1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/bn.h> |
58 | |
59 | #include <assert.h> |
60 | #include <ctype.h> |
61 | #include <limits.h> |
62 | #include <stdio.h> |
63 | |
64 | #include <openssl/bio.h> |
65 | #include <openssl/bytestring.h> |
66 | #include <openssl/err.h> |
67 | #include <openssl/mem.h> |
68 | |
69 | #include "../fipsmodule/bn/internal.h" |
70 | |
71 | |
72 | int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) { |
73 | uint8_t *ptr; |
74 | return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in); |
75 | } |
76 | |
77 | static const char hextable[] = "0123456789abcdef" ; |
78 | |
79 | char *BN_bn2hex(const BIGNUM *bn) { |
80 | int width = bn_minimal_width(bn); |
81 | char *buf = OPENSSL_malloc(1 /* leading '-' */ + 1 /* zero is non-empty */ + |
82 | width * BN_BYTES * 2 + 1 /* trailing NUL */); |
83 | if (buf == NULL) { |
84 | OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
85 | return NULL; |
86 | } |
87 | |
88 | char *p = buf; |
89 | if (bn->neg) { |
90 | *(p++) = '-'; |
91 | } |
92 | |
93 | if (BN_is_zero(bn)) { |
94 | *(p++) = '0'; |
95 | } |
96 | |
97 | int z = 0; |
98 | for (int i = width - 1; i >= 0; i--) { |
99 | for (int j = BN_BITS2 - 8; j >= 0; j -= 8) { |
100 | // strip leading zeros |
101 | int v = ((int)(bn->d[i] >> (long)j)) & 0xff; |
102 | if (z || v != 0) { |
103 | *(p++) = hextable[v >> 4]; |
104 | *(p++) = hextable[v & 0x0f]; |
105 | z = 1; |
106 | } |
107 | } |
108 | } |
109 | *p = '\0'; |
110 | |
111 | return buf; |
112 | } |
113 | |
114 | // decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. |
115 | static int decode_hex(BIGNUM *bn, const char *in, int in_len) { |
116 | if (in_len > INT_MAX/4) { |
117 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
118 | return 0; |
119 | } |
120 | // |in_len| is the number of hex digits. |
121 | if (!bn_expand(bn, in_len * 4)) { |
122 | return 0; |
123 | } |
124 | |
125 | int i = 0; |
126 | while (in_len > 0) { |
127 | // Decode one |BN_ULONG| at a time. |
128 | int todo = BN_BYTES * 2; |
129 | if (todo > in_len) { |
130 | todo = in_len; |
131 | } |
132 | |
133 | BN_ULONG word = 0; |
134 | int j; |
135 | for (j = todo; j > 0; j--) { |
136 | char c = in[in_len - j]; |
137 | |
138 | BN_ULONG hex; |
139 | if (c >= '0' && c <= '9') { |
140 | hex = c - '0'; |
141 | } else if (c >= 'a' && c <= 'f') { |
142 | hex = c - 'a' + 10; |
143 | } else if (c >= 'A' && c <= 'F') { |
144 | hex = c - 'A' + 10; |
145 | } else { |
146 | hex = 0; |
147 | // This shouldn't happen. The caller checks |isxdigit|. |
148 | assert(0); |
149 | } |
150 | word = (word << 4) | hex; |
151 | } |
152 | |
153 | bn->d[i++] = word; |
154 | in_len -= todo; |
155 | } |
156 | assert(i <= bn->dmax); |
157 | bn->width = i; |
158 | return 1; |
159 | } |
160 | |
161 | // decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. |
162 | static int decode_dec(BIGNUM *bn, const char *in, int in_len) { |
163 | int i, j; |
164 | BN_ULONG l = 0; |
165 | |
166 | // Decode |BN_DEC_NUM| digits at a time. |
167 | j = BN_DEC_NUM - (in_len % BN_DEC_NUM); |
168 | if (j == BN_DEC_NUM) { |
169 | j = 0; |
170 | } |
171 | l = 0; |
172 | for (i = 0; i < in_len; i++) { |
173 | l *= 10; |
174 | l += in[i] - '0'; |
175 | if (++j == BN_DEC_NUM) { |
176 | if (!BN_mul_word(bn, BN_DEC_CONV) || |
177 | !BN_add_word(bn, l)) { |
178 | return 0; |
179 | } |
180 | l = 0; |
181 | j = 0; |
182 | } |
183 | } |
184 | return 1; |
185 | } |
186 | |
187 | typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len); |
