| 1 | /* Copyright (c) 2017, Google Inc. |
| 2 | * |
| 3 | * Permission to use, copy, modify, and/or distribute this software for any |
| 4 | * purpose with or without fee is hereby granted, provided that the above |
| 5 | * copyright notice and this permission notice appear in all copies. |
| 6 | * |
| 7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| 10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| 14 | |
| 15 | #include <openssl/aead.h> |
| 16 | |
| 17 | #include <assert.h> |
| 18 | |
| 19 | #include <openssl/cipher.h> |
| 20 | #include <openssl/cpu.h> |
| 21 | #include <openssl/crypto.h> |
| 22 | #include <openssl/err.h> |
| 23 | |
| 24 | #include "../fipsmodule/cipher/internal.h" |
| 25 | |
| 26 | |
| 27 | #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12 |
| 28 | #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16 |
| 29 | |
| 30 | // TODO(davidben): AES-GCM-SIV assembly is not correct for Windows. It must save |
| 31 | // and restore xmm6 through xmm15. |
| 32 | #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ |
| 33 | !defined(OPENSSL_WINDOWS) |
| 34 | #define AES_GCM_SIV_ASM |
| 35 | |
| 36 | // Optimised AES-GCM-SIV |
| 37 | |
| 38 | struct aead_aes_gcm_siv_asm_ctx { |
| 39 | alignas(16) uint8_t key[16*15]; |
| 40 | int is_128_bit; |
| 41 | }; |
| 42 | |
| 43 | // The assembly code assumes 8-byte alignment of the EVP_AEAD_CTX's state, and |
| 44 | // aligns to 16 bytes itself. |
| 45 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) + 8 >= |
| 46 | sizeof(struct aead_aes_gcm_siv_asm_ctx), |
| 47 | "AEAD state is too small" ); |
| 48 | #if defined(__GNUC__) || defined(__clang__) |
| 49 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= 8, |
| 50 | "AEAD state has insufficient alignment" ); |
| 51 | #endif |
| 52 | |
| 53 | // asm_ctx_from_ctx returns a 16-byte aligned context pointer from |ctx|. |
| 54 | static struct aead_aes_gcm_siv_asm_ctx *asm_ctx_from_ctx( |
| 55 | const EVP_AEAD_CTX *ctx) { |
| 56 | // ctx->state must already be 8-byte aligned. Thus, at most, we may need to |
| 57 | // add eight to align it to 16 bytes. |
| 58 | const uintptr_t offset = ((uintptr_t)&ctx->state) & 8; |
| 59 | return (struct aead_aes_gcm_siv_asm_ctx *)(&ctx->state.opaque[offset]); |
| 60 | } |
| 61 | |
| 62 | // aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to |
| 63 | // |out_expanded_key|. |
| 64 | extern void aes128gcmsiv_aes_ks( |
| 65 | const uint8_t key[16], uint8_t out_expanded_key[16*15]); |
| 66 | |
| 67 | // aes256gcmsiv_aes_ks writes an AES-256 key schedule for |key| to |
| 68 | // |out_expanded_key|. |
| 69 | extern void aes256gcmsiv_aes_ks( |
| 70 | const uint8_t key[32], uint8_t out_expanded_key[16*15]); |
| 71 | |
| 72 | static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| 73 | size_t key_len, size_t tag_len) { |
| 74 | const size_t key_bits = key_len * 8; |
| 75 | |
| 76 | if (key_bits != 128 && key_bits != 256) { |
| 77 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| 78 | return 0; // EVP_AEAD_CTX_init should catch this. |
| 79 | } |
| 80 | |
| 81 | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| 82 | tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| 83 | } |
| 84 | |
| 85 | if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
| 86 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| 87 | return 0; |
| 88 | } |
| 89 | |
| 90 | struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); |
| 91 | assert((((uintptr_t)gcm_siv_ctx) & 15) == 0); |
| 92 | |
| 93 | if (key_bits == 128) { |
| 94 | aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]); |
| 95 | gcm_siv_ctx->is_128_bit = 1; |
| 96 | } else { |
| 97 | aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]); |
| 98 | gcm_siv_ctx->is_128_bit = 0; |
| 99 | } |
| 100 | |
| 101 | ctx->tag_len = tag_len; |
| 102 | |
| 103 | return 1; |
| 104 | } |
| 105 | |
| 106 | static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {} |
| 107 | |
| 108 | // aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to |
| 109 | // include a number (|in_blocks|) of 16-byte blocks of data from |in|, given |
| 110 | // the POLYVAL key in |key|. |
| 111 | extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16], |
| 112 | const uint8_t key[16], const uint8_t *in, |
