1 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] |
56 | */ |
57 | /* ==================================================================== |
58 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
59 | * |
60 | * Redistribution and use in source and binary forms, with or without |
61 | * modification, are permitted provided that the following conditions |
62 | * are met: |
63 | * |
64 | * 1. Redistributions of source code must retain the above copyright |
65 | * notice, this list of conditions and the following disclaimer. |
66 | * |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in |
69 | * the documentation and/or other materials provided with the |
70 | * distribution. |
71 | * |
72 | * 3. All advertising materials mentioning features or use of this |
73 | * software must display the following acknowledgment: |
74 | * "This product includes software developed by the OpenSSL Project |
75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
76 | * |
77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
78 | * endorse or promote products derived from this software without |
79 | * prior written permission. For written permission, please contact |
80 | * openssl-core@openssl.org. |
81 | * |
82 | * 5. Products derived from this software may not be called "OpenSSL" |
83 | * nor may "OpenSSL" appear in their names without prior written |
84 | * permission of the OpenSSL Project. |
85 | * |
86 | * 6. Redistributions of any form whatsoever must retain the following |
87 | * acknowledgment: |
88 | * "This product includes software developed by the OpenSSL Project |
89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
90 | * |
91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
103 | * ==================================================================== |
104 | * |
105 | * This product includes cryptographic software written by Eric Young |
106 | * (eay@cryptsoft.com). This product includes software written by Tim |
107 | * Hudson (tjh@cryptsoft.com). |
108 | * |
109 | */ |
110 | /* ==================================================================== |
111 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
112 | * |
113 | * Portions of the attached software ("Contribution") are developed by |
114 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
115 | * |
116 | * The Contribution is licensed pursuant to the Eric Young open source |
117 | * license provided above. |
118 | * |
119 | * The binary polynomial arithmetic software is originally written by |
120 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
121 | * Laboratories. */ |
122 | |
123 | #ifndef OPENSSL_HEADER_BN_INTERNAL_H |
124 | #define |
125 | |
126 | #include <openssl/base.h> |
127 | |
128 | #if defined(OPENSSL_X86_64) && defined(_MSC_VER) |
129 | OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
130 | #include <intrin.h> |
131 | OPENSSL_MSVC_PRAGMA(warning(pop)) |
132 | #pragma intrinsic(__umulh, _umul128) |
133 | #endif |
134 | |
135 | #include "../../internal.h" |
136 | |
137 | #if defined(__cplusplus) |
138 | extern "C" { |
139 | #endif |
140 | |
141 | #if defined(OPENSSL_64_BIT) |
142 | |
143 | #if defined(BORINGSSL_HAS_UINT128) |
144 | // MSVC doesn't support two-word integers on 64-bit. |
145 | #define BN_ULLONG uint128_t |
146 | #if defined(BORINGSSL_CAN_DIVIDE_UINT128) |
147 | #define BN_CAN_DIVIDE_ULLONG |
148 | #endif |
149 | #endif |
150 | |
151 | #define BN_BITS2 64 |
152 | #define BN_BYTES 8 |
153 | #define BN_BITS4 32 |
154 | #define BN_MASK2 (0xffffffffffffffffUL) |
155 | #define BN_MASK2l (0xffffffffUL) |
156 | #define BN_MASK2h (0xffffffff00000000UL) |
157 | #define BN_MASK2h1 (0xffffffff80000000UL) |
158 | #define BN_MONT_CTX_N0_LIMBS 1 |
159 | #define BN_DEC_CONV (10000000000000000000UL) |
160 | #define BN_DEC_NUM 19 |
161 | #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo)) |
162 | |
163 | #elif defined(OPENSSL_32_BIT) |
164 | |
165 | #define BN_ULLONG uint64_t |
166 | #define BN_CAN_DIVIDE_ULLONG |
167 | #define BN_BITS2 32 |
168 | #define BN_BYTES 4 |
169 | #define BN_BITS4 16 |
170 | #define BN_MASK2 (0xffffffffUL) |
171 | #define BN_MASK2l (0xffffUL) |
172 | #define BN_MASK2h1 (0xffff8000UL) |
173 | #define BN_MASK2h (0xffff0000UL) |
174 | // On some 32-bit platforms, Montgomery multiplication is done using 64-bit |
175 | // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0| |
176 | // needs to be two words long. Only certain 32-bit platforms actually make use |
177 | // of n0[1] and shorter R value would suffice for the others. However, |
178 | // currently only the assembly files know which is which. |
179 | #define BN_MONT_CTX_N0_LIMBS 2 |
180 | #define BN_DEC_CONV (1000000000UL) |
181 | #define BN_DEC_NUM 9 |
182 | #define TOBN(hi, lo) (lo), (hi) |
183 | |
184 | #else |
185 | #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" |
186 | #endif |
187 | |
188 | #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__)) |
189 | #define BN_CAN_USE_INLINE_ASM |
190 | #endif |
191 | |
192 | // |BN_mod_exp_mont_consttime| is based on the assumption that the L1 data |
193 | // cache line width of the target processor is at least the following value. |
194 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH 64 |
195 | |
196 | // The number of |BN_ULONG|s needed for the |BN_mod_exp_mont_consttime| stack- |
197 | // allocated storage buffer. The buffer is just the right size for the RSAZ |
198 | // and is about ~1KB larger than what's necessary (4480 bytes) for 1024-bit |
199 | // inputs. |
200 | #define MOD_EXP_CTIME_STORAGE_LEN \ |
201 | (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG)) |
