1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] |
56 | * |
57 | * The DSS routines are based on patches supplied by |
58 | * Steven Schoch <schoch@sheba.arc.nasa.gov>. */ |
59 | |
60 | #include <openssl/dsa.h> |
61 | |
62 | #include <string.h> |
63 | |
64 | #include <openssl/bn.h> |
65 | #include <openssl/dh.h> |
66 | #include <openssl/digest.h> |
67 | #include <openssl/engine.h> |
68 | #include <openssl/err.h> |
69 | #include <openssl/ex_data.h> |
70 | #include <openssl/mem.h> |
71 | #include <openssl/rand.h> |
72 | #include <openssl/sha.h> |
73 | #include <openssl/thread.h> |
74 | |
75 | #include "../fipsmodule/bn/internal.h" |
76 | #include "../internal.h" |
77 | |
78 | |
79 | #define OPENSSL_DSA_MAX_MODULUS_BITS 10000 |
80 | |
81 | // Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of |
82 | // Rabin-Miller |
83 | #define DSS_prime_checks 50 |
84 | |
85 | static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv, |
86 | BIGNUM **out_r); |
87 | |
88 | static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; |
89 | |
90 | DSA *DSA_new(void) { |
91 | DSA *dsa = OPENSSL_malloc(sizeof(DSA)); |
92 | if (dsa == NULL) { |
93 | OPENSSL_PUT_ERROR(DSA, ERR_R_MALLOC_FAILURE); |
94 | return NULL; |
95 | } |
96 | |
97 | OPENSSL_memset(dsa, 0, sizeof(DSA)); |
98 | |
99 | dsa->references = 1; |
100 | |
101 | CRYPTO_MUTEX_init(&dsa->method_mont_lock); |
102 | CRYPTO_new_ex_data(&dsa->ex_data); |
103 | |
104 | return dsa; |
105 | } |
106 | |
107 | void DSA_free(DSA *dsa) { |
108 | if (dsa == NULL) { |
109 | return; |
110 | } |
111 | |
112 | if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) { |
113 | return; |
114 | } |
115 | |
116 | CRYPTO_free_ex_data(&g_ex_data_class, dsa, &dsa->ex_data); |
117 | |
118 | BN_clear_free(dsa->p); |
119 | BN_clear_free(dsa->q); |
120 | BN_clear_free(dsa->g); |
121 | BN_clear_free(dsa->pub_key); |
122 | BN_clear_free(dsa->priv_key); |
123 | BN_MONT_CTX_free(dsa->method_mont_p); |
124 | BN_MONT_CTX_free(dsa->method_mont_q); |
125 | CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock); |
126 | OPENSSL_free(dsa); |
127 | } |
128 | |
129 | int DSA_up_ref(DSA *dsa) { |
130 | CRYPTO_refcount_inc(&dsa->references); |
131 | return 1; |
132 | } |
133 | |
134 | void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key, |
135 | const BIGNUM **out_priv_key) { |
136 | if (out_pub_key != NULL) { |
137 | *out_pub_key = dsa->pub_key; |
138 | } |
139 | if (out_priv_key != NULL) { |
140 | *out_priv_key = dsa->priv_key; |
141 | } |
142 | } |
143 | |
144 | void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q, |
145 | const BIGNUM **out_g) { |
146 | if (out_p != NULL) { |
147 | *out_p = dsa->p; |
148 | } |
149 | if (out_q != NULL) { |
150 | *out_q = dsa->q; |
151 | } |
152 | if (out_g != NULL) { |
153 | *out_g = dsa->g; |
154 | } |
155 | } |
156 | |
157 | int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) { |
158 | if (dsa->pub_key == NULL && pub_key == NULL) { |
159 | return 0; |
160 | } |
161 | |
162 | if (pub_key != NULL) { |
163 | BN_free(dsa->pub_key); |
164 | dsa->pub_key = pub_key; |
165 | } |
166 | if (priv_key != NULL) { |