| 113 | size_t in_blocks); |
| 114 | |
| 115 | // aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|. |
| 116 | extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8], |
| 117 | const uint8_t auth_key[16]); |
| 118 | |
| 119 | // aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|. |
| 120 | extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6], |
| 121 | const uint8_t auth_key[16]); |
| 122 | |
| 123 | // aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to |
| 124 | // include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple |
| 125 | // of 16.) It uses the precomputed powers of the key given in |htable|. |
| 126 | extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8], |
| 127 | const uint8_t *in, size_t in_len, |
| 128 | uint8_t in_out_poly[16]); |
| 129 | |
| 130 | // aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to |
| 131 | // |in|. (The full value of |in_len| is still used to find the authentication |
| 132 | // tag appended to the ciphertext, however, so must not be pre-masked.) |
| 133 | // |
| 134 | // |in| and |out| may be equal, but must not otherwise overlap. |
| 135 | // |
| 136 | // While decrypting, it updates the POLYVAL value found at the beginning of |
| 137 | // |in_out_calculated_tag_and_scratch| and writes the updated value back before |
| 138 | // return. During executation, it may use the whole of this space for other |
| 139 | // purposes. In order to decrypt and update the POLYVAL value, it uses the |
| 140 | // expanded key from |key| and the table of powers in |htable|. |
| 141 | extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out, |
| 142 | uint8_t in_out_calculated_tag_and_scratch[16 * 8], |
| 143 | const uint8_t htable[16 * 6], |
| 144 | const struct aead_aes_gcm_siv_asm_ctx *key, |
| 145 | size_t in_len); |
| 146 | |
| 147 | // aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256. |
| 148 | extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out, |
| 149 | uint8_t in_out_calculated_tag_and_scratch[16 * 8], |
| 150 | const uint8_t htable[16 * 6], |
| 151 | const struct aead_aes_gcm_siv_asm_ctx *key, |
| 152 | size_t in_len); |
| 153 | |
| 154 | // aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from |
| 155 | // |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of |
| 156 | // the nonce are used, 16 bytes are read and so the value must be |
| 157 | // right-padded. |
| 158 | extern void aes128gcmsiv_kdf(const uint8_t nonce[16], |
| 159 | uint64_t out_key_material[8], |
| 160 | const uint8_t *key_schedule); |
| 161 | |
| 162 | // aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256. |
| 163 | extern void aes256gcmsiv_kdf(const uint8_t nonce[16], |
| 164 | uint64_t out_key_material[12], |
| 165 | const uint8_t *key_schedule); |
| 166 | |
| 167 | // aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in |
| 168 | // |key|, writes the expanded key to |out_expanded_key| and encrypts a single |
| 169 | // block from |in| to |out|. |
| 170 | extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16], |
| 171 | uint8_t out_expanded_key[16 * 15], |
| 172 | const uint64_t key[2]); |
| 173 | |
| 174 | // aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for |
| 175 | // AES-256. |
| 176 | extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16], |
| 177 | uint8_t out_expanded_key[16 * 15], |
| 178 | const uint64_t key[4]); |
| 179 | |
| 180 | // aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using |
| 181 | // the expanded key in |expanded_key|. |
| 182 | extern void aes128gcmsiv_ecb_enc_block( |
| 183 | const uint8_t in[16], uint8_t out[16], |
| 184 | const struct aead_aes_gcm_siv_asm_ctx *expanded_key); |
| 185 | |
| 186 | // aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for |
| 187 | // AES-256. |
| 188 | extern void aes256gcmsiv_ecb_enc_block( |
| 189 | const uint8_t in[16], uint8_t out[16], |
| 190 | const struct aead_aes_gcm_siv_asm_ctx *expanded_key); |
| 191 | |
| 192 | // aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the |
| 193 | // expanded key from |key|. (The value of |in_len| must be a multiple of 16.) |
| 194 | // The |in| and |out| buffers may be equal but must not otherwise overlap. The |
| 195 | // initial counter is constructed from the given |tag| as required by |