202 | |
203 | #define STATIC_BIGNUM(x) \ |
204 | { \ |
205 | (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG), \ |
206 | sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \ |
207 | } |
208 | |
209 | #if defined(BN_ULLONG) |
210 | #define Lw(t) ((BN_ULONG)(t)) |
211 | #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2)) |
212 | #endif |
213 | |
214 | // bn_minimal_width returns the minimal value of |bn->top| which fits the |
215 | // value of |bn|. |
216 | int bn_minimal_width(const BIGNUM *bn); |
217 | |
218 | // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is |
219 | // zero, |bn->neg| is set to zero. |
220 | void bn_set_minimal_width(BIGNUM *bn); |
221 | |
222 | // bn_wexpand ensures that |bn| has at least |words| works of space without |
223 | // altering its value. It returns one on success or zero on allocation |
224 | // failure. |
225 | int bn_wexpand(BIGNUM *bn, size_t words); |
226 | |
227 | // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather |
228 | // than a number of words. |
229 | int bn_expand(BIGNUM *bn, size_t bits); |
230 | |
231 | // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success |
232 | // and zero on allocation error or if |bn|'s value is too large. |
233 | OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words); |
234 | |
235 | // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is |
236 | // all zeros. |
237 | void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a, |
238 | const BN_ULONG *b, size_t num); |
239 | |
240 | // bn_set_words sets |bn| to the value encoded in the |num| words in |words|, |
241 | // least significant word first. |
242 | int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num); |
243 | |
244 | // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus |
245 | // a sign bit, and zero otherwise. |
246 | int bn_fits_in_words(const BIGNUM *bn, size_t num); |
247 | |
248 | // bn_copy_words copies the value of |bn| to |out| and returns one if the value |
249 | // is representable in |num| words. Otherwise, it returns zero. |
250 | int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn); |
251 | |
252 | // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places |
253 | // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns |
254 | // the carry word of the operation. |ap| and |rp| may be equal but otherwise may |
255 | // not alias. |
256 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, |
257 | BN_ULONG w); |
258 | |
259 | // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and |
260 | // |rp| must both be |num| words long. It returns the carry word of the |
261 | // operation. |ap| and |rp| may be equal but otherwise may not alias. |
262 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w); |
263 | |
264 | // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i| |
265 | // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num| |
266 | // words. |ap| and |rp| may not alias. |
267 | // |
268 | // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|. |
269 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num); |
270 | |
271 | // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which |
272 | // are |num| words long. It returns the carry bit, which is one if the operation |
273 | // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal |
274 | // to each other but otherwise may not alias. |
275 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
276 | size_t num); |
277 | |
278 | // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It |
279 | // returns the borrow bit, which is one if the computation underflowed and zero |
280 | // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but |
281 | // otherwise may not alias. |
282 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
283 | size_t num); |
284 | |
285 | // bn_mul_comba4 sets |r| to the product of |a| and |b|. |
286 | void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]); |
287 | |
288 | // bn_mul_comba8 sets |r| to the product of |a| and |b|. |
289 | void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]); |
290 | |
291 | // bn_sqr_comba8 sets |r| to |a|^2. |
292 | void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]); |
293 | |
294 | // bn_sqr_comba4 sets |r| to |a|^2. |
295 | void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]); |
296 | |
297 | // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a| |
298 | // and |b| both are |len| words long. It runs in constant time. |
299 | int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len); |
300 | |
301 | // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|, |
302 | // where |a| and |max_exclusive| both are |len| words long. |a| and |
303 | // |max_exclusive| are treated as secret. |
304 | int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive, |
305 | const BN_ULONG *max_exclusive, size_t len); |
306 | |
307 | // bn_rand_range_words sets |out| to a uniformly distributed random number from |
308 | // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len| |
309 | // words long. |
310 | // |
311 | // This function runs in time independent of the result, but |min_inclusive| and |
312 | // |max_exclusive| are public data. (Information about the range is unavoidably |
313 | // leaked by how many iterations it took to select a number.) |
314 | int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive, |
315 | const BN_ULONG *max_exclusive, size_t len, |
316 | const uint8_t additional_data[32]); |
317 | |
318 | // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats |
319 | // |max_exclusive| as secret. Because of this constraint, the distribution of |