167 | BN_free(dsa->priv_key); |
168 | dsa->priv_key = priv_key; |
169 | } |
170 | |
171 | return 1; |
172 | } |
173 | |
174 | int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) { |
175 | if ((dsa->p == NULL && p == NULL) || |
176 | (dsa->q == NULL && q == NULL) || |
177 | (dsa->g == NULL && g == NULL)) { |
178 | return 0; |
179 | } |
180 | |
181 | if (p != NULL) { |
182 | BN_free(dsa->p); |
183 | dsa->p = p; |
184 | } |
185 | if (q != NULL) { |
186 | BN_free(dsa->q); |
187 | dsa->q = q; |
188 | } |
189 | if (g != NULL) { |
190 | BN_free(dsa->g); |
191 | dsa->g = g; |
192 | } |
193 | |
194 | return 1; |
195 | } |
196 | |
197 | int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in, |
198 | size_t seed_len, int *out_counter, |
199 | unsigned long *out_h, BN_GENCB *cb) { |
200 | int ok = 0; |
201 | unsigned char seed[SHA256_DIGEST_LENGTH]; |
202 | unsigned char md[SHA256_DIGEST_LENGTH]; |
203 | unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH]; |
204 | BIGNUM *r0, *W, *X, *c, *test; |
205 | BIGNUM *g = NULL, *q = NULL, *p = NULL; |
206 | BN_MONT_CTX *mont = NULL; |
207 | int k, n = 0, m = 0; |
208 | unsigned i; |
209 | int counter = 0; |
210 | int r = 0; |
211 | BN_CTX *ctx = NULL; |
212 | unsigned int h = 2; |
213 | unsigned qsize; |
214 | const EVP_MD *evpmd; |
215 | |
216 | evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1(); |
217 | qsize = EVP_MD_size(evpmd); |
218 | |
219 | if (bits < 512) { |
220 | bits = 512; |
221 | } |
222 | |
223 | bits = (bits + 63) / 64 * 64; |
224 | |
225 | if (seed_in != NULL) { |
226 | if (seed_len < (size_t)qsize) { |
227 | return 0; |
228 | } |
229 | if (seed_len > (size_t)qsize) { |
230 | // Only consume as much seed as is expected. |
231 | seed_len = qsize; |
232 | } |
233 | OPENSSL_memcpy(seed, seed_in, seed_len); |
234 | } |
235 | |
236 | ctx = BN_CTX_new(); |
237 | if (ctx == NULL) { |
238 | goto err; |
239 | } |
240 | BN_CTX_start(ctx); |
241 | |
242 | r0 = BN_CTX_get(ctx); |
243 | g = BN_CTX_get(ctx); |
244 | W = BN_CTX_get(ctx); |
245 | q = BN_CTX_get(ctx); |
246 | X = BN_CTX_get(ctx); |
247 | c = BN_CTX_get(ctx); |
248 | p = BN_CTX_get(ctx); |
249 | test = BN_CTX_get(ctx); |
250 | |
251 | if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) { |
252 | goto err; |
253 | } |
254 | |
255 | for (;;) { |
256 | // Find q. |
257 | for (;;) { |
258 | // step 1 |
259 | if (!BN_GENCB_call(cb, 0, m++)) { |
260 | goto err; |
261 | } |
262 | |
263 | int use_random_seed = (seed_in == NULL); |
264 | if (use_random_seed) { |
265 | if (!RAND_bytes(seed, qsize)) { |
266 | goto err; |
267 | } |
268 | } else { |
269 | // If we come back through, use random seed next time. |
270 | seed_in = NULL; |
271 | } |
272 | OPENSSL_memcpy(buf, seed, qsize); |
273 | OPENSSL_memcpy(buf2, seed, qsize); |
274 | // precompute "SEED + 1" for step 7: |
275 | for (i = qsize - 1; i < qsize; i--) { |
276 | buf[i]++; |
277 | if (buf[i] != 0) { |
278 | break; |
279 | } |
280 | } |
281 | |
282 | // step 2 |
283 | if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) || |
284 | !EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) { |
285 | goto err; |
286 | } |
