1 | /* Copyright (c) 2015, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication |
16 | // |
17 | // Inspired by Daniel J. Bernstein's public domain nistp224 implementation |
18 | // and Adam Langley's public domain 64-bit C implementation of curve25519. |
19 | |
20 | #include <openssl/base.h> |
21 | |
22 | #include <openssl/bn.h> |
23 | #include <openssl/ec.h> |
24 | #include <openssl/err.h> |
25 | #include <openssl/mem.h> |
26 | |
27 | #include <string.h> |
28 | |
29 | #include "internal.h" |
30 | #include "../delocate.h" |
31 | #include "../../internal.h" |
32 | |
33 | |
34 | #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) |
35 | |
36 | // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 |
37 | // using 64-bit coefficients called 'limbs', and sometimes (for multiplication |
38 | // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + |
39 | // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb |
40 | // representation is an 'p224_felem'; a 7-p224_widelimb representation is a |
41 | // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we |
42 | // don't always reduce the representations: we ensure that inputs to each |
43 | // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i < |
44 | // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients |
45 | // are then again partially reduced to obtain an p224_felem satisfying a_i < |
46 | // 2^57. We only reduce to the unique minimal representation at the end of the |
47 | // computation. |
48 | |
49 | typedef uint64_t p224_limb; |
50 | typedef uint128_t p224_widelimb; |
51 | |
52 | typedef p224_limb p224_felem[4]; |
53 | typedef p224_widelimb p224_widefelem[7]; |
54 | |
55 | // Field element represented as a byte arrary. 28*8 = 224 bits is also the |
56 | // group order size for the elliptic curve, and we also use this type for |
57 | // scalars for point multiplication. |
58 | typedef uint8_t p224_felem_bytearray[28]; |
59 | |
60 | // Precomputed multiples of the standard generator |
61 | // Points are given in coordinates (X, Y, Z) where Z normally is 1 |
62 | // (0 for the point at infinity). |
63 | // For each field element, slice a_0 is word 0, etc. |
64 | // |
65 | // The table has 2 * 16 elements, starting with the following: |
66 | // index | bits | point |
67 | // ------+---------+------------------------------ |
68 | // 0 | 0 0 0 0 | 0G |
69 | // 1 | 0 0 0 1 | 1G |
70 | // 2 | 0 0 1 0 | 2^56G |
71 | // 3 | 0 0 1 1 | (2^56 + 1)G |
72 | // 4 | 0 1 0 0 | 2^112G |
73 | // 5 | 0 1 0 1 | (2^112 + 1)G |
74 | // 6 | 0 1 1 0 | (2^112 + 2^56)G |
75 | // 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G |
76 | // 8 | 1 0 0 0 | 2^168G |
77 | // 9 | 1 0 0 1 | (2^168 + 1)G |
78 | // 10 | 1 0 1 0 | (2^168 + 2^56)G |
79 | // 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G |
80 | // 12 | 1 1 0 0 | (2^168 + 2^112)G |
81 | // 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G |
82 | // 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G |
83 | // 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G |
84 | // followed by a copy of this with each element multiplied by 2^28. |
85 | // |
86 | // The reason for this is so that we can clock bits into four different |
87 | // locations when doing simple scalar multiplies against the base point, |
88 | // and then another four locations using the second 16 elements. |
89 | static const p224_felem g_p224_pre_comp[2][16][3] = { |
90 | {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, |
91 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, |
92 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, |
93 | {1, 0, 0, 0}}, |
94 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, |
95 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, |
96 | {1, 0, 0, 0}}, |
97 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, |
98 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, |
99 | {1, 0, 0, 0}}, |
100 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, |
101 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, |
102 | {1, 0, 0, 0}}, |
103 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, |
104 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, |
105 | {1, 0, 0, 0}}, |
106 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, |
107 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, |
108 | {1, 0, 0, 0}}, |
109 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, |
110 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, |
111 | {1, 0, 0, 0}}, |
112 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, |
113 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, |
114 | {1, 0, 0, 0}}, |
115 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, |
116 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, |
117 | {1, 0, 0, 0}}, |
118 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, |
119 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, |
120 | {1, 0, 0, 0}}, |
121 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, |
122 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, |
123 | {1, 0, 0, 0}}, |
124 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, |
125 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, |
126 | {1, 0, 0, 0}}, |
127 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, |
128 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, |
129 | {1, 0, 0, 0}}, |
130 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, |
131 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, |
132 | {1, 0, 0, 0}}, |
133 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, |
134 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, |
135 | {1, 0, 0, 0}}}, |
136 | {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, |
137 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, |
138 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, |
139 | {1, 0, 0, 0}}, |