| 196 | // AES-GCM-SIV. |
| 197 | extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out, |
| 198 | const uint8_t *tag, |
| 199 | const struct aead_aes_gcm_siv_asm_ctx *key, |
| 200 | size_t in_len); |
| 201 | |
| 202 | // aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for |
| 203 | // AES-256. |
| 204 | extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out, |
| 205 | const uint8_t *tag, |
| 206 | const struct aead_aes_gcm_siv_asm_ctx *key, |
| 207 | size_t in_len); |
| 208 | |
| 209 | // aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is |
| 210 | // optimised for longer messages. |
| 211 | extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out, |
| 212 | const uint8_t *tag, |
| 213 | const struct aead_aes_gcm_siv_asm_ctx *key, |
| 214 | size_t in_len); |
| 215 | |
| 216 | // aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is |
| 217 | // optimised for longer messages. |
| 218 | extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out, |
| 219 | const uint8_t *tag, |
| 220 | const struct aead_aes_gcm_siv_asm_ctx *key, |
| 221 | size_t in_len); |
| 222 | |
| 223 | // gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext |
| 224 | // and AD. The result is written to |out_tag|. |
| 225 | static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in, |
| 226 | size_t in_len, const uint8_t *ad, size_t ad_len, |
| 227 | const uint8_t auth_key[16], |
| 228 | const uint8_t nonce[12]) { |
| 229 | OPENSSL_memset(out_tag, 0, 16); |
| 230 | const size_t ad_blocks = ad_len / 16; |
| 231 | const size_t in_blocks = in_len / 16; |
| 232 | int htable_init = 0; |
| 233 | alignas(16) uint8_t htable[16*8]; |
| 234 | |
| 235 | if (ad_blocks > 8 || in_blocks > 8) { |
| 236 | htable_init = 1; |
| 237 | aesgcmsiv_htable_init(htable, auth_key); |
| 238 | } |
| 239 | |
| 240 | if (htable_init) { |
| 241 | aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag); |
| 242 | } else { |
| 243 | aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks); |
| 244 | } |
| 245 | |
| 246 | uint8_t scratch[16]; |
| 247 | if (ad_len & 15) { |
| 248 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| 249 | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
| 250 | aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1); |
| 251 | } |
| 252 | |
| 253 | if (htable_init) { |
| 254 | aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag); |
| 255 | } else { |
| 256 | aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks); |
| 257 | } |
| 258 | |
| 259 | if (in_len & 15) { |
| 260 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| 261 | OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); |
| 262 | aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1); |
| 263 | } |
| 264 | |
| 265 | union { |
| 266 | uint8_t c[16]; |
| 267 | struct { |
| 268 | uint64_t ad; |
| 269 | uint64_t in; |
| 270 | } bitlens; |
| 271 | } length_block; |
| 272 | |
| 273 | length_block.bitlens.ad = ad_len * 8; |
| 274 | length_block.bitlens.in = in_len * 8; |
| 275 | aesgcmsiv_polyval_horner(out_tag, auth_key, length_block.c, 1); |
| 276 | |
| 277 | for (size_t i = 0; i < 12; i++) { |
| 278 | out_tag[i] ^= nonce[i]; |
| 279 | } |
| 280 | |
| 281 | out_tag[15] &= 0x7f; |
| 282 | } |
| 283 | |
| 284 | // aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption |
| 285 | // (same thing in CTR mode) of the final block of a plaintext/ciphertext. It |
| 286 | // writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter |
| 287 | // derived from |tag|. |
| 288 | static void aead_aes_gcm_siv_asm_crypt_last_block( |
| 289 | int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len, |
| 290 | const uint8_t tag[16], |
| 291 | const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) { |
| 292 | alignas(16) union { |
| 293 | uint8_t c[16]; |
| 294 | uint32_t u32[4]; |
| 295 | } counter; |
| 296 | OPENSSL_memcpy(&counter, tag, sizeof(counter)); |
| 297 | counter.c[15] |= 0x80; |
| 298 | counter.u32[0] += in_len / 16; |
| 299 | |
| 300 | if (is_128_bit) { |
| 301 | aes128gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded); |
| 302 | } else { |
| 303 | aes256gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded); |
| 304 | } |
| 305 | |
| 306 | const size_t last_bytes_offset = in_len & ~15; |