287 | for (i = 0; i < qsize; i++) { |
288 | md[i] ^= buf2[i]; |
289 | } |
290 | |
291 | // step 3 |
292 | md[0] |= 0x80; |
293 | md[qsize - 1] |= 0x01; |
294 | if (!BN_bin2bn(md, qsize, q)) { |
295 | goto err; |
296 | } |
297 | |
298 | // step 4 |
299 | r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb); |
300 | if (r > 0) { |
301 | break; |
302 | } |
303 | if (r != 0) { |
304 | goto err; |
305 | } |
306 | |
307 | // do a callback call |
308 | // step 5 |
309 | } |
310 | |
311 | if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) { |
312 | goto err; |
313 | } |
314 | |
315 | // step 6 |
316 | counter = 0; |
317 | // "offset = 2" |
318 | |
319 | n = (bits - 1) / 160; |
320 | |
321 | for (;;) { |
322 | if ((counter != 0) && !BN_GENCB_call(cb, 0, counter)) { |
323 | goto err; |
324 | } |
325 | |
326 | // step 7 |
327 | BN_zero(W); |
328 | // now 'buf' contains "SEED + offset - 1" |
329 | for (k = 0; k <= n; k++) { |
330 | // obtain "SEED + offset + k" by incrementing: |
331 | for (i = qsize - 1; i < qsize; i--) { |
332 | buf[i]++; |
333 | if (buf[i] != 0) { |
334 | break; |
335 | } |
336 | } |
337 | |
338 | if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) { |
339 | goto err; |
340 | } |
341 | |
342 | // step 8 |
343 | if (!BN_bin2bn(md, qsize, r0) || |
344 | !BN_lshift(r0, r0, (qsize << 3) * k) || |
345 | !BN_add(W, W, r0)) { |
346 | goto err; |
347 | } |
348 | } |
349 | |
350 | // more of step 8 |
351 | if (!BN_mask_bits(W, bits - 1) || |
352 | !BN_copy(X, W) || |
353 | !BN_add(X, X, test)) { |
354 | goto err; |
355 | } |
356 | |
357 | // step 9 |
358 | if (!BN_lshift1(r0, q) || |
359 | !BN_mod(c, X, r0, ctx) || |
360 | !BN_sub(r0, c, BN_value_one()) || |
361 | !BN_sub(p, X, r0)) { |
362 | goto err; |
363 | } |
364 | |
365 | // step 10 |
366 | if (BN_cmp(p, test) >= 0) { |
367 | // step 11 |
368 | r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb); |
369 | if (r > 0) { |
370 | goto end; // found it |
371 | } |
372 | if (r != 0) { |
373 | goto err; |
374 | } |
375 | } |
376 | |
377 | // step 13 |
378 | counter++; |
379 | // "offset = offset + n + 1" |
380 | |
381 | // step 14 |
382 | if (counter >= 4096) { |
383 | break; |
384 | } |
385 | } |
386 | } |
387 | end: |
388 | if (!BN_GENCB_call(cb, 2, 1)) { |
389 | goto err; |
390 | } |
391 | |
392 | // We now need to generate g |
393 | // Set r0=(p-1)/q |
394 | if (!BN_sub(test, p, BN_value_one()) || |
395 | !BN_div(r0, NULL, test, q, ctx)) { |
396 | goto err; |
397 | } |
398 | |
399 | mont = BN_MONT_CTX_new_for_modulus(p, ctx); |
400 | if (mont == NULL || |
401 | !BN_set_word(test, h)) { |
402 | goto err; |
403 | } |
404 | |
405 | for (;;) { |
406 | // g=test^r0%p |
407 | if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) { |
408 | goto err; |
409 | } |
410 | if (!BN_is_one(g)) { |
411 | break; |
412 | } |
413 | if (!BN_add(test, test, BN_value_one())) { |
414 | goto err; |
415 | } |
416 | h++; |
417 | } |
418 | |
419 | if (!BN_GENCB_call(cb, 3, 1)) { |
420 | goto err; |
421 | } |
422 | |
423 | ok = 1; |
424 | |
425 | err: |
426 | if (ok) { |
427 | BN_free(dsa->p); |
428 | BN_free(dsa->q); |
429 | BN_free(dsa->g); |