140 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, |
141 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, |
142 | {1, 0, 0, 0}}, |
143 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, |
144 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, |
145 | {1, 0, 0, 0}}, |
146 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, |
147 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, |
148 | {1, 0, 0, 0}}, |
149 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, |
150 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, |
151 | {1, 0, 0, 0}}, |
152 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, |
153 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, |
154 | {1, 0, 0, 0}}, |
155 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, |
156 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, |
157 | {1, 0, 0, 0}}, |
158 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, |
159 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, |
160 | {1, 0, 0, 0}}, |
161 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, |
162 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, |
163 | {1, 0, 0, 0}}, |
164 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, |
165 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, |
166 | {1, 0, 0, 0}}, |
167 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, |
168 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, |
169 | {1, 0, 0, 0}}, |
170 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, |
171 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, |
172 | {1, 0, 0, 0}}, |
173 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, |
174 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, |
175 | {1, 0, 0, 0}}, |
176 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, |
177 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, |
178 | {1, 0, 0, 0}}, |
179 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, |
180 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, |
181 | {1, 0, 0, 0}}}}; |
182 | |
183 | static uint64_t p224_load_u64(const uint8_t in[8]) { |
184 | uint64_t ret; |
185 | OPENSSL_memcpy(&ret, in, sizeof(ret)); |
186 | return ret; |
187 | } |
188 | |
189 | // Helper functions to convert field elements to/from internal representation |
190 | static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) { |
191 | out[0] = p224_load_u64(in) & 0x00ffffffffffffff; |
192 | out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff; |
193 | out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff; |
194 | out[3] = p224_load_u64(in + 20) >> 8; |
195 | } |
196 | |
197 | static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) { |
198 | for (size_t i = 0; i < 7; ++i) { |
199 | out[i] = in[0] >> (8 * i); |
200 | out[i + 7] = in[1] >> (8 * i); |
201 | out[i + 14] = in[2] >> (8 * i); |
202 | out[i + 21] = in[3] >> (8 * i); |
203 | } |
204 | } |
205 | |
206 | static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) { |
207 | p224_bin28_to_felem(out, in->bytes); |
208 | } |
209 | |
210 | // Requires 0 <= in < 2*p (always call p224_felem_reduce first) |
211 | static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) { |
212 | // Reduce to unique minimal representation. |
213 | static const int64_t two56 = ((p224_limb)1) << 56; |
214 | // 0 <= in < 2*p, p = 2^224 - 2^96 + 1 |
215 | // if in > p , reduce in = in - 2^224 + 2^96 - 1 |
216 | int64_t tmp[4], a; |
217 | tmp[0] = in[0]; |
218 | tmp[1] = in[1]; |
219 | tmp[2] = in[2]; |
220 | tmp[3] = in[3]; |
221 | // Case 1: a = 1 iff in >= 2^224 |
222 | a = (in[3] >> 56); |
223 | tmp[0] -= a; |
224 | tmp[1] += a << 40; |
225 | tmp[3] &= 0x00ffffffffffffff; |
226 | // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and |
227 | // the lower part is non-zero |
228 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | |
229 | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); |
230 | a &= 0x00ffffffffffffff; |
231 | // turn a into an all-one mask (if a = 0) or an all-zero mask |
232 | a = (a - 1) >> 63; |
233 | // subtract 2^224 - 2^96 + 1 if a is all-one |
234 | tmp[3] &= a ^ 0xffffffffffffffff; |
235 | tmp[2] &= a ^ 0xffffffffffffffff; |
236 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; |
237 | tmp[0] -= 1 & a; |
238 | |
239 | // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must |
240 | // be non-zero, so we only need one step |
241 | a = tmp[0] >> 63; |
242 | tmp[0] += two56 & a; |
243 | tmp[1] -= 1 & a; |
244 | |
245 | // carry 1 -> 2 -> 3 |
246 | tmp[2] += tmp[1] >> 56; |
247 | tmp[1] &= 0x00ffffffffffffff; |
248 | |
249 | tmp[3] += tmp[2] >> 56; |
250 | tmp[2] &= 0x00ffffffffffffff; |
251 | |
252 | // Now 0 <= tmp < p |
253 | p224_felem tmp2; |
254 | tmp2[0] = tmp[0]; |
255 | tmp2[1] = tmp[1]; |
256 | tmp2[2] = tmp[2]; |
257 | tmp2[3] = tmp[3]; |
258 | |
259 | p224_felem_to_bin28(out->bytes, tmp2); |
260 | // 224 is not a multiple of 64, so zero the remaining bytes. |
261 | OPENSSL_memset(out->bytes + 28, 0, 32 - 28); |
262 | } |
263 | |
264 | |
265 | // Field operations, using the internal representation of field elements. |
266 | // NB! These operations are specific to our point multiplication and cannot be |
267 | // expected to be correct in general - e.g., multiplication with a large scalar |
268 | // will cause an overflow. |
269 | |
270 | static void p224_felem_assign(p224_felem out, const p224_felem in) { |
271 | out[0] = in[0]; |
272 | out[1] = in[1]; |
273 | out[2] = in[2]; |
274 | out[3] = in[3]; |
275 | } |
276 | |
277 | // Sum two field elements: out += in |
278 | static void p224_felem_sum(p224_felem out, const p224_felem in) { |
279 | out[0] += in[0]; |
280 | out[1] += in[1]; |
281 | out[2] += in[2]; |
282 | out[3] += in[3]; |
283 | } |
284 | |
285 | // Subtract field elements: out -= in |
286 | // Assumes in[i] < 2^57 |
287 | static void p224_felem_diff(p224_felem out, const p224_felem in) { |
