1 | /* Written by Nils Larsch for the OpenSSL project. */ |
2 | /* ==================================================================== |
3 | * Copyright (c) 2000-2003 The OpenSSL Project. All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in |
14 | * the documentation and/or other materials provided with the |
15 | * distribution. |
16 | * |
17 | * 3. All advertising materials mentioning features or use of this |
18 | * software must display the following acknowledgment: |
19 | * "This product includes software developed by the OpenSSL Project |
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
21 | * |
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
23 | * endorse or promote products derived from this software without |
24 | * prior written permission. For written permission, please contact |
25 | * licensing@OpenSSL.org. |
26 | * |
27 | * 5. Products derived from this software may not be called "OpenSSL" |
28 | * nor may "OpenSSL" appear in their names without prior written |
29 | * permission of the OpenSSL Project. |
30 | * |
31 | * 6. Redistributions of any form whatsoever must retain the following |
32 | * acknowledgment: |
33 | * "This product includes software developed by the OpenSSL Project |
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
35 | * |
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
48 | * ==================================================================== |
49 | * |
50 | * This product includes cryptographic software written by Eric Young |
51 | * (eay@cryptsoft.com). This product includes software written by Tim |
52 | * Hudson (tjh@cryptsoft.com). */ |
53 | |
54 | #include <openssl/ec.h> |
55 | |
56 | #include <limits.h> |
57 | #include <string.h> |
58 | |
59 | #include <openssl/bytestring.h> |
60 | #include <openssl/bn.h> |
61 | #include <openssl/err.h> |
62 | #include <openssl/mem.h> |
63 | #include <openssl/nid.h> |
64 | |
65 | #include "../fipsmodule/ec/internal.h" |
66 | #include "../bytestring/internal.h" |
67 | #include "../internal.h" |
68 | |
69 | |
70 | static const unsigned kParametersTag = |
71 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0; |
72 | static const unsigned kPublicKeyTag = |
73 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1; |
74 | |
75 | EC_KEY *EC_KEY_parse_private_key(CBS *cbs, const EC_GROUP *group) { |
76 | CBS ec_private_key, private_key; |
77 | uint64_t version; |
78 | if (!CBS_get_asn1(cbs, &ec_private_key, CBS_ASN1_SEQUENCE) || |
79 | !CBS_get_asn1_uint64(&ec_private_key, &version) || |
80 | version != 1 || |
81 | !CBS_get_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING)) { |
82 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
83 | return NULL; |
84 | } |
85 | |
86 | // Parse the optional parameters field. |
87 | EC_GROUP *inner_group = NULL; |
88 | EC_KEY *ret = NULL; |
89 | BIGNUM *priv_key = NULL; |
90 | if (CBS_peek_asn1_tag(&ec_private_key, kParametersTag)) { |
91 | // Per SEC 1, as an alternative to omitting it, one is allowed to specify |
92 | // this field and put in a NULL to mean inheriting this value. This was |
93 | // omitted in a previous version of this logic without problems, so leave it |
94 | // unimplemented. |
95 | CBS child; |
96 | if (!CBS_get_asn1(&ec_private_key, &child, kParametersTag)) { |
97 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
98 | goto err; |
99 | } |
100 | inner_group = EC_KEY_parse_parameters(&child); |
101 | if (inner_group == NULL) { |
102 | goto err; |
103 | } |
104 | if (group == NULL) { |
105 | group = inner_group; |
106 | } else if (EC_GROUP_cmp(group, inner_group, NULL) != 0) { |
107 | // If a group was supplied externally, it must match. |
108 | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); |
109 | goto err; |
110 | } |
111 | if (CBS_len(&child) != 0) { |
112 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
113 | goto err; |
114 | } |
115 | } |
116 | |
117 | if (group == NULL) { |
118 | OPENSSL_PUT_ERROR(EC, EC_R_MISSING_PARAMETERS); |
