1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/rsa.h> |
58 | |
59 | #include <limits.h> |
60 | #include <string.h> |
61 | |
62 | #include <openssl/bn.h> |
63 | #include <openssl/digest.h> |
64 | #include <openssl/engine.h> |
65 | #include <openssl/err.h> |
66 | #include <openssl/ex_data.h> |
67 | #include <openssl/md5.h> |
68 | #include <openssl/mem.h> |
69 | #include <openssl/nid.h> |
70 | #include <openssl/sha.h> |
71 | #include <openssl/thread.h> |
72 | |
73 | #include "../bn/internal.h" |
74 | #include "../delocate.h" |
75 | #include "../../internal.h" |
76 | #include "internal.h" |
77 | |
78 | |
79 | // RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme. |
80 | // Cryptography.io depends on this error code. |
81 | OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02) |
82 | |
83 | DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class) |
84 | |
85 | RSA *RSA_new(void) { return RSA_new_method(NULL); } |
86 | |
87 | RSA *RSA_new_method(const ENGINE *engine) { |
88 | RSA *rsa = OPENSSL_malloc(sizeof(RSA)); |
89 | if (rsa == NULL) { |
90 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
91 | return NULL; |
92 | } |
93 | |
94 | OPENSSL_memset(rsa, 0, sizeof(RSA)); |
95 | |
96 | if (engine) { |
97 | rsa->meth = ENGINE_get_RSA_method(engine); |
98 | } |
99 | |
100 | if (rsa->meth == NULL) { |
101 | rsa->meth = (RSA_METHOD *) RSA_default_method(); |
102 | } |
103 | METHOD_ref(rsa->meth); |
104 | |
105 | rsa->references = 1; |
106 | rsa->flags = rsa->meth->flags; |
107 | CRYPTO_MUTEX_init(&rsa->lock); |
108 | CRYPTO_new_ex_data(&rsa->ex_data); |
109 | |
110 | if (rsa->meth->init && !rsa->meth->init(rsa)) { |
111 | CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
112 | CRYPTO_MUTEX_cleanup(&rsa->lock); |
113 | METHOD_unref(rsa->meth); |
114 | OPENSSL_free(rsa); |
115 | return NULL; |
116 | } |
117 | |
118 | return rsa; |
119 | } |
120 | |
121 | void RSA_free(RSA *rsa) { |
122 | unsigned u; |
123 | |
124 | if (rsa == NULL) { |
125 | return; |
126 | } |
127 | |
128 | if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { |
129 | return; |
130 | } |
131 | |
132 | if (rsa->meth->finish) { |
133 | rsa->meth->finish(rsa); |
134 | } |
135 | METHOD_unref(rsa->meth); |
136 | |
137 | CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
138 | |
139 | BN_free(rsa->n); |
140 | BN_free(rsa->e); |
141 | BN_free(rsa->d); |
142 | BN_free(rsa->p); |
143 | BN_free(rsa->q); |
144 | BN_free(rsa->dmp1); |
145 | BN_free(rsa->dmq1); |
146 | BN_free(rsa->iqmp); |
147 | BN_MONT_CTX_free(rsa->mont_n); |
148 | BN_MONT_CTX_free(rsa->mont_p); |
149 | BN_MONT_CTX_free(rsa->mont_q); |
150 | BN_free(rsa->d_fixed); |
151 | BN_free(rsa->dmp1_fixed); |
152 | BN_free(rsa->dmq1_fixed); |
153 | BN_free(rsa->inv_small_mod_large_mont); |
154 | for (u = 0; u < rsa->num_blindings; u++) { |
155 | BN_BLINDING_free(rsa->blindings[u]); |
156 | } |
157 | OPENSSL_free(rsa->blindings); |
158 | OPENSSL_free(rsa->blindings_inuse); |
159 | CRYPTO_MUTEX_cleanup(&rsa->lock); |
160 | OPENSSL_free(rsa); |
161 | } |
162 | |
163 | int RSA_up_ref(RSA *rsa) { |
164 | CRYPTO_refcount_inc(&rsa->references); |
165 | return 1; |
166 | } |
167 | |
168 | unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); } |
169 | |
170 | void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, |
171 | const BIGNUM **out_d) { |
172 | if (out_n != NULL) { |
173 | *out_n = rsa->n; |
174 | } |
175 | if (out_e != NULL) { |
176 | *out_e = rsa->e; |
177 | } |
178 | if (out_d != NULL) { |
179 | *out_d = rsa->d; |
180 | } |
181 | } |
182 | |
183 | void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, |
184 | const BIGNUM **out_q) { |
185 | if (out_p != NULL) { |
186 | *out_p = rsa->p; |
187 | } |
188 | if (out_q != NULL) { |
189 | *out_q = rsa->q; |
190 | } |
191 | } |
192 | |
193 | void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, |
194 | const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { |
195 | if (out_dmp1 != NULL) { |
196 | *out_dmp1 = rsa->dmp1; |
197 | } |
198 | if (out_dmq1 != NULL) { |
199 | *out_dmq1 = rsa->dmq1; |
200 | } |
201 | if (out_iqmp != NULL) { |
202 | *out_iqmp = rsa->iqmp; |
203 | } |
204 | } |
205 | |
206 | int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) { |
207 | if ((rsa->n == NULL && n == NULL) || |
208 | (rsa->e == NULL && e == NULL)) { |
209 | return 0; |
210 | } |
211 | |
212 | if (n != NULL) { |
213 | BN_free(rsa->n); |
214 | rsa->n = n; |
215 | } |
216 | if (e != NULL) { |
217 | BN_free(rsa->e); |
218 | rsa->e = e; |
219 | } |
220 | if (d != NULL) { |