288 | static const p224_limb two58p2 = |
289 | (((p224_limb)1) << 58) + (((p224_limb)1) << 2); |
290 | static const p224_limb two58m2 = |
291 | (((p224_limb)1) << 58) - (((p224_limb)1) << 2); |
292 | static const p224_limb two58m42m2 = |
293 | (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2); |
294 | |
295 | // Add 0 mod 2^224-2^96+1 to ensure out > in |
296 | out[0] += two58p2; |
297 | out[1] += two58m42m2; |
298 | out[2] += two58m2; |
299 | out[3] += two58m2; |
300 | |
301 | out[0] -= in[0]; |
302 | out[1] -= in[1]; |
303 | out[2] -= in[2]; |
304 | out[3] -= in[3]; |
305 | } |
306 | |
307 | // Subtract in unreduced 128-bit mode: out -= in |
308 | // Assumes in[i] < 2^119 |
309 | static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) { |
310 | static const p224_widelimb two120 = ((p224_widelimb)1) << 120; |
311 | static const p224_widelimb two120m64 = |
312 | (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64); |
313 | static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) - |
314 | (((p224_widelimb)1) << 104) - |
315 | (((p224_widelimb)1) << 64); |
316 | |
317 | // Add 0 mod 2^224-2^96+1 to ensure out > in |
318 | out[0] += two120; |
319 | out[1] += two120m64; |
320 | out[2] += two120m64; |
321 | out[3] += two120; |
322 | out[4] += two120m104m64; |
323 | out[5] += two120m64; |
324 | out[6] += two120m64; |
325 | |
326 | out[0] -= in[0]; |
327 | out[1] -= in[1]; |
328 | out[2] -= in[2]; |
329 | out[3] -= in[3]; |
330 | out[4] -= in[4]; |
331 | out[5] -= in[5]; |
332 | out[6] -= in[6]; |
333 | } |
334 | |
335 | // Subtract in mixed mode: out128 -= in64 |
336 | // in[i] < 2^63 |
337 | static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) { |
338 | static const p224_widelimb two64p8 = |
339 | (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8); |
340 | static const p224_widelimb two64m8 = |
341 | (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8); |
342 | static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) - |
343 | (((p224_widelimb)1) << 48) - |
344 | (((p224_widelimb)1) << 8); |
345 | |
346 | // Add 0 mod 2^224-2^96+1 to ensure out > in |
347 | out[0] += two64p8; |
348 | out[1] += two64m48m8; |
349 | out[2] += two64m8; |
350 | out[3] += two64m8; |
351 | |
352 | out[0] -= in[0]; |
353 | out[1] -= in[1]; |
354 | out[2] -= in[2]; |
355 | out[3] -= in[3]; |
356 | } |
357 | |
358 | // Multiply a field element by a scalar: out = out * scalar |
359 | // The scalars we actually use are small, so results fit without overflow |
360 | static void p224_felem_scalar(p224_felem out, const p224_limb scalar) { |
361 | out[0] *= scalar; |
362 | out[1] *= scalar; |
363 | out[2] *= scalar; |
364 | out[3] *= scalar; |
365 | } |
366 | |
367 | // Multiply an unreduced field element by a scalar: out = out * scalar |
368 | // The scalars we actually use are small, so results fit without overflow |
369 | static void p224_widefelem_scalar(p224_widefelem out, |
370 | const p224_widelimb scalar) { |
371 | out[0] *= scalar; |
372 | out[1] *= scalar; |
373 | out[2] *= scalar; |
374 | out[3] *= scalar; |
375 | out[4] *= scalar; |
376 | out[5] *= scalar; |
377 | out[6] *= scalar; |
378 | } |
379 | |
380 | // Square a field element: out = in^2 |
381 | static void p224_felem_square(p224_widefelem out, const p224_felem in) { |
382 | p224_limb tmp0, tmp1, tmp2; |
383 | tmp0 = 2 * in[0]; |
384 | tmp1 = 2 * in[1]; |
385 | tmp2 = 2 * in[2]; |
386 | out[0] = ((p224_widelimb)in[0]) * in[0]; |
387 | out[1] = ((p224_widelimb)in[0]) * tmp1; |
388 | out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1]; |
389 | out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2; |
390 | out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2]; |
391 | out[5] = ((p224_widelimb)in[3]) * tmp2; |
392 | out[6] = ((p224_widelimb)in[3]) * in[3]; |
393 | } |
394 | |
395 | // Multiply two field elements: out = in1 * in2 |
396 | static void p224_felem_mul(p224_widefelem out, const p224_felem in1, |
397 | const p224_felem in2) { |
398 | out[0] = ((p224_widelimb)in1[0]) * in2[0]; |
399 | out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0]; |
400 | out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] + |
401 | ((p224_widelimb)in1[2]) * in2[0]; |
402 | out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] + |
403 | ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0]; |
404 | out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] + |
405 | ((p224_widelimb)in1[3]) * in2[1]; |
406 | out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2]; |
407 | out[6] = ((p224_widelimb)in1[3]) * in2[3]; |
408 | } |
409 | |
410 | // Reduce seven 128-bit coefficients to four 64-bit coefficients. |
411 | // Requires in[i] < 2^126, |
412 | // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
413 | static void p224_felem_reduce(p224_felem out, const p224_widefelem in) { |
414 | static const p224_widelimb two127p15 = |
415 | (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15); |
416 | static const p224_widelimb two127m71 = |
417 | (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71); |
418 | static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) - |
419 | (((p224_widelimb)1) << 71) - |
420 | (((p224_widelimb)1) << 55); |
421 | p224_widelimb output[5]; |
422 | |
423 | // Add 0 mod 2^224-2^96+1 to ensure all differences are positive |
424 | output[0] = in[0] + two127p15; |
425 | output[1] = in[1] + two127m71m55; |
426 | output[2] = in[2] + two127m71; |
427 | output[3] = in[3]; |
428 | output[4] = in[4]; |
429 | |
430 | // Eliminate in[4], in[5], in[6] |
431 | output[4] += in[6] >> 16; |
432 | output[3] += (in[6] & 0xffff) << 40; |
433 | output[2] -= in[6]; |
434 | |
435 | output[3] += in[5] >> 16; |
436 | output[2] += (in[5] & 0xffff) << 40; |
437 | output[1] -= in[5]; |
438 | |
439 | output[2] += output[4] >> 16; |
