1 | /* Originally written by Bodo Moeller for the OpenSSL project. |
2 | * ==================================================================== |
3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in |
14 | * the documentation and/or other materials provided with the |
15 | * distribution. |
16 | * |
17 | * 3. All advertising materials mentioning features or use of this |
18 | * software must display the following acknowledgment: |
19 | * "This product includes software developed by the OpenSSL Project |
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
21 | * |
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
23 | * endorse or promote products derived from this software without |
24 | * prior written permission. For written permission, please contact |
25 | * openssl-core@openssl.org. |
26 | * |
27 | * 5. Products derived from this software may not be called "OpenSSL" |
28 | * nor may "OpenSSL" appear in their names without prior written |
29 | * permission of the OpenSSL Project. |
30 | * |
31 | * 6. Redistributions of any form whatsoever must retain the following |
32 | * acknowledgment: |
33 | * "This product includes software developed by the OpenSSL Project |
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
35 | * |
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
48 | * ==================================================================== |
49 | * |
50 | * This product includes cryptographic software written by Eric Young |
51 | * (eay@cryptsoft.com). This product includes software written by Tim |
52 | * Hudson (tjh@cryptsoft.com). |
53 | * |
54 | */ |
55 | /* ==================================================================== |
56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
57 | * |
58 | * Portions of the attached software ("Contribution") are developed by |
59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
60 | * |
61 | * The Contribution is licensed pursuant to the OpenSSL open source |
62 | * license provided above. |
63 | * |
64 | * The elliptic curve binary polynomial software is originally written by |
65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
66 | * Laboratories. */ |
67 | |
68 | #ifndef OPENSSL_HEADER_EC_INTERNAL_H |
69 | #define |
70 | |
71 | #include <openssl/base.h> |
72 | |
73 | #include <openssl/bn.h> |
74 | #include <openssl/ex_data.h> |
75 | #include <openssl/thread.h> |
76 | #include <openssl/type_check.h> |
77 | |
78 | #include "../bn/internal.h" |
79 | |
80 | #if defined(__cplusplus) |
81 | extern "C" { |
82 | #endif |
83 | |
84 | |
85 | // Cap the size of all field elements and scalars, including custom curves, to |
86 | // 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to |
87 | // be the largest fields anyone plausibly uses. |
88 | #define EC_MAX_BYTES 66 |
89 | #define EC_MAX_WORDS ((EC_MAX_BYTES + BN_BYTES - 1) / BN_BYTES) |
90 | |
91 | OPENSSL_STATIC_ASSERT(EC_MAX_WORDS <= BN_SMALL_MAX_WORDS, |
92 | "bn_*_small functions not usable" ); |
93 | |
94 | // An EC_SCALAR is an integer fully reduced modulo the order. Only the first |
95 | // |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP| |
96 | // and must not be mixed between groups. |
97 | typedef union { |
98 | // bytes is the representation of the scalar in little-endian order. |
99 | uint8_t bytes[EC_MAX_BYTES]; |
100 | BN_ULONG words[EC_MAX_WORDS]; |
101 | } EC_SCALAR; |
102 | |
103 | // An EC_FELEM represents a field element. Only the first |field->width| words |
104 | // are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed |
105 | // between groups. Additionally, the representation (whether or not elements are |
106 | // represented in Montgomery-form) may vary between |EC_METHOD|s. |
107 | typedef union { |
108 | // bytes is the representation of the field element in little-endian order. |
109 | uint8_t bytes[EC_MAX_BYTES]; |
110 | BN_ULONG words[EC_MAX_WORDS]; |
111 | } EC_FELEM; |
112 | |
113 | // An EC_RAW_POINT represents an elliptic curve point. Unlike |EC_POINT|, it is |
114 | // a plain struct which can be stack-allocated and needs no cleanup. It is |
115 | // specific to an |EC_GROUP| and must not be mixed between groups. |
116 | typedef struct { |
117 | EC_FELEM X, Y, Z; |
118 | // X, Y, and Z are Jacobian projective coordinates. They represent |
