| 1 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] |
| 56 | */ |
| 57 | /* ==================================================================== |
| 58 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
| 59 | * |
| 60 | * Redistribution and use in source and binary forms, with or without |
| 61 | * modification, are permitted provided that the following conditions |
| 62 | * are met: |
| 63 | * |
| 64 | * 1. Redistributions of source code must retain the above copyright |
| 65 | * notice, this list of conditions and the following disclaimer. |
| 66 | * |
| 67 | * 2. Redistributions in binary form must reproduce the above copyright |
| 68 | * notice, this list of conditions and the following disclaimer in |
| 69 | * the documentation and/or other materials provided with the |
| 70 | * distribution. |
| 71 | * |
| 72 | * 3. All advertising materials mentioning features or use of this |
| 73 | * software must display the following acknowledgment: |
| 74 | * "This product includes software developed by the OpenSSL Project |
| 75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 76 | * |
| 77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 78 | * endorse or promote products derived from this software without |
| 79 | * prior written permission. For written permission, please contact |
| 80 | * openssl-core@openssl.org. |
| 81 | * |
| 82 | * 5. Products derived from this software may not be called "OpenSSL" |
| 83 | * nor may "OpenSSL" appear in their names without prior written |
| 84 | * permission of the OpenSSL Project. |
| 85 | * |
| 86 | * 6. Redistributions of any form whatsoever must retain the following |
| 87 | * acknowledgment: |
| 88 | * "This product includes software developed by the OpenSSL Project |
| 89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 90 | * |
| 91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 103 | * ==================================================================== |
| 104 | * |
| 105 | * This product includes cryptographic software written by Eric Young |
| 106 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 107 | * Hudson (tjh@cryptsoft.com). |
| 108 | * |
| 109 | */ |
| 110 | /* ==================================================================== |
| 111 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 112 | * |
| 113 | * Portions of the attached software ("Contribution") are developed by |
| 114 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| 115 | * |
| 116 | * The Contribution is licensed pursuant to the Eric Young open source |
| 117 | * license provided above. |
| 118 | * |
| 119 | * The binary polynomial arithmetic software is originally written by |
| 120 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| 121 | * Laboratories. */ |
| 122 | |
| 123 | #ifndef OPENSSL_HEADER_BN_INTERNAL_H |
| 124 | #define |
| 125 | |
| 126 | #include <openssl/base.h> |
| 127 | |
| 128 | #if defined(OPENSSL_X86_64) && defined(_MSC_VER) |
| 129 | OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| 130 | #include <intrin.h> |
| 131 | OPENSSL_MSVC_PRAGMA(warning(pop)) |
| 132 | #pragma intrinsic(__umulh, _umul128) |
| 133 | #endif |
| 134 | |
| 135 | #include "../../internal.h" |
| 136 | |
| 137 | #if defined(__cplusplus) |
| 138 | extern "C" { |
| 139 | #endif |
| 140 | |
| 141 | #if defined(OPENSSL_64_BIT) |
| 142 | |
| 143 | #if defined(BORINGSSL_HAS_UINT128) |
| 144 | // MSVC doesn't support two-word integers on 64-bit. |
| 145 | #define BN_ULLONG uint128_t |
| 146 | #if defined(BORINGSSL_CAN_DIVIDE_UINT128) |
| 147 | #define BN_CAN_DIVIDE_ULLONG |
| 148 | #endif |
| 149 | #endif |
| 150 | |
| 151 | #define BN_BITS2 64 |
| 152 | #define BN_BYTES 8 |
| 153 | #define BN_BITS4 32 |
| 154 | #define BN_MASK2 (0xffffffffffffffffUL) |
| 155 | #define BN_MASK2l (0xffffffffUL) |
| 156 | #define BN_MASK2h (0xffffffff00000000UL) |
| 157 | #define BN_MASK2h1 (0xffffffff80000000UL) |
| 158 | #define BN_MONT_CTX_N0_LIMBS 1 |
| 159 | #define BN_DEC_CONV (10000000000000000000UL) |
| 160 | #define BN_DEC_NUM 19 |
| 161 | #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo)) |
| 162 | |
| 163 | #elif defined(OPENSSL_32_BIT) |
| 164 | |
| 165 | #define BN_ULLONG uint64_t |
| 166 | #define BN_CAN_DIVIDE_ULLONG |
| 167 | #define BN_BITS2 32 |
| 168 | #define BN_BYTES 4 |
| 169 | #define BN_BITS4 16 |
| 170 | #define BN_MASK2 (0xffffffffUL) |
| 171 | #define BN_MASK2l (0xffffUL) |
| 172 | #define BN_MASK2h1 (0xffff8000UL) |
| 173 | #define BN_MASK2h (0xffff0000UL) |
| 174 | // On some 32-bit platforms, Montgomery multiplication is done using 64-bit |
| 175 | // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0| |
| 176 | // needs to be two words long. Only certain 32-bit platforms actually make use |
| 177 | // of n0[1] and shorter R value would suffice for the others. However, |
| 178 | // currently only the assembly files know which is which. |