440 | output[1] += (output[4] & 0xffff) << 40; |
441 | output[0] -= output[4]; |
442 | |
443 | // Carry 2 -> 3 -> 4 |
444 | output[3] += output[2] >> 56; |
445 | output[2] &= 0x00ffffffffffffff; |
446 | |
447 | output[4] = output[3] >> 56; |
448 | output[3] &= 0x00ffffffffffffff; |
449 | |
450 | // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 |
451 | |
452 | // Eliminate output[4] |
453 | output[2] += output[4] >> 16; |
454 | // output[2] < 2^56 + 2^56 = 2^57 |
455 | output[1] += (output[4] & 0xffff) << 40; |
456 | output[0] -= output[4]; |
457 | |
458 | // Carry 0 -> 1 -> 2 -> 3 |
459 | output[1] += output[0] >> 56; |
460 | out[0] = output[0] & 0x00ffffffffffffff; |
461 | |
462 | output[2] += output[1] >> 56; |
463 | // output[2] < 2^57 + 2^72 |
464 | out[1] = output[1] & 0x00ffffffffffffff; |
465 | output[3] += output[2] >> 56; |
466 | // output[3] <= 2^56 + 2^16 |
467 | out[2] = output[2] & 0x00ffffffffffffff; |
468 | |
469 | // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, |
470 | // out[3] <= 2^56 + 2^16 (due to final carry), |
471 | // so out < 2*p |
472 | out[3] = output[3]; |
473 | } |
474 | |
475 | // Get negative value: out = -in |
476 | // Requires in[i] < 2^63, |
477 | // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
478 | static void p224_felem_neg(p224_felem out, const p224_felem in) { |
479 | p224_widefelem tmp = {0}; |
480 | p224_felem_diff_128_64(tmp, in); |
481 | p224_felem_reduce(out, tmp); |
482 | } |
483 | |
484 | // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field |
485 | // elements are reduced to in < 2^225, so we only need to check three cases: 0, |
486 | // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 |
487 | static p224_limb p224_felem_is_zero(const p224_felem in) { |
488 | p224_limb zero = in[0] | in[1] | in[2] | in[3]; |
489 | zero = (((int64_t)(zero)-1) >> 63) & 1; |
490 | |
491 | p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | |
492 | (in[2] ^ 0x00ffffffffffffff) | |
493 | (in[3] ^ 0x00ffffffffffffff); |
494 | two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1; |
495 | p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | |
496 | (in[2] ^ 0x00ffffffffffffff) | |
497 | (in[3] ^ 0x01ffffffffffffff); |
498 | two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1; |
499 | return (zero | two224m96p1 | two225m97p2); |
500 | } |
501 | |
502 | // Invert a field element |
503 | // Computation chain copied from djb's code |
504 | static void p224_felem_inv(p224_felem out, const p224_felem in) { |
505 | p224_felem ftmp, ftmp2, ftmp3, ftmp4; |
506 | p224_widefelem tmp; |
507 | |
508 | p224_felem_square(tmp, in); |
509 | p224_felem_reduce(ftmp, tmp); // 2 |
510 | p224_felem_mul(tmp, in, ftmp); |
511 | p224_felem_reduce(ftmp, tmp); // 2^2 - 1 |
512 | p224_felem_square(tmp, ftmp); |
513 | p224_felem_reduce(ftmp, tmp); // 2^3 - 2 |
514 | p224_felem_mul(tmp, in, ftmp); |
515 | p224_felem_reduce(ftmp, tmp); // 2^3 - 1 |
516 | p224_felem_square(tmp, ftmp); |
517 | p224_felem_reduce(ftmp2, tmp); // 2^4 - 2 |
518 | p224_felem_square(tmp, ftmp2); |
519 | p224_felem_reduce(ftmp2, tmp); // 2^5 - 4 |
520 | p224_felem_square(tmp, ftmp2); |
521 | p224_felem_reduce(ftmp2, tmp); // 2^6 - 8 |
522 | p224_felem_mul(tmp, ftmp2, ftmp); |
523 | p224_felem_reduce(ftmp, tmp); // 2^6 - 1 |
524 | p224_felem_square(tmp, ftmp); |
525 | p224_felem_reduce(ftmp2, tmp); // 2^7 - 2 |
526 | for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6 |
527 | p224_felem_square(tmp, ftmp2); |
528 | p224_felem_reduce(ftmp2, tmp); |
529 | } |
530 | p224_felem_mul(tmp, ftmp2, ftmp); |
531 | p224_felem_reduce(ftmp2, tmp); // 2^12 - 1 |
532 | p224_felem_square(tmp, ftmp2); |
533 | p224_felem_reduce(ftmp3, tmp); // 2^13 - 2 |
534 | for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12 |
535 | p224_felem_square(tmp, ftmp3); |
536 | p224_felem_reduce(ftmp3, tmp); |
537 | } |
538 | p224_felem_mul(tmp, ftmp3, ftmp2); |
539 | p224_felem_reduce(ftmp2, tmp); // 2^24 - 1 |
540 | p224_felem_square(tmp, ftmp2); |
541 | p224_felem_reduce(ftmp3, tmp); // 2^25 - 2 |
542 | for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24 |
543 | p224_felem_square(tmp, ftmp3); |
544 | p224_felem_reduce(ftmp3, tmp); |
545 | } |
546 | p224_felem_mul(tmp, ftmp3, ftmp2); |
547 | p224_felem_reduce(ftmp3, tmp); // 2^48 - 1 |
548 | p224_felem_square(tmp, ftmp3); |
549 | p224_felem_reduce(ftmp4, tmp); // 2^49 - 2 |
550 | for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48 |
551 | p224_felem_square(tmp, ftmp4); |
552 | p224_felem_reduce(ftmp4, tmp); |
553 | } |
554 | p224_felem_mul(tmp, ftmp3, ftmp4); |
555 | p224_felem_reduce(ftmp3, tmp); // 2^96 - 1 |
556 | p224_felem_square(tmp, ftmp3); |
557 | p224_felem_reduce(ftmp4, tmp); // 2^97 - 2 |
558 | for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24 |
559 | p224_felem_square(tmp, ftmp4); |
560 | p224_felem_reduce(ftmp4, tmp); |
561 | } |
562 | p224_felem_mul(tmp, ftmp2, ftmp4); |
563 | p224_felem_reduce(ftmp2, tmp); // 2^120 - 1 |
564 | for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6 |
565 | p224_felem_square(tmp, ftmp2); |
566 | p224_felem_reduce(ftmp2, tmp); |
567 | } |
568 | p224_felem_mul(tmp, ftmp2, ftmp); |
569 | p224_felem_reduce(ftmp, tmp); // 2^126 - 1 |
570 | p224_felem_square(tmp, ftmp); |
571 | p224_felem_reduce(ftmp, tmp); // 2^127 - 2 |
572 | p224_felem_mul(tmp, ftmp, in); |
573 | p224_felem_reduce(ftmp, tmp); // 2^127 - 1 |
574 | for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97 |
575 | p224_felem_square(tmp, ftmp); |
576 | p224_felem_reduce(ftmp, tmp); |
577 | } |
578 | p224_felem_mul(tmp, ftmp, ftmp3); |
579 | p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1 |
580 | } |
581 | |
582 | // Copy in constant time: |
583 | // if icopy == 1, copy in to out, |
584 | // if icopy == 0, copy out to itself. |
585 | static void p224_copy_conditional(p224_felem out, const p224_felem in, |
