1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/bn.h> |
58 | |
59 | #include <assert.h> |
60 | #include <stdlib.h> |
61 | #include <string.h> |
62 | |
63 | #include <openssl/err.h> |
64 | #include <openssl/mem.h> |
65 | #include <openssl/type_check.h> |
66 | |
67 | #include "internal.h" |
68 | #include "../../internal.h" |
69 | |
70 | |
71 | #define BN_MUL_RECURSIVE_SIZE_NORMAL 16 |
72 | #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL |
73 | |
74 | |
75 | static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
76 | size_t num, BN_ULONG *tmp) { |
77 | BN_ULONG borrow = bn_sub_words(tmp, a, b, num); |
78 | bn_sub_words(r, b, a, num); |
79 | bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); |
80 | } |
81 | |
82 | static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na, |
83 | const BN_ULONG *b, size_t nb) { |
84 | if (na < nb) { |
85 | size_t itmp = na; |
86 | na = nb; |
87 | nb = itmp; |
88 | const BN_ULONG *ltmp = a; |
89 | a = b; |
90 | b = ltmp; |
91 | } |
92 | BN_ULONG *rr = &(r[na]); |
93 | if (nb == 0) { |
94 | OPENSSL_memset(r, 0, na * sizeof(BN_ULONG)); |
95 | return; |
96 | } |
97 | rr[0] = bn_mul_words(r, a, na, b[0]); |
98 | |
99 | for (;;) { |
100 | if (--nb == 0) { |
101 | return; |
102 | } |
103 | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
104 | if (--nb == 0) { |
105 | return; |
106 | } |
107 | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
108 | if (--nb == 0) { |
109 | return; |
110 | } |
111 | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
112 | if (--nb == 0) { |
113 | return; |
114 | } |
115 | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
116 | rr += 4; |
117 | r += 4; |
118 | b += 4; |
119 | } |
120 | } |
121 | |
122 | #if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM) |
123 | // Here follows specialised variants of bn_add_words() and bn_sub_words(). They |
124 | // have the property performing operations on arrays of different sizes. The |
125 | // sizes of those arrays is expressed through cl, which is the common length ( |
126 | // basicall, min(len(a),len(b)) ), and dl, which is the delta between the two |
127 | // lengths, calculated as len(a)-len(b). All lengths are the number of |
128 | // BN_ULONGs... For the operations that require a result array as parameter, |
129 | // it must have the length cl+abs(dl). These functions should probably end up |
130 | // in bn_asm.c as soon as there are assembler counterparts for the systems that |
131 | // use assembler files. |
132 | |
133 | static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, |
134 | const BN_ULONG *b, int cl, int dl) { |
135 | BN_ULONG c, t; |
136 | |
137 | assert(cl >= 0); |
138 | c = bn_sub_words(r, a, b, cl); |
139 | |
140 | if (dl == 0) { |
141 | return c; |
142 | } |
143 | |
144 | r += cl; |
145 | a += cl; |
146 | b += cl; |
147 | |
148 | if (dl < 0) { |
149 | for (;;) { |
150 | t = b[0]; |
151 | r[0] = 0 - t - c; |
152 | if (t != 0) { |
153 | c = 1; |
154 | } |
155 | if (++dl >= 0) { |
156 | break; |
157 | } |
158 | |
159 | t = b[1]; |
160 | r[1] = 0 - t - c; |
161 | if (t != 0) { |
162 | c = 1; |
163 | } |
164 | if (++dl >= 0) { |
165 | break; |
166 | } |
167 | |
168 | t = b[2]; |
169 | r[2] = 0 - t - c; |
170 | if (t != 0) { |
171 | c = 1; |
172 | } |
173 | if (++dl >= 0) { |
174 | break; |
175 | } |
176 | |
177 | t = b[3]; |
178 | r[3] = 0 - t - c; |
179 | if (t != 0) { |
180 | c = 1; |
181 | } |
182 | if (++dl >= 0) { |
183 | break; |
184 | } |
185 | |
186 | b += 4; |
187 | r += 4; |
188 | } |
189 | } else { |
190 | int save_dl = dl; |
191 | while (c) { |
192 | t = a[0]; |
193 | r[0] = t - c; |
194 | if (t != 0) { |
195 | c = 0; |
196 | } |
197 | if (--dl <= 0) { |
198 | break; |
199 | } |
200 | |
201 | t = a[1]; |
202 | r[1] = t - c; |
203 | if (t != 0) { |
204 | c = 0; |
205 | } |
206 | if (--dl <= 0) { |
207 | break; |
208 | } |
209 | |
210 | t = a[2]; |
211 | r[2] = t - c; |
212 | if (t != 0) { |
213 | c = 0; |
214 | } |
215 | if (--dl <= 0) { |
216 | break; |
217 | } |
218 | |
219 | t = a[3]; |
220 | r[3] = t - c; |
221 | if (t != 0) { |
222 | c = 0; |
223 | } |
224 | if (--dl <= 0) { |
225 | break; |
226 | } |
227 | |
228 | save_dl = dl; |