119 | goto err; |
120 | } |
121 | |
122 | ret = EC_KEY_new(); |
123 | if (ret == NULL || !EC_KEY_set_group(ret, group)) { |
124 | goto err; |
125 | } |
126 | |
127 | // Although RFC 5915 specifies the length of the key, OpenSSL historically |
128 | // got this wrong, so accept any length. See upstream's |
129 | // 30cd4ff294252c4b6a4b69cbef6a5b4117705d22. |
130 | priv_key = BN_bin2bn(CBS_data(&private_key), CBS_len(&private_key), NULL); |
131 | ret->pub_key = EC_POINT_new(group); |
132 | if (priv_key == NULL || ret->pub_key == NULL || |
133 | !EC_KEY_set_private_key(ret, priv_key)) { |
134 | goto err; |
135 | } |
136 | |
137 | if (CBS_peek_asn1_tag(&ec_private_key, kPublicKeyTag)) { |
138 | CBS child, public_key; |
139 | uint8_t padding; |
140 | if (!CBS_get_asn1(&ec_private_key, &child, kPublicKeyTag) || |
141 | !CBS_get_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || |
142 | // As in a SubjectPublicKeyInfo, the byte-encoded public key is then |
143 | // encoded as a BIT STRING with bits ordered as in the DER encoding. |
144 | !CBS_get_u8(&public_key, &padding) || |
145 | padding != 0 || |
146 | // Explicitly check |public_key| is non-empty to save the conversion |
147 | // form later. |
148 | CBS_len(&public_key) == 0 || |
149 | !EC_POINT_oct2point(group, ret->pub_key, CBS_data(&public_key), |
150 | CBS_len(&public_key), NULL) || |
151 | CBS_len(&child) != 0) { |
152 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
153 | goto err; |
154 | } |
155 | |
156 | // Save the point conversion form. |
157 | // TODO(davidben): Consider removing this. |
158 | ret->conv_form = |
159 | (point_conversion_form_t)(CBS_data(&public_key)[0] & ~0x01); |
160 | } else { |
161 | // Compute the public key instead. |
162 | if (!ec_point_mul_scalar_base(group, &ret->pub_key->raw, |
163 | &ret->priv_key->scalar)) { |
164 | goto err; |
165 | } |
166 | // Remember the original private-key-only encoding. |
167 | // TODO(davidben): Consider removing this. |
168 | ret->enc_flag |= EC_PKEY_NO_PUBKEY; |
169 | } |
170 | |
171 | if (CBS_len(&ec_private_key) != 0) { |
172 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
173 | goto err; |
174 | } |
175 | |
176 | // Ensure the resulting key is valid. |
177 | if (!EC_KEY_check_key(ret)) { |
178 | goto err; |
179 | } |
180 | |
181 | BN_free(priv_key); |
182 | EC_GROUP_free(inner_group); |
183 | return ret; |
184 | |
185 | err: |
186 | EC_KEY_free(ret); |
187 | BN_free(priv_key); |
188 | EC_GROUP_free(inner_group); |
189 | return NULL; |
190 | } |
191 | |
192 | int EC_KEY_marshal_private_key(CBB *cbb, const EC_KEY *key, |
193 | unsigned enc_flags) { |
194 | if (key == NULL || key->group == NULL || key->priv_key == NULL) { |
195 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
196 | return 0; |
197 | } |
198 | |
199 | CBB ec_private_key, private_key; |
200 | if (!CBB_add_asn1(cbb, &ec_private_key, CBS_ASN1_SEQUENCE) || |
201 | !CBB_add_asn1_uint64(&ec_private_key, 1 /* version */) || |
202 | !CBB_add_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING) || |
203 | !BN_bn2cbb_padded(&private_key, |
204 | BN_num_bytes(EC_GROUP_get0_order(key->group)), |
205 | EC_KEY_get0_private_key(key))) { |
206 | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
207 | return 0; |
208 | } |
209 | |
210 | if (!(enc_flags & EC_PKEY_NO_PARAMETERS)) { |
211 | CBB child; |
212 | if (!CBB_add_asn1(&ec_private_key, &child, kParametersTag) || |
213 | !EC_KEY_marshal_curve_name(&child, key->group) || |
214 | !CBB_flush(&ec_private_key)) { |
215 | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
216 | return 0; |
217 | } |
218 | } |
219 | |
220 | // TODO(fork): replace this flexibility with sensible default? |
221 | if (!(enc_flags & EC_PKEY_NO_PUBKEY) && key->pub_key != NULL) { |
222 | CBB child, public_key; |
223 | if (!CBB_add_asn1(&ec_private_key, &child, kPublicKeyTag) || |
224 | !CBB_add_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || |
225 | // As in a SubjectPublicKeyInfo, the byte-encoded public key is then |
