1 | /* Copyright (c) 2017, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | #include <openssl/aead.h> |
16 | |
17 | #include <assert.h> |
18 | |
19 | #include <openssl/cipher.h> |
20 | #include <openssl/cpu.h> |
21 | #include <openssl/crypto.h> |
22 | #include <openssl/err.h> |
23 | |
24 | #include "../fipsmodule/cipher/internal.h" |
25 | |
26 | |
27 | #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12 |
28 | #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16 |
29 | |
30 | // TODO(davidben): AES-GCM-SIV assembly is not correct for Windows. It must save |
31 | // and restore xmm6 through xmm15. |
32 | #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ |
33 | !defined(OPENSSL_WINDOWS) |
34 | #define AES_GCM_SIV_ASM |
35 | |
36 | // Optimised AES-GCM-SIV |
37 | |
38 | struct aead_aes_gcm_siv_asm_ctx { |
39 | alignas(16) uint8_t key[16*15]; |
40 | int is_128_bit; |
41 | }; |
42 | |
43 | // The assembly code assumes 8-byte alignment of the EVP_AEAD_CTX's state, and |
44 | // aligns to 16 bytes itself. |
45 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) + 8 >= |
46 | sizeof(struct aead_aes_gcm_siv_asm_ctx), |
47 | "AEAD state is too small" ); |
48 | #if defined(__GNUC__) || defined(__clang__) |
49 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= 8, |
50 | "AEAD state has insufficient alignment" ); |
51 | #endif |
52 | |
53 | // asm_ctx_from_ctx returns a 16-byte aligned context pointer from |ctx|. |
54 | static struct aead_aes_gcm_siv_asm_ctx *asm_ctx_from_ctx( |
55 | const EVP_AEAD_CTX *ctx) { |
56 | // ctx->state must already be 8-byte aligned. Thus, at most, we may need to |
57 | // add eight to align it to 16 bytes. |
58 | const uintptr_t offset = ((uintptr_t)&ctx->state) & 8; |
59 | return (struct aead_aes_gcm_siv_asm_ctx *)(&ctx->state.opaque[offset]); |
60 | } |
61 | |
62 | // aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to |
63 | // |out_expanded_key|. |
64 | extern void aes128gcmsiv_aes_ks( |
65 | const uint8_t key[16], uint8_t out_expanded_key[16*15]); |
66 | |
67 | // aes256gcmsiv_aes_ks writes an AES-256 key schedule for |key| to |
68 | // |out_expanded_key|. |
69 | extern void aes256gcmsiv_aes_ks( |
70 | const uint8_t key[32], uint8_t out_expanded_key[16*15]); |
71 | |
72 | static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
73 | size_t key_len, size_t tag_len) { |
74 | const size_t key_bits = key_len * 8; |
75 | |
76 | if (key_bits != 128 && key_bits != 256) { |
77 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
78 | return 0; // EVP_AEAD_CTX_init should catch this. |
79 | } |
80 | |
81 | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
82 | tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
83 | } |
84 | |
85 | if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
86 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
87 | return 0; |
88 | } |
89 | |
90 | struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); |
91 | assert((((uintptr_t)gcm_siv_ctx) & 15) == 0); |
92 | |
93 | if (key_bits == 128) { |
94 | aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]); |
95 | gcm_siv_ctx->is_128_bit = 1; |
96 | } else { |
97 | aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]); |
98 | gcm_siv_ctx->is_128_bit = 0; |
99 | } |
100 | |
101 | ctx->tag_len = tag_len; |
102 | |
103 | return 1; |
104 | } |
105 | |
106 | static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {} |
107 | |
108 | // aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to |
109 | // include a number (|in_blocks|) of 16-byte blocks of data from |in|, given |
110 | // the POLYVAL key in |key|. |
111 | extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16], |
112 | const uint8_t key[16], const uint8_t *in, |
113 | size_t in_blocks); |
114 | |
115 | // aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|. |
116 | extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8], |
117 | const uint8_t auth_key[16]); |
118 | |
119 | // aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|. |
120 | extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6], |
121 | const uint8_t auth_key[16]); |
122 | |
123 | // aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to |
124 | // include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple |
125 | // of 16.) It uses the precomputed powers of the key given in |htable|. |
126 | extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8], |
127 | const uint8_t *in, size_t in_len, |
128 | uint8_t in_out_poly[16]); |
129 | |
130 | // aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to |
131 | // |in|. (The full value of |in_len| is still used to find the authentication |
