1 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
2 | * project 2005. |
3 | */ |
4 | /* ==================================================================== |
5 | * Copyright (c) 2005 The OpenSSL Project. All rights reserved. |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * |
11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * |
14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in |
16 | * the documentation and/or other materials provided with the |
17 | * distribution. |
18 | * |
19 | * 3. All advertising materials mentioning features or use of this |
20 | * software must display the following acknowledgment: |
21 | * "This product includes software developed by the OpenSSL Project |
22 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
23 | * |
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
25 | * endorse or promote products derived from this software without |
26 | * prior written permission. For written permission, please contact |
27 | * licensing@OpenSSL.org. |
28 | * |
29 | * 5. Products derived from this software may not be called "OpenSSL" |
30 | * nor may "OpenSSL" appear in their names without prior written |
31 | * permission of the OpenSSL Project. |
32 | * |
33 | * 6. Redistributions of any form whatsoever must retain the following |
34 | * acknowledgment: |
35 | * "This product includes software developed by the OpenSSL Project |
36 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
37 | * |
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
50 | * ==================================================================== |
51 | * |
52 | * This product includes cryptographic software written by Eric Young |
53 | * (eay@cryptsoft.com). This product includes software written by Tim |
54 | * Hudson (tjh@cryptsoft.com). */ |
55 | |
56 | #include <openssl/rsa.h> |
57 | |
58 | #include <assert.h> |
59 | #include <limits.h> |
60 | #include <string.h> |
61 | |
62 | #include <openssl/bn.h> |
63 | #include <openssl/digest.h> |
64 | #include <openssl/err.h> |
65 | #include <openssl/mem.h> |
66 | #include <openssl/rand.h> |
67 | #include <openssl/sha.h> |
68 | |
69 | #include "internal.h" |
70 | #include "../../internal.h" |
71 | |
72 | |
73 | #define RSA_PKCS1_PADDING_SIZE 11 |
74 | |
75 | int RSA_padding_add_PKCS1_type_1(uint8_t *to, size_t to_len, |
76 | const uint8_t *from, size_t from_len) { |
77 | // See RFC 8017, section 9.2. |
78 | if (to_len < RSA_PKCS1_PADDING_SIZE) { |
79 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
80 | return 0; |
81 | } |
82 | |
83 | if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { |
84 | OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); |
85 | return 0; |
86 | } |
87 | |
88 | to[0] = 0; |
89 | to[1] = 1; |
90 | OPENSSL_memset(to + 2, 0xff, to_len - 3 - from_len); |
91 | to[to_len - from_len - 1] = 0; |
92 | OPENSSL_memcpy(to + to_len - from_len, from, from_len); |
93 | return 1; |
94 | } |
95 | |
96 | int RSA_padding_check_PKCS1_type_1(uint8_t *out, size_t *out_len, |
97 | size_t max_out, const uint8_t *from, |
98 | size_t from_len) { |
99 | // See RFC 8017, section 9.2. This is part of signature verification and thus |
100 | // does not need to run in constant-time. |
101 | if (from_len < 2) { |
102 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); |
103 | return 0; |
104 | } |
105 | |
106 | // Check the header. |
107 | if (from[0] != 0 || from[1] != 1) { |
108 | OPENSSL_PUT_ERROR(RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); |
109 | return 0; |
110 | } |
111 | |