229 | a += 4; |
230 | r += 4; |
231 | } |
232 | if (dl > 0) { |
233 | if (save_dl > dl) { |
234 | switch (save_dl - dl) { |
235 | case 1: |
236 | r[1] = a[1]; |
237 | if (--dl <= 0) { |
238 | break; |
239 | } |
240 | OPENSSL_FALLTHROUGH; |
241 | case 2: |
242 | r[2] = a[2]; |
243 | if (--dl <= 0) { |
244 | break; |
245 | } |
246 | OPENSSL_FALLTHROUGH; |
247 | case 3: |
248 | r[3] = a[3]; |
249 | if (--dl <= 0) { |
250 | break; |
251 | } |
252 | } |
253 | a += 4; |
254 | r += 4; |
255 | } |
256 | } |
257 | |
258 | if (dl > 0) { |
259 | for (;;) { |
260 | r[0] = a[0]; |
261 | if (--dl <= 0) { |
262 | break; |
263 | } |
264 | r[1] = a[1]; |
265 | if (--dl <= 0) { |
266 | break; |
267 | } |
268 | r[2] = a[2]; |
269 | if (--dl <= 0) { |
270 | break; |
271 | } |
272 | r[3] = a[3]; |
273 | if (--dl <= 0) { |
274 | break; |
275 | } |
276 | |
277 | a += 4; |
278 | r += 4; |
279 | } |
280 | } |
281 | } |
282 | |
283 | return c; |
284 | } |
285 | #else |
286 | // On other platforms the function is defined in asm. |
287 | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
288 | int cl, int dl); |
289 | #endif |
290 | |
291 | // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value |
292 | // and returning a mask of all ones if the result was negative and all zeros if |
293 | // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling |
294 | // convention. |
295 | // |
296 | // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention |
297 | // is confusing. The trouble is 32-bit x86 implements |bn_sub_part_words| in |
298 | // assembly, but we can probably just delete it? |
299 | static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, |
300 | const BN_ULONG *b, int cl, int dl, |
301 | BN_ULONG *tmp) { |
302 | BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl); |
303 | bn_sub_part_words(r, b, a, cl, -dl); |
304 | int r_len = cl + (dl < 0 ? -dl : dl); |
305 | borrow = 0 - borrow; |
306 | bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len); |
307 | return borrow; |
308 | } |
309 | |
310 | int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
311 | BN_CTX *ctx) { |
312 | int cl = a->width < b->width ? a->width : b->width; |
313 | int dl = a->width - b->width; |
314 | int r_len = a->width < b->width ? b->width : a->width; |
315 | BN_CTX_start(ctx); |
316 | BIGNUM *tmp = BN_CTX_get(ctx); |
317 | int ok = tmp != NULL && |
318 | bn_wexpand(r, r_len) && |
319 | bn_wexpand(tmp, r_len); |
320 | if (ok) { |
321 | bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d); |
322 | r->width = r_len; |
323 | } |
324 | BN_CTX_end(ctx); |
325 | return ok; |
326 | } |
327 | |
328 | // Karatsuba recursive multiplication algorithm |
329 | // (cf. Knuth, The Art of Computer Programming, Vol. 2) |
330 | |
331 | // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has |
332 | // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and |
333 | // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have |
334 | // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and |
335 | // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0. |
336 | // |
337 | // TODO(davidben): Simplify and |size_t| the calling convention around lengths |
338 | // here. |
339 | static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
340 | int n2, int dna, int dnb, BN_ULONG *t) { |
341 | // |n2| is a power of two. |
342 | assert(n2 != 0 && (n2 & (n2 - 1)) == 0); |
343 | // Check |dna| and |dnb| are in range. |
344 | assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0); |
345 | assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0); |
346 | |
347 | // Only call bn_mul_comba 8 if n2 == 8 and the |
348 | // two arrays are complete [steve] |
349 | if (n2 == 8 && dna == 0 && dnb == 0) { |
350 | bn_mul_comba8(r, a, b); |
351 | return; |
352 | } |
353 | |
354 | // Else do normal multiply |
355 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
356 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
357 | if (dna + dnb < 0) { |
358 | OPENSSL_memset(&r[2 * n2 + dna + dnb], 0, |
359 | sizeof(BN_ULONG) * -(dna + dnb)); |
360 | } |
361 | return; |
362 | } |
363 | |
364 | // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |
365 | // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
366 | // for recursive calls. |
367 | // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 |
368 | // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: |
369 | // |
370 | // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 |
371 | // |
372 | // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so |
373 | // |tna| and |tnb| are non-negative. |
374 | int n = n2 / 2, tna = n + dna, tnb = n + dnb; |
375 | |
376 | // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR |
377 | // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 |
378 | // themselves store the absolute value. |
379 | BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); |
380 | neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); |
381 | |
382 | // Compute: |
383 | // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| |
384 | // r0,r1 = a0 * b0 |
385 | // r2,r3 = a1 * b1 |
386 | if (n == 4 && dna == 0 && dnb == 0) { |
387 | bn_mul_comba4(&t[n2], t, &t[n]); |
388 | |
389 | bn_mul_comba4(r, a, b); |
390 | bn_mul_comba4(&r[n2], &a[n], &b[n]); |
391 | } else if (n == 8 && dna == 0 && dnb == 0) { |
392 | bn_mul_comba8(&t[n2], t, &t[n]); |
393 | |
394 | bn_mul_comba8(r, a, b); |
395 | bn_mul_comba8(&r[n2], &a[n], &b[n]); |
396 | } else { |
397 | BN_ULONG *p = &t[n2 * 2]; |
398 | bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); |
399 | bn_mul_recursive(r, a, b, n, 0, 0, p); |
400 | bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p); |
401 | } |
402 | |
403 | // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 |
404 | BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
405 | |
406 | // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. |
407 | // The second term is stored as the absolute value, so we do this with a |
408 | // constant-time select. |
409 | BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); |
410 | BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); |
411 | bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); |
412 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
413 | "crypto_word_t is too small" ); |
414 | c = constant_time_select_w(neg, c_neg, c_pos); |
415 | |
416 | // We now have our three components. Add them together. |
417 | // r1,r2,c = r1,r2 + t2,t3,c |
418 | c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
419 | |
420 | // Propagate the carry bit to the end. |
421 | for (int i = n + n2; i < n2 + n2; i++) { |
422 | BN_ULONG old = r[i]; |
423 | r[i] = old + c; |
424 | c = r[i] < old; |
425 | } |
426 | |
427 | // The product should fit without carries. |
428 | assert(c == 0); |
429 | } |
430 | |
431 | // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| |
432 | // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and |
433 | // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have |
434 | // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most |
435 | // one. |
436 | // |
437 | // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a| |
438 | // and |b|. |
439 | static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, |
440 | const BN_ULONG *b, int n, int tna, int tnb, |
441 | BN_ULONG *t) { |
442 | // |n| is a power of two. |
443 | assert(n != 0 && (n & (n - 1)) == 0); |
444 | // Check |tna| and |tnb| are in range. |
445 | assert(0 <= tna && tna < n); |
446 | assert(0 <= tnb && tnb < n); |
447 | assert(-1 <= tna - tnb && tna - tnb <= 1); |
448 | |
449 | int n2 = n * 2; |
450 | if (n < 8) { |
451 | bn_mul_normal(r, a, n + tna, b, n + tnb); |
452 | OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb); |
453 | return; |
454 | } |
455 | |
456 | // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1| |
457 | // and |b1| have size |tna| and |tnb|, respectively. |
458 | // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
459 | // for recursive calls. |
460 | // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 |
461 | // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: |
462 | // |
463 | // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 |
464 | |
465 | // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR |
466 | // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 |