226 | // encoded as a BIT STRING with bits ordered as in the DER encoding. |
227 | !CBB_add_u8(&public_key, 0 /* padding */) || |
228 | !EC_POINT_point2cbb(&public_key, key->group, key->pub_key, |
229 | key->conv_form, NULL) || |
230 | !CBB_flush(&ec_private_key)) { |
231 | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
232 | return 0; |
233 | } |
234 | } |
235 | |
236 | if (!CBB_flush(cbb)) { |
237 | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
238 | return 0; |
239 | } |
240 | |
241 | return 1; |
242 | } |
243 | |
244 | // is_unsigned_integer returns one if |cbs| is a valid unsigned DER INTEGER and |
245 | // zero otherwise. |
246 | static int is_unsigned_integer(const CBS *cbs) { |
247 | if (CBS_len(cbs) == 0) { |
248 | return 0; |
249 | } |
250 | uint8_t byte = CBS_data(cbs)[0]; |
251 | if ((byte & 0x80) || |
252 | (byte == 0 && CBS_len(cbs) > 1 && (CBS_data(cbs)[1] & 0x80) == 0)) { |
253 | // Negative or not minimally-encoded. |
254 | return 0; |
255 | } |
256 | return 1; |
257 | } |
258 | |
259 | // kPrimeFieldOID is the encoding of 1.2.840.10045.1.1. |
260 | static const uint8_t kPrimeField[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, 0x01}; |
261 | |
262 | static int parse_explicit_prime_curve(CBS *in, CBS *out_prime, CBS *out_a, |
263 | CBS *out_b, CBS *out_base_x, |
264 | CBS *out_base_y, CBS *out_order) { |
265 | // See RFC 3279, section 2.3.5. Note that RFC 3279 calls this structure an |
266 | // ECParameters while RFC 5480 calls it a SpecifiedECDomain. |
267 | CBS params, field_id, field_type, curve, base; |
268 | uint64_t version; |
269 | if (!CBS_get_asn1(in, ¶ms, CBS_ASN1_SEQUENCE) || |
270 | !CBS_get_asn1_uint64(¶ms, &version) || |
271 | version != 1 || |
272 | !CBS_get_asn1(¶ms, &field_id, CBS_ASN1_SEQUENCE) || |
273 | !CBS_get_asn1(&field_id, &field_type, CBS_ASN1_OBJECT) || |
274 | CBS_len(&field_type) != sizeof(kPrimeField) || |
275 | OPENSSL_memcmp(CBS_data(&field_type), kPrimeField, sizeof(kPrimeField)) != 0 || |
276 | !CBS_get_asn1(&field_id, out_prime, CBS_ASN1_INTEGER) || |
277 | !is_unsigned_integer(out_prime) || |
278 | CBS_len(&field_id) != 0 || |
279 | !CBS_get_asn1(¶ms, &curve, CBS_ASN1_SEQUENCE) || |
280 | !CBS_get_asn1(&curve, out_a, CBS_ASN1_OCTETSTRING) || |
281 | !CBS_get_asn1(&curve, out_b, CBS_ASN1_OCTETSTRING) || |
282 | // |curve| has an optional BIT STRING seed which we ignore. |
283 | !CBS_get_asn1(¶ms, &base, CBS_ASN1_OCTETSTRING) || |
284 | !CBS_get_asn1(¶ms, out_order, CBS_ASN1_INTEGER) || |
285 | !is_unsigned_integer(out_order)) { |
286 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
287 | return 0; |
288 | } |
289 | |
290 | // |params| has an optional cofactor which we ignore. With the optional seed |
291 | // in |curve|, a group already has arbitrarily many encodings. Parse enough to |
292 | // uniquely determine the curve. |
293 | |
294 | // Require that the base point use uncompressed form. |
295 | uint8_t form; |
296 | if (!CBS_get_u8(&base, &form) || form != POINT_CONVERSION_UNCOMPRESSED) { |
297 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); |
298 | return 0; |
299 | } |
300 | |
301 | if (CBS_len(&base) % 2 != 0) { |
302 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
303 | return 0; |
304 | } |
305 | size_t field_len = CBS_len(&base) / 2; |
306 | CBS_init(out_base_x, CBS_data(&base), field_len); |
307 | CBS_init(out_base_y, CBS_data(&base) + field_len, field_len); |
308 | |
309 | return 1; |
310 | } |
311 | |
312 | // integers_equal returns one if |a| and |b| are equal, up to leading zeros, and |
313 | // zero otherwise. |
314 | static int integers_equal(const CBS *a, const uint8_t *b, size_t b_len) { |
315 | // Remove leading zeros from |a| and |b|. |
316 | CBS a_copy = *a; |
317 | while (CBS_len(&a_copy) > 0 && CBS_data(&a_copy)[0] == 0) { |
318 | CBS_skip(&a_copy, 1); |
319 | } |
320 | while (b_len > 0 && b[0] == 0) { |
321 | b++; |
322 | b_len--; |
323 | } |
324 | return CBS_mem_equal(&a_copy, b, b_len); |
