| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/bn.h> |
| 58 | |
| 59 | #include <string.h> |
| 60 | |
| 61 | #include <openssl/err.h> |
| 62 | #include <openssl/type_check.h> |
| 63 | |
| 64 | #include "internal.h" |
| 65 | |
| 66 | |
| 67 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n) { |
| 68 | int i, nw, lb, rb; |
| 69 | BN_ULONG *t, *f; |
| 70 | BN_ULONG l; |
| 71 | |
| 72 | if (n < 0) { |
| 73 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 74 | return 0; |
| 75 | } |
| 76 | |
| 77 | r->neg = a->neg; |
| 78 | nw = n / BN_BITS2; |
| 79 | if (!bn_wexpand(r, a->width + nw + 1)) { |
| 80 | return 0; |
| 81 | } |
| 82 | lb = n % BN_BITS2; |
| 83 | rb = BN_BITS2 - lb; |
| 84 | f = a->d; |
| 85 | t = r->d; |
| 86 | t[a->width + nw] = 0; |
| 87 | if (lb == 0) { |
| 88 | for (i = a->width - 1; i >= 0; i--) { |
| 89 | t[nw + i] = f[i]; |
| 90 | } |
| 91 | } else { |
| 92 | for (i = a->width - 1; i >= 0; i--) { |
| 93 | l = f[i]; |
| 94 | t[nw + i + 1] |= l >> rb; |
| 95 | t[nw + i] = l << lb; |
| 96 | } |
| 97 | } |
| 98 | OPENSSL_memset(t, 0, nw * sizeof(t[0])); |
| 99 | r->width = a->width + nw + 1; |
| 100 | bn_set_minimal_width(r); |
| 101 | |
| 102 | return 1; |
| 103 | } |
| 104 | |
| 105 | int BN_lshift1(BIGNUM *r, const BIGNUM *a) { |
| 106 | BN_ULONG *ap, *rp, t, c; |
| 107 | int i; |
| 108 | |
| 109 | if (r != a) { |
| 110 | r->neg = a->neg; |
| 111 | if (!bn_wexpand(r, a->width + 1)) { |
| 112 | return 0; |
| 113 | } |
| 114 | r->width = a->width; |
| 115 | } else { |
| 116 | if (!bn_wexpand(r, a->width + 1)) { |
| 117 | return 0; |
| 118 | } |
| 119 | } |
| 120 | ap = a->d; |
| 121 | rp = r->d; |
| 122 | c = 0; |
| 123 | for (i = 0; i < a->width; i++) { |
| 124 | t = *(ap++); |
| 125 | *(rp++) = (t << 1) | c; |
| 126 | c = t >> (BN_BITS2 - 1); |
| 127 | } |
| 128 | if (c) { |
| 129 | *rp = 1; |
| 130 | r->width++; |
| 131 | } |
| 132 | |
| 133 | return 1; |
| 134 | } |
| 135 | |
| 136 | void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift, |
| 137 | size_t num) { |
| 138 | unsigned shift_bits = shift % BN_BITS2; |
| 139 | size_t shift_words = shift / BN_BITS2; |
| 140 | if (shift_words >= num) { |
| 141 | OPENSSL_memset(r, 0, num * sizeof(BN_ULONG)); |
| 142 | return; |
| 143 | } |
| 144 | if (shift_bits == 0) { |
| 145 | OPENSSL_memmove(r, a + shift_words, (num - shift_words) * sizeof(BN_ULONG)); |
| 146 | } else { |
| 147 | for (size_t i = shift_words; i < num - 1; i++) { |
| 148 | r[i - shift_words] = |
| 149 | (a[i] >> shift_bits) | (a[i + 1] << (BN_BITS2 - shift_bits)); |
| 150 | } |
| 151 | r[num - 1 - shift_words] = a[num - 1] >> shift_bits; |
| 152 | } |
| 153 | OPENSSL_memset(r + num - shift_words, 0, shift_words * sizeof(BN_ULONG)); |
| 154 | } |
| 155 | |
| 156 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n) { |
| 157 | if (n < 0) { |
| 158 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | if (!bn_wexpand(r, a->width)) { |
| 163 | return 0; |
| 164 | } |
| 165 | bn_rshift_words(r->d, a->d, n, a->width); |
| 166 | r->neg = a->neg; |
| 167 | r->width = a->width; |
| 168 | bn_set_minimal_width(r); |