586 | p224_limb icopy) { |
587 | // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one |
588 | const p224_limb copy = -icopy; |
589 | for (size_t i = 0; i < 4; ++i) { |
590 | const p224_limb tmp = copy & (in[i] ^ out[i]); |
591 | out[i] ^= tmp; |
592 | } |
593 | } |
594 | |
595 | // ELLIPTIC CURVE POINT OPERATIONS |
596 | // |
597 | // Points are represented in Jacobian projective coordinates: |
598 | // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), |
599 | // or to the point at infinity if Z == 0. |
600 | |
601 | // Double an elliptic curve point: |
602 | // (X', Y', Z') = 2 * (X, Y, Z), where |
603 | // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 |
604 | // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 |
605 | // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z |
606 | // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, |
607 | // while x_out == y_in is not (maybe this works, but it's not tested). |
608 | static void p224_point_double(p224_felem x_out, p224_felem y_out, |
609 | p224_felem z_out, const p224_felem x_in, |
610 | const p224_felem y_in, const p224_felem z_in) { |
611 | p224_widefelem tmp, tmp2; |
612 | p224_felem delta, gamma, beta, alpha, ftmp, ftmp2; |
613 | |
614 | p224_felem_assign(ftmp, x_in); |
615 | p224_felem_assign(ftmp2, x_in); |
616 | |
617 | // delta = z^2 |
618 | p224_felem_square(tmp, z_in); |
619 | p224_felem_reduce(delta, tmp); |
620 | |
621 | // gamma = y^2 |
622 | p224_felem_square(tmp, y_in); |
623 | p224_felem_reduce(gamma, tmp); |
624 | |
625 | // beta = x*gamma |
626 | p224_felem_mul(tmp, x_in, gamma); |
627 | p224_felem_reduce(beta, tmp); |
628 | |
629 | // alpha = 3*(x-delta)*(x+delta) |
630 | p224_felem_diff(ftmp, delta); |
631 | // ftmp[i] < 2^57 + 2^58 + 2 < 2^59 |
632 | p224_felem_sum(ftmp2, delta); |
633 | // ftmp2[i] < 2^57 + 2^57 = 2^58 |
634 | p224_felem_scalar(ftmp2, 3); |
635 | // ftmp2[i] < 3 * 2^58 < 2^60 |
636 | p224_felem_mul(tmp, ftmp, ftmp2); |
637 | // tmp[i] < 2^60 * 2^59 * 4 = 2^121 |
638 | p224_felem_reduce(alpha, tmp); |
639 | |
640 | // x' = alpha^2 - 8*beta |
641 | p224_felem_square(tmp, alpha); |
642 | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
643 | p224_felem_assign(ftmp, beta); |
644 | p224_felem_scalar(ftmp, 8); |
645 | // ftmp[i] < 8 * 2^57 = 2^60 |
646 | p224_felem_diff_128_64(tmp, ftmp); |
647 | // tmp[i] < 2^116 + 2^64 + 8 < 2^117 |
648 | p224_felem_reduce(x_out, tmp); |
649 | |
650 | // z' = (y + z)^2 - gamma - delta |
651 | p224_felem_sum(delta, gamma); |
652 | // delta[i] < 2^57 + 2^57 = 2^58 |
653 | p224_felem_assign(ftmp, y_in); |
654 | p224_felem_sum(ftmp, z_in); |
655 | // ftmp[i] < 2^57 + 2^57 = 2^58 |
656 | p224_felem_square(tmp, ftmp); |
657 | // tmp[i] < 4 * 2^58 * 2^58 = 2^118 |
658 | p224_felem_diff_128_64(tmp, delta); |
659 | // tmp[i] < 2^118 + 2^64 + 8 < 2^119 |
660 | p224_felem_reduce(z_out, tmp); |
661 | |
662 | // y' = alpha*(4*beta - x') - 8*gamma^2 |
663 | p224_felem_scalar(beta, 4); |
664 | // beta[i] < 4 * 2^57 = 2^59 |
665 | p224_felem_diff(beta, x_out); |
666 | // beta[i] < 2^59 + 2^58 + 2 < 2^60 |
667 | p224_felem_mul(tmp, alpha, beta); |
668 | // tmp[i] < 4 * 2^57 * 2^60 = 2^119 |
669 | p224_felem_square(tmp2, gamma); |
670 | // tmp2[i] < 4 * 2^57 * 2^57 = 2^116 |
671 | p224_widefelem_scalar(tmp2, 8); |
672 | // tmp2[i] < 8 * 2^116 = 2^119 |
673 | p224_widefelem_diff(tmp, tmp2); |
674 | // tmp[i] < 2^119 + 2^120 < 2^121 |
675 | p224_felem_reduce(y_out, tmp); |
676 | } |
677 | |
678 | // Add two elliptic curve points: |
679 | // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where |
680 | // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - |
681 | // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 |
682 | // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * |
683 | // X_1)^2 - X_3) - |
684 | // Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 |
685 | // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) |
686 | // |
687 | // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. |
688 | |
689 | // This function is not entirely constant-time: it includes a branch for |
690 | // checking whether the two input points are equal, (while not equal to the |
691 | // point at infinity). This case never happens during single point |
692 | // multiplication, so there is no timing leak for ECDH or ECDSA signing. |
693 | static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3, |
694 | const p224_felem x1, const p224_felem y1, |
695 | const p224_felem z1, const int mixed, |
696 | const p224_felem x2, const p224_felem y2, |
697 | const p224_felem z2) { |
698 | p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; |
699 | p224_widefelem tmp, tmp2; |
700 | p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal; |
701 | |
702 | if (!mixed) { |
703 | // ftmp2 = z2^2 |
704 | p224_felem_square(tmp, z2); |
705 | p224_felem_reduce(ftmp2, tmp); |
706 | |
707 | // ftmp4 = z2^3 |
708 | p224_felem_mul(tmp, ftmp2, z2); |
709 | p224_felem_reduce(ftmp4, tmp); |
710 | |
711 | // ftmp4 = z2^3*y1 |
712 | p224_felem_mul(tmp2, ftmp4, y1); |
713 | p224_felem_reduce(ftmp4, tmp2); |
714 | |
715 | // ftmp2 = z2^2*x1 |
716 | p224_felem_mul(tmp2, ftmp2, x1); |
717 | p224_felem_reduce(ftmp2, tmp2); |
718 | } else { |
719 | // We'll assume z2 = 1 (special case z2 = 0 is handled later) |
720 | |
721 | // ftmp4 = z2^3*y1 |
722 | p224_felem_assign(ftmp4, y1); |
723 | |
724 | // ftmp2 = z2^2*x1 |
725 | p224_felem_assign(ftmp2, x1); |
726 | } |
727 | |
728 | // ftmp = z1^2 |
729 | p224_felem_square(tmp, z1); |
730 | p224_felem_reduce(ftmp, tmp); |
731 | |
732 | // ftmp3 = z1^3 |
733 | p224_felem_mul(tmp, ftmp, z1); |
734 | p224_felem_reduce(ftmp3, tmp); |
735 | |
736 | // tmp = z1^3*y2 |
737 | p224_felem_mul(tmp, ftmp3, y2); |
738 | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
739 | |
740 | // ftmp3 = z1^3*y2 - z2^3*y1 |