112 | // Scan over padded data, looking for the 00. |
113 | size_t pad; |
114 | for (pad = 2 /* header */; pad < from_len; pad++) { |
115 | if (from[pad] == 0x00) { |
116 | break; |
117 | } |
118 | |
119 | if (from[pad] != 0xff) { |
120 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); |
121 | return 0; |
122 | } |
123 | } |
124 | |
125 | if (pad == from_len) { |
126 | OPENSSL_PUT_ERROR(RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); |
127 | return 0; |
128 | } |
129 | |
130 | if (pad < 2 /* header */ + 8) { |
131 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_PAD_BYTE_COUNT); |
132 | return 0; |
133 | } |
134 | |
135 | // Skip over the 00. |
136 | pad++; |
137 | |
138 | if (from_len - pad > max_out) { |
139 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
140 | return 0; |
141 | } |
142 | |
143 | OPENSSL_memcpy(out, from + pad, from_len - pad); |
144 | *out_len = from_len - pad; |
145 | return 1; |
146 | } |
147 | |
148 | static int rand_nonzero(uint8_t *out, size_t len) { |
149 | if (!RAND_bytes(out, len)) { |
150 | return 0; |
151 | } |
152 | |
153 | for (size_t i = 0; i < len; i++) { |
154 | while (out[i] == 0) { |
155 | if (!RAND_bytes(out + i, 1)) { |
156 | return 0; |
157 | } |
158 | } |
159 | } |
160 | |
161 | return 1; |
162 | } |
163 | |
164 | int RSA_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, |
165 | const uint8_t *from, size_t from_len) { |
166 | // See RFC 8017, section 7.2.1. |
167 | if (to_len < RSA_PKCS1_PADDING_SIZE) { |
168 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
169 | return 0; |
170 | } |
171 | |
172 | if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { |
173 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
174 | return 0; |
175 | } |
176 | |
177 | to[0] = 0; |
178 | to[1] = 2; |
179 | |
180 | size_t padding_len = to_len - 3 - from_len; |
181 | if (!rand_nonzero(to + 2, padding_len)) { |
182 | return 0; |
183 | } |
184 | |
185 | to[2 + padding_len] = 0; |
186 | OPENSSL_memcpy(to + to_len - from_len, from, from_len); |
187 | return 1; |
188 | } |
189 | |
190 | int RSA_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, |
191 | size_t max_out, const uint8_t *from, |
192 | size_t from_len) { |
193 | if (from_len == 0) { |
194 | OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); |
195 | return 0; |
196 | } |
197 | |
198 | // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography |
199 | // Standard", section 7.2.2. |
200 | if (from_len < RSA_PKCS1_PADDING_SIZE) { |
201 | // |from| is zero-padded to the size of the RSA modulus, a public value, so |
202 | // this can be rejected in non-constant time. |
203 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
204 | return 0; |
205 | } |
206 | |
207 | crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); |
208 | crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); |
209 | |
210 | crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; |
211 | for (size_t i = 2; i < from_len; i++) { |
212 | crypto_word_t equals0 = constant_time_is_zero_w(from[i]); |
213 | zero_index = |
214 | constant_time_select_w(looking_for_index & equals0, i, zero_index); |
215 | looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); |
216 | } |
217 | |
218 | // The input must begin with 00 02. |
219 | crypto_word_t valid_index = first_byte_is_zero; |
220 | valid_index &= second_byte_is_two; |
221 | |
222 | // We must have found the end of PS. |
223 | valid_index &= ~looking_for_index; |
224 | |
225 | // PS must be at least 8 bytes long, and it starts two bytes into |from|. |