132 | // tag appended to the ciphertext, however, so must not be pre-masked.) |
133 | // |
134 | // |in| and |out| may be equal, but must not otherwise overlap. |
135 | // |
136 | // While decrypting, it updates the POLYVAL value found at the beginning of |
137 | // |in_out_calculated_tag_and_scratch| and writes the updated value back before |
138 | // return. During executation, it may use the whole of this space for other |
139 | // purposes. In order to decrypt and update the POLYVAL value, it uses the |
140 | // expanded key from |key| and the table of powers in |htable|. |
141 | extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out, |
142 | uint8_t in_out_calculated_tag_and_scratch[16 * 8], |
143 | const uint8_t htable[16 * 6], |
144 | const struct aead_aes_gcm_siv_asm_ctx *key, |
145 | size_t in_len); |
146 | |
147 | // aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256. |
148 | extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out, |
149 | uint8_t in_out_calculated_tag_and_scratch[16 * 8], |
150 | const uint8_t htable[16 * 6], |
151 | const struct aead_aes_gcm_siv_asm_ctx *key, |
152 | size_t in_len); |
153 | |
154 | // aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from |
155 | // |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of |
156 | // the nonce are used, 16 bytes are read and so the value must be |
157 | // right-padded. |
158 | extern void aes128gcmsiv_kdf(const uint8_t nonce[16], |
159 | uint64_t out_key_material[8], |
160 | const uint8_t *key_schedule); |
161 | |
162 | // aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256. |
163 | extern void aes256gcmsiv_kdf(const uint8_t nonce[16], |
164 | uint64_t out_key_material[12], |
165 | const uint8_t *key_schedule); |
166 | |
167 | // aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in |
168 | // |key|, writes the expanded key to |out_expanded_key| and encrypts a single |
169 | // block from |in| to |out|. |
170 | extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16], |
171 | uint8_t out_expanded_key[16 * 15], |
172 | const uint64_t key[2]); |
173 | |
174 | // aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for |
175 | // AES-256. |
176 | extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16], |
177 | uint8_t out_expanded_key[16 * 15], |
178 | const uint64_t key[4]); |
179 | |
180 | // aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using |
181 | // the expanded key in |expanded_key|. |
182 | extern void aes128gcmsiv_ecb_enc_block( |
183 | const uint8_t in[16], uint8_t out[16], |
184 | const struct aead_aes_gcm_siv_asm_ctx *expanded_key); |
185 | |
186 | // aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for |
187 | // AES-256. |
188 | extern void aes256gcmsiv_ecb_enc_block( |
189 | const uint8_t in[16], uint8_t out[16], |
190 | const struct aead_aes_gcm_siv_asm_ctx *expanded_key); |
191 | |
192 | // aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the |
193 | // expanded key from |key|. (The value of |in_len| must be a multiple of 16.) |
194 | // The |in| and |out| buffers may be equal but must not otherwise overlap. The |
195 | // initial counter is constructed from the given |tag| as required by |
196 | // AES-GCM-SIV. |
197 | extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out, |
198 | const uint8_t *tag, |
199 | const struct aead_aes_gcm_siv_asm_ctx *key, |
200 | size_t in_len); |
201 | |
202 | // aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for |
203 | // AES-256. |
204 | extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out, |
205 | const uint8_t *tag, |
206 | const struct aead_aes_gcm_siv_asm_ctx *key, |
207 | size_t in_len); |
208 | |
209 | // aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is |
210 | // optimised for longer messages. |
211 | extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out, |
212 | const uint8_t *tag, |
213 | const struct aead_aes_gcm_siv_asm_ctx *key, |
214 | size_t in_len); |
215 | |
216 | // aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is |
217 | // optimised for longer messages. |
218 | extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out, |
219 | const uint8_t *tag, |
220 | const struct aead_aes_gcm_siv_asm_ctx *key, |
221 | size_t in_len); |
222 | |
223 | // gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext |
224 | // and AD. The result is written to |out_tag|. |
225 | static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in, |
226 | size_t in_len, const uint8_t *ad, size_t ad_len, |
227 | const uint8_t auth_key[16], |
228 | const uint8_t nonce[12]) { |
229 | OPENSSL_memset(out_tag, 0, 16); |
230 | const size_t ad_blocks = ad_len / 16; |