119 | // (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise. |
120 | } EC_RAW_POINT; |
121 | |
122 | struct ec_method_st { |
123 | int (*group_init)(EC_GROUP *); |
124 | void (*group_finish)(EC_GROUP *); |
125 | int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
126 | const BIGNUM *b, BN_CTX *); |
127 | |
128 | // point_get_affine_coordinates sets |*x| and |*y| to the affine coordinates |
129 | // of |p|. Either |x| or |y| may be NULL to omit it. It returns one on success |
130 | // and zero if |p| is the point at infinity. |
131 | // |
132 | // Note: unlike |EC_FELEM|s used as intermediate values internal to the |
133 | // |EC_METHOD|, |*x| and |*y| are not encoded in Montgomery form. |
134 | int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *p, |
135 | EC_FELEM *x, EC_FELEM *y); |
136 | |
137 | // add sets |r| to |a| + |b|. |
138 | void (*add)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a, |
139 | const EC_RAW_POINT *b); |
140 | // dbl sets |r| to |a| + |a|. |
141 | void (*dbl)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a); |
142 | |
143 | // mul sets |r| to |scalar|*|p|. |
144 | void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *p, |
145 | const EC_SCALAR *scalar); |
146 | // mul_base sets |r| to |scalar|*generator. |
147 | void (*mul_base)(const EC_GROUP *group, EC_RAW_POINT *r, |
148 | const EC_SCALAR *scalar); |
149 | // mul_public sets |r| to |g_scalar|*generator + |p_scalar|*|p|. It assumes |
150 | // that the inputs are public so there is no concern about leaking their |
151 | // values through timing. |
152 | void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r, |
153 | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
154 | const EC_SCALAR *p_scalar); |
155 | |
156 | // felem_mul and felem_sqr implement multiplication and squaring, |
157 | // respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl| |
158 | // implementations can work both with |EC_GFp_mont_method| and the tuned |
159 | // operations. |
160 | // |
161 | // TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds |
162 | // many indirect calls in the middle of the generic code, and a bunch of |
163 | // conversions. If p224-64.c were easily convertable to Montgomery form, we |
164 | // could say |EC_FELEM| is always in Montgomery form. If we routed the rest of |
165 | // simple.c to |EC_METHOD|, we could give |EC_POINT| an |EC_METHOD|-specific |
166 | // representation and say |EC_FELEM| is purely a |EC_GFp_mont_method| type. |
167 | void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
168 | const EC_FELEM *b); |
169 | void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a); |
170 | |
171 | int (*bignum_to_felem)(const EC_GROUP *group, EC_FELEM *out, |
172 | const BIGNUM *in); |
173 | int (*felem_to_bignum)(const EC_GROUP *group, BIGNUM *out, |
174 | const EC_FELEM *in); |
175 | |
176 | // scalar_inv_montgomery sets |out| to |in|^-1, where both input and output |
177 | // are in Montgomery form. |
178 | void (*scalar_inv_montgomery)(const EC_GROUP *group, EC_SCALAR *out, |
179 | const EC_SCALAR *in); |
180 | |
181 | // scalar_inv_montgomery_vartime performs the same computation as |
182 | // |scalar_inv_montgomery|. It further assumes that the inputs are public so |
183 | // there is no concern about leaking their values through timing. |
184 | int (*scalar_inv_montgomery_vartime)(const EC_GROUP *group, EC_SCALAR *out, |
185 | const EC_SCALAR *in); |
186 | |
187 | // cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group |
188 | // order, with |r|. It returns one if the values match and zero if |p| is the |
189 | // point at infinity of the values do not match. |
190 | int (*cmp_x_coordinate)(const EC_GROUP *group, const EC_RAW_POINT *p, |
191 | const EC_SCALAR *r); |
192 | } /* EC_METHOD */; |
193 | |
194 | const EC_METHOD *EC_GFp_mont_method(void); |
195 | |
196 | struct ec_group_st { |
197 | const EC_METHOD *meth; |
198 | |
199 | // Unlike all other |EC_POINT|s, |generator| does not own |generator->group| |
200 | // to avoid a reference cycle. |
201 | EC_POINT *generator; |
202 | BIGNUM order; |
203 | |
204 | int curve_name; // optional NID for named curve |
205 | |
206 | BN_MONT_CTX *order_mont; // data for ECDSA inverse |
207 | |
208 | // The following members are handled by the method functions, |
209 | // even if they appear generic |