226 | valid_index &= constant_time_ge_w(zero_index, 2 + 8); |
227 | |
228 | // Skip the zero byte. |
229 | zero_index++; |
230 | |
231 | // NOTE: Although this logic attempts to be constant time, the API contracts |
232 | // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it |
233 | // impossible to completely avoid Bleichenbacher's attack. Consumers should |
234 | // use |RSA_PADDING_NONE| and perform the padding check in constant-time |
235 | // combined with a swap to a random session key or other mitigation. |
236 | CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index)); |
237 | CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index)); |
238 | |
239 | if (!valid_index) { |
240 | OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); |
241 | return 0; |
242 | } |
243 | |
244 | const size_t msg_len = from_len - zero_index; |
245 | if (msg_len > max_out) { |
246 | // This shouldn't happen because this function is always called with |
247 | // |max_out| as the key size and |from_len| is bounded by the key size. |
248 | OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); |
249 | return 0; |
250 | } |
251 | |
252 | OPENSSL_memcpy(out, &from[zero_index], msg_len); |
253 | *out_len = msg_len; |
254 | return 1; |
255 | } |
256 | |
257 | int RSA_padding_add_none(uint8_t *to, size_t to_len, const uint8_t *from, |
258 | size_t from_len) { |
259 | if (from_len > to_len) { |
260 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
261 | return 0; |
262 | } |
263 | |
264 | if (from_len < to_len) { |
265 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); |
266 | return 0; |
267 | } |
268 | |
269 | OPENSSL_memcpy(to, from, from_len); |
270 | return 1; |
271 | } |
272 | |
273 | static int PKCS1_MGF1(uint8_t *out, size_t len, const uint8_t *seed, |
274 | size_t seed_len, const EVP_MD *md) { |
275 | int ret = 0; |
276 | EVP_MD_CTX ctx; |
277 | EVP_MD_CTX_init(&ctx); |
278 | |
279 | size_t md_len = EVP_MD_size(md); |
280 | |
281 | for (uint32_t i = 0; len > 0; i++) { |
282 | uint8_t counter[4]; |
283 | counter[0] = (uint8_t)(i >> 24); |
284 | counter[1] = (uint8_t)(i >> 16); |
285 | counter[2] = (uint8_t)(i >> 8); |
286 | counter[3] = (uint8_t)i; |
287 | if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
288 | !EVP_DigestUpdate(&ctx, seed, seed_len) || |
289 | !EVP_DigestUpdate(&ctx, counter, sizeof(counter))) { |
290 | goto err; |
291 | } |
292 | |
293 | if (md_len <= len) { |
294 | if (!EVP_DigestFinal_ex(&ctx, out, NULL)) { |
295 | goto err; |
296 | } |
297 | out += md_len; |
298 | len -= md_len; |
299 | } else { |
300 | uint8_t digest[EVP_MAX_MD_SIZE]; |
301 | if (!EVP_DigestFinal_ex(&ctx, digest, NULL)) { |
302 | goto err; |
303 | } |
304 | OPENSSL_memcpy(out, digest, len); |
305 | len = 0; |
306 | } |
307 | } |
308 | |
309 | ret = 1; |
310 | |
311 | err: |
312 | EVP_MD_CTX_cleanup(&ctx); |
313 | return ret; |
314 | } |
315 | |
316 | int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, |
317 | const uint8_t *from, size_t from_len, |
318 | const uint8_t *param, size_t param_len, |
319 | const EVP_MD *md, const EVP_MD *mgf1md) { |
320 | if (md == NULL) { |
321 | md = EVP_sha1(); |
322 | } |
323 | if (mgf1md == NULL) { |
324 | mgf1md = md; |
325 | } |
326 | |
327 | size_t mdlen = EVP_MD_size(md); |
328 | |
329 | if (to_len < 2 * mdlen + 2) { |
330 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
331 | return 0; |
332 | } |
333 | |
334 | size_t emlen = to_len - 1; |
335 | if (from_len > emlen - 2 * mdlen - 1) { |
336 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