231 | const size_t in_blocks = in_len / 16; |
232 | int htable_init = 0; |
233 | alignas(16) uint8_t htable[16*8]; |
234 | |
235 | if (ad_blocks > 8 || in_blocks > 8) { |
236 | htable_init = 1; |
237 | aesgcmsiv_htable_init(htable, auth_key); |
238 | } |
239 | |
240 | if (htable_init) { |
241 | aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag); |
242 | } else { |
243 | aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks); |
244 | } |
245 | |
246 | uint8_t scratch[16]; |
247 | if (ad_len & 15) { |
248 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
249 | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
250 | aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1); |
251 | } |
252 | |
253 | if (htable_init) { |
254 | aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag); |
255 | } else { |
256 | aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks); |
257 | } |
258 | |
259 | if (in_len & 15) { |
260 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
261 | OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); |
262 | aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1); |
263 | } |
264 | |
265 | union { |
266 | uint8_t c[16]; |
267 | struct { |
268 | uint64_t ad; |
269 | uint64_t in; |
270 | } bitlens; |
271 | } length_block; |
272 | |
273 | length_block.bitlens.ad = ad_len * 8; |
274 | length_block.bitlens.in = in_len * 8; |
275 | aesgcmsiv_polyval_horner(out_tag, auth_key, length_block.c, 1); |
276 | |
277 | for (size_t i = 0; i < 12; i++) { |
278 | out_tag[i] ^= nonce[i]; |
279 | } |
280 | |
281 | out_tag[15] &= 0x7f; |
282 | } |
283 | |
284 | // aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption |
285 | // (same thing in CTR mode) of the final block of a plaintext/ciphertext. It |
286 | // writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter |
287 | // derived from |tag|. |
288 | static void aead_aes_gcm_siv_asm_crypt_last_block( |
289 | int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len, |
290 | const uint8_t tag[16], |
291 | const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) { |
292 | alignas(16) union { |
293 | uint8_t c[16]; |
294 | uint32_t u32[4]; |
295 | } counter; |
296 | OPENSSL_memcpy(&counter, tag, sizeof(counter)); |
297 | counter.c[15] |= 0x80; |
298 | counter.u32[0] += in_len / 16; |
299 | |
300 | if (is_128_bit) { |
301 | aes128gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded); |
302 | } else { |
303 | aes256gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded); |
304 | } |
305 | |
306 | const size_t last_bytes_offset = in_len & ~15; |
307 | const size_t last_bytes_len = in_len & 15; |
308 | uint8_t *last_bytes_out = &out[last_bytes_offset]; |
309 | const uint8_t *last_bytes_in = &in[last_bytes_offset]; |
310 | for (size_t i = 0; i < last_bytes_len; i++) { |
311 | last_bytes_out[i] = last_bytes_in[i] ^ counter.c[i]; |
312 | } |
313 | } |
314 | |
315 | // aead_aes_gcm_siv_kdf calculates the record encryption and authentication |
316 | // keys given the |nonce|. |
317 | static void aead_aes_gcm_siv_kdf( |
318 | int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx, |
319 | uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4], |
320 | const uint8_t nonce[12]) { |
321 | alignas(16) uint8_t padded_nonce[16]; |
322 | OPENSSL_memcpy(padded_nonce, nonce, 12); |
323 | |
324 | alignas(16) uint64_t key_material[12]; |
325 | if (is_128_bit) { |
326 | aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]); |
327 | out_record_enc_key[0] = key_material[4]; |
328 | out_record_enc_key[1] = key_material[6]; |
329 | } else { |
330 | aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]); |
331 | out_record_enc_key[0] = key_material[4]; |
332 | out_record_enc_key[1] = key_material[6]; |
333 | out_record_enc_key[2] = key_material[8]; |
334 | out_record_enc_key[3] = key_material[10]; |
335 | } |
336 | |
337 | out_record_auth_key[0] = key_material[0]; |
338 | out_record_auth_key[1] = key_material[2]; |
339 | } |
340 | |
341 | static int aead_aes_gcm_siv_asm_seal_scatter( |
342 | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
343 | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
344 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *, |
345 | size_t , const uint8_t *ad, size_t ad_len) { |
346 | const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); |
347 | const uint64_t in_len_64 = in_len; |
348 | const uint64_t ad_len_64 = ad_len; |
349 | |
350 | if (in_len_64 > (UINT64_C(1) << 36) || |
351 | ad_len_64 >= (UINT64_C(1) << 61)) { |
352 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
353 | return 0; |
354 | } |
355 | |
356 | if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