430 | dsa->p = BN_dup(p); |
431 | dsa->q = BN_dup(q); |
432 | dsa->g = BN_dup(g); |
433 | if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) { |
434 | ok = 0; |
435 | goto err; |
436 | } |
437 | if (out_counter != NULL) { |
438 | *out_counter = counter; |
439 | } |
440 | if (out_h != NULL) { |
441 | *out_h = h; |
442 | } |
443 | } |
444 | |
445 | if (ctx) { |
446 | BN_CTX_end(ctx); |
447 | BN_CTX_free(ctx); |
448 | } |
449 | |
450 | BN_MONT_CTX_free(mont); |
451 | |
452 | return ok; |
453 | } |
454 | |
455 | DSA *DSAparams_dup(const DSA *dsa) { |
456 | DSA *ret = DSA_new(); |
457 | if (ret == NULL) { |
458 | return NULL; |
459 | } |
460 | ret->p = BN_dup(dsa->p); |
461 | ret->q = BN_dup(dsa->q); |
462 | ret->g = BN_dup(dsa->g); |
463 | if (ret->p == NULL || ret->q == NULL || ret->g == NULL) { |
464 | DSA_free(ret); |
465 | return NULL; |
466 | } |
467 | return ret; |
468 | } |
469 | |
470 | int DSA_generate_key(DSA *dsa) { |
471 | int ok = 0; |
472 | BN_CTX *ctx = NULL; |
473 | BIGNUM *pub_key = NULL, *priv_key = NULL; |
474 | |
475 | ctx = BN_CTX_new(); |
476 | if (ctx == NULL) { |
477 | goto err; |
478 | } |
479 | |
480 | priv_key = dsa->priv_key; |
481 | if (priv_key == NULL) { |
482 | priv_key = BN_new(); |
483 | if (priv_key == NULL) { |
484 | goto err; |
485 | } |
486 | } |
487 | |
488 | if (!BN_rand_range_ex(priv_key, 1, dsa->q)) { |
489 | goto err; |
490 | } |
491 | |
492 | pub_key = dsa->pub_key; |
493 | if (pub_key == NULL) { |
494 | pub_key = BN_new(); |
495 | if (pub_key == NULL) { |
496 | goto err; |
497 | } |
498 | } |
499 | |
500 | if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock, |
501 | dsa->p, ctx) || |
502 | !BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx, |
503 | dsa->method_mont_p)) { |
504 | goto err; |
505 | } |
506 | |
507 | dsa->priv_key = priv_key; |
508 | dsa->pub_key = pub_key; |
509 | ok = 1; |
510 | |
511 | err: |
512 | if (dsa->pub_key == NULL) { |
513 | BN_free(pub_key); |
514 | } |
515 | if (dsa->priv_key == NULL) { |
516 | BN_free(priv_key); |
517 | } |
518 | BN_CTX_free(ctx); |
519 | |
520 | return ok; |
521 | } |
522 | |
523 | DSA_SIG *DSA_SIG_new(void) { |
524 | DSA_SIG *sig; |
525 | sig = OPENSSL_malloc(sizeof(DSA_SIG)); |
526 | if (!sig) { |
527 | return NULL; |
528 | } |
529 | sig->r = NULL; |
530 | sig->s = NULL; |
531 | return sig; |
532 | } |
533 | |
534 | void DSA_SIG_free(DSA_SIG *sig) { |
535 | if (!sig) { |
536 | return; |
537 | } |
538 | |
539 | BN_free(sig->r); |
540 | BN_free(sig->s); |
541 | OPENSSL_free(sig); |
542 | } |
543 | |
544 | // mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and |
545 | // |b| as secret. This function internally uses Montgomery reduction, but |
546 | // neither inputs nor outputs are in Montgomery form. |
547 | static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
548 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
549 | BN_CTX_start(ctx); |
550 | BIGNUM *tmp = BN_CTX_get(ctx); |
551 | // |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a |
552 | // single |BN_to_montgomery| which adds one factor of R. |
553 | int ok = tmp != NULL && |