337 | return 0; |
338 | } |
339 | |
340 | if (emlen < 2 * mdlen + 1) { |
341 | OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
342 | return 0; |
343 | } |
344 | |
345 | to[0] = 0; |
346 | uint8_t *seed = to + 1; |
347 | uint8_t *db = to + mdlen + 1; |
348 | |
349 | if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { |
350 | return 0; |
351 | } |
352 | OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); |
353 | db[emlen - from_len - mdlen - 1] = 0x01; |
354 | OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); |
355 | if (!RAND_bytes(seed, mdlen)) { |
356 | return 0; |
357 | } |
358 | |
359 | uint8_t *dbmask = OPENSSL_malloc(emlen - mdlen); |
360 | if (dbmask == NULL) { |
361 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
362 | return 0; |
363 | } |
364 | |
365 | int ret = 0; |
366 | if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { |
367 | goto out; |
368 | } |
369 | for (size_t i = 0; i < emlen - mdlen; i++) { |
370 | db[i] ^= dbmask[i]; |
371 | } |
372 | |
373 | uint8_t seedmask[EVP_MAX_MD_SIZE]; |
374 | if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { |
375 | goto out; |
376 | } |
377 | for (size_t i = 0; i < mdlen; i++) { |
378 | seed[i] ^= seedmask[i]; |
379 | } |
380 | ret = 1; |
381 | |
382 | out: |
383 | OPENSSL_free(dbmask); |
384 | return ret; |
385 | } |
386 | |
387 | int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, |
388 | size_t max_out, const uint8_t *from, |
389 | size_t from_len, const uint8_t *param, |
390 | size_t param_len, const EVP_MD *md, |
391 | const EVP_MD *mgf1md) { |
392 | uint8_t *db = NULL; |
393 | |
394 | if (md == NULL) { |
395 | md = EVP_sha1(); |
396 | } |
397 | if (mgf1md == NULL) { |
398 | mgf1md = md; |
399 | } |
400 | |
401 | size_t mdlen = EVP_MD_size(md); |
402 | |
403 | // The encoded message is one byte smaller than the modulus to ensure that it |
404 | // doesn't end up greater than the modulus. Thus there's an extra "+1" here |
405 | // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. |
406 | if (from_len < 1 + 2*mdlen + 1) { |
407 | // 'from_len' is the length of the modulus, i.e. does not depend on the |
408 | // particular ciphertext. |
409 | goto decoding_err; |
410 | } |
411 | |
412 | size_t dblen = from_len - mdlen - 1; |
413 | db = OPENSSL_malloc(dblen); |
414 | if (db == NULL) { |
415 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
416 | goto err; |
417 | } |
418 | |
419 | const uint8_t *maskedseed = from + 1; |
420 | const uint8_t *maskeddb = from + 1 + mdlen; |
421 | |
422 | uint8_t seed[EVP_MAX_MD_SIZE]; |
423 | if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { |
424 | goto err; |
425 | } |
426 | for (size_t i = 0; i < mdlen; i++) { |
427 | seed[i] ^= maskedseed[i]; |
428 | } |
429 | |
430 | if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { |
431 | goto err; |
432 | } |
433 | for (size_t i = 0; i < dblen; i++) { |
434 | db[i] ^= maskeddb[i]; |
435 | } |
436 | |
437 | uint8_t phash[EVP_MAX_MD_SIZE]; |
438 | if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { |
439 | goto err; |
440 | } |
441 | |
442 | crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); |
443 | bad |= ~constant_time_is_zero_w(from[0]); |
444 | |
445 | crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; |
446 | size_t one_index = 0; |
447 | for (size_t i = mdlen; i < dblen; i++) { |
448 | crypto_word_t equals1 = constant_time_eq_w(db[i], 1); |
449 | crypto_word_t equals0 = constant_time_eq_w(db[i], 0); |
450 | one_index = |