320 | // values returned is more complex. |
321 | // |
322 | // Rather than repeatedly generating values until one is in range, which would |
323 | // leak information, it generates one value. If the value is in range, it sets |
324 | // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero, |
325 | // fixing up the value to force it in range. |
326 | // |
327 | // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to |
328 | // one are uniformly distributed in the target range. Calls overall are not. |
329 | // This function is intended for use in situations where the extra values are |
330 | // still usable and where the number of iterations needed to reach the target |
331 | // number of uniform outputs may be blinded for negligible probabilities of |
332 | // timing leaks. |
333 | // |
334 | // Although this function treats |max_exclusive| as secret, it treats the number |
335 | // of bits in |max_exclusive| as public. |
336 | int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive, |
337 | const BIGNUM *max_exclusive); |
338 | |
339 | #if !defined(OPENSSL_NO_ASM) && \ |
340 | (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ |
341 | defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) |
342 | #define OPENSSL_BN_ASM_MONT |
343 | // bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words |
344 | // long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the |
345 | // corresponding field in |BN_MONT_CTX|. It returns one if |bn_mul_mont| handles |
346 | // inputs of this size and zero otherwise. |
347 | // |
348 | // TODO(davidben): The x86_64 implementation expects a 32-bit input and masks |
349 | // off upper bits. The aarch64 implementation expects a 64-bit input and does |
350 | // not. |size_t| is the safer option but not strictly correct for x86_64. But |
351 | // this function implicitly already has a bound on the size of |num| because it |
352 | // internally creates |num|-sized stack allocation. |
353 | // |
354 | // See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word |
355 | // inputs. |
356 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
357 | const BN_ULONG *np, const BN_ULONG *n0, size_t num); |
358 | #endif |
359 | |
360 | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) |
361 | #define OPENSSL_BN_ASM_MONT5 |
362 | |
363 | // bn_mul_mont_gather5 multiples loads index |power| of |table|, multiplies it |
364 | // by |ap| modulo |np|, and stores the result in |rp|. The values are |num| |
365 | // words long and represented in Montgomery form. |n0| is a pointer to the |
366 | // corresponding field in |BN_MONT_CTX|. |
367 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, |
368 | const BN_ULONG *table, const BN_ULONG *np, |
369 | const BN_ULONG *n0, int num, int power); |
370 | |
371 | // bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of |
372 | // |table| are |num| words long. |power| must be less than 32. |table| must be |
373 | // 32*|num| words long. |
374 | void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table, |
375 | size_t power); |
376 | |
377 | // bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and |
378 | // each entry of |table| are |num| words long. |power| must be less than 32. |
379 | void bn_gather5(BN_ULONG *out, size_t num, BN_ULONG *table, size_t power); |
380 | |
381 | // bn_power5 squares |ap| five times and multiplies it by the value stored at |
382 | // index |power| of |table|, modulo |np|. It stores the result in |rp|. The |
383 | // values are |num| words long and represented in Montgomery form. |n0| is a |
384 | // pointer to the corresponding field in |BN_MONT_CTX|. |num| must be divisible |
385 | // by 8. |
386 | void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table, |
387 | const BN_ULONG *np, const BN_ULONG *n0, int num, int power); |
388 | |
389 | // bn_from_montgomery converts |ap| from Montgomery form modulo |np| and writes |
390 | // the result in |rp|, each of which is |num| words long. It returns one on |
391 | // success and zero if it cannot handle inputs of length |num|. |n0| is a |
392 | // pointer to the corresponding field in |BN_MONT_CTX|. |
393 | int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap, |
394 | const BN_ULONG *not_used, const BN_ULONG *np, |
395 | const BN_ULONG *n0, int num); |
396 | #endif // !OPENSSL_NO_ASM && OPENSSL_X86_64 |
397 | |
398 | uint64_t bn_mont_n0(const BIGNUM *n); |
399 | |
400 | // bn_mod_exp_base_2_consttime calculates r = 2**p (mod n). |p| must be larger |
401 | // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and |
402 | // odd. |p| and the bit width of |n| are assumed public, but |n| is otherwise |
403 | // treated as secret. |
404 | int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n, |
405 | BN_CTX *ctx); |
406 | |
407 | #if defined(OPENSSL_X86_64) && defined(_MSC_VER) |
408 | #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high))) |
409 | #endif |
410 | |
411 | #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI) |
412 | #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform." |
413 | #endif |
414 | |
415 | // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or |
416 | // -2 on error. |
417 | int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
418 | |
419 | // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero |
420 | // otherwise. |
421 | int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit); |
422 | |
423 | // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on |
424 | // success and zero on error. This function treats the bit width of the modulus |
425 | // as public. |