467 | // themselves store the absolute value. |
468 | BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); |
469 | neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); |
470 | |
471 | // Compute: |
472 | // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| |
473 | // r0,r1 = a0 * b0 |
474 | // r2,r3 = a1 * b1 |
475 | if (n == 8) { |
476 | bn_mul_comba8(&t[n2], t, &t[n]); |
477 | bn_mul_comba8(r, a, b); |
478 | |
479 | bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); |
480 | // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest. |
481 | OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); |
482 | } else { |
483 | BN_ULONG *p = &t[n2 * 2]; |
484 | bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); |
485 | bn_mul_recursive(r, a, b, n, 0, 0, p); |
486 | |
487 | OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2); |
488 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && |
489 | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
490 | bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); |
491 | } else { |
492 | int i = n; |
493 | for (;;) { |
494 | i /= 2; |
495 | if (i < tna || i < tnb) { |
496 | // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one |
497 | // of each other, so if |tna| is larger and tna > i, then we know |
498 | // tnb >= i, and this call is valid. |
499 | bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); |
500 | break; |
501 | } |
502 | if (i == tna || i == tnb) { |
503 | // If there is only a bottom half to the number, just do it. We know |
504 | // the larger of |tna - i| and |tnb - i| is zero. The other is zero or |
505 | // -1 by because of |tna| and |tnb| differ by at most one. |
506 | bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); |
507 | break; |
508 | } |
509 | |
510 | // This loop will eventually terminate when |i| falls below |
511 | // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb| |
512 | // exceeds that. |
513 | } |
514 | } |
515 | } |
516 | |
517 | // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 |
518 | BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
519 | |
520 | // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. |
521 | // The second term is stored as the absolute value, so we do this with a |
522 | // constant-time select. |
523 | BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); |
524 | BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); |
525 | bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); |
526 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
527 | "crypto_word_t is too small" ); |
528 | c = constant_time_select_w(neg, c_neg, c_pos); |
529 | |
530 | // We now have our three components. Add them together. |
531 | // r1,r2,c = r1,r2 + t2,t3,c |
532 | c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
533 | |
534 | // Propagate the carry bit to the end. |
535 | for (int i = n + n2; i < n2 + n2; i++) { |
536 | BN_ULONG old = r[i]; |
537 | r[i] = old + c; |
538 | c = r[i] < old; |
539 | } |
540 | |
541 | // The product should fit without carries. |
542 | assert(c == 0); |
543 | } |
544 | |
545 | // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function |
546 | // breaks |BIGNUM| invariants and may return a negative zero. This is handled by |
547 | // the callers. |
548 | static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
549 | BN_CTX *ctx) { |
550 | int al = a->width; |
551 | int bl = b->width; |
552 | if (al == 0 || bl == 0) { |
553 | BN_zero(r); |
554 | return 1; |
555 | } |
556 | |
557 | int ret = 0; |
558 | BIGNUM *rr; |
559 | BN_CTX_start(ctx); |
560 | if (r == a || r == b) { |
561 | rr = BN_CTX_get(ctx); |
562 | if (rr == NULL) { |
563 | goto err; |
564 | } |
565 | } else { |
566 | rr = r; |
567 | } |
568 | rr->neg = a->neg ^ b->neg; |
569 | |
570 | int i = al - bl; |
571 | if (i == 0) { |
572 | if (al == 8) { |
573 | if (!bn_wexpand(rr, 16)) { |
574 | goto err; |
575 | } |
576 | rr->width = 16; |
577 | bn_mul_comba8(rr->d, a->d, b->d); |
578 | goto end; |
579 | } |
580 | } |
581 | |
582 | int top = al + bl; |
583 | static const int kMulNormalSize = 16; |
584 | if (al >= kMulNormalSize && bl >= kMulNormalSize) { |