| 179 | #define BN_MONT_CTX_N0_LIMBS 2 |
| 180 | #define BN_DEC_CONV (1000000000UL) |
| 181 | #define BN_DEC_NUM 9 |
| 182 | #define TOBN(hi, lo) (lo), (hi) |
| 183 | |
| 184 | #else |
| 185 | #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" |
| 186 | #endif |
| 187 | |
| 188 | #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__)) |
| 189 | #define BN_CAN_USE_INLINE_ASM |
| 190 | #endif |
| 191 | |
| 192 | // |BN_mod_exp_mont_consttime| is based on the assumption that the L1 data |
| 193 | // cache line width of the target processor is at least the following value. |
| 194 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH 64 |
| 195 | |
| 196 | // The number of |BN_ULONG|s needed for the |BN_mod_exp_mont_consttime| stack- |
| 197 | // allocated storage buffer. The buffer is just the right size for the RSAZ |
| 198 | // and is about ~1KB larger than what's necessary (4480 bytes) for 1024-bit |
| 199 | // inputs. |
| 200 | #define MOD_EXP_CTIME_STORAGE_LEN \ |
| 201 | (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG)) |
| 202 | |
| 203 | #define STATIC_BIGNUM(x) \ |
| 204 | { \ |
| 205 | (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG), \ |
| 206 | sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \ |
| 207 | } |
| 208 | |
| 209 | #if defined(BN_ULLONG) |
| 210 | #define Lw(t) ((BN_ULONG)(t)) |
| 211 | #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2)) |
| 212 | #endif |
| 213 | |
| 214 | // bn_minimal_width returns the minimal value of |bn->top| which fits the |
| 215 | // value of |bn|. |
| 216 | int bn_minimal_width(const BIGNUM *bn); |
| 217 | |
| 218 | // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is |
| 219 | // zero, |bn->neg| is set to zero. |
| 220 | void bn_set_minimal_width(BIGNUM *bn); |
| 221 | |
| 222 | // bn_wexpand ensures that |bn| has at least |words| works of space without |
| 223 | // altering its value. It returns one on success or zero on allocation |
| 224 | // failure. |
| 225 | int bn_wexpand(BIGNUM *bn, size_t words); |
| 226 | |
| 227 | // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather |
| 228 | // than a number of words. |
| 229 | int bn_expand(BIGNUM *bn, size_t bits); |
| 230 | |
| 231 | // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success |
| 232 | // and zero on allocation error or if |bn|'s value is too large. |
| 233 | OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words); |
| 234 | |
| 235 | // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is |
| 236 | // all zeros. |
| 237 | void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a, |
| 238 | const BN_ULONG *b, size_t num); |
| 239 | |
| 240 | // bn_set_words sets |bn| to the value encoded in the |num| words in |words|, |
| 241 | // least significant word first. |
| 242 | int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num); |
| 243 | |
| 244 | // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus |
| 245 | // a sign bit, and zero otherwise. |
| 246 | int bn_fits_in_words(const BIGNUM *bn, size_t num); |
| 247 | |
| 248 | // bn_copy_words copies the value of |bn| to |out| and returns one if the value |
| 249 | // is representable in |num| words. Otherwise, it returns zero. |
| 250 | int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn); |
| 251 | |
| 252 | // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places |
| 253 | // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns |
| 254 | // the carry word of the operation. |ap| and |rp| may be equal but otherwise may |
| 255 | // not alias. |
| 256 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, |
| 257 | BN_ULONG w); |
| 258 | |
| 259 | // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and |
| 260 | // |rp| must both be |num| words long. It returns the carry word of the |
| 261 | // operation. |ap| and |rp| may be equal but otherwise may not alias. |
| 262 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w); |
| 263 | |
| 264 | // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i| |
| 265 | // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num| |
| 266 | // words. |ap| and |rp| may not alias. |
| 267 | // |
| 268 | // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|. |
| 269 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num); |
| 270 | |
| 271 | // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which |
| 272 | // are |num| words long. It returns the carry bit, which is one if the operation |
| 273 | // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal |
| 274 | // to each other but otherwise may not alias. |
| 275 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 276 | size_t num); |
| 277 | |
| 278 | // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It |
| 279 | // returns the borrow bit, which is one if the computation underflowed and zero |
| 280 | // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but |