| 307 | const size_t last_bytes_len = in_len & 15; |
| 308 | uint8_t *last_bytes_out = &out[last_bytes_offset]; |
| 309 | const uint8_t *last_bytes_in = &in[last_bytes_offset]; |
| 310 | for (size_t i = 0; i < last_bytes_len; i++) { |
| 311 | last_bytes_out[i] = last_bytes_in[i] ^ counter.c[i]; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | // aead_aes_gcm_siv_kdf calculates the record encryption and authentication |
| 316 | // keys given the |nonce|. |
| 317 | static void aead_aes_gcm_siv_kdf( |
| 318 | int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx, |
| 319 | uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4], |
| 320 | const uint8_t nonce[12]) { |
| 321 | alignas(16) uint8_t padded_nonce[16]; |
| 322 | OPENSSL_memcpy(padded_nonce, nonce, 12); |
| 323 | |
| 324 | alignas(16) uint64_t key_material[12]; |
| 325 | if (is_128_bit) { |
| 326 | aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]); |
| 327 | out_record_enc_key[0] = key_material[4]; |
| 328 | out_record_enc_key[1] = key_material[6]; |
| 329 | } else { |
| 330 | aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]); |
| 331 | out_record_enc_key[0] = key_material[4]; |
| 332 | out_record_enc_key[1] = key_material[6]; |
| 333 | out_record_enc_key[2] = key_material[8]; |
| 334 | out_record_enc_key[3] = key_material[10]; |
| 335 | } |
| 336 | |
| 337 | out_record_auth_key[0] = key_material[0]; |
| 338 | out_record_auth_key[1] = key_material[2]; |
| 339 | } |
| 340 | |
| 341 | static int aead_aes_gcm_siv_asm_seal_scatter( |
| 342 | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| 343 | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| 344 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *, |
| 345 | size_t , const uint8_t *ad, size_t ad_len) { |
| 346 | const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); |
| 347 | const uint64_t in_len_64 = in_len; |
| 348 | const uint64_t ad_len_64 = ad_len; |
| 349 | |
| 350 | if (in_len_64 > (UINT64_C(1) << 36) || |
| 351 | ad_len_64 >= (UINT64_C(1) << 61)) { |
| 352 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
| 357 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| 358 | return 0; |
| 359 | } |
| 360 | |
| 361 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
| 362 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| 363 | return 0; |
| 364 | } |
| 365 | |
| 366 | alignas(16) uint64_t record_auth_key[2]; |
| 367 | alignas(16) uint64_t record_enc_key[4]; |
| 368 | aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key, |
| 369 | record_enc_key, nonce); |
| 370 | |
| 371 | alignas(16) uint8_t tag[16] = {0}; |
| 372 | gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len, |
| 373 | (const uint8_t *)record_auth_key, nonce); |
| 374 | |
| 375 | struct aead_aes_gcm_siv_asm_ctx enc_key_expanded; |
| 376 | |
| 377 | if (gcm_siv_ctx->is_128_bit) { |
| 378 | aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0], |
| 379 | record_enc_key); |
| 380 | |
| 381 | if (in_len < 128) { |
| 382 | aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15); |
| 383 | } else { |
| 384 | aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15); |
| 385 | } |
| 386 | } else { |
| 387 | aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0], |
| 388 | record_enc_key); |
| 389 | |
| 390 | if (in_len < 128) { |
| 391 | aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15); |
| 392 | } else { |
| 393 | aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15); |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | if (in_len & 15) { |
| 398 | aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in, |
| 399 | in_len, tag, &enc_key_expanded); |
| 400 | } |
| 401 | |
| 402 | OPENSSL_memcpy(out_tag, tag, sizeof(tag)); |
| 403 | *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| 404 | |
| 405 | return 1; |
| 406 | } |
| 407 | |
| 408 | // TODO(martinkr): Add aead_aes_gcm_siv_asm_open_gather. N.B. aes128gcmsiv_dec |
| 409 | // expects ciphertext and tag in a contiguous buffer. |
| 410 | |
| 411 | static int aead_aes_gcm_siv_asm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| 412 | size_t *out_len, size_t max_out_len, |
| 413 | const uint8_t *nonce, size_t nonce_len, |
| 414 | const uint8_t *in, size_t in_len, |
