCode++; |
2527 | b3 = *pUnwindCode++; |
2528 | i += 2; |
2529 | |
2530 | x = ((DWORD)b2 << 8) | (DWORD)b3; |
2531 | |
2532 | opsize = (b1 == 0xF7) ? 16 : 32; |
2533 | |
2534 | printf(" %02X %02X %02X add sp, sp, #%-8u" , b1, b2, b3, x * 4, opsize); |
2535 | DumpOpsize(opCol - 37, opsize); |
2536 | } |
2537 | else if (b1 == 0xF8 || b1 == 0xFA) |
2538 | { |
2539 | // F8, FA : add sp, sp, #X*4 |
2540 | // 0xF8 has opsize 16, 0xFA has opsize 32 |
2541 | |
2542 | assert(i + 3 < countOfUnwindCodes); |
2543 | b2 = *pUnwindCode++; |
2544 | b3 = *pUnwindCode++; |
2545 | b4 = *pUnwindCode++; |
2546 | i += 3; |
2547 | |
2548 | x = ((DWORD)b2 << 16) | ((DWORD)b3 << 8) | (DWORD)b4; |
2549 | |
2550 | opsize = (b1 == 0xF8) ? 16 : 32; |
2551 | |
2552 | printf(" %02X %02X %02X %02X add sp, sp, #%-8u" , b1, b2, b3, b4, x * 4, opsize); |
2553 | DumpOpsize(opCol - 37, opsize); |
2554 | } |
2555 | else if (b1 == 0xFB || b1 == 0xFC) |
2556 | { |
2557 | // FB, FC : nop |
2558 | // 0xFB has opsize 16, 0xFC has opsize 32 |
2559 | |
2560 | opsize = (b1 == 0xFB) ? 16 : 32; |
2561 | |
2562 | printf(" %02X nop" , b1, opsize); |
2563 | DumpOpsize(opCol - 19, opsize); |
2564 | } |
2565 | else if (b1 == 0xFD || b1 == 0xFE) |
2566 | { |
2567 | // FD, FE : end + nop |
2568 | // 0xFD has opsize 16, 0xFE has opsize 32 |
2569 | |
2570 | opsize = (b1 == 0xFD) ? 16 : 32; |
2571 | |
2572 | printf(" %02X end + nop" , b1, opsize); |
2573 | DumpOpsize(opCol - 25, opsize); |
2574 | } |
2575 | else if (b1 == 0xFF) |
2576 | { |
2577 | // FF : end |
2578 | |
2579 | printf(" %02X end\n" , b1); |
2580 | } |
2581 | else |
2582 | { |
2583 | assert(!"Internal error decoding unwind codes" ); |
2584 | } |
2585 | } |
2586 | |
2587 | pdw += codeWords; |
2588 | assert((PBYTE)pdw == pUnwindCode); |
2589 | assert((PBYTE)pdw == pHeader + unwindBlockSize); |
2590 | |
2591 | assert(XBit == 0); // We don't handle the case where exception data is present, such as the Exception Handler RVA |
2592 | |
2593 | printf("\n" ); |
2594 | } |
2595 | |
2596 | #endif // DEBUG |
2597 | |
2598 | #endif // defined(_TARGET_ARM_) |
2599 | |
2600 | #endif // _TARGET_ARMARCH_ |
2601 | |