357 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
358 | return 0; |
359 | } |
360 | |
361 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
362 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
363 | return 0; |
364 | } |
365 | |
366 | alignas(16) uint64_t record_auth_key[2]; |
367 | alignas(16) uint64_t record_enc_key[4]; |
368 | aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key, |
369 | record_enc_key, nonce); |
370 | |
371 | alignas(16) uint8_t tag[16] = {0}; |
372 | gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len, |
373 | (const uint8_t *)record_auth_key, nonce); |
374 | |
375 | struct aead_aes_gcm_siv_asm_ctx enc_key_expanded; |
376 | |
377 | if (gcm_siv_ctx->is_128_bit) { |
378 | aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0], |
379 | record_enc_key); |
380 | |
381 | if (in_len < 128) { |
382 | aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15); |
383 | } else { |
384 | aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15); |
385 | } |
386 | } else { |
387 | aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0], |
388 | record_enc_key); |
389 | |
390 | if (in_len < 128) { |
391 | aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15); |
392 | } else { |
393 | aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15); |
394 | } |
395 | } |
396 | |
397 | if (in_len & 15) { |
398 | aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in, |
399 | in_len, tag, &enc_key_expanded); |
400 | } |
401 | |
402 | OPENSSL_memcpy(out_tag, tag, sizeof(tag)); |
403 | *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
404 | |
405 | return 1; |
406 | } |
407 | |
408 | // TODO(martinkr): Add aead_aes_gcm_siv_asm_open_gather. N.B. aes128gcmsiv_dec |
409 | // expects ciphertext and tag in a contiguous buffer. |
410 | |
411 | static int aead_aes_gcm_siv_asm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
412 | size_t *out_len, size_t max_out_len, |
413 | const uint8_t *nonce, size_t nonce_len, |
414 | const uint8_t *in, size_t in_len, |
415 | const uint8_t *ad, size_t ad_len) { |
416 | const uint64_t ad_len_64 = ad_len; |
417 | if (ad_len_64 >= (UINT64_C(1) << 61)) { |
418 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
419 | return 0; |
420 | } |
421 | |
422 | const uint64_t in_len_64 = in_len; |
423 | if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN || |
424 | in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { |
425 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
426 | return 0; |
427 | } |
428 | |
429 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
430 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
431 | return 0; |
432 | } |
433 | |
434 | const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); |
435 | const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
436 | const uint8_t *const given_tag = in + plaintext_len; |
437 | |
438 | if (max_out_len < plaintext_len) { |
439 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
440 | return 0; |
441 | } |
442 | |
443 | alignas(16) uint64_t record_auth_key[2]; |
444 | alignas(16) uint64_t record_enc_key[4]; |
445 | aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key, |
446 | record_enc_key, nonce); |
447 | |
448 | struct aead_aes_gcm_siv_asm_ctx expanded_key; |
449 | if (gcm_siv_ctx->is_128_bit) { |
450 | aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]); |
451 | } else { |
452 | aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]); |
453 | } |
454 | // calculated_tag is 16*8 bytes, rather than 16 bytes, because |
455 | // aes[128|256]gcmsiv_dec uses the extra as scratch space. |
456 | alignas(16) uint8_t calculated_tag[16 * 8] = {0}; |
457 | |
458 | OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN); |
459 | const size_t ad_blocks = ad_len / 16; |
460 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad, |
461 | ad_blocks); |
462 | |
463 | uint8_t scratch[16]; |
464 | if (ad_len & 15) { |
465 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
466 | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
467 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, |
468 | scratch, 1); |
469 | } |
470 | |
471 | alignas(16) uint8_t htable[16 * 6]; |
472 | aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key); |
473 | |
474 | if (gcm_siv_ctx->is_128_bit) { |
475 | aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, |
476 | plaintext_len); |
477 | } else { |
478 | aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, |
479 | plaintext_len); |
480 | } |
481 | |
482 | if (plaintext_len & 15) { |
483 | aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in, |
484 | plaintext_len, given_tag, |