| 415 | const uint8_t *ad, size_t ad_len) { |
| 416 | const uint64_t ad_len_64 = ad_len; |
| 417 | if (ad_len_64 >= (UINT64_C(1) << 61)) { |
| 418 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | const uint64_t in_len_64 = in_len; |
| 423 | if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN || |
| 424 | in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { |
| 425 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
| 430 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); |
| 435 | const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| 436 | const uint8_t *const given_tag = in + plaintext_len; |
| 437 | |
| 438 | if (max_out_len < plaintext_len) { |
| 439 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | alignas(16) uint64_t record_auth_key[2]; |
| 444 | alignas(16) uint64_t record_enc_key[4]; |
| 445 | aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key, |
| 446 | record_enc_key, nonce); |
| 447 | |
| 448 | struct aead_aes_gcm_siv_asm_ctx expanded_key; |
| 449 | if (gcm_siv_ctx->is_128_bit) { |
| 450 | aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]); |
| 451 | } else { |
| 452 | aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]); |
| 453 | } |
| 454 | // calculated_tag is 16*8 bytes, rather than 16 bytes, because |
| 455 | // aes[128|256]gcmsiv_dec uses the extra as scratch space. |
| 456 | alignas(16) uint8_t calculated_tag[16 * 8] = {0}; |
| 457 | |
| 458 | OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN); |
| 459 | const size_t ad_blocks = ad_len / 16; |
| 460 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad, |
| 461 | ad_blocks); |
| 462 | |
| 463 | uint8_t scratch[16]; |
| 464 | if (ad_len & 15) { |
| 465 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| 466 | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
| 467 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, |
| 468 | scratch, 1); |
| 469 | } |
| 470 | |
| 471 | alignas(16) uint8_t htable[16 * 6]; |
| 472 | aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key); |
| 473 | |
| 474 | if (gcm_siv_ctx->is_128_bit) { |
| 475 | aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, |
| 476 | plaintext_len); |
| 477 | } else { |
| 478 | aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, |
| 479 | plaintext_len); |
| 480 | } |
| 481 | |
| 482 | if (plaintext_len & 15) { |
| 483 | aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in, |
| 484 | plaintext_len, given_tag, |
| 485 | &expanded_key); |
| 486 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| 487 | OPENSSL_memcpy(scratch, out + (plaintext_len & ~15), plaintext_len & 15); |
| 488 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, |
| 489 | scratch, 1); |
| 490 | } |
| 491 | |
| 492 | union { |
| 493 | uint8_t c[16]; |
| 494 | struct { |
| 495 | uint64_t ad; |
| 496 | uint64_t in; |
| 497 | } bitlens; |
| 498 | } length_block; |
| 499 | |
| 500 | length_block.bitlens.ad = ad_len * 8; |
| 501 | length_block.bitlens.in = plaintext_len * 8; |
| 502 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, |
| 503 | length_block.c, 1); |
| 504 | |
| 505 | for (size_t i = 0; i < 12; i++) { |
| 506 | calculated_tag[i] ^= nonce[i]; |
| 507 | } |
| 508 | |
| 509 | calculated_tag[15] &= 0x7f; |
| 510 | |
| 511 | if (gcm_siv_ctx->is_128_bit) { |
| 512 | aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key); |
| 513 | } else { |
| 514 | aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key); |
| 515 | } |
| 516 | |
| 517 | if (CRYPTO_memcmp(calculated_tag, given_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) != |
| 518 | 0) { |
| 519 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| 520 | return 0; |
| 521 | } |
| 522 | |
| 523 | *out_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| 524 | return 1; |
| 525 | } |
| 526 | |
| 527 | static const EVP_AEAD aead_aes_128_gcm_siv_asm = { |
| 528 | 16, // key length |
| 529 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
| 530 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
| 531 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
| 532 | 0, // seal_scatter_supports_extra_in |
| 533 | |
| 534 | aead_aes_gcm_siv_asm_init, |
| 535 | NULL /* init_with_direction */, |
| 536 | aead_aes_gcm_siv_asm_cleanup, |