554 | BN_to_montgomery(tmp, a, mont, ctx) && |
555 | BN_mod_mul_montgomery(r, tmp, b, mont, ctx); |
556 | BN_CTX_end(ctx); |
557 | return ok; |
558 | } |
559 | |
560 | DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) { |
561 | if (!dsa->p || !dsa->q || !dsa->g) { |
562 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
563 | return NULL; |
564 | } |
565 | |
566 | // Reject invalid parameters. In particular, the algorithm will infinite loop |
567 | // if |g| is zero. |
568 | if (BN_is_zero(dsa->p) || BN_is_zero(dsa->q) || BN_is_zero(dsa->g)) { |
569 | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); |
570 | return NULL; |
571 | } |
572 | |
573 | // We only support DSA keys that are a multiple of 8 bits. (This is a weaker |
574 | // check than the one in |DSA_do_check_signature|, which only allows 160-, |
575 | // 224-, and 256-bit keys. |
576 | if (BN_num_bits(dsa->q) % 8 != 0) { |
577 | OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE); |
578 | return NULL; |
579 | } |
580 | |
581 | BIGNUM *kinv = NULL, *r = NULL, *s = NULL; |
582 | BIGNUM m; |
583 | BIGNUM xr; |
584 | BN_CTX *ctx = NULL; |
585 | DSA_SIG *ret = NULL; |
586 | |
587 | BN_init(&m); |
588 | BN_init(&xr); |
589 | s = BN_new(); |
590 | if (s == NULL) { |
591 | goto err; |
592 | } |
593 | ctx = BN_CTX_new(); |
594 | if (ctx == NULL) { |
595 | goto err; |
596 | } |
597 | |
598 | redo: |
599 | if (!dsa_sign_setup(dsa, ctx, &kinv, &r)) { |
600 | goto err; |
601 | } |
602 | |
603 | if (digest_len > BN_num_bytes(dsa->q)) { |
604 | // If the digest length is greater than the size of |dsa->q| use the |
605 | // BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-3, 4.2. |
606 | // Note the above check that |dsa->q| is a multiple of 8 bits. |
607 | digest_len = BN_num_bytes(dsa->q); |
608 | } |
609 | |
610 | if (BN_bin2bn(digest, digest_len, &m) == NULL) { |
611 | goto err; |
612 | } |
613 | |
614 | // |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This |
615 | // violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions. |
616 | // (The underlying algorithms could accept looser bounds, but we reduce for |
617 | // simplicity.) |
618 | size_t q_width = bn_minimal_width(dsa->q); |
619 | if (!bn_resize_words(&m, q_width) || |
620 | !bn_resize_words(&xr, q_width)) { |
621 | goto err; |
622 | } |
623 | bn_reduce_once_in_place(m.d, 0 /* no carry word */, dsa->q->d, |
624 | xr.d /* scratch space */, q_width); |
625 | |
626 | // Compute s = inv(k) (m + xr) mod q. Note |dsa->method_mont_q| is |
627 | // initialized by |dsa_sign_setup|. |
628 | if (!mod_mul_consttime(&xr, dsa->priv_key, r, dsa->method_mont_q, ctx) || |
629 | !bn_mod_add_consttime(s, &xr, &m, dsa->q, ctx) || |
630 | !mod_mul_consttime(s, s, kinv, dsa->method_mont_q, ctx)) { |
631 | goto err; |
632 | } |
633 | |
634 | // Redo if r or s is zero as required by FIPS 186-3: this is |
635 | // very unlikely. |
636 | if (BN_is_zero(r) || BN_is_zero(s)) { |
637 | goto redo; |
638 | } |
639 | ret = DSA_SIG_new(); |
640 | if (ret == NULL) { |
641 | goto err; |
642 | } |
643 | ret->r = r; |
644 | ret->s = s; |
645 | |
646 | err: |
647 | if (ret == NULL) { |