741 | p224_felem_diff_128_64(tmp, ftmp4); |
742 | // tmp[i] < 2^116 + 2^64 + 8 < 2^117 |
743 | p224_felem_reduce(ftmp3, tmp); |
744 | |
745 | // tmp = z1^2*x2 |
746 | p224_felem_mul(tmp, ftmp, x2); |
747 | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
748 | |
749 | // ftmp = z1^2*x2 - z2^2*x1 |
750 | p224_felem_diff_128_64(tmp, ftmp2); |
751 | // tmp[i] < 2^116 + 2^64 + 8 < 2^117 |
752 | p224_felem_reduce(ftmp, tmp); |
753 | |
754 | // the formulae are incorrect if the points are equal |
755 | // so we check for this and do doubling if this happens |
756 | x_equal = p224_felem_is_zero(ftmp); |
757 | y_equal = p224_felem_is_zero(ftmp3); |
758 | z1_is_zero = p224_felem_is_zero(z1); |
759 | z2_is_zero = p224_felem_is_zero(z2); |
760 | // In affine coordinates, (X_1, Y_1) == (X_2, Y_2) |
761 | p224_limb is_nontrivial_double = |
762 | x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero); |
763 | if (is_nontrivial_double) { |
764 | p224_point_double(x3, y3, z3, x1, y1, z1); |
765 | return; |
766 | } |
767 | |
768 | // ftmp5 = z1*z2 |
769 | if (!mixed) { |
770 | p224_felem_mul(tmp, z1, z2); |
771 | p224_felem_reduce(ftmp5, tmp); |
772 | } else { |
773 | // special case z2 = 0 is handled later |
774 | p224_felem_assign(ftmp5, z1); |
775 | } |
776 | |
777 | // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) |
778 | p224_felem_mul(tmp, ftmp, ftmp5); |
779 | p224_felem_reduce(z_out, tmp); |
780 | |
781 | // ftmp = (z1^2*x2 - z2^2*x1)^2 |
782 | p224_felem_assign(ftmp5, ftmp); |
783 | p224_felem_square(tmp, ftmp); |
784 | p224_felem_reduce(ftmp, tmp); |
785 | |
786 | // ftmp5 = (z1^2*x2 - z2^2*x1)^3 |
787 | p224_felem_mul(tmp, ftmp, ftmp5); |
788 | p224_felem_reduce(ftmp5, tmp); |
789 | |
790 | // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
791 | p224_felem_mul(tmp, ftmp2, ftmp); |
792 | p224_felem_reduce(ftmp2, tmp); |
793 | |
794 | // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 |
795 | p224_felem_mul(tmp, ftmp4, ftmp5); |
796 | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
797 | |
798 | // tmp2 = (z1^3*y2 - z2^3*y1)^2 |
799 | p224_felem_square(tmp2, ftmp3); |
800 | // tmp2[i] < 4 * 2^57 * 2^57 < 2^116 |
801 | |
802 | // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 |
803 | p224_felem_diff_128_64(tmp2, ftmp5); |
804 | // tmp2[i] < 2^116 + 2^64 + 8 < 2^117 |
805 | |
806 | // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
807 | p224_felem_assign(ftmp5, ftmp2); |
808 | p224_felem_scalar(ftmp5, 2); |
809 | // ftmp5[i] < 2 * 2^57 = 2^58 |
810 | |
811 | /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - |
812 | 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
813 | p224_felem_diff_128_64(tmp2, ftmp5); |
814 | // tmp2[i] < 2^117 + 2^64 + 8 < 2^118 |
815 | p224_felem_reduce(x_out, tmp2); |
816 | |
817 | // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out |
818 | p224_felem_diff(ftmp2, x_out); |
819 | // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 |
820 | |
821 | // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) |
822 | p224_felem_mul(tmp2, ftmp3, ftmp2); |
823 | // tmp2[i] < 4 * 2^57 * 2^59 = 2^118 |
824 | |
825 | /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - |
826 | z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
827 | p224_widefelem_diff(tmp2, tmp); |
828 | // tmp2[i] < 2^118 + 2^120 < 2^121 |
829 | p224_felem_reduce(y_out, tmp2); |
830 | |
831 | // the result (x_out, y_out, z_out) is incorrect if one of the inputs is |
832 | // the point at infinity, so we need to check for this separately |
833 | |
834 | // if point 1 is at infinity, copy point 2 to output, and vice versa |
835 | p224_copy_conditional(x_out, x2, z1_is_zero); |
836 | p224_copy_conditional(x_out, x1, z2_is_zero); |
837 | p224_copy_conditional(y_out, y2, z1_is_zero); |
838 | p224_copy_conditional(y_out, y1, z2_is_zero); |
839 | p224_copy_conditional(z_out, z2, z1_is_zero); |
840 | p224_copy_conditional(z_out, z1, z2_is_zero); |
841 | p224_felem_assign(x3, x_out); |
842 | p224_felem_assign(y3, y_out); |
843 | p224_felem_assign(z3, z_out); |
844 | } |
845 | |
846 | // p224_select_point selects the |idx|th point from a precomputation table and |
847 | // copies it to out. |
848 | static void p224_select_point(const uint64_t idx, size_t size, |
849 | const p224_felem pre_comp[/*size*/][3], |
850 | p224_felem out[3]) { |
851 | p224_limb *outlimbs = &out[0][0]; |
852 | OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem)); |
853 | |
854 | for (size_t i = 0; i < size; i++) { |
855 | const p224_limb *inlimbs = &pre_comp[i][0][0]; |
856 | uint64_t mask = i ^ idx; |
857 | mask |= mask >> 4; |
858 | mask |= mask >> 2; |
859 | mask |= mask >> 1; |
860 | mask &= 1; |
861 | mask--; |
862 | for (size_t j = 0; j < 4 * 3; j++) { |
863 | outlimbs[j] |= inlimbs[j] & mask; |
864 | } |
865 | } |
866 | } |
867 | |
868 | // p224_get_bit returns the |i|th bit in |in| |
869 | static char p224_get_bit(const p224_felem_bytearray in, size_t i) { |
870 | if (i >= 224) { |
871 | return 0; |
872 | } |
873 | return (in[i >> 3] >> (i & 7)) & 1; |
874 | } |
875 | |
876 | // Takes the Jacobian coordinates (X, Y, Z) of a point and returns |
877 | // (X', Y') = (X/Z^2, Y/Z^3) |
878 | static int ec_GFp_nistp224_point_get_affine_coordinates( |
879 | const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x, |
880 | EC_FELEM *y) { |
881 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
882 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
883 | return 0; |
884 | } |
885 | |
886 | p224_felem z1, z2; |
887 | p224_widefelem tmp; |
888 | p224_generic_to_felem(z1, &point->Z); |
889 | p224_felem_inv(z2, z1); |
890 | p224_felem_square(tmp, z2); |
891 | p224_felem_reduce(z1, tmp); |
892 | |
893 | if (x != NULL) { |
894 | p224_felem x_in, x_out; |
895 | p224_generic_to_felem(x_in, &point->X); |
896 | p224_felem_mul(tmp, x_in, z1); |