| 537 | aead_aes_gcm_siv_asm_open, |
| 538 | aead_aes_gcm_siv_asm_seal_scatter, |
| 539 | NULL /* open_gather */, |
| 540 | NULL /* get_iv */, |
| 541 | NULL /* tag_len */, |
| 542 | }; |
| 543 | |
| 544 | static const EVP_AEAD aead_aes_256_gcm_siv_asm = { |
| 545 | 32, // key length |
| 546 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
| 547 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
| 548 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
| 549 | 0, // seal_scatter_supports_extra_in |
| 550 | |
| 551 | aead_aes_gcm_siv_asm_init, |
| 552 | NULL /* init_with_direction */, |
| 553 | aead_aes_gcm_siv_asm_cleanup, |
| 554 | aead_aes_gcm_siv_asm_open, |
| 555 | aead_aes_gcm_siv_asm_seal_scatter, |
| 556 | NULL /* open_gather */, |
| 557 | NULL /* get_iv */, |
| 558 | NULL /* tag_len */, |
| 559 | }; |
| 560 | |
| 561 | #endif // X86_64 && !NO_ASM && !WINDOWS |
| 562 | |
| 563 | struct aead_aes_gcm_siv_ctx { |
| 564 | union { |
| 565 | double align; |
| 566 | AES_KEY ks; |
| 567 | } ks; |
| 568 | block128_f kgk_block; |
| 569 | unsigned is_256:1; |
| 570 | }; |
| 571 | |
| 572 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| 573 | sizeof(struct aead_aes_gcm_siv_ctx), |
| 574 | "AEAD state is too small" ); |
| 575 | #if defined(__GNUC__) || defined(__clang__) |
| 576 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| 577 | alignof(struct aead_aes_gcm_siv_ctx), |
| 578 | "AEAD state has insufficient alignment" ); |
| 579 | #endif |
| 580 | |
| 581 | static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| 582 | size_t key_len, size_t tag_len) { |
| 583 | const size_t key_bits = key_len * 8; |
| 584 | |
| 585 | if (key_bits != 128 && key_bits != 256) { |
| 586 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| 587 | return 0; // EVP_AEAD_CTX_init should catch this. |
| 588 | } |
| 589 | |
| 590 | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| 591 | tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| 592 | } |
| 593 | if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
| 594 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| 595 | return 0; |
| 596 | } |
| 597 | |
| 598 | struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
| 599 | (struct aead_aes_gcm_siv_ctx *)&ctx->state; |
| 600 | OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx)); |
| 601 | |
| 602 | aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key, |
| 603 | key_len); |
| 604 | gcm_siv_ctx->is_256 = (key_len == 32); |
| 605 | ctx->tag_len = tag_len; |
| 606 | |
| 607 | return 1; |
| 608 | } |
| 609 | |
| 610 | static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {} |
| 611 | |
| 612 | // gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from |
| 613 | // |in| to |out|, using the block function |enc_block| with |key| in counter |
| 614 | // mode, starting at |initial_counter|. This differs from the traditional |
| 615 | // counter mode code in that the counter is handled little-endian, only the |
| 616 | // first four bytes are used and the GCM-SIV tweak to the final byte is |
| 617 | // applied. The |in| and |out| pointers may be equal but otherwise must not |
| 618 | // alias. |
| 619 | static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len, |
| 620 | const uint8_t initial_counter[AES_BLOCK_SIZE], |
| 621 | block128_f enc_block, const AES_KEY *key) { |
| 622 | union { |
| 623 | uint32_t w[4]; |
| 624 | uint8_t c[16]; |
| 625 | } counter; |
| 626 | |
| 627 | OPENSSL_memcpy(counter.c, initial_counter, AES_BLOCK_SIZE); |
| 628 | counter.c[15] |= 0x80; |
| 629 | |
| 630 | for (size_t done = 0; done < in_len;) { |
| 631 | uint8_t keystream[AES_BLOCK_SIZE]; |
| 632 | enc_block(counter.c, keystream, key); |
| 633 | counter.w[0]++; |
| 634 | |
| 635 | size_t todo = AES_BLOCK_SIZE; |
| 636 | if (in_len - done < todo) { |
| 637 | todo = in_len - done; |
| 638 | } |
| 639 | |
| 640 | for (size_t i = 0; i < todo; i++) { |
| 641 | out[done + i] = keystream[i] ^ in[done + i]; |
| 642 | } |
| 643 | |
| 644 | done += todo; |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | // gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and |
| 649 | // AD. The result is written to |out_tag|. |
| 650 | static void gcm_siv_polyval( |
| 651 | uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad, |