| 281 | // otherwise may not alias. |
| 282 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 283 | size_t num); |
| 284 | |
| 285 | // bn_mul_comba4 sets |r| to the product of |a| and |b|. |
| 286 | void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]); |
| 287 | |
| 288 | // bn_mul_comba8 sets |r| to the product of |a| and |b|. |
| 289 | void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]); |
| 290 | |
| 291 | // bn_sqr_comba8 sets |r| to |a|^2. |
| 292 | void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]); |
| 293 | |
| 294 | // bn_sqr_comba4 sets |r| to |a|^2. |
| 295 | void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]); |
| 296 | |
| 297 | // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a| |
| 298 | // and |b| both are |len| words long. It runs in constant time. |
| 299 | int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len); |
| 300 | |
| 301 | // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|, |
| 302 | // where |a| and |max_exclusive| both are |len| words long. |a| and |
| 303 | // |max_exclusive| are treated as secret. |
| 304 | int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive, |
| 305 | const BN_ULONG *max_exclusive, size_t len); |
| 306 | |
| 307 | // bn_rand_range_words sets |out| to a uniformly distributed random number from |
| 308 | // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len| |
| 309 | // words long. |
| 310 | // |
| 311 | // This function runs in time independent of the result, but |min_inclusive| and |
| 312 | // |max_exclusive| are public data. (Information about the range is unavoidably |
| 313 | // leaked by how many iterations it took to select a number.) |
| 314 | int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive, |
| 315 | const BN_ULONG *max_exclusive, size_t len, |
| 316 | const uint8_t additional_data[32]); |
| 317 | |
| 318 | // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats |
| 319 | // |max_exclusive| as secret. Because of this constraint, the distribution of |
| 320 | // values returned is more complex. |
| 321 | // |
| 322 | // Rather than repeatedly generating values until one is in range, which would |
| 323 | // leak information, it generates one value. If the value is in range, it sets |
| 324 | // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero, |
| 325 | // fixing up the value to force it in range. |
| 326 | // |
| 327 | // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to |
| 328 | // one are uniformly distributed in the target range. Calls overall are not. |
| 329 | // This function is intended for use in situations where the extra values are |
| 330 | // still usable and where the number of iterations needed to reach the target |
| 331 | // number of uniform outputs may be blinded for negligible probabilities of |
| 332 | // timing leaks. |
| 333 | // |
| 334 | // Although this function treats |max_exclusive| as secret, it treats the number |
| 335 | // of bits in |max_exclusive| as public. |
| 336 | int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive, |
| 337 | const BIGNUM *max_exclusive); |
| 338 | |
| 339 | #if !defined(OPENSSL_NO_ASM) && \ |
| 340 | (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ |
| 341 | defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) |
| 342 | #define OPENSSL_BN_ASM_MONT |
| 343 | // bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words |
| 344 | // long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the |
| 345 | // corresponding field in |BN_MONT_CTX|. It returns one if |bn_mul_mont| handles |
| 346 | // inputs of this size and zero otherwise. |
| 347 | // |
| 348 | // TODO(davidben): The x86_64 implementation expects a 32-bit input and masks |
| 349 | // off upper bits. The aarch64 implementation expects a 64-bit input and does |
| 350 | // not. |size_t| is the safer option but not strictly correct for x86_64. But |
| 351 | // this function implicitly already has a bound on the size of |num| because it |
| 352 | // internally creates |num|-sized stack allocation. |
| 353 | // |
| 354 | // See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word |
| 355 | // inputs. |
| 356 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 357 | const BN_ULONG *np, const BN_ULONG *n0, size_t num); |
| 358 | #endif |
| 359 | |
| 360 | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) |
| 361 | #define OPENSSL_BN_ASM_MONT5 |
| 362 | |
| 363 | // bn_mul_mont_gather5 multiples loads index |power| of |table|, multiplies it |
| 364 | // by |ap| modulo |np|, and stores the result in |rp|. The values are |num| |
| 365 | // words long and represented in Montgomery form. |n0| is a pointer to the |
| 366 | // corresponding field in |BN_MONT_CTX|. |
| 367 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, |
| 368 | const BN_ULONG *table, const BN_ULONG *np, |