897 | p224_felem_reduce(x_out, tmp); |
898 | p224_felem_to_generic(x, x_out); |
899 | } |
900 | |
901 | if (y != NULL) { |
902 | p224_felem y_in, y_out; |
903 | p224_generic_to_felem(y_in, &point->Y); |
904 | p224_felem_mul(tmp, z1, z2); |
905 | p224_felem_reduce(z1, tmp); |
906 | p224_felem_mul(tmp, y_in, z1); |
907 | p224_felem_reduce(y_out, tmp); |
908 | p224_felem_to_generic(y, y_out); |
909 | } |
910 | |
911 | return 1; |
912 | } |
913 | |
914 | static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_RAW_POINT *r, |
915 | const EC_RAW_POINT *a, const EC_RAW_POINT *b) { |
916 | p224_felem x1, y1, z1, x2, y2, z2; |
917 | p224_generic_to_felem(x1, &a->X); |
918 | p224_generic_to_felem(y1, &a->Y); |
919 | p224_generic_to_felem(z1, &a->Z); |
920 | p224_generic_to_felem(x2, &b->X); |
921 | p224_generic_to_felem(y2, &b->Y); |
922 | p224_generic_to_felem(z2, &b->Z); |
923 | p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2); |
924 | // The outputs are already reduced, but still need to be contracted. |
925 | p224_felem_to_generic(&r->X, x1); |
926 | p224_felem_to_generic(&r->Y, y1); |
927 | p224_felem_to_generic(&r->Z, z1); |
928 | } |
929 | |
930 | static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
931 | const EC_RAW_POINT *a) { |
932 | p224_felem x, y, z; |
933 | p224_generic_to_felem(x, &a->X); |
934 | p224_generic_to_felem(y, &a->Y); |
935 | p224_generic_to_felem(z, &a->Z); |
936 | p224_point_double(x, y, z, x, y, z); |
937 | // The outputs are already reduced, but still need to be contracted. |
938 | p224_felem_to_generic(&r->X, x); |
939 | p224_felem_to_generic(&r->Y, y); |
940 | p224_felem_to_generic(&r->Z, z); |
941 | } |
942 | |
943 | static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3], |
944 | const EC_RAW_POINT *p) { |
945 | OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3); |
946 | |
947 | p224_generic_to_felem(out[1][0], &p->X); |
948 | p224_generic_to_felem(out[1][1], &p->Y); |
949 | p224_generic_to_felem(out[1][2], &p->Z); |
950 | |
951 | for (size_t j = 2; j <= 16; ++j) { |
952 | if (j & 1) { |
953 | p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1], |
954 | out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]); |
955 | } else { |
956 | p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0], |
957 | out[j / 2][1], out[j / 2][2]); |
958 | } |
959 | } |
960 | } |
961 | |
962 | static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
963 | const EC_RAW_POINT *p, |
964 | const EC_SCALAR *scalar) { |
965 | p224_felem p_pre_comp[17][3]; |
966 | ec_GFp_nistp224_make_precomp(p_pre_comp, p); |
967 | |
968 | // Set nq to the point at infinity. |
969 | p224_felem nq[3], tmp[4]; |
970 | OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem)); |
971 | |
972 | int skip = 1; // Save two point operations in the first round. |
973 | for (size_t i = 220; i < 221; i--) { |
974 | if (!skip) { |
975 | p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
976 | } |
977 | |
978 | // Add every 5 doublings. |
979 | if (i % 5 == 0) { |
980 | uint64_t bits = p224_get_bit(scalar->bytes, i + 4) << 5; |
981 | bits |= p224_get_bit(scalar->bytes, i + 3) << 4; |
982 | bits |= p224_get_bit(scalar->bytes, i + 2) << 3; |
983 | bits |= p224_get_bit(scalar->bytes, i + 1) << 2; |
984 | bits |= p224_get_bit(scalar->bytes, i) << 1; |
985 | bits |= p224_get_bit(scalar->bytes, i - 1); |
986 | uint8_t sign, digit; |
987 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
988 | |
989 | // Select the point to add or subtract. |
990 | p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp); |
991 | p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point |
992 | p224_copy_conditional(tmp[1], tmp[3], sign); |
993 | |
994 | if (!skip) { |
995 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */, |
996 | tmp[0], tmp[1], tmp[2]); |
997 | } else { |
998 | OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem)); |
999 | skip = 0; |
1000 | } |
1001 | } |
1002 | } |
1003 | |
1004 | // Reduce the output to its unique minimal representation. |
1005 | p224_felem_to_generic(&r->X, nq[0]); |
1006 | p224_felem_to_generic(&r->Y, nq[1]); |
1007 | p224_felem_to_generic(&r->Z, nq[2]); |
1008 | } |
1009 | |
1010 | static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group, |
1011 | EC_RAW_POINT *r, |
1012 | const EC_SCALAR *scalar) { |
1013 | // Set nq to the point at infinity. |
1014 | p224_felem nq[3], tmp[3]; |
1015 | OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem)); |
1016 | |
1017 | int skip = 1; // Save two point operations in the first round. |
1018 | for (size_t i = 27; i < 28; i--) { |
1019 | // double |
1020 | if (!skip) { |
1021 | p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1022 | } |
1023 | |
1024 | // First, look 28 bits upwards. |
1025 | uint64_t bits = p224_get_bit(scalar->bytes, i + 196) << 3; |
1026 | bits |= p224_get_bit(scalar->bytes, i + 140) << 2; |
1027 | bits |= p224_get_bit(scalar->bytes, i + 84) << 1; |
1028 | bits |= p224_get_bit(scalar->bytes, i + 28); |
1029 | // Select the point to add, in constant time. |
1030 | p224_select_point(bits, 16, g_p224_pre_comp[1], tmp); |
1031 | |
1032 | if (!skip) { |
1033 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1034 | tmp[0], tmp[1], tmp[2]); |
1035 | } else { |
1036 | OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem)); |
1037 | skip = 0; |
1038 | } |
1039 | |
1040 | // Second, look at the current position/ |
1041 | bits = p224_get_bit(scalar->bytes, i + 168) << 3; |
1042 | bits |= p224_get_bit(scalar->bytes, i + 112) << 2; |
1043 | bits |= p224_get_bit(scalar->bytes, i + 56) << 1; |
1044 | bits |= p224_get_bit(scalar->bytes, i); |
1045 | // Select the point to add, in constant time. |
1046 | p224_select_point(bits, 16, g_p224_pre_comp[0], tmp); |
1047 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1048 | tmp[0], tmp[1], tmp[2]); |