451 | constant_time_select_w(looking_for_one_byte & equals1, i, one_index); |
452 | looking_for_one_byte = |
453 | constant_time_select_w(equals1, 0, looking_for_one_byte); |
454 | bad |= looking_for_one_byte & ~equals0; |
455 | } |
456 | |
457 | bad |= looking_for_one_byte; |
458 | |
459 | if (bad) { |
460 | goto decoding_err; |
461 | } |
462 | |
463 | one_index++; |
464 | size_t mlen = dblen - one_index; |
465 | if (max_out < mlen) { |
466 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
467 | goto err; |
468 | } |
469 | |
470 | OPENSSL_memcpy(out, db + one_index, mlen); |
471 | *out_len = mlen; |
472 | OPENSSL_free(db); |
473 | return 1; |
474 | |
475 | decoding_err: |
476 | // to avoid chosen ciphertext attacks, the error message should not reveal |
477 | // which kind of decoding error happened |
478 | OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); |
479 | err: |
480 | OPENSSL_free(db); |
481 | return 0; |
482 | } |
483 | |
484 | static const uint8_t kPSSZeroes[] = {0, 0, 0, 0, 0, 0, 0, 0}; |
485 | |
486 | int RSA_verify_PKCS1_PSS_mgf1(const RSA *rsa, const uint8_t *mHash, |
487 | const EVP_MD *Hash, const EVP_MD *mgf1Hash, |
488 | const uint8_t *EM, int sLen) { |
489 | int i; |
490 | int ret = 0; |
491 | int maskedDBLen, MSBits, emLen; |
492 | size_t hLen; |
493 | const uint8_t *H; |
494 | uint8_t *DB = NULL; |
495 | EVP_MD_CTX ctx; |
496 | uint8_t H_[EVP_MAX_MD_SIZE]; |
497 | EVP_MD_CTX_init(&ctx); |
498 | |
499 | if (mgf1Hash == NULL) { |
500 | mgf1Hash = Hash; |
501 | } |
502 | |
503 | hLen = EVP_MD_size(Hash); |
504 | |
505 | // Negative sLen has special meanings: |
506 | // -1 sLen == hLen |
507 | // -2 salt length is autorecovered from signature |
508 | // -N reserved |
509 | if (sLen == -1) { |
510 | sLen = hLen; |
511 | } else if (sLen == -2) { |
512 | sLen = -2; |
513 | } else if (sLen < -2) { |
514 | OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); |
515 | goto err; |
516 | } |
517 | |
518 | MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; |
519 | emLen = RSA_size(rsa); |
520 | if (EM[0] & (0xFF << MSBits)) { |
521 | OPENSSL_PUT_ERROR(RSA, RSA_R_FIRST_OCTET_INVALID); |
522 | goto err; |
523 | } |
524 | if (MSBits == 0) { |
525 | EM++; |
526 | emLen--; |
527 | } |
528 | if (emLen < (int)hLen + 2 || emLen < ((int)hLen + sLen + 2)) { |
529 | // sLen can be small negative |
530 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
531 | goto err; |
532 | } |
533 | if (EM[emLen - 1] != 0xbc) { |
534 | OPENSSL_PUT_ERROR(RSA, RSA_R_LAST_OCTET_INVALID); |
535 | goto err; |
536 | } |
537 | maskedDBLen = emLen - hLen - 1; |
538 | H = EM + maskedDBLen; |
539 | DB = OPENSSL_malloc(maskedDBLen); |
540 | if (!DB) { |
541 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
542 | goto err; |
543 | } |
544 | if (!PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash)) { |
545 | goto err; |
546 | } |
547 | for (i = 0; i < maskedDBLen; i++) { |
548 | DB[i] ^= EM[i]; |
549 | } |
550 | if (MSBits) { |
551 | DB[0] &= 0xFF >> (8 - MSBits); |
552 | } |
553 | for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) { |
554 | ; |
555 | } |
556 | if (DB[i++] != 0x1) { |
557 | OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_RECOVERY_FAILED); |
558 | goto err; |
559 | } |
560 | if (sLen >= 0 && (maskedDBLen - i) != sLen) { |
561 | OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); |
562 | goto err; |
563 | } |
564 | if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || |
565 | !EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) || |
566 | !EVP_DigestUpdate(&ctx, mHash, hLen) || |