| 169 | return 1; |
| 170 | } |
| 171 | |
| 172 | int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, unsigned n, |
| 173 | BN_CTX *ctx) { |
| 174 | int ret = 0; |
| 175 | BN_CTX_start(ctx); |
| 176 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 177 | if (tmp == NULL || |
| 178 | !BN_copy(r, a) || |
| 179 | !bn_wexpand(tmp, r->width)) { |
| 180 | goto err; |
| 181 | } |
| 182 | |
| 183 | // Shift conditionally by powers of two. |
| 184 | unsigned max_bits = BN_BITS2 * r->width; |
| 185 | for (unsigned i = 0; (max_bits >> i) != 0; i++) { |
| 186 | BN_ULONG mask = (n >> i) & 1; |
| 187 | mask = 0 - mask; |
| 188 | bn_rshift_words(tmp->d, r->d, 1u << i, r->width); |
| 189 | bn_select_words(r->d, mask, tmp->d /* apply shift */, |
| 190 | r->d /* ignore shift */, r->width); |
| 191 | } |
| 192 | |
| 193 | ret = 1; |
| 194 | |
| 195 | err: |
| 196 | BN_CTX_end(ctx); |
| 197 | return ret; |
| 198 | } |
| 199 | |
| 200 | void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num) { |
| 201 | if (num == 0) { |
| 202 | return; |
| 203 | } |
| 204 | for (size_t i = 0; i < num - 1; i++) { |
| 205 | r[i] = (a[i] >> 1) | (a[i + 1] << (BN_BITS2 - 1)); |
| 206 | } |
| 207 | r[num - 1] = a[num - 1] >> 1; |
| 208 | } |
| 209 | |
| 210 | int BN_rshift1(BIGNUM *r, const BIGNUM *a) { |
| 211 | if (!bn_wexpand(r, a->width)) { |
| 212 | return 0; |
| 213 | } |
| 214 | bn_rshift1_words(r->d, a->d, a->width); |
| 215 | r->width = a->width; |
| 216 | r->neg = a->neg; |
| 217 | bn_set_minimal_width(r); |
| 218 | return 1; |
| 219 | } |
| 220 | |
| 221 | int BN_set_bit(BIGNUM *a, int n) { |
| 222 | if (n < 0) { |
| 223 | return 0; |
| 224 | } |
| 225 | |
| 226 | int i = n / BN_BITS2; |
| 227 | int j = n % BN_BITS2; |
| 228 | if (a->width <= i) { |
| 229 | if (!bn_wexpand(a, i + 1)) { |
| 230 | return 0; |
| 231 | } |
| 232 | for (int k = a->width; k < i + 1; k++) { |
| 233 | a->d[k] = 0; |
| 234 | } |
| 235 | a->width = i + 1; |
| 236 | } |
| 237 | |
| 238 | a->d[i] |= (((BN_ULONG)1) << j); |
| 239 | |
| 240 | return 1; |
| 241 | } |
| 242 | |
| 243 | int BN_clear_bit(BIGNUM *a, int n) { |
| 244 | int i, j; |
| 245 | |
| 246 | if (n < 0) { |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | i = n / BN_BITS2; |
| 251 | j = n % BN_BITS2; |
| 252 | if (a->width <= i) { |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | a->d[i] &= (~(((BN_ULONG)1) << j)); |
| 257 | bn_set_minimal_width(a); |
| 258 | return 1; |
| 259 | } |
| 260 | |
| 261 | int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit) { |
| 262 | unsigned i = bit / BN_BITS2; |
| 263 | unsigned j = bit % BN_BITS2; |
| 264 | if (i >= num) { |
| 265 | return 0; |
| 266 | } |
| 267 | return (a[i] >> j) & 1; |
| 268 | } |
| 269 | |
| 270 | int BN_is_bit_set(const BIGNUM *a, int n) { |
| 271 | if (n < 0) { |
| 272 | return 0; |
| 273 | } |
| 274 | return bn_is_bit_set_words(a->d, a->width, n); |
| 275 | } |
| 276 | |
| 277 | int BN_mask_bits(BIGNUM *a, int n) { |
| 278 | if (n < 0) { |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | int w = n / BN_BITS2; |
| 283 | int b = n % BN_BITS2; |