648 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
649 | BN_free(r); |
650 | BN_free(s); |
651 | } |
652 | BN_CTX_free(ctx); |
653 | BN_clear_free(&m); |
654 | BN_clear_free(&xr); |
655 | BN_clear_free(kinv); |
656 | |
657 | return ret; |
658 | } |
659 | |
660 | int DSA_do_verify(const uint8_t *digest, size_t digest_len, DSA_SIG *sig, |
661 | const DSA *dsa) { |
662 | int valid; |
663 | if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) { |
664 | return -1; |
665 | } |
666 | return valid; |
667 | } |
668 | |
669 | int DSA_do_check_signature(int *out_valid, const uint8_t *digest, |
670 | size_t digest_len, DSA_SIG *sig, const DSA *dsa) { |
671 | BN_CTX *ctx; |
672 | BIGNUM u1, u2, t1; |
673 | int ret = 0; |
674 | unsigned i; |
675 | |
676 | *out_valid = 0; |
677 | |
678 | if (!dsa->p || !dsa->q || !dsa->g) { |
679 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
680 | return 0; |
681 | } |
682 | |
683 | i = BN_num_bits(dsa->q); |
684 | // FIPS 186-3 allows only different sizes for q. |
685 | if (i != 160 && i != 224 && i != 256) { |
686 | OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE); |
687 | return 0; |
688 | } |
689 | |
690 | if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) { |
691 | OPENSSL_PUT_ERROR(DSA, DSA_R_MODULUS_TOO_LARGE); |
692 | return 0; |
693 | } |
694 | |
695 | BN_init(&u1); |
696 | BN_init(&u2); |
697 | BN_init(&t1); |
698 | |
699 | ctx = BN_CTX_new(); |
700 | if (ctx == NULL) { |
701 | goto err; |
702 | } |
703 | |
704 | if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || |
705 | BN_ucmp(sig->r, dsa->q) >= 0) { |
706 | ret = 1; |
707 | goto err; |
708 | } |
709 | if (BN_is_zero(sig->s) || BN_is_negative(sig->s) || |
710 | BN_ucmp(sig->s, dsa->q) >= 0) { |
711 | ret = 1; |
712 | goto err; |
713 | } |
714 | |
715 | // Calculate W = inv(S) mod Q |
716 | // save W in u2 |
717 | if (BN_mod_inverse(&u2, sig->s, dsa->q, ctx) == NULL) { |
718 | goto err; |
719 | } |
720 | |
721 | // save M in u1 |
722 | if (digest_len > (i >> 3)) { |
723 | // if the digest length is greater than the size of q use the |
724 | // BN_num_bits(dsa->q) leftmost bits of the digest, see |
725 | // fips 186-3, 4.2 |
726 | digest_len = (i >> 3); |
727 | } |
728 | |
729 | if (BN_bin2bn(digest, digest_len, &u1) == NULL) { |
730 | goto err; |
731 | } |
732 | |
733 | // u1 = M * w mod q |
734 | if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx)) { |
735 | goto err; |
736 | } |
737 | |
738 | // u2 = r * w mod q |
739 | if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx)) { |
740 | goto err; |
741 | } |
742 | |
743 | if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, |
744 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, |
745 | ctx)) { |
746 | goto err; |
747 | } |
748 | |
749 | if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx, |
750 | dsa->method_mont_p)) { |
751 | goto err; |
752 | } |
753 | |
754 | // BN_copy(&u1,&t1); |
755 | // let u1 = u1 mod q |
756 | if (!BN_mod(&u1, &t1, dsa->q, ctx)) { |
757 | goto err; |
758 | } |
759 | |
760 | // V is now in u1. If the signature is correct, it will be |
761 | // equal to R. |