567 | !EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i) || |
568 | !EVP_DigestFinal_ex(&ctx, H_, NULL)) { |
569 | goto err; |
570 | } |
571 | if (OPENSSL_memcmp(H_, H, hLen)) { |
572 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
573 | ret = 0; |
574 | } else { |
575 | ret = 1; |
576 | } |
577 | |
578 | err: |
579 | OPENSSL_free(DB); |
580 | EVP_MD_CTX_cleanup(&ctx); |
581 | |
582 | return ret; |
583 | } |
584 | |
585 | int RSA_padding_add_PKCS1_PSS_mgf1(const RSA *rsa, unsigned char *EM, |
586 | const unsigned char *mHash, |
587 | const EVP_MD *Hash, const EVP_MD *mgf1Hash, |
588 | int sLenRequested) { |
589 | int ret = 0; |
590 | size_t maskedDBLen, MSBits, emLen; |
591 | size_t hLen; |
592 | unsigned char *H, *salt = NULL, *p; |
593 | |
594 | if (mgf1Hash == NULL) { |
595 | mgf1Hash = Hash; |
596 | } |
597 | |
598 | hLen = EVP_MD_size(Hash); |
599 | |
600 | if (BN_is_zero(rsa->n)) { |
601 | OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); |
602 | goto err; |
603 | } |
604 | |
605 | MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; |
606 | emLen = RSA_size(rsa); |
607 | if (MSBits == 0) { |
608 | assert(emLen >= 1); |
609 | *EM++ = 0; |
610 | emLen--; |
611 | } |
612 | |
613 | if (emLen < hLen + 2) { |
614 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
615 | goto err; |
616 | } |
617 | |
618 | // Negative sLenRequested has special meanings: |
619 | // -1 sLen == hLen |
620 | // -2 salt length is maximized |
621 | // -N reserved |
622 | size_t sLen; |
623 | if (sLenRequested == -1) { |
624 | sLen = hLen; |
625 | } else if (sLenRequested == -2) { |
626 | sLen = emLen - hLen - 2; |
627 | } else if (sLenRequested < 0) { |
628 | OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); |
629 | goto err; |
630 | } else { |
631 | sLen = (size_t)sLenRequested; |
632 | } |
633 | |
634 | if (emLen - hLen - 2 < sLen) { |
635 | OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
636 | goto err; |
637 | } |
638 | |
639 | if (sLen > 0) { |
640 | salt = OPENSSL_malloc(sLen); |
641 | if (!salt) { |
642 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
643 | goto err; |
644 | } |
645 | if (!RAND_bytes(salt, sLen)) { |
646 | goto err; |
647 | } |
648 | } |
649 | maskedDBLen = emLen - hLen - 1; |
650 | H = EM + maskedDBLen; |
651 | |
652 | EVP_MD_CTX ctx; |
653 | EVP_MD_CTX_init(&ctx); |
654 | int digest_ok = EVP_DigestInit_ex(&ctx, Hash, NULL) && |
655 | EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) && |
656 | EVP_DigestUpdate(&ctx, mHash, hLen) && |
657 | EVP_DigestUpdate(&ctx, salt, sLen) && |
658 | EVP_DigestFinal_ex(&ctx, H, NULL); |
659 | EVP_MD_CTX_cleanup(&ctx); |
660 | if (!digest_ok) { |
661 | goto err; |
662 | } |
663 | |
664 | // Generate dbMask in place then perform XOR on it |
665 | if (!PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) { |
666 | goto err; |
667 | } |
668 | |
669 | p = EM; |
670 | |
671 | // Initial PS XORs with all zeroes which is a NOP so just update |
672 | // pointer. Note from a test above this value is guaranteed to |
673 | // be non-negative. |
674 | p += emLen - sLen - hLen - 2; |
675 | *p++ ^= 0x1; |
676 | if (sLen > 0) { |
677 | for (size_t i = 0; i < sLen; i++) { |
678 | *p++ ^= salt[i]; |
679 | } |
680 | } |
681 | if (MSBits) { |
682 | EM[0] &= 0xFF >> (8 - MSBits); |
683 | } |
684 | |
685 | // H is already in place so just set final 0xbc |
686 | |
687 | EM[emLen - 1] = 0xbc; |
688 | |
689 | ret = 1; |
690 | |
691 | err: |
692 | OPENSSL_free(salt); |
693 | |
694 | return ret; |
695 | } |
696 | |