426 | int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx); |
427 | |
428 | // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R |
429 | // value for |mont| and zero otherwise. |
430 | int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont); |
431 | |
432 | // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs |
433 | // in time independent of the value of |bn|, but it treats |d| as public. |
434 | OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d); |
435 | |
436 | // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one |
437 | // of the first several odd primes and zero otherwise. |
438 | int bn_odd_number_is_obviously_composite(const BIGNUM *bn); |
439 | |
440 | // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide. |
441 | void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num); |
442 | |
443 | // bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits |
444 | // wide. |
445 | void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift, |
446 | size_t num); |
447 | |
448 | // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent |
449 | // of both |a| and |n|. |
450 | OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, |
451 | unsigned n, BN_CTX *ctx); |
452 | |
453 | // bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns |
454 | // zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num| |
455 | // words long, but |a| has an additional word specified by |carry|. |carry| must |
456 | // be zero or one, as implied by the bounds on |a|. |
457 | // |
458 | // |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a| |
459 | // must alias. |
460 | BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry, |
461 | const BN_ULONG *m, size_t num); |
462 | |
463 | // bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on |
464 | // |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias. |
465 | BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m, |
466 | BN_ULONG *tmp, size_t num); |
467 | |
468 | |
469 | // Constant-time non-modular arithmetic. |
470 | // |
471 | // The following functions implement non-modular arithmetic in constant-time |
472 | // and pessimally set |r->width| to the largest possible word size. |
473 | // |
474 | // Note this means that, e.g., repeatedly multiplying by one will cause widths |
475 | // to increase without bound. The corresponding public API functions minimize |
476 | // their outputs to avoid regressing calculator consumers. |
477 | |
478 | // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets |
479 | // |r->width| = |a->width| + |b->width| + 1. |
480 | int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
481 | |
482 | // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets |
483 | // |r->width| = |a->width|. |
484 | int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
485 | |
486 | // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating |
487 | // both inputs as secret. It returns one on success and zero on error. |
488 | OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, |
489 | const BIGNUM *b, BN_CTX *ctx); |
490 | |
491 | // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and |
492 | // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking |
493 | // information about |a| and |b|. |
494 | int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
495 | |
496 | // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width| |
497 | // to 2*|a->width|, to avoid leaking information about |a| and |b|. |
498 | int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
499 | |
500 | // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and |
501 | // treats both inputs, including their magnitudes, as secret. It is, as a |
502 | // result, much slower than |BN_div| and should only be used for rare operations |
503 | // where Montgomery reduction is not available. |
504 | // |
505 | // Note that |quotient->width| will be set pessimally to |numerator->width|. |
506 | OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder, |
507 | const BIGNUM *numerator, |
508 | const BIGNUM *divisor, BN_CTX *ctx); |
509 | |
510 | // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it |
511 | // returns one and sets |*out_relatively_prime| to one if the GCD was one and |
512 | // zero otherwise. On error, it returns zero. |
513 | OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime, |
514 | const BIGNUM *x, const BIGNUM *y, |
515 | BN_CTX *ctx); |
516 | |
517 | // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and |
518 | // zero on error. |a| and |b| are both treated as secret. |
519 | OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
520 | BN_CTX *ctx); |
521 | |
522 | |
523 | // Constant-time modular arithmetic. |
524 | // |
525 | // The following functions implement basic constant-time modular arithmetic. |
526 | |
527 | // bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch |
528 | // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of |
529 | // |r|, |a|, and |b| may alias. |
530 | void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
531 | const BN_ULONG *m, BN_ULONG *tmp, size_t num); |
532 | |
533 | // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|. |
534 | int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
535 | const BIGNUM *m, BN_CTX *ctx); |
536 | |
537 | // bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch |
538 | // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of |
539 | // |r|, |a|, and |b| may alias. |
540 | void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
541 | const BN_ULONG *m, BN_ULONG *tmp, size_t num); |
542 | |