| 652 | size_t ad_len, const uint8_t auth_key[16], |
| 653 | const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { |
| 654 | struct polyval_ctx polyval_ctx; |
| 655 | CRYPTO_POLYVAL_init(&polyval_ctx, auth_key); |
| 656 | |
| 657 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15); |
| 658 | |
| 659 | uint8_t scratch[16]; |
| 660 | if (ad_len & 15) { |
| 661 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| 662 | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
| 663 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); |
| 664 | } |
| 665 | |
| 666 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15); |
| 667 | if (in_len & 15) { |
| 668 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| 669 | OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); |
| 670 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); |
| 671 | } |
| 672 | |
| 673 | union { |
| 674 | uint8_t c[16]; |
| 675 | struct { |
| 676 | uint64_t ad; |
| 677 | uint64_t in; |
| 678 | } bitlens; |
| 679 | } length_block; |
| 680 | |
| 681 | length_block.bitlens.ad = ad_len * 8; |
| 682 | length_block.bitlens.in = in_len * 8; |
| 683 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c, |
| 684 | sizeof(length_block)); |
| 685 | |
| 686 | CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag); |
| 687 | for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) { |
| 688 | out_tag[i] ^= nonce[i]; |
| 689 | } |
| 690 | out_tag[15] &= 0x7f; |
| 691 | } |
| 692 | |
| 693 | // gcm_siv_record_keys contains the keys used for a specific GCM-SIV record. |
| 694 | struct gcm_siv_record_keys { |
| 695 | uint8_t auth_key[16]; |
| 696 | union { |
| 697 | double align; |
| 698 | AES_KEY ks; |
| 699 | } enc_key; |
| 700 | block128_f enc_block; |
| 701 | }; |
| 702 | |
| 703 | // gcm_siv_keys calculates the keys for a specific GCM-SIV record with the |
| 704 | // given nonce and writes them to |*out_keys|. |
| 705 | static void gcm_siv_keys( |
| 706 | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx, |
| 707 | struct gcm_siv_record_keys *out_keys, |
| 708 | const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { |
| 709 | const AES_KEY *const key = &gcm_siv_ctx->ks.ks; |
| 710 | uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8]; |
| 711 | const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4; |
| 712 | |
| 713 | uint8_t counter[AES_BLOCK_SIZE]; |
| 714 | OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN); |
| 715 | OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN, |
| 716 | nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN); |
| 717 | for (size_t i = 0; i < blocks_needed; i++) { |
| 718 | counter[0] = i; |
| 719 | |
| 720 | uint8_t ciphertext[AES_BLOCK_SIZE]; |
| 721 | gcm_siv_ctx->kgk_block(counter, ciphertext, key); |
| 722 | OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8); |
| 723 | } |
| 724 | |
| 725 | OPENSSL_memcpy(out_keys->auth_key, key_material, 16); |
| 726 | aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, |
| 727 | key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16); |
| 728 | } |
| 729 | |
| 730 | static int aead_aes_gcm_siv_seal_scatter( |
| 731 | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| 732 | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| 733 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *, |
| 734 | size_t , const uint8_t *ad, size_t ad_len) { |
| 735 | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
| 736 | (struct aead_aes_gcm_siv_ctx *)&ctx->state; |
| 737 | const uint64_t in_len_64 = in_len; |
| 738 | const uint64_t ad_len_64 = ad_len; |
| 739 | |
| 740 | if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len || |
| 741 | in_len_64 > (UINT64_C(1) << 36) || |
| 742 | ad_len_64 >= (UINT64_C(1) << 61)) { |
| 743 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| 744 | return 0; |
| 745 | } |
| 746 | |
| 747 | if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
| 748 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
| 753 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| 754 | return 0; |
| 755 | } |
| 756 | |
| 757 | struct gcm_siv_record_keys keys; |
| 758 | gcm_siv_keys(gcm_siv_ctx, &keys, nonce); |
| 759 | |
| 760 | uint8_t tag[16]; |