188 | typedef int (*char_test_func) (int c); |
189 | |
190 | static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) { |
191 | BIGNUM *ret = NULL; |
192 | int neg = 0, i; |
193 | int num; |
194 | |
195 | if (in == NULL || *in == 0) { |
196 | return 0; |
197 | } |
198 | |
199 | if (*in == '-') { |
200 | neg = 1; |
201 | in++; |
202 | } |
203 | |
204 | for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {} |
205 | |
206 | num = i + neg; |
207 | if (outp == NULL) { |
208 | return num; |
209 | } |
210 | |
211 | // in is the start of the hex digits, and it is 'i' long |
212 | if (*outp == NULL) { |
213 | ret = BN_new(); |
214 | if (ret == NULL) { |
215 | return 0; |
216 | } |
217 | } else { |
218 | ret = *outp; |
219 | BN_zero(ret); |
220 | } |
221 | |
222 | if (!decode(ret, in, i)) { |
223 | goto err; |
224 | } |
225 | |
226 | bn_set_minimal_width(ret); |
227 | if (!BN_is_zero(ret)) { |
228 | ret->neg = neg; |
229 | } |
230 | |
231 | *outp = ret; |
232 | return num; |
233 | |
234 | err: |
235 | if (*outp == NULL) { |
236 | BN_free(ret); |
237 | } |
238 | |
239 | return 0; |
240 | } |
241 | |
242 | int BN_hex2bn(BIGNUM **outp, const char *in) { |
243 | return bn_x2bn(outp, in, decode_hex, isxdigit); |
244 | } |
245 | |
246 | char *BN_bn2dec(const BIGNUM *a) { |
247 | // It is easier to print strings little-endian, so we assemble it in reverse |
248 | // and fix at the end. |
249 | BIGNUM *copy = NULL; |
250 | CBB cbb; |
251 | if (!CBB_init(&cbb, 16) || |
252 | !CBB_add_u8(&cbb, 0 /* trailing NUL */)) { |
253 | goto cbb_err; |
254 | } |
255 | |
256 | if (BN_is_zero(a)) { |
257 | if (!CBB_add_u8(&cbb, '0')) { |
258 | goto cbb_err; |
259 | } |
260 | } else { |
261 | copy = BN_dup(a); |
262 | if (copy == NULL) { |
263 | goto err; |
264 | } |
265 | |
266 | while (!BN_is_zero(copy)) { |
267 | BN_ULONG word = BN_div_word(copy, BN_DEC_CONV); |
268 | if (word == (BN_ULONG)-1) { |
269 | goto err; |
270 | } |
271 | |
272 | const int add_leading_zeros = !BN_is_zero(copy); |
273 | for (int i = 0; i < BN_DEC_NUM && (add_leading_zeros || word != 0); i++) { |
274 | if (!CBB_add_u8(&cbb, '0' + word % 10)) { |
275 | goto cbb_err; |
276 | } |
277 | word /= 10; |
278 | } |
279 | assert(word == 0); |
280 | } |
281 | } |
282 | |
283 | if (BN_is_negative(a) && |
284 | !CBB_add_u8(&cbb, '-')) { |
285 | goto cbb_err; |
286 | } |
287 | |
288 | uint8_t *data; |
289 | size_t len; |
290 | if (!CBB_finish(&cbb, &data, &len)) { |
291 | goto cbb_err; |
292 | } |
293 | |
294 | // Reverse the buffer. |
295 | for (size_t i = 0; i < len/2; i++) { |
296 | uint8_t tmp = data[i]; |
297 | data[i] = data[len - 1 - i]; |
298 | data[len - 1 - i] = tmp; |
299 | } |
300 | |
301 | BN_free(copy); |
302 | return (char *)data; |
303 | |
304 | cbb_err: |
305 | OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
306 | err: |
307 | BN_free(copy); |
308 | CBB_cleanup(&cbb); |
309 | return NULL; |
310 | } |
311 | |
312 | int BN_dec2bn(BIGNUM **outp, const char *in) { |
313 | return bn_x2bn(outp, in, decode_dec, isdigit); |
314 | } |
315 | |
316 | int BN_asc2bn(BIGNUM **outp, const char *in) { |
317 | const char *const orig_in = in; |
318 | if (*in == '-') { |
319 | in++; |
320 | } |
321 | |
322 | if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) { |
323 | if (!BN_hex2bn(outp, in+2)) { |
324 | return 0; |
325 | } |
326 | } else { |
327 | if (!BN_dec2bn(outp, in)) { |
328 | return 0; |
329 | } |
330 | } |
331 | |
332 | if (*orig_in == '-' && !BN_is_zero(*outp)) { |
333 | (*outp)->neg = 1; |