210 | |
211 | BIGNUM field; // For curves over GF(p), this is the modulus. |
212 | |
213 | EC_FELEM a, b; // Curve coefficients. |
214 | |
215 | // a_is_minus3 is one if |a| is -3 mod |field| and zero otherwise. Point |
216 | // arithmetic is optimized for -3. |
217 | int a_is_minus3; |
218 | |
219 | // field_greater_than_order is one if |field| is greate than |order| and zero |
220 | // otherwise. |
221 | int field_greater_than_order; |
222 | |
223 | // field_minus_order, if |field_greater_than_order| is true, is |field| minus |
224 | // |order| represented as an |EC_FELEM|. Otherwise, it is zero. |
225 | // |
226 | // Note: unlike |EC_FELEM|s used as intermediate values internal to the |
227 | // |EC_METHOD|, this value is not encoded in Montgomery form. |
228 | EC_FELEM field_minus_order; |
229 | |
230 | CRYPTO_refcount_t references; |
231 | |
232 | BN_MONT_CTX *mont; // Montgomery structure. |
233 | |
234 | EC_FELEM one; // The value one. |
235 | } /* EC_GROUP */; |
236 | |
237 | struct ec_point_st { |
238 | // group is an owning reference to |group|, unless this is |
239 | // |group->generator|. |
240 | EC_GROUP *group; |
241 | // raw is the group-specific point data. Functions that take |EC_POINT| |
242 | // typically check consistency with |EC_GROUP| while functions that take |
243 | // |EC_RAW_POINT| do not. Thus accesses to this field should be externally |
244 | // checked for consistency. |
245 | EC_RAW_POINT raw; |
246 | } /* EC_POINT */; |
247 | |
248 | EC_GROUP *ec_group_new(const EC_METHOD *meth); |
249 | |
250 | // ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success |
251 | // and zero if |in| is out of range. |
252 | int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in); |
253 | |
254 | // ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and |
255 | // zero on allocation failure. |
256 | int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in); |
257 | |
258 | // ec_felem_neg sets |out| to -|a|. |
259 | void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a); |
260 | |
261 | // ec_felem_add sets |out| to |a| + |b|. |
262 | void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, |
263 | const EC_FELEM *b); |
264 | |
265 | // ec_felem_add sets |out| to |a| - |b|. |
266 | void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, |
267 | const EC_FELEM *b); |
268 | |
269 | // ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros |
270 | // otherwise. |
271 | BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a); |
272 | |
273 | // ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones |
274 | // and |b| if |mask| is all zeros. |
275 | void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask, |
276 | const EC_FELEM *a, const EC_FELEM *b); |
277 | |
278 | // ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. It |
279 | // treats |a| and |b| as public and does *not* run in constant time. |
280 | int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b); |
281 | |
282 | // ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to |
283 | // |*out|. It returns one on success and zero if |in| is out of range. |
284 | OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
285 | const BIGNUM *in); |
286 | |
287 | // ec_random_nonzero_scalar sets |out| to a uniformly selected random value from |
288 | // 1 to |group->order| - 1. It returns one on success and zero on error. |
289 | int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out, |
290 | const uint8_t additional_data[32]); |
291 | |
292 | // ec_scalar_equal_vartime returns one if |a| and |b| are equal and zero |
293 | // otherwise. Both values are treated as public. |
294 | int ec_scalar_equal_vartime(const EC_GROUP *group, const EC_SCALAR *a, |
295 | const EC_SCALAR *b); |
296 | |
297 | // ec_scalar_is_zero returns one if |a| is zero and zero otherwise. |
298 | int ec_scalar_is_zero(const EC_GROUP *group, const EC_SCALAR *a); |
299 | |
300 | // ec_scalar_add sets |r| to |a| + |b|. |
301 | void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, |
302 | const EC_SCALAR *b); |
303 | |
304 | // ec_scalar_to_montgomery sets |r| to |a| in Montgomery form. |
305 | void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
306 | const EC_SCALAR *a); |
307 | |
308 | // ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form. |