1049 | } |
1050 | |
1051 | // Reduce the output to its unique minimal representation. |
1052 | p224_felem_to_generic(&r->X, nq[0]); |
1053 | p224_felem_to_generic(&r->Y, nq[1]); |
1054 | p224_felem_to_generic(&r->Z, nq[2]); |
1055 | } |
1056 | |
1057 | static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group, |
1058 | EC_RAW_POINT *r, |
1059 | const EC_SCALAR *g_scalar, |
1060 | const EC_RAW_POINT *p, |
1061 | const EC_SCALAR *p_scalar) { |
1062 | // TODO(davidben): If P-224 ECDSA verify performance ever matters, using |
1063 | // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement. |
1064 | p224_felem p_pre_comp[17][3]; |
1065 | ec_GFp_nistp224_make_precomp(p_pre_comp, p); |
1066 | |
1067 | // Set nq to the point at infinity. |
1068 | p224_felem nq[3], tmp[3]; |
1069 | OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem)); |
1070 | |
1071 | // Loop over both scalars msb-to-lsb, interleaving additions of multiples of |
1072 | // the generator (two in each of the last 28 rounds) and additions of p (every |
1073 | // 5th round). |
1074 | int skip = 1; // Save two point operations in the first round. |
1075 | for (size_t i = 220; i < 221; i--) { |
1076 | if (!skip) { |
1077 | p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1078 | } |
1079 | |
1080 | // Add multiples of the generator. |
1081 | if (i <= 27) { |
1082 | // First, look 28 bits upwards. |
1083 | uint64_t bits = p224_get_bit(g_scalar->bytes, i + 196) << 3; |
1084 | bits |= p224_get_bit(g_scalar->bytes, i + 140) << 2; |
1085 | bits |= p224_get_bit(g_scalar->bytes, i + 84) << 1; |
1086 | bits |= p224_get_bit(g_scalar->bytes, i + 28); |
1087 | |
1088 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1089 | g_p224_pre_comp[1][bits][0], g_p224_pre_comp[1][bits][1], |
1090 | g_p224_pre_comp[1][bits][2]); |
1091 | assert(!skip); |
1092 | |
1093 | // Second, look at the current position. |
1094 | bits = p224_get_bit(g_scalar->bytes, i + 168) << 3; |
1095 | bits |= p224_get_bit(g_scalar->bytes, i + 112) << 2; |
1096 | bits |= p224_get_bit(g_scalar->bytes, i + 56) << 1; |
1097 | bits |= p224_get_bit(g_scalar->bytes, i); |
1098 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1099 | g_p224_pre_comp[0][bits][0], g_p224_pre_comp[0][bits][1], |
1100 | g_p224_pre_comp[0][bits][2]); |
1101 | } |
1102 | |
1103 | // Incorporate |p_scalar| every 5 doublings. |
1104 | if (i % 5 == 0) { |
1105 | uint64_t bits = p224_get_bit(p_scalar->bytes, i + 4) << 5; |
1106 | bits |= p224_get_bit(p_scalar->bytes, i + 3) << 4; |
1107 | bits |= p224_get_bit(p_scalar->bytes, i + 2) << 3; |
1108 | bits |= p224_get_bit(p_scalar->bytes, i + 1) << 2; |
1109 | bits |= p224_get_bit(p_scalar->bytes, i) << 1; |
1110 | bits |= p224_get_bit(p_scalar->bytes, i - 1); |
1111 | uint8_t sign, digit; |
1112 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
1113 | |
1114 | // Select the point to add or subtract. |
1115 | OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem)); |
1116 | if (sign) { |
1117 | p224_felem_neg(tmp[1], tmp[1]); // (X, -Y, Z) is the negative point |
1118 | } |
1119 | |
1120 | if (!skip) { |
1121 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */, |
1122 | tmp[0], tmp[1], tmp[2]); |
1123 | } else { |
1124 | OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem)); |
1125 | skip = 0; |
1126 | } |
1127 | } |
1128 | } |
1129 | |
1130 | // Reduce the output to its unique minimal representation. |
1131 | p224_felem_to_generic(&r->X, nq[0]); |
1132 | p224_felem_to_generic(&r->Y, nq[1]); |
1133 | p224_felem_to_generic(&r->Z, nq[2]); |
1134 | } |
1135 | |
1136 | static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r, |
1137 | const EC_FELEM *a, const EC_FELEM *b) { |
1138 | p224_felem felem1, felem2; |
1139 | p224_widefelem wide; |
1140 | p224_generic_to_felem(felem1, a); |
1141 | p224_generic_to_felem(felem2, b); |
1142 | p224_felem_mul(wide, felem1, felem2); |
1143 | p224_felem_reduce(felem1, wide); |
1144 | p224_felem_to_generic(r, felem1); |
1145 | } |
1146 | |
1147 | static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r, |
1148 | const EC_FELEM *a) { |
1149 | p224_felem felem; |
1150 | p224_generic_to_felem(felem, a); |
1151 | p224_widefelem wide; |
1152 | p224_felem_square(wide, felem); |
1153 | p224_felem_reduce(felem, wide); |
1154 | p224_felem_to_generic(r, felem); |
1155 | } |
1156 | |
1157 | static int ec_GFp_nistp224_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, |
1158 | const BIGNUM *in) { |
1159 | return bn_copy_words(out->words, group->field.width, in); |
1160 | } |
1161 | |
1162 | static int ec_GFp_nistp224_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, |
1163 | const EC_FELEM *in) { |
1164 | return bn_set_words(out, in->words, group->field.width); |
1165 | } |
1166 | |
1167 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) { |
1168 | out->group_init = ec_GFp_simple_group_init; |
1169 | out->group_finish = ec_GFp_simple_group_finish; |
1170 | out->group_set_curve = ec_GFp_simple_group_set_curve; |
1171 | out->point_get_affine_coordinates = |
1172 | ec_GFp_nistp224_point_get_affine_coordinates; |
1173 | out->add = ec_GFp_nistp224_add; |
1174 | out->dbl = ec_GFp_nistp224_dbl; |
1175 | out->mul = ec_GFp_nistp224_point_mul; |
1176 | out->mul_base = ec_GFp_nistp224_point_mul_base; |
1177 | out->mul_public = ec_GFp_nistp224_point_mul_public; |
1178 | out->felem_mul = ec_GFp_nistp224_felem_mul; |
1179 | out->felem_sqr = ec_GFp_nistp224_felem_sqr; |
1180 | out->bignum_to_felem = ec_GFp_nistp224_bignum_to_felem; |
1181 | out->felem_to_bignum = ec_GFp_nistp224_felem_to_bignum; |
1182 | out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery; |
1183 | out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime; |
1184 | out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate; |
1185 | } |
1186 | |
1187 | #endif // BORINGSSL_HAS_UINT128 && !SMALL |
1188 | |