485 | &expanded_key); |
486 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
487 | OPENSSL_memcpy(scratch, out + (plaintext_len & ~15), plaintext_len & 15); |
488 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, |
489 | scratch, 1); |
490 | } |
491 | |
492 | union { |
493 | uint8_t c[16]; |
494 | struct { |
495 | uint64_t ad; |
496 | uint64_t in; |
497 | } bitlens; |
498 | } length_block; |
499 | |
500 | length_block.bitlens.ad = ad_len * 8; |
501 | length_block.bitlens.in = plaintext_len * 8; |
502 | aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, |
503 | length_block.c, 1); |
504 | |
505 | for (size_t i = 0; i < 12; i++) { |
506 | calculated_tag[i] ^= nonce[i]; |
507 | } |
508 | |
509 | calculated_tag[15] &= 0x7f; |
510 | |
511 | if (gcm_siv_ctx->is_128_bit) { |
512 | aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key); |
513 | } else { |
514 | aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key); |
515 | } |
516 | |
517 | if (CRYPTO_memcmp(calculated_tag, given_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) != |
518 | 0) { |
519 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
520 | return 0; |
521 | } |
522 | |
523 | *out_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
524 | return 1; |
525 | } |
526 | |
527 | static const EVP_AEAD aead_aes_128_gcm_siv_asm = { |
528 | 16, // key length |
529 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
530 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
531 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
532 | 0, // seal_scatter_supports_extra_in |
533 | |
534 | aead_aes_gcm_siv_asm_init, |
535 | NULL /* init_with_direction */, |
536 | aead_aes_gcm_siv_asm_cleanup, |
537 | aead_aes_gcm_siv_asm_open, |
538 | aead_aes_gcm_siv_asm_seal_scatter, |
539 | NULL /* open_gather */, |
540 | NULL /* get_iv */, |
541 | NULL /* tag_len */, |
542 | }; |
543 | |
544 | static const EVP_AEAD aead_aes_256_gcm_siv_asm = { |
545 | 32, // key length |
546 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
547 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
548 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
549 | 0, // seal_scatter_supports_extra_in |
550 | |
551 | aead_aes_gcm_siv_asm_init, |
552 | NULL /* init_with_direction */, |
553 | aead_aes_gcm_siv_asm_cleanup, |
554 | aead_aes_gcm_siv_asm_open, |
555 | aead_aes_gcm_siv_asm_seal_scatter, |
556 | NULL /* open_gather */, |
557 | NULL /* get_iv */, |
558 | NULL /* tag_len */, |
559 | }; |
560 | |
561 | #endif // X86_64 && !NO_ASM && !WINDOWS |
562 | |
563 | struct aead_aes_gcm_siv_ctx { |
564 | union { |
565 | double align; |
566 | AES_KEY ks; |
567 | } ks; |
568 | block128_f kgk_block; |
569 | unsigned is_256:1; |
570 | }; |
571 | |
572 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
573 | sizeof(struct aead_aes_gcm_siv_ctx), |
574 | "AEAD state is too small" ); |
575 | #if defined(__GNUC__) || defined(__clang__) |
576 | OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
577 | alignof(struct aead_aes_gcm_siv_ctx), |
578 | "AEAD state has insufficient alignment" ); |
579 | #endif |
580 | |
581 | static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
582 | size_t key_len, size_t tag_len) { |
583 | const size_t key_bits = key_len * 8; |
584 | |
585 | if (key_bits != 128 && key_bits != 256) { |
586 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
587 | return 0; // EVP_AEAD_CTX_init should catch this. |
588 | } |
589 | |
590 | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
591 | tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
592 | } |
593 | if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
594 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
595 | return 0; |
596 | } |
597 | |
598 | struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
599 | (struct aead_aes_gcm_siv_ctx *)&ctx->state; |
600 | OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx)); |
601 | |
602 | aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key, |
603 | key_len); |
604 | gcm_siv_ctx->is_256 = (key_len == 32); |
605 | ctx->tag_len = tag_len; |
606 | |
607 | return 1; |
608 | } |
609 | |
610 | static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {} |
611 | |
612 | // gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from |
613 | // |in| to |out|, using the block function |enc_block| with |key| in counter |
614 | // mode, starting at |initial_counter|. This differs from the traditional |
615 | // counter mode code in that the counter is handled little-endian, only the |
616 | // first four bytes are used and the GCM-SIV tweak to the final byte is |
617 | // applied. The |in| and |out| pointers may be equal but otherwise must not |