309 | void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
310 | const EC_SCALAR *a); |
311 | |
312 | // ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are |
313 | // in Montgomery form. |
314 | void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
315 | const EC_SCALAR *a, const EC_SCALAR *b); |
316 | |
317 | // ec_scalar_mul_montgomery sets |r| to |a|^-1 where inputs and outputs are in |
318 | // Montgomery form. |
319 | void ec_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
320 | const EC_SCALAR *a); |
321 | |
322 | // ec_scalar_inv_montgomery_vartime performs the same actions as |
323 | // |ec_scalar_inv_montgomery|, but in variable time. |
324 | int ec_scalar_inv_montgomery_vartime(const EC_GROUP *group, EC_SCALAR *r, |
325 | const EC_SCALAR *a); |
326 | |
327 | // ec_point_mul_scalar sets |r| to |p| * |scalar|. Both inputs are considered |
328 | // secret. |
329 | int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r, |
330 | const EC_RAW_POINT *p, const EC_SCALAR *scalar); |
331 | |
332 | // ec_point_mul_scalar_base sets |r| to generator * |scalar|. |scalar| is |
333 | // treated as secret. |
334 | int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r, |
335 | const EC_SCALAR *scalar); |
336 | |
337 | // ec_point_mul_scalar_public performs the same computation as |
338 | // ec_point_mul_scalar. It further assumes that the inputs are public so |
339 | // there is no concern about leaking their values through timing. |
340 | OPENSSL_EXPORT int ec_point_mul_scalar_public(const EC_GROUP *group, |
341 | EC_RAW_POINT *r, |
342 | const EC_SCALAR *g_scalar, |
343 | const EC_RAW_POINT *p, |
344 | const EC_SCALAR *p_scalar); |
345 | |
346 | // ec_cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group |
347 | // order, with |r|. It returns one if the values match and zero if |p| is the |
348 | // point at infinity of the values do not match. |
349 | int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
350 | const EC_SCALAR *r); |
351 | |
352 | // ec_get_x_coordinate_as_scalar sets |*out| to |p|'s x-coordinate, modulo |
353 | // |group->order|. It returns one on success and zero if |p| is the point at |
354 | // infinity. |
355 | int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, |
356 | const EC_RAW_POINT *p); |
357 | |
358 | // ec_point_get_affine_coordinate_bytes writes |p|'s affine coordinates to |
359 | // |out_x| and |out_y|, each of which must have at must |max_out| bytes. It sets |
360 | // |*out_len| to the number of bytes written in each buffer. Coordinates are |
361 | // written big-endian and zero-padded to the size of the field. |
362 | // |
363 | // Either of |out_x| or |out_y| may be NULL to omit that coordinate. This |
364 | // function returns one on success and zero on failure. |
365 | int ec_point_get_affine_coordinate_bytes(const EC_GROUP *group, uint8_t *out_x, |
366 | uint8_t *out_y, size_t *out_len, |
367 | size_t max_out, const EC_RAW_POINT *p); |
368 | |
369 | // ec_field_element_to_scalar reduces |r| modulo |group->order|. |r| must |
370 | // previously have been reduced modulo |group->field|. |
371 | int ec_field_element_to_scalar(const EC_GROUP *group, BIGNUM *r); |
372 | |
373 | void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
374 | const EC_RAW_POINT *p, const EC_SCALAR *scalar); |
375 | void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_RAW_POINT *r, |
376 | const EC_SCALAR *scalar); |
377 | |
378 | // ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of |
379 | // |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of |
380 | // which will be either zero or odd with an absolute value less than 2^w |
381 | // satisfying |
382 | // scalar = \sum_j out[j]*2^j |
383 | // where at most one of any w+1 consecutive digits is non-zero |
384 | // with the exception that the most significant digit may be only |
385 | // w-1 zeros away from that next non-zero digit. |
386 | void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, |
387 | const EC_SCALAR *scalar, size_t bits, int w); |
388 | |
389 | void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, |
390 | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
391 | const EC_SCALAR *p_scalar); |
392 | |
393 | // method functions in simple.c |
394 | int ec_GFp_simple_group_init(EC_GROUP *); |