| 369 | const BN_ULONG *n0, int num, int power); |
| 370 | |
| 371 | // bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of |
| 372 | // |table| are |num| words long. |power| must be less than 32. |table| must be |
| 373 | // 32*|num| words long. |
| 374 | void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table, |
| 375 | size_t power); |
| 376 | |
| 377 | // bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and |
| 378 | // each entry of |table| are |num| words long. |power| must be less than 32. |
| 379 | void bn_gather5(BN_ULONG *out, size_t num, BN_ULONG *table, size_t power); |
| 380 | |
| 381 | // bn_power5 squares |ap| five times and multiplies it by the value stored at |
| 382 | // index |power| of |table|, modulo |np|. It stores the result in |rp|. The |
| 383 | // values are |num| words long and represented in Montgomery form. |n0| is a |
| 384 | // pointer to the corresponding field in |BN_MONT_CTX|. |num| must be divisible |
| 385 | // by 8. |
| 386 | void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table, |
| 387 | const BN_ULONG *np, const BN_ULONG *n0, int num, int power); |
| 388 | |
| 389 | // bn_from_montgomery converts |ap| from Montgomery form modulo |np| and writes |
| 390 | // the result in |rp|, each of which is |num| words long. It returns one on |
| 391 | // success and zero if it cannot handle inputs of length |num|. |n0| is a |
| 392 | // pointer to the corresponding field in |BN_MONT_CTX|. |
| 393 | int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap, |
| 394 | const BN_ULONG *not_used, const BN_ULONG *np, |
| 395 | const BN_ULONG *n0, int num); |
| 396 | #endif // !OPENSSL_NO_ASM && OPENSSL_X86_64 |
| 397 | |
| 398 | uint64_t bn_mont_n0(const BIGNUM *n); |
| 399 | |
| 400 | // bn_mod_exp_base_2_consttime calculates r = 2**p (mod n). |p| must be larger |
| 401 | // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and |
| 402 | // odd. |p| and the bit width of |n| are assumed public, but |n| is otherwise |
| 403 | // treated as secret. |
| 404 | int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n, |
| 405 | BN_CTX *ctx); |
| 406 | |
| 407 | #if defined(OPENSSL_X86_64) && defined(_MSC_VER) |
| 408 | #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high))) |
| 409 | #endif |
| 410 | |
| 411 | #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI) |
| 412 | #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform." |
| 413 | #endif |
| 414 | |
| 415 | // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or |
| 416 | // -2 on error. |
| 417 | int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
| 418 | |
| 419 | // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero |
| 420 | // otherwise. |
| 421 | int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit); |
| 422 | |
| 423 | // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on |
| 424 | // success and zero on error. This function treats the bit width of the modulus |
| 425 | // as public. |
| 426 | int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx); |
| 427 | |
| 428 | // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R |
| 429 | // value for |mont| and zero otherwise. |
| 430 | int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont); |
| 431 | |
| 432 | // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs |
| 433 | // in time independent of the value of |bn|, but it treats |d| as public. |
| 434 | OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d); |
| 435 | |
| 436 | // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one |
| 437 | // of the first several odd primes and zero otherwise. |
| 438 | int bn_odd_number_is_obviously_composite(const BIGNUM *bn); |
| 439 | |
| 440 | // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide. |
| 441 | void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num); |
| 442 | |
| 443 | // bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits |
| 444 | // wide. |
| 445 | void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift, |
| 446 | size_t num); |
| 447 | |
| 448 | // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent |
| 449 | // of both |a| and |n|. |
| 450 | OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, |
| 451 | unsigned n, BN_CTX *ctx); |
| 452 | |
| 453 | // bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns |
| 454 | // zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num| |
| 455 | // words long, but |a| has an additional word specified by |carry|. |carry| must |
| 456 | // be zero or one, as implied by the bounds on |a|. |
| 457 | // |
| 458 | // |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a| |
| 459 | // must alias. |
| 460 | BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry, |
| 461 | const BN_ULONG *m, size_t num); |
| 462 | |
| 463 | // bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on |