543 | // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|. |
544 | int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
545 | const BIGNUM *m, BN_CTX *ctx); |
546 | |
547 | // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a |
548 | // |BN_CTX|. |
549 | int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
550 | BN_CTX *ctx); |
551 | |
552 | // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|. |
553 | int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
554 | BN_CTX *ctx); |
555 | |
556 | // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non- |
557 | // negative and less than |n|. It returns one on success and zero on error. On |
558 | // failure, if the failure was caused by |a| having no inverse mod |n| then |
559 | // |*out_no_inverse| will be set to one; otherwise it will be set to zero. |
560 | // |
561 | // This function treats both |a| and |n| as secret, provided they are both non- |
562 | // zero and the inverse exists. It should only be used for even moduli where |
563 | // none of the less general implementations are applicable. |
564 | OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, |
565 | const BIGNUM *a, const BIGNUM *n, |
566 | BN_CTX *ctx); |
567 | |
568 | // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|, |
569 | // computed with Fermat's Little Theorem. It returns one on success and zero on |
570 | // error. If |mont_p| is NULL, one will be computed temporarily. |
571 | int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
572 | BN_CTX *ctx, const BN_MONT_CTX *mont_p); |
573 | |
574 | // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses |
575 | // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of |
576 | // protecting the exponent. |
577 | int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
578 | BN_CTX *ctx, const BN_MONT_CTX *mont_p); |
579 | |
580 | |
581 | // Low-level operations for small numbers. |
582 | // |
583 | // The following functions implement algorithms suitable for use with scalars |
584 | // and field elements in elliptic curves. They rely on the number being small |
585 | // both to stack-allocate various temporaries and because they do not implement |
586 | // optimizations useful for the larger values used in RSA. |
587 | |
588 | // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This |
589 | // limit allows temporaries to be more easily stack-allocated. This limit is set |
590 | // to accommodate P-521. |
591 | #if defined(OPENSSL_32_BIT) |
592 | #define BN_SMALL_MAX_WORDS 17 |
593 | #else |
594 | #define BN_SMALL_MAX_WORDS 9 |
595 | #endif |
596 | |
597 | // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may |
598 | // not alias with |a| or |b|. |
599 | void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, |
600 | const BN_ULONG *b, size_t num_b); |
601 | |
602 | // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|. |
603 | // |num_r| must be |num_a|*2. |r| and |a| may not alias. |
604 | void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a); |
605 | |
606 | // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS| |
607 | // words long. |
608 | |
609 | // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain. |
610 | // |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be |
611 | // fully reduced and may alias |r|. |
612 | void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
613 | const BN_MONT_CTX *mont); |
614 | |
615 | // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery |
616 | // domain. |r| and |a| are |num| words long, which must be |mont->N.width|. |a| |
617 | // must be fully-reduced and may alias |r|. |
618 | void bn_from_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
619 | const BN_MONT_CTX *mont); |
620 | |
621 | // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs |
622 | // and outputs are in the Montgomery domain. Each array is |num| words long, |
623 | // which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a| |
624 | // and |b| must be reduced on input. |
625 | void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a, |
626 | const BN_ULONG *b, size_t num, |
627 | const BN_MONT_CTX *mont); |
628 | |
629 | // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on |
630 | // success and zero on programmer or internal error. Both inputs and outputs are |
631 | // in the Montgomery domain. |r| and |a| are |num| words long, which must be |
632 | // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. |
633 | // This function runs in time independent of |a|, but |p| and |mont->N| are |
634 | // public values. |a| must be fully-reduced and may alias with |r|. |
635 | // |
636 | // Note this function differs from |BN_mod_exp_mont| which uses Montgomery |
637 | // reduction but takes input and output outside the Montgomery domain. Combine |
638 | // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small| |
639 | // if necessary. |
640 | void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
641 | const BN_ULONG *p, size_t num_p, |
642 | const BN_MONT_CTX *mont); |
643 | |
644 | // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N| |
645 | // must be a prime. |r| and |a| are |num| words long, which must be |
646 | // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced |
647 | // and may alias |r|. This function runs in time independent of |a|, but |
648 | // |mont->N| is a public value. |
649 | void bn_mod_inverse_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
650 | const BN_MONT_CTX *mont); |
651 | |
652 | |
653 | #if defined(__cplusplus) |
654 | } // extern C |
655 | #endif |
656 | |
657 | #endif // OPENSSL_HEADER_BN_INTERNAL_H |
658 | |