325 | } |
326 | |
327 | EC_GROUP *EC_KEY_parse_curve_name(CBS *cbs) { |
328 | CBS named_curve; |
329 | if (!CBS_get_asn1(cbs, &named_curve, CBS_ASN1_OBJECT)) { |
330 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
331 | return NULL; |
332 | } |
333 | |
334 | // Look for a matching curve. |
335 | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
336 | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
337 | const struct built_in_curve *curve = &curves->curves[i]; |
338 | if (CBS_len(&named_curve) == curve->oid_len && |
339 | OPENSSL_memcmp(CBS_data(&named_curve), curve->oid, curve->oid_len) == |
340 | 0) { |
341 | return EC_GROUP_new_by_curve_name(curve->nid); |
342 | } |
343 | } |
344 | |
345 | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
346 | return NULL; |
347 | } |
348 | |
349 | int EC_KEY_marshal_curve_name(CBB *cbb, const EC_GROUP *group) { |
350 | int nid = EC_GROUP_get_curve_name(group); |
351 | if (nid == NID_undef) { |
352 | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
353 | return 0; |
354 | } |
355 | |
356 | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
357 | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
358 | const struct built_in_curve *curve = &curves->curves[i]; |
359 | if (curve->nid == nid) { |
360 | CBB child; |
361 | return CBB_add_asn1(cbb, &child, CBS_ASN1_OBJECT) && |
362 | CBB_add_bytes(&child, curve->oid, curve->oid_len) && |
363 | CBB_flush(cbb); |
364 | } |
365 | } |
366 | |
367 | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
368 | return 0; |
369 | } |
370 | |
371 | EC_GROUP *EC_KEY_parse_parameters(CBS *cbs) { |
372 | if (!CBS_peek_asn1_tag(cbs, CBS_ASN1_SEQUENCE)) { |
373 | return EC_KEY_parse_curve_name(cbs); |
374 | } |
375 | |
376 | // OpenSSL sometimes produces ECPrivateKeys with explicitly-encoded versions |
377 | // of named curves. |
378 | // |
379 | // TODO(davidben): Remove support for this. |
380 | CBS prime, a, b, base_x, base_y, order; |
381 | if (!parse_explicit_prime_curve(cbs, &prime, &a, &b, &base_x, &base_y, |
382 | &order)) { |
383 | return NULL; |
384 | } |
385 | |
386 | // Look for a matching prime curve. |
387 | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
388 | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
389 | const struct built_in_curve *curve = &curves->curves[i]; |
390 | const unsigned param_len = curve->param_len; |
391 | // |curve->params| is ordered p, a, b, x, y, order, each component |
392 | // zero-padded up to the field length. Although SEC 1 states that the |
393 | // Field-Element-to-Octet-String conversion also pads, OpenSSL mis-encodes |
394 | // |a| and |b|, so this comparison must allow omitting leading zeros. (This |
395 | // is relevant for P-521 whose |b| has a leading 0.) |
396 | if (integers_equal(&prime, curve->params, param_len) && |
397 | integers_equal(&a, curve->params + param_len, param_len) && |
398 | integers_equal(&b, curve->params + param_len * 2, param_len) && |
399 | integers_equal(&base_x, curve->params + param_len * 3, param_len) && |
400 | integers_equal(&base_y, curve->params + param_len * 4, param_len) && |
401 | integers_equal(&order, curve->params + param_len * 5, param_len)) { |
402 | return EC_GROUP_new_by_curve_name(curve->nid); |
403 | } |
404 | } |
405 | |
406 | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
407 | return NULL; |
408 | } |
409 | |
410 | int EC_POINT_point2cbb(CBB *out, const EC_GROUP *group, const EC_POINT *point, |
411 | point_conversion_form_t form, BN_CTX *ctx) { |
412 | size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); |
413 | if (len == 0) { |
414 | return 0; |
415 | } |
416 | uint8_t *p; |
417 | return CBB_add_space(out, &p, len) && |
418 | EC_POINT_point2oct(group, point, form, p, len, ctx) == len; |
419 | } |
420 | |
421 | EC_KEY *d2i_ECPrivateKey(EC_KEY **out, const uint8_t **inp, long len) { |
422 | // This function treats its |out| parameter differently from other |d2i| |
423 | // functions. If supplied, take the group from |*out|. |