334 | } |
335 | |
336 | return 1; |
337 | } |
338 | |
339 | int BN_print(BIO *bp, const BIGNUM *a) { |
340 | int i, j, v, z = 0; |
341 | int ret = 0; |
342 | |
343 | if (a->neg && BIO_write(bp, "-" , 1) != 1) { |
344 | goto end; |
345 | } |
346 | |
347 | if (BN_is_zero(a) && BIO_write(bp, "0" , 1) != 1) { |
348 | goto end; |
349 | } |
350 | |
351 | for (i = bn_minimal_width(a) - 1; i >= 0; i--) { |
352 | for (j = BN_BITS2 - 4; j >= 0; j -= 4) { |
353 | // strip leading zeros |
354 | v = ((int)(a->d[i] >> (long)j)) & 0x0f; |
355 | if (z || v != 0) { |
356 | if (BIO_write(bp, &hextable[v], 1) != 1) { |
357 | goto end; |
358 | } |
359 | z = 1; |
360 | } |
361 | } |
362 | } |
363 | ret = 1; |
364 | |
365 | end: |
366 | return ret; |
367 | } |
368 | |
369 | int BN_print_fp(FILE *fp, const BIGNUM *a) { |
370 | BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); |
371 | if (b == NULL) { |
372 | return 0; |
373 | } |
374 | |
375 | int ret = BN_print(b, a); |
376 | BIO_free(b); |
377 | return ret; |
378 | } |
379 | |
380 | |
381 | size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) { |
382 | const size_t bits = BN_num_bits(in); |
383 | const size_t bytes = (bits + 7) / 8; |
384 | // If the number of bits is a multiple of 8, i.e. if the MSB is set, |
385 | // prefix with a zero byte. |
386 | int extend = 0; |
387 | if (bytes != 0 && (bits & 0x07) == 0) { |
388 | extend = 1; |
389 | } |
390 | |
391 | const size_t len = bytes + extend; |
392 | if (len < bytes || |
393 | 4 + len < len || |
394 | (len & 0xffffffff) != len) { |
395 | // If we cannot represent the number then we emit zero as the interface |
396 | // doesn't allow an error to be signalled. |
397 | if (out) { |
398 | OPENSSL_memset(out, 0, 4); |
399 | } |
400 | return 4; |
401 | } |
402 | |
403 | if (out == NULL) { |
404 | return 4 + len; |
405 | } |
406 | |
407 | out[0] = len >> 24; |
408 | out[1] = len >> 16; |
409 | out[2] = len >> 8; |
410 | out[3] = len; |
411 | if (extend) { |
412 | out[4] = 0; |
413 | } |
414 | BN_bn2bin(in, out + 4 + extend); |
415 | if (in->neg && len > 0) { |
416 | out[4] |= 0x80; |
417 | } |
418 | return len + 4; |
419 | } |
420 | |
421 | BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) { |
422 | if (len < 4) { |
423 | OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING); |
424 | return NULL; |
425 | } |
426 | const size_t in_len = ((size_t)in[0] << 24) | |
427 | ((size_t)in[1] << 16) | |
428 | ((size_t)in[2] << 8) | |
429 | ((size_t)in[3]); |
430 | if (in_len != len - 4) { |
431 | OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING); |
432 | return NULL; |
433 | } |
434 | |
435 | int out_is_alloced = 0; |
436 | if (out == NULL) { |
437 | out = BN_new(); |
438 | if (out == NULL) { |
439 | OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
440 | return NULL; |
441 | } |
442 | out_is_alloced = 1; |
443 | } |
444 | |
445 | if (in_len == 0) { |
446 | BN_zero(out); |
447 | return out; |
448 | } |
449 | |
450 | in += 4; |
451 | if (BN_bin2bn(in, in_len, out) == NULL) { |
452 | if (out_is_alloced) { |
453 | BN_free(out); |
454 | } |
455 | return NULL; |
456 | } |
457 | out->neg = ((*in) & 0x80) != 0; |
458 | if (out->neg) { |
459 | BN_clear_bit(out, BN_num_bits(out) - 1); |
460 | } |
461 | return out; |
462 | } |
463 | |
464 | int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len) { |
465 | if (len < 0 || |
466 | !BN_bn2bin_padded(out, (size_t)len, in)) { |
467 | return -1; |
468 | } |
469 | return len; |
470 | } |
471 | |