| 761 | gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce); |
| 762 | keys.enc_block(tag, tag, &keys.enc_key.ks); |
| 763 | |
| 764 | gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks); |
| 765 | |
| 766 | OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN); |
| 767 | *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| 768 | |
| 769 | return 1; |
| 770 | } |
| 771 | |
| 772 | static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| 773 | const uint8_t *nonce, size_t nonce_len, |
| 774 | const uint8_t *in, size_t in_len, |
| 775 | const uint8_t *in_tag, |
| 776 | size_t in_tag_len, const uint8_t *ad, |
| 777 | size_t ad_len) { |
| 778 | const uint64_t ad_len_64 = ad_len; |
| 779 | if (ad_len_64 >= (UINT64_C(1) << 61)) { |
| 780 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | const uint64_t in_len_64 = in_len; |
| 785 | if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN || |
| 786 | in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { |
| 787 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| 788 | return 0; |
| 789 | } |
| 790 | |
| 791 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
| 792 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| 793 | return 0; |
| 794 | } |
| 795 | |
| 796 | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
| 797 | (struct aead_aes_gcm_siv_ctx *)&ctx->state; |
| 798 | |
| 799 | struct gcm_siv_record_keys keys; |
| 800 | gcm_siv_keys(gcm_siv_ctx, &keys, nonce); |
| 801 | |
| 802 | gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks); |
| 803 | |
| 804 | uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN]; |
| 805 | gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce); |
| 806 | keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks); |
| 807 | |
| 808 | if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) { |
| 809 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| 810 | return 0; |
| 811 | } |
| 812 | |
| 813 | return 1; |
| 814 | } |
| 815 | |
| 816 | static const EVP_AEAD aead_aes_128_gcm_siv = { |
| 817 | 16, // key length |
| 818 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
| 819 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
| 820 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
| 821 | 0, // seal_scatter_supports_extra_in |
| 822 | |
| 823 | aead_aes_gcm_siv_init, |
| 824 | NULL /* init_with_direction */, |
| 825 | aead_aes_gcm_siv_cleanup, |
| 826 | NULL /* open */, |
| 827 | aead_aes_gcm_siv_seal_scatter, |
| 828 | aead_aes_gcm_siv_open_gather, |
| 829 | NULL /* get_iv */, |
| 830 | NULL /* tag_len */, |
| 831 | }; |
| 832 | |
| 833 | static const EVP_AEAD aead_aes_256_gcm_siv = { |
| 834 | 32, // key length |
| 835 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
| 836 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
| 837 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
| 838 | 0, // seal_scatter_supports_extra_in |
| 839 | |
| 840 | aead_aes_gcm_siv_init, |
| 841 | NULL /* init_with_direction */, |
| 842 | aead_aes_gcm_siv_cleanup, |
| 843 | NULL /* open */, |
| 844 | aead_aes_gcm_siv_seal_scatter, |
| 845 | aead_aes_gcm_siv_open_gather, |
| 846 | NULL /* get_iv */, |
| 847 | NULL /* tag_len */, |
| 848 | }; |
| 849 | |
| 850 | #if defined(AES_GCM_SIV_ASM) |
| 851 | |
| 852 | static char avx_aesni_capable(void) { |
| 853 | const uint32_t ecx = OPENSSL_ia32cap_P[1]; |
| 854 | |
| 855 | return (ecx & (1 << (57 - 32))) != 0 /* AESNI */ && |
| 856 | (ecx & (1 << 28)) != 0 /* AVX */; |
| 857 | } |
| 858 | |
| 859 | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { |
| 860 | if (avx_aesni_capable()) { |
| 861 | return &aead_aes_128_gcm_siv_asm; |
| 862 | } |
| 863 | return &aead_aes_128_gcm_siv; |
| 864 | } |
| 865 | |
| 866 | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { |
| 867 | if (avx_aesni_capable()) { |
| 868 | return &aead_aes_256_gcm_siv_asm; |
| 869 | } |
| 870 | return &aead_aes_256_gcm_siv; |
| 871 | } |
| 872 | |
| 873 | #else |
| 874 | |
| 875 | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { |
| 876 | return &aead_aes_128_gcm_siv; |
| 877 | } |
| 878 | |
| 879 | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { |
| 880 | return &aead_aes_256_gcm_siv; |
| 881 | } |
| 882 | |
| 883 | #endif // AES_GCM_SIV_ASM |
| 884 | |