585 | if (-1 <= i && i <= 1) { |
586 | // Find the larger power of two less than or equal to the larger length. |
587 | int j; |
588 | if (i >= 0) { |
589 | j = BN_num_bits_word((BN_ULONG)al); |
590 | } else { |
591 | j = BN_num_bits_word((BN_ULONG)bl); |
592 | } |
593 | j = 1 << (j - 1); |
594 | assert(j <= al || j <= bl); |
595 | BIGNUM *t = BN_CTX_get(ctx); |
596 | if (t == NULL) { |
597 | goto err; |
598 | } |
599 | if (al > j || bl > j) { |
600 | // We know |al| and |bl| are at most one from each other, so if al > j, |
601 | // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|. |
602 | assert(al >= j && bl >= j); |
603 | if (!bn_wexpand(t, j * 8) || |
604 | !bn_wexpand(rr, j * 4)) { |
605 | goto err; |
606 | } |
607 | bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
608 | } else { |
609 | // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one |
610 | // of al - j or bl - j is zero. The other, by the bound on |i| above, is |
611 | // zero or -1. Thus, we can use |bn_mul_recursive|. |
612 | if (!bn_wexpand(t, j * 4) || |
613 | !bn_wexpand(rr, j * 2)) { |
614 | goto err; |
615 | } |
616 | bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
617 | } |
618 | rr->width = top; |
619 | goto end; |
620 | } |
621 | } |
622 | |
623 | if (!bn_wexpand(rr, top)) { |
624 | goto err; |
625 | } |
626 | rr->width = top; |
627 | bn_mul_normal(rr->d, a->d, al, b->d, bl); |
628 | |
629 | end: |
630 | if (r != rr && !BN_copy(r, rr)) { |
631 | goto err; |
632 | } |
633 | ret = 1; |
634 | |
635 | err: |
636 | BN_CTX_end(ctx); |
637 | return ret; |
638 | } |
639 | |
640 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
641 | if (!bn_mul_impl(r, a, b, ctx)) { |
642 | return 0; |
643 | } |
644 | |
645 | // This additionally fixes any negative zeros created by |bn_mul_impl|. |
646 | bn_set_minimal_width(r); |
647 | return 1; |
648 | } |
649 | |
650 | int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
651 | // Prevent negative zeros. |
652 | if (a->neg || b->neg) { |
653 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
654 | return 0; |
655 | } |
656 | |
657 | return bn_mul_impl(r, a, b, ctx); |
658 | } |
659 | |
660 | void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, |
661 | const BN_ULONG *b, size_t num_b) { |
662 | if (num_r != num_a + num_b) { |
663 | abort(); |
664 | } |
665 | // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not |
666 | // hit that code. |
667 | if (num_a == 8 && num_b == 8) { |
668 | bn_mul_comba8(r, a, b); |
669 | } else { |
670 | bn_mul_normal(r, a, num_a, b, num_b); |
671 | } |
672 | } |
673 | |
674 | // tmp must have 2*n words |
675 | static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n, |
676 | BN_ULONG *tmp) { |
677 | if (n == 0) { |
678 | return; |
679 | } |
680 | |
681 | size_t max = n * 2; |
682 | const BN_ULONG *ap = a; |
683 | BN_ULONG *rp = r; |
684 | rp[0] = rp[max - 1] = 0; |
685 | rp++; |
686 | |
687 | // Compute the contribution of a[i] * a[j] for all i < j. |
688 | if (n > 1) { |
689 | ap++; |
690 | rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]); |
691 | rp += 2; |
692 | } |
693 | if (n > 2) { |
694 | for (size_t i = n - 2; i > 0; i--) { |
695 | ap++; |
696 | rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]); |
697 | rp += 2; |
698 | } |
699 | } |
700 | |
701 | // The final result fits in |max| words, so none of the following operations |
702 | // will overflow. |
703 | |
704 | // Double |r|, giving the contribution of a[i] * a[j] for all i != j. |
705 | bn_add_words(r, r, r, max); |
706 | |
707 | // Add in the contribution of a[i] * a[i] for all i. |
708 | bn_sqr_words(tmp, a, n); |
709 | bn_add_words(r, r, tmp, max); |
710 | } |
711 | |
712 | // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has |
713 | // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be |
714 | // a power of two. |
715 | static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2, |
716 | BN_ULONG *t) { |
717 | // |n2| is a power of two. |
718 | assert(n2 != 0 && (n2 & (n2 - 1)) == 0); |
719 | |
720 | if (n2 == 4) { |
721 | bn_sqr_comba4(r, a); |
722 | return; |
723 | } |
724 | if (n2 == 8) { |
725 | bn_sqr_comba8(r, a); |