762 | *out_valid = BN_ucmp(&u1, sig->r) == 0; |
763 | ret = 1; |
764 | |
765 | err: |
766 | if (ret != 1) { |
767 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
768 | } |
769 | BN_CTX_free(ctx); |
770 | BN_free(&u1); |
771 | BN_free(&u2); |
772 | BN_free(&t1); |
773 | |
774 | return ret; |
775 | } |
776 | |
777 | int DSA_sign(int type, const uint8_t *digest, size_t digest_len, |
778 | uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) { |
779 | DSA_SIG *s; |
780 | |
781 | s = DSA_do_sign(digest, digest_len, dsa); |
782 | if (s == NULL) { |
783 | *out_siglen = 0; |
784 | return 0; |
785 | } |
786 | |
787 | *out_siglen = i2d_DSA_SIG(s, &out_sig); |
788 | DSA_SIG_free(s); |
789 | return 1; |
790 | } |
791 | |
792 | int DSA_verify(int type, const uint8_t *digest, size_t digest_len, |
793 | const uint8_t *sig, size_t sig_len, const DSA *dsa) { |
794 | int valid; |
795 | if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) { |
796 | return -1; |
797 | } |
798 | return valid; |
799 | } |
800 | |
801 | int DSA_check_signature(int *out_valid, const uint8_t *digest, |
802 | size_t digest_len, const uint8_t *sig, size_t sig_len, |
803 | const DSA *dsa) { |
804 | DSA_SIG *s = NULL; |
805 | int ret = 0; |
806 | uint8_t *der = NULL; |
807 | |
808 | s = DSA_SIG_new(); |
809 | if (s == NULL) { |
810 | goto err; |
811 | } |
812 | |
813 | const uint8_t *sigp = sig; |
814 | if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) { |
815 | goto err; |
816 | } |
817 | |
818 | // Ensure that the signature uses DER and doesn't have trailing garbage. |
819 | int der_len = i2d_DSA_SIG(s, &der); |
820 | if (der_len < 0 || (size_t)der_len != sig_len || |
821 | OPENSSL_memcmp(sig, der, sig_len)) { |
822 | goto err; |
823 | } |
824 | |
825 | ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa); |
826 | |
827 | err: |
828 | OPENSSL_free(der); |
829 | DSA_SIG_free(s); |
830 | return ret; |
831 | } |
832 | |
833 | // der_len_len returns the number of bytes needed to represent a length of |len| |
834 | // in DER. |
835 | static size_t der_len_len(size_t len) { |
836 | if (len < 0x80) { |
837 | return 1; |
838 | } |
839 | size_t ret = 1; |
840 | while (len > 0) { |
841 | ret++; |
842 | len >>= 8; |
843 | } |
844 | return ret; |
845 | } |
846 | |
847 | int DSA_size(const DSA *dsa) { |
848 | size_t order_len = BN_num_bytes(dsa->q); |
849 | // Compute the maximum length of an |order_len| byte integer. Defensively |
850 | // assume that the leading 0x00 is included. |
851 | size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len; |
852 | if (integer_len < order_len) { |
853 | return 0; |
854 | } |
855 | // A DSA signature is two INTEGERs. |
856 | size_t value_len = 2 * integer_len; |
857 | if (value_len < integer_len) { |
858 | return 0; |
859 | } |
860 | // Add the header. |
861 | size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len; |
862 | if (ret < value_len) { |
863 | return 0; |
864 | } |
865 | return ret; |
866 | } |
867 | |
868 | static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv, |
869 | BIGNUM **out_r) { |
870 | if (!dsa->p || !dsa->q || !dsa->g) { |
871 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