618 | // alias. |
619 | static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len, |
620 | const uint8_t initial_counter[AES_BLOCK_SIZE], |
621 | block128_f enc_block, const AES_KEY *key) { |
622 | union { |
623 | uint32_t w[4]; |
624 | uint8_t c[16]; |
625 | } counter; |
626 | |
627 | OPENSSL_memcpy(counter.c, initial_counter, AES_BLOCK_SIZE); |
628 | counter.c[15] |= 0x80; |
629 | |
630 | for (size_t done = 0; done < in_len;) { |
631 | uint8_t keystream[AES_BLOCK_SIZE]; |
632 | enc_block(counter.c, keystream, key); |
633 | counter.w[0]++; |
634 | |
635 | size_t todo = AES_BLOCK_SIZE; |
636 | if (in_len - done < todo) { |
637 | todo = in_len - done; |
638 | } |
639 | |
640 | for (size_t i = 0; i < todo; i++) { |
641 | out[done + i] = keystream[i] ^ in[done + i]; |
642 | } |
643 | |
644 | done += todo; |
645 | } |
646 | } |
647 | |
648 | // gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and |
649 | // AD. The result is written to |out_tag|. |
650 | static void gcm_siv_polyval( |
651 | uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad, |
652 | size_t ad_len, const uint8_t auth_key[16], |
653 | const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { |
654 | struct polyval_ctx polyval_ctx; |
655 | CRYPTO_POLYVAL_init(&polyval_ctx, auth_key); |
656 | |
657 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15); |
658 | |
659 | uint8_t scratch[16]; |
660 | if (ad_len & 15) { |
661 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
662 | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
663 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); |
664 | } |
665 | |
666 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15); |
667 | if (in_len & 15) { |
668 | OPENSSL_memset(scratch, 0, sizeof(scratch)); |
669 | OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); |
670 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); |
671 | } |
672 | |
673 | union { |
674 | uint8_t c[16]; |
675 | struct { |
676 | uint64_t ad; |
677 | uint64_t in; |
678 | } bitlens; |
679 | } length_block; |
680 | |
681 | length_block.bitlens.ad = ad_len * 8; |
682 | length_block.bitlens.in = in_len * 8; |
683 | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c, |
684 | sizeof(length_block)); |
685 | |
686 | CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag); |
687 | for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) { |
688 | out_tag[i] ^= nonce[i]; |
689 | } |
690 | out_tag[15] &= 0x7f; |
691 | } |
692 | |
693 | // gcm_siv_record_keys contains the keys used for a specific GCM-SIV record. |
694 | struct gcm_siv_record_keys { |
695 | uint8_t auth_key[16]; |
696 | union { |
697 | double align; |
698 | AES_KEY ks; |
699 | } enc_key; |
700 | block128_f enc_block; |
701 | }; |
702 | |
703 | // gcm_siv_keys calculates the keys for a specific GCM-SIV record with the |
704 | // given nonce and writes them to |*out_keys|. |
705 | static void gcm_siv_keys( |
706 | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx, |
707 | struct gcm_siv_record_keys *out_keys, |
708 | const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { |
709 | const AES_KEY *const key = &gcm_siv_ctx->ks.ks; |
710 | uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8]; |
711 | const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4; |
712 | |
713 | uint8_t counter[AES_BLOCK_SIZE]; |
714 | OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN); |
715 | OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN, |
716 | nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN); |
717 | for (size_t i = 0; i < blocks_needed; i++) { |
718 | counter[0] = i; |
719 | |
720 | uint8_t ciphertext[AES_BLOCK_SIZE]; |
721 | gcm_siv_ctx->kgk_block(counter, ciphertext, key); |
722 | OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8); |
723 | } |
724 | |
725 | OPENSSL_memcpy(out_keys->auth_key, key_material, 16); |
726 | aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, |
727 | key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16); |
728 | } |
729 | |
730 | static int aead_aes_gcm_siv_seal_scatter( |
731 | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
732 | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
733 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *, |
734 | size_t , const uint8_t *ad, size_t ad_len) { |
735 | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
736 | (struct aead_aes_gcm_siv_ctx *)&ctx->state; |
737 | const uint64_t in_len_64 = in_len; |
738 | const uint64_t ad_len_64 = ad_len; |
739 | |
740 | if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len || |
741 | in_len_64 > (UINT64_C(1) << 36) || |