424 | const EC_GROUP *group = NULL; |
425 | if (out != NULL && *out != NULL) { |
426 | group = EC_KEY_get0_group(*out); |
427 | } |
428 | |
429 | if (len < 0) { |
430 | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
431 | return NULL; |
432 | } |
433 | CBS cbs; |
434 | CBS_init(&cbs, *inp, (size_t)len); |
435 | EC_KEY *ret = EC_KEY_parse_private_key(&cbs, group); |
436 | if (ret == NULL) { |
437 | return NULL; |
438 | } |
439 | if (out != NULL) { |
440 | EC_KEY_free(*out); |
441 | *out = ret; |
442 | } |
443 | *inp = CBS_data(&cbs); |
444 | return ret; |
445 | } |
446 | |
447 | int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp) { |
448 | CBB cbb; |
449 | if (!CBB_init(&cbb, 0) || |
450 | !EC_KEY_marshal_private_key(&cbb, key, EC_KEY_get_enc_flags(key))) { |
451 | CBB_cleanup(&cbb); |
452 | return -1; |
453 | } |
454 | return CBB_finish_i2d(&cbb, outp); |
455 | } |
456 | |
457 | EC_KEY *d2i_ECParameters(EC_KEY **out_key, const uint8_t **inp, long len) { |
458 | if (len < 0) { |
459 | return NULL; |
460 | } |
461 | |
462 | CBS cbs; |
463 | CBS_init(&cbs, *inp, (size_t)len); |
464 | EC_GROUP *group = EC_KEY_parse_parameters(&cbs); |
465 | if (group == NULL) { |
466 | return NULL; |
467 | } |
468 | |
469 | EC_KEY *ret = EC_KEY_new(); |
470 | if (ret == NULL || !EC_KEY_set_group(ret, group)) { |
471 | EC_GROUP_free(group); |
472 | EC_KEY_free(ret); |
473 | return NULL; |
474 | } |
475 | EC_GROUP_free(group); |
476 | |
477 | if (out_key != NULL) { |
478 | EC_KEY_free(*out_key); |
479 | *out_key = ret; |
480 | } |
481 | *inp = CBS_data(&cbs); |
482 | return ret; |
483 | } |
484 | |
485 | int i2d_ECParameters(const EC_KEY *key, uint8_t **outp) { |
486 | if (key == NULL || key->group == NULL) { |
487 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
488 | return -1; |
489 | } |
490 | |
491 | CBB cbb; |
492 | if (!CBB_init(&cbb, 0) || |
493 | !EC_KEY_marshal_curve_name(&cbb, key->group)) { |
494 | CBB_cleanup(&cbb); |
495 | return -1; |
496 | } |
497 | return CBB_finish_i2d(&cbb, outp); |
498 | } |
499 | |
500 | EC_KEY *o2i_ECPublicKey(EC_KEY **keyp, const uint8_t **inp, long len) { |
501 | EC_KEY *ret = NULL; |
502 | |
503 | if (keyp == NULL || *keyp == NULL || (*keyp)->group == NULL) { |
504 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
505 | return NULL; |
506 | } |
507 | ret = *keyp; |
508 | if (ret->pub_key == NULL && |
509 | (ret->pub_key = EC_POINT_new(ret->group)) == NULL) { |
510 | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
511 | return NULL; |
512 | } |
513 | if (!EC_POINT_oct2point(ret->group, ret->pub_key, *inp, len, NULL)) { |
514 | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
515 | return NULL; |
516 | } |
517 | // save the point conversion form |
518 | ret->conv_form = (point_conversion_form_t)(*inp[0] & ~0x01); |
519 | *inp += len; |
520 | return ret; |
521 | } |
522 | |
523 | int i2o_ECPublicKey(const EC_KEY *key, uint8_t **outp) { |
524 | size_t buf_len = 0; |
525 | int new_buffer = 0; |
526 | |
527 | if (key == NULL) { |
528 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
529 | return 0; |
530 | } |
531 | |
532 | buf_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL, |
533 | 0, NULL); |
534 | |
535 | if (outp == NULL || buf_len == 0) { |
536 | // out == NULL => just return the length of the octet string |
537 | return buf_len; |
538 | } |
539 | |
540 | if (*outp == NULL) { |
541 | *outp = OPENSSL_malloc(buf_len); |
542 | if (*outp == NULL) { |
543 | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
544 | return 0; |
545 | } |
546 | new_buffer = 1; |
547 | } |
548 | if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, *outp, |
549 | buf_len, NULL)) { |
550 | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
551 | if (new_buffer) { |
552 | OPENSSL_free(*outp); |
553 | *outp = NULL; |
554 | } |
555 | return 0; |
556 | } |
557 | |
558 | if (!new_buffer) { |
559 | *outp += buf_len; |
560 | } |
561 | return buf_len; |
562 | } |
563 | |