872 | return 0; |
873 | } |
874 | |
875 | int ret = 0; |
876 | BIGNUM k; |
877 | BN_init(&k); |
878 | BIGNUM *r = BN_new(); |
879 | BIGNUM *kinv = BN_new(); |
880 | if (r == NULL || kinv == NULL || |
881 | // Get random k |
882 | !BN_rand_range_ex(&k, 1, dsa->q) || |
883 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, |
884 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, |
885 | ctx) || |
886 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q, |
887 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q, |
888 | ctx) || |
889 | // Compute r = (g^k mod p) mod q |
890 | !BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx, |
891 | dsa->method_mont_p) || |
892 | // Note |BN_mod| below is not constant-time and may leak information about |
893 | // |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not |
894 | // easily performed in constant-time with Montgomery reduction. |
895 | // |
896 | // However, |r| at this point is g^k (mod p). It is almost the value of |
897 | // |r| revealed in the signature anyway (g^k (mod p) (mod q)), going from |
898 | // it to |k| would require computing a discrete log. |
899 | !BN_mod(r, r, dsa->q, ctx) || |
900 | // Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little |
901 | // Theorem. |
902 | !bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) { |
903 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
904 | goto err; |
905 | } |
906 | |
907 | BN_clear_free(*out_kinv); |
908 | *out_kinv = kinv; |
909 | kinv = NULL; |
910 | |
911 | BN_clear_free(*out_r); |
912 | *out_r = r; |
913 | r = NULL; |
914 | |
915 | ret = 1; |
916 | |
917 | err: |
918 | BN_clear_free(&k); |
919 | BN_clear_free(r); |
920 | BN_clear_free(kinv); |
921 | return ret; |
922 | } |
923 | |
924 | int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
925 | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
926 | int index; |
927 | if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, |
928 | free_func)) { |
929 | return -1; |
930 | } |
931 | return index; |
932 | } |
933 | |
934 | int DSA_set_ex_data(DSA *dsa, int idx, void *arg) { |
935 | return CRYPTO_set_ex_data(&dsa->ex_data, idx, arg); |
936 | } |
937 | |
938 | void *DSA_get_ex_data(const DSA *dsa, int idx) { |
939 | return CRYPTO_get_ex_data(&dsa->ex_data, idx); |
940 | } |
941 | |
942 | DH *DSA_dup_DH(const DSA *dsa) { |
943 | if (dsa == NULL) { |
944 | return NULL; |
945 | } |
946 | |
947 | DH *ret = DH_new(); |
948 | if (ret == NULL) { |
949 | goto err; |
950 | } |
951 | if (dsa->q != NULL) { |
952 | ret->priv_length = BN_num_bits(dsa->q); |
953 | if ((ret->q = BN_dup(dsa->q)) == NULL) { |
954 | goto err; |
955 | } |
956 | } |
957 | if ((dsa->p != NULL && (ret->p = BN_dup(dsa->p)) == NULL) || |
958 | (dsa->g != NULL && (ret->g = BN_dup(dsa->g)) == NULL) || |
959 | (dsa->pub_key != NULL && (ret->pub_key = BN_dup(dsa->pub_key)) == NULL) || |
960 | (dsa->priv_key != NULL && |
961 | (ret->priv_key = BN_dup(dsa->priv_key)) == NULL)) { |
962 | goto err; |
963 | } |
964 | |
965 | return ret; |
966 | |
967 | err: |
968 | DH_free(ret); |
969 | return NULL; |
970 | } |
971 | |