742 | ad_len_64 >= (UINT64_C(1) << 61)) { |
743 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
744 | return 0; |
745 | } |
746 | |
747 | if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
748 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
749 | return 0; |
750 | } |
751 | |
752 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
753 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
754 | return 0; |
755 | } |
756 | |
757 | struct gcm_siv_record_keys keys; |
758 | gcm_siv_keys(gcm_siv_ctx, &keys, nonce); |
759 | |
760 | uint8_t tag[16]; |
761 | gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce); |
762 | keys.enc_block(tag, tag, &keys.enc_key.ks); |
763 | |
764 | gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks); |
765 | |
766 | OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN); |
767 | *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
768 | |
769 | return 1; |
770 | } |
771 | |
772 | static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
773 | const uint8_t *nonce, size_t nonce_len, |
774 | const uint8_t *in, size_t in_len, |
775 | const uint8_t *in_tag, |
776 | size_t in_tag_len, const uint8_t *ad, |
777 | size_t ad_len) { |
778 | const uint64_t ad_len_64 = ad_len; |
779 | if (ad_len_64 >= (UINT64_C(1) << 61)) { |
780 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
781 | return 0; |
782 | } |
783 | |
784 | const uint64_t in_len_64 = in_len; |
785 | if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN || |
786 | in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { |
787 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
788 | return 0; |
789 | } |
790 | |
791 | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
792 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
793 | return 0; |
794 | } |
795 | |
796 | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
797 | (struct aead_aes_gcm_siv_ctx *)&ctx->state; |
798 | |
799 | struct gcm_siv_record_keys keys; |
800 | gcm_siv_keys(gcm_siv_ctx, &keys, nonce); |
801 | |
802 | gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks); |
803 | |
804 | uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN]; |
805 | gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce); |
806 | keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks); |
807 | |
808 | if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) { |
809 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
810 | return 0; |
811 | } |
812 | |
813 | return 1; |
814 | } |
815 | |
816 | static const EVP_AEAD aead_aes_128_gcm_siv = { |
817 | 16, // key length |
818 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
819 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
820 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
821 | 0, // seal_scatter_supports_extra_in |
822 | |
823 | aead_aes_gcm_siv_init, |
824 | NULL /* init_with_direction */, |
825 | aead_aes_gcm_siv_cleanup, |
826 | NULL /* open */, |
827 | aead_aes_gcm_siv_seal_scatter, |
828 | aead_aes_gcm_siv_open_gather, |
829 | NULL /* get_iv */, |
830 | NULL /* tag_len */, |
831 | }; |
832 | |
833 | static const EVP_AEAD aead_aes_256_gcm_siv = { |
834 | 32, // key length |
835 | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length |
836 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead |
837 | EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length |
838 | 0, // seal_scatter_supports_extra_in |
839 | |
840 | aead_aes_gcm_siv_init, |
841 | NULL /* init_with_direction */, |
842 | aead_aes_gcm_siv_cleanup, |
843 | NULL /* open */, |
844 | aead_aes_gcm_siv_seal_scatter, |
845 | aead_aes_gcm_siv_open_gather, |
846 | NULL /* get_iv */, |
847 | NULL /* tag_len */, |
848 | }; |
849 | |
850 | #if defined(AES_GCM_SIV_ASM) |
851 | |
852 | static char avx_aesni_capable(void) { |
853 | const uint32_t ecx = OPENSSL_ia32cap_P[1]; |
854 | |
855 | return (ecx & (1 << (57 - 32))) != 0 /* AESNI */ && |
856 | (ecx & (1 << 28)) != 0 /* AVX */; |
857 | } |
858 | |
859 | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { |
860 | if (avx_aesni_capable()) { |
861 | return &aead_aes_128_gcm_siv_asm; |
862 | } |
863 | return &aead_aes_128_gcm_siv; |
864 | } |
865 | |
866 | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { |
867 | if (avx_aesni_capable()) { |
868 | return &aead_aes_256_gcm_siv_asm; |
869 | } |
870 | return &aead_aes_256_gcm_siv; |
871 | } |
872 | |
873 | #else |
874 | |
875 | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { |
876 | return &aead_aes_128_gcm_siv; |
877 | } |
878 | |
879 | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { |
880 | return &aead_aes_256_gcm_siv; |
881 | } |
882 | |
883 | #endif // AES_GCM_SIV_ASM |
884 | |