395 | void ec_GFp_simple_group_finish(EC_GROUP *); |
396 | int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
397 | const BIGNUM *b, BN_CTX *); |
398 | int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, |
399 | BIGNUM *b); |
400 | void ec_GFp_simple_point_init(EC_RAW_POINT *); |
401 | void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *); |
402 | void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *); |
403 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *, |
404 | const BIGNUM *x, |
405 | const BIGNUM *y); |
406 | void ec_GFp_mont_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a, |
407 | const EC_RAW_POINT *b); |
408 | void ec_GFp_mont_dbl(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a); |
409 | void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *); |
410 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *); |
411 | int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *); |
412 | int ec_GFp_simple_cmp(const EC_GROUP *, const EC_RAW_POINT *a, |
413 | const EC_RAW_POINT *b); |
414 | void ec_simple_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
415 | const EC_SCALAR *a); |
416 | |
417 | int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, EC_SCALAR *r, |
418 | const EC_SCALAR *a); |
419 | |
420 | int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
421 | const EC_SCALAR *r); |
422 | |
423 | // method functions in montgomery.c |
424 | int ec_GFp_mont_group_init(EC_GROUP *); |
425 | int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
426 | const BIGNUM *b, BN_CTX *); |
427 | void ec_GFp_mont_group_finish(EC_GROUP *); |
428 | void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
429 | const EC_FELEM *b); |
430 | void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a); |
431 | |
432 | int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, |
433 | const BIGNUM *in); |
434 | int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, |
435 | const EC_FELEM *in); |
436 | |
437 | void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in); |
438 | |
439 | const EC_METHOD *EC_GFp_nistp224_method(void); |
440 | const EC_METHOD *EC_GFp_nistp256_method(void); |
441 | |
442 | // EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with |
443 | // x86-64 optimized P256. See http://eprint.iacr.org/2013/816. |
444 | const EC_METHOD *EC_GFp_nistz256_method(void); |
445 | |
446 | // An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM| |
447 | // representation. It exists to support the |EC_KEY_get0_private_key| API. |
448 | typedef struct { |
449 | BIGNUM bignum; |
450 | EC_SCALAR scalar; |
451 | } EC_WRAPPED_SCALAR; |
452 | |
453 | struct ec_key_st { |
454 | EC_GROUP *group; |
455 | |
456 | EC_POINT *pub_key; |
457 | EC_WRAPPED_SCALAR *priv_key; |
458 | |
459 | // fixed_k may contain a specific value of 'k', to be used in ECDSA signing. |
460 | // This is only for the FIPS power-on tests. |
461 | BIGNUM *fixed_k; |
462 | |
463 | unsigned int enc_flag; |
464 | point_conversion_form_t conv_form; |
465 | |
466 | CRYPTO_refcount_t references; |
467 | |
468 | ECDSA_METHOD *ecdsa_meth; |
469 | |
470 | CRYPTO_EX_DATA ex_data; |
471 | } /* EC_KEY */; |
472 | |
473 | struct built_in_curve { |
474 | int nid; |
475 | const uint8_t *oid; |
476 | uint8_t oid_len; |
477 | // comment is a human-readable string describing the curve. |
478 | const char *; |
479 | // param_len is the number of bytes needed to store a field element. |
480 | uint8_t param_len; |
481 | // params points to an array of 6*|param_len| bytes which hold the field |
482 | // elements of the following (in big-endian order): prime, a, b, generator x, |
483 | // generator y, order. |
484 | const uint8_t *params; |
485 | const EC_METHOD *method; |
486 | }; |
487 | |
488 | #define OPENSSL_NUM_BUILT_IN_CURVES 4 |
489 | |
490 | struct built_in_curves { |
491 | struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES]; |
492 | }; |
493 | |
494 | // OPENSSL_built_in_curves returns a pointer to static information about |
495 | // standard curves. The array is terminated with an entry where |nid| is |
496 | // |NID_undef|. |
497 | const struct built_in_curves *OPENSSL_built_in_curves(void); |
498 | |
499 | #if defined(__cplusplus) |
500 | } // extern C |
501 | #endif |
502 | |
503 | #endif // OPENSSL_HEADER_EC_INTERNAL_H |
504 | |