726 | return; |
727 | } |
728 | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
729 | bn_sqr_normal(r, a, n2, t); |
730 | return; |
731 | } |
732 | |
733 | // Split |a| into a0,a1, each of size |n|. |
734 | // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
735 | // for recursive calls. |
736 | // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to |
737 | // r1,r2, and a1^2 to r2,r3. |
738 | size_t n = n2 / 2; |
739 | BN_ULONG *t_recursive = &t[n2 * 2]; |
740 | |
741 | // t0 = |a0 - a1|. |
742 | bn_abs_sub_words(t, a, &a[n], n, &t[n]); |
743 | // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2 |
744 | bn_sqr_recursive(&t[n2], t, n, t_recursive); |
745 | |
746 | // r0,r1 = a0^2 |
747 | bn_sqr_recursive(r, a, n, t_recursive); |
748 | |
749 | // r2,r3 = a1^2 |
750 | bn_sqr_recursive(&r[n2], &a[n], n, t_recursive); |
751 | |
752 | // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2 |
753 | BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
754 | // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1 |
755 | c -= bn_sub_words(&t[n2], t, &t[n2], n2); |
756 | |
757 | // We now have our three components. Add them together. |
758 | // r1,r2,c = r1,r2 + t2,t3,c |
759 | c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
760 | |
761 | // Propagate the carry bit to the end. |
762 | for (size_t i = n + n2; i < n2 + n2; i++) { |
763 | BN_ULONG old = r[i]; |
764 | r[i] = old + c; |
765 | c = r[i] < old; |
766 | } |
767 | |
768 | // The square should fit without carries. |
769 | assert(c == 0); |
770 | } |
771 | |
772 | int BN_mul_word(BIGNUM *bn, BN_ULONG w) { |
773 | if (!bn->width) { |
774 | return 1; |
775 | } |
776 | |
777 | if (w == 0) { |
778 | BN_zero(bn); |
779 | return 1; |
780 | } |
781 | |
782 | BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w); |
783 | if (ll) { |
784 | if (!bn_wexpand(bn, bn->width + 1)) { |
785 | return 0; |
786 | } |
787 | bn->d[bn->width++] = ll; |
788 | } |
789 | |
790 | return 1; |
791 | } |
792 | |
793 | int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { |
794 | int al = a->width; |
795 | if (al <= 0) { |
796 | r->width = 0; |
797 | r->neg = 0; |
798 | return 1; |
799 | } |
800 | |
801 | int ret = 0; |
802 | BN_CTX_start(ctx); |
803 | BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx); |
804 | BIGNUM *tmp = BN_CTX_get(ctx); |
805 | if (!rr || !tmp) { |
806 | goto err; |
807 | } |
808 | |
809 | int max = 2 * al; // Non-zero (from above) |
810 | if (!bn_wexpand(rr, max)) { |
811 | goto err; |
812 | } |
813 | |
814 | if (al == 4) { |
815 | bn_sqr_comba4(rr->d, a->d); |
816 | } else if (al == 8) { |
817 | bn_sqr_comba8(rr->d, a->d); |
818 | } else { |
819 | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
820 | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
821 | bn_sqr_normal(rr->d, a->d, al, t); |
822 | } else { |
823 | // If |al| is a power of two, we can use |bn_sqr_recursive|. |
824 | if (al != 0 && (al & (al - 1)) == 0) { |
825 | if (!bn_wexpand(tmp, al * 4)) { |
826 | goto err; |
827 | } |
828 | bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
829 | } else { |
830 | if (!bn_wexpand(tmp, max)) { |
831 | goto err; |
832 | } |
833 | bn_sqr_normal(rr->d, a->d, al, tmp->d); |
834 | } |
835 | } |
836 | } |
837 | |
838 | rr->neg = 0; |
839 | rr->width = max; |
840 | |
841 | if (rr != r && !BN_copy(r, rr)) { |
842 | goto err; |
843 | } |
844 | ret = 1; |
845 | |
846 | err: |
847 | BN_CTX_end(ctx); |
848 | return ret; |
849 | } |
850 | |
851 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { |
852 | if (!bn_sqr_consttime(r, a, ctx)) { |
853 | return 0; |
854 | } |
855 | |
856 | bn_set_minimal_width(r); |
857 | return 1; |
858 | } |
859 | |
860 | void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) { |
861 | if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) { |
862 | abort(); |
863 | } |
864 | if (num_a == 4) { |
865 | bn_sqr_comba4(r, a); |
866 | } else if (num_a == 8) { |
867 | bn_sqr_comba8(r, a); |
868 | } else { |
869 | BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; |
870 | bn_sqr_normal(r, a, num_a, tmp); |
871 | OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG)); |
872 | } |
873 | } |
874 | |