| 464 | // |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias. |
| 465 | BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m, |
| 466 | BN_ULONG *tmp, size_t num); |
| 467 | |
| 468 | |
| 469 | // Constant-time non-modular arithmetic. |
| 470 | // |
| 471 | // The following functions implement non-modular arithmetic in constant-time |
| 472 | // and pessimally set |r->width| to the largest possible word size. |
| 473 | // |
| 474 | // Note this means that, e.g., repeatedly multiplying by one will cause widths |
| 475 | // to increase without bound. The corresponding public API functions minimize |
| 476 | // their outputs to avoid regressing calculator consumers. |
| 477 | |
| 478 | // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets |
| 479 | // |r->width| = |a->width| + |b->width| + 1. |
| 480 | int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 481 | |
| 482 | // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets |
| 483 | // |r->width| = |a->width|. |
| 484 | int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 485 | |
| 486 | // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating |
| 487 | // both inputs as secret. It returns one on success and zero on error. |
| 488 | OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, |
| 489 | const BIGNUM *b, BN_CTX *ctx); |
| 490 | |
| 491 | // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and |
| 492 | // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking |
| 493 | // information about |a| and |b|. |
| 494 | int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
| 495 | |
| 496 | // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width| |
| 497 | // to 2*|a->width|, to avoid leaking information about |a| and |b|. |
| 498 | int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
| 499 | |
| 500 | // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and |
| 501 | // treats both inputs, including their magnitudes, as secret. It is, as a |
| 502 | // result, much slower than |BN_div| and should only be used for rare operations |
| 503 | // where Montgomery reduction is not available. |
| 504 | // |
| 505 | // Note that |quotient->width| will be set pessimally to |numerator->width|. |
| 506 | OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder, |
| 507 | const BIGNUM *numerator, |
| 508 | const BIGNUM *divisor, BN_CTX *ctx); |
| 509 | |
| 510 | // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it |
| 511 | // returns one and sets |*out_relatively_prime| to one if the GCD was one and |
| 512 | // zero otherwise. On error, it returns zero. |
| 513 | OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime, |
| 514 | const BIGNUM *x, const BIGNUM *y, |
| 515 | BN_CTX *ctx); |
| 516 | |
| 517 | // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and |
| 518 | // zero on error. |a| and |b| are both treated as secret. |
| 519 | OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 520 | BN_CTX *ctx); |
| 521 | |
| 522 | |
| 523 | // Constant-time modular arithmetic. |
| 524 | // |
| 525 | // The following functions implement basic constant-time modular arithmetic. |
| 526 | |
| 527 | // bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch |
| 528 | // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of |
| 529 | // |r|, |a|, and |b| may alias. |
| 530 | void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| 531 | const BN_ULONG *m, BN_ULONG *tmp, size_t num); |
| 532 | |
| 533 | // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|. |
| 534 | int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 535 | const BIGNUM *m, BN_CTX *ctx); |
| 536 | |
| 537 | // bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch |
| 538 | // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of |
| 539 | // |r|, |a|, and |b| may alias. |
| 540 | void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| 541 | const BN_ULONG *m, BN_ULONG *tmp, size_t num); |
| 542 | |
| 543 | // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|. |
| 544 | int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 545 | const BIGNUM *m, BN_CTX *ctx); |
| 546 | |
| 547 | // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a |
| 548 | // |BN_CTX|. |
| 549 | int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
| 550 | BN_CTX *ctx); |
| 551 | |
| 552 | // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|. |
| 553 | int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
| 554 | BN_CTX *ctx); |
| 555 | |
| 556 | // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non- |
| 557 | // negative and less than |n|. It returns one on success and zero on error. On |
| 558 | // failure, if the failure was caused by |a| having no inverse mod |n| then |
| 559 | // |*out_no_inverse| will be set to one; otherwise it will be set to zero. |
| 560 | // |
| 561 | // This function treats both |a| and |n| as secret, provided they are both non- |