| 284 | if (w >= a->width) { |
| 285 | return 1; |
| 286 | } |
| 287 | if (b == 0) { |
| 288 | a->width = w; |
| 289 | } else { |
| 290 | a->width = w + 1; |
| 291 | a->d[w] &= ~(BN_MASK2 << b); |
| 292 | } |
| 293 | |
| 294 | bn_set_minimal_width(a); |
| 295 | return 1; |
| 296 | } |
| 297 | |
| 298 | static int bn_count_low_zero_bits_word(BN_ULONG l) { |
| 299 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
| 300 | "crypto_word_t is too small" ); |
| 301 | OPENSSL_STATIC_ASSERT(sizeof(int) <= sizeof(crypto_word_t), |
| 302 | "crypto_word_t is too small" ); |
| 303 | OPENSSL_STATIC_ASSERT(BN_BITS2 == sizeof(BN_ULONG) * 8, |
| 304 | "BN_ULONG has padding bits" ); |
| 305 | // C has very bizarre rules for types smaller than an int. |
| 306 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) >= sizeof(int), |
| 307 | "BN_ULONG gets promoted to int" ); |
| 308 | |
| 309 | crypto_word_t mask; |
| 310 | int bits = 0; |
| 311 | |
| 312 | #if BN_BITS2 > 32 |
| 313 | // Check if the lower half of |x| are all zero. |
| 314 | mask = constant_time_is_zero_w(l << (BN_BITS2 - 32)); |
| 315 | // If the lower half is all zeros, it is included in the bit count and we |
| 316 | // count the upper half. Otherwise, we count the lower half. |
| 317 | bits += 32 & mask; |
| 318 | l = constant_time_select_w(mask, l >> 32, l); |
| 319 | #endif |
| 320 | |
| 321 | // The remaining blocks are analogous iterations at lower powers of two. |
| 322 | mask = constant_time_is_zero_w(l << (BN_BITS2 - 16)); |
| 323 | bits += 16 & mask; |
| 324 | l = constant_time_select_w(mask, l >> 16, l); |
| 325 | |
| 326 | mask = constant_time_is_zero_w(l << (BN_BITS2 - 8)); |
| 327 | bits += 8 & mask; |
| 328 | l = constant_time_select_w(mask, l >> 8, l); |
| 329 | |
| 330 | mask = constant_time_is_zero_w(l << (BN_BITS2 - 4)); |
| 331 | bits += 4 & mask; |
| 332 | l = constant_time_select_w(mask, l >> 4, l); |
| 333 | |
| 334 | mask = constant_time_is_zero_w(l << (BN_BITS2 - 2)); |
| 335 | bits += 2 & mask; |
| 336 | l = constant_time_select_w(mask, l >> 2, l); |
| 337 | |
| 338 | mask = constant_time_is_zero_w(l << (BN_BITS2 - 1)); |
| 339 | bits += 1 & mask; |
| 340 | |
| 341 | return bits; |
| 342 | } |
| 343 | |
| 344 | int BN_count_low_zero_bits(const BIGNUM *bn) { |
| 345 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
| 346 | "crypto_word_t is too small" ); |
| 347 | OPENSSL_STATIC_ASSERT(sizeof(int) <= sizeof(crypto_word_t), |
| 348 | "crypto_word_t is too small" ); |
| 349 | |
| 350 | int ret = 0; |
| 351 | crypto_word_t saw_nonzero = 0; |
| 352 | for (int i = 0; i < bn->width; i++) { |
| 353 | crypto_word_t nonzero = ~constant_time_is_zero_w(bn->d[i]); |
| 354 | crypto_word_t first_nonzero = ~saw_nonzero & nonzero; |
| 355 | saw_nonzero |= nonzero; |
| 356 | |
| 357 | int bits = bn_count_low_zero_bits_word(bn->d[i]); |
| 358 | ret |= first_nonzero & (i * BN_BITS2 + bits); |
| 359 | } |
| 360 | |
| 361 | // If got to the end of |bn| and saw no non-zero words, |bn| is zero. |ret| |
| 362 | // will then remain zero. |
| 363 | return ret; |
| 364 | } |
| 365 | |