| 562 | // zero and the inverse exists. It should only be used for even moduli where |
| 563 | // none of the less general implementations are applicable. |
| 564 | OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, |
| 565 | const BIGNUM *a, const BIGNUM *n, |
| 566 | BN_CTX *ctx); |
| 567 | |
| 568 | // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|, |
| 569 | // computed with Fermat's Little Theorem. It returns one on success and zero on |
| 570 | // error. If |mont_p| is NULL, one will be computed temporarily. |
| 571 | int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
| 572 | BN_CTX *ctx, const BN_MONT_CTX *mont_p); |
| 573 | |
| 574 | // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses |
| 575 | // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of |
| 576 | // protecting the exponent. |
| 577 | int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
| 578 | BN_CTX *ctx, const BN_MONT_CTX *mont_p); |
| 579 | |
| 580 | |
| 581 | // Low-level operations for small numbers. |
| 582 | // |
| 583 | // The following functions implement algorithms suitable for use with scalars |
| 584 | // and field elements in elliptic curves. They rely on the number being small |
| 585 | // both to stack-allocate various temporaries and because they do not implement |
| 586 | // optimizations useful for the larger values used in RSA. |
| 587 | |
| 588 | // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This |
| 589 | // limit allows temporaries to be more easily stack-allocated. This limit is set |
| 590 | // to accommodate P-521. |
| 591 | #if defined(OPENSSL_32_BIT) |
| 592 | #define BN_SMALL_MAX_WORDS 17 |
| 593 | #else |
| 594 | #define BN_SMALL_MAX_WORDS 9 |
| 595 | #endif |
| 596 | |
| 597 | // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may |
| 598 | // not alias with |a| or |b|. |
| 599 | void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, |
| 600 | const BN_ULONG *b, size_t num_b); |
| 601 | |
| 602 | // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|. |
| 603 | // |num_r| must be |num_a|*2. |r| and |a| may not alias. |
| 604 | void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a); |
| 605 | |
| 606 | // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS| |
| 607 | // words long. |
| 608 | |
| 609 | // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain. |
| 610 | // |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be |
| 611 | // fully reduced and may alias |r|. |
| 612 | void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 613 | const BN_MONT_CTX *mont); |
| 614 | |
| 615 | // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery |
| 616 | // domain. |r| and |a| are |num| words long, which must be |mont->N.width|. |a| |
| 617 | // must be fully-reduced and may alias |r|. |
| 618 | void bn_from_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 619 | const BN_MONT_CTX *mont); |
| 620 | |
| 621 | // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs |
| 622 | // and outputs are in the Montgomery domain. Each array is |num| words long, |
| 623 | // which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a| |
| 624 | // and |b| must be reduced on input. |
| 625 | void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a, |
| 626 | const BN_ULONG *b, size_t num, |
| 627 | const BN_MONT_CTX *mont); |
| 628 | |
| 629 | // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on |
| 630 | // success and zero on programmer or internal error. Both inputs and outputs are |
| 631 | // in the Montgomery domain. |r| and |a| are |num| words long, which must be |
| 632 | // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. |
| 633 | // This function runs in time independent of |a|, but |p| and |mont->N| are |
| 634 | // public values. |a| must be fully-reduced and may alias with |r|. |
| 635 | // |
| 636 | // Note this function differs from |BN_mod_exp_mont| which uses Montgomery |
| 637 | // reduction but takes input and output outside the Montgomery domain. Combine |
| 638 | // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small| |
| 639 | // if necessary. |
| 640 | void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 641 | const BN_ULONG *p, size_t num_p, |
| 642 | const BN_MONT_CTX *mont); |
| 643 | |
| 644 | // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N| |
| 645 | // must be a prime. |r| and |a| are |num| words long, which must be |
| 646 | // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced |
| 647 | // and may alias |r|. This function runs in time independent of |a|, but |
| 648 | // |mont->N| is a public value. |
| 649 | void bn_mod_inverse_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 650 | const BN_MONT_CTX *mont); |
| 651 | |
| 652 | |
| 653 | #if defined(__cplusplus) |
| 654 | } // extern C |
| 655 | #endif |
| 656 | |
| 657 | #endif // OPENSSL_HEADER_BN_INTERNAL_H |
| 658 | |