221 | BN_free(rsa->d); |
222 | rsa->d = d; |
223 | } |
224 | |
225 | return 1; |
226 | } |
227 | |
228 | int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) { |
229 | if ((rsa->p == NULL && p == NULL) || |
230 | (rsa->q == NULL && q == NULL)) { |
231 | return 0; |
232 | } |
233 | |
234 | if (p != NULL) { |
235 | BN_free(rsa->p); |
236 | rsa->p = p; |
237 | } |
238 | if (q != NULL) { |
239 | BN_free(rsa->q); |
240 | rsa->q = q; |
241 | } |
242 | |
243 | return 1; |
244 | } |
245 | |
246 | int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { |
247 | if ((rsa->dmp1 == NULL && dmp1 == NULL) || |
248 | (rsa->dmq1 == NULL && dmq1 == NULL) || |
249 | (rsa->iqmp == NULL && iqmp == NULL)) { |
250 | return 0; |
251 | } |
252 | |
253 | if (dmp1 != NULL) { |
254 | BN_free(rsa->dmp1); |
255 | rsa->dmp1 = dmp1; |
256 | } |
257 | if (dmq1 != NULL) { |
258 | BN_free(rsa->dmq1); |
259 | rsa->dmq1 = dmq1; |
260 | } |
261 | if (iqmp != NULL) { |
262 | BN_free(rsa->iqmp); |
263 | rsa->iqmp = iqmp; |
264 | } |
265 | |
266 | return 1; |
267 | } |
268 | |
269 | int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
270 | int padding) { |
271 | size_t out_len; |
272 | |
273 | if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
274 | return -1; |
275 | } |
276 | |
277 | if (out_len > INT_MAX) { |
278 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
279 | return -1; |
280 | } |
281 | return out_len; |
282 | } |
283 | |
284 | int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
285 | const uint8_t *in, size_t in_len, int padding) { |
286 | if (rsa->meth->sign_raw) { |
287 | return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
288 | } |
289 | |
290 | return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
291 | } |
292 | |
293 | int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
294 | int padding) { |
295 | size_t out_len; |
296 | |
297 | if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
298 | return -1; |
299 | } |
300 | |
301 | if (out_len > INT_MAX) { |
302 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
303 | return -1; |
304 | } |
305 | return out_len; |
306 | } |
307 | |
308 | int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
309 | const uint8_t *in, size_t in_len, int padding) { |
310 | if (rsa->meth->decrypt) { |
311 | return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
312 | } |
313 | |
314 | return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
315 | } |
316 | |
317 | int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
318 | int padding) { |
319 | size_t out_len; |
320 | |
321 | if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
322 | return -1; |
323 | } |
324 | |
325 | if (out_len > INT_MAX) { |
326 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
327 | return -1; |
328 | } |
329 | return out_len; |
330 | } |
331 | |
332 | int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
333 | int padding) { |
334 | size_t out_len; |
335 | |
336 | if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
337 | return -1; |
338 | } |
339 | |
340 | if (out_len > INT_MAX) { |
341 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
342 | return -1; |
343 | } |
344 | return out_len; |
345 | } |
346 | |
347 | unsigned RSA_size(const RSA *rsa) { |
348 | if (rsa->meth->size) { |
349 | return rsa->meth->size(rsa); |
350 | } |
351 | |
352 | return rsa_default_size(rsa); |
353 | } |
354 | |
355 | int RSA_is_opaque(const RSA *rsa) { |
356 | return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); |
357 | } |
358 | |
359 | int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
360 | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
361 | int index; |
362 | if (!CRYPTO_get_ex_new_index(g_rsa_ex_data_class_bss_get(), &index, argl, |
363 | argp, free_func)) { |
364 | return -1; |
365 | } |
366 | return index; |
367 | } |
368 | |
369 | int RSA_set_ex_data(RSA *rsa, int idx, void *arg) { |
370 | return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg); |
371 | } |
372 | |
373 | void *RSA_get_ex_data(const RSA *rsa, int idx) { |
374 | return CRYPTO_get_ex_data(&rsa->ex_data, idx); |
375 | } |
376 | |
377 | // SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's |
378 | // the length of an MD5 and SHA1 hash. |
379 | static const unsigned SSL_SIG_LENGTH = 36; |
380 | |
381 | // pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is |
382 | // to be signed with PKCS#1. |
383 | struct pkcs1_sig_prefix { |
384 | // nid identifies the hash function. |
385 | int nid; |
386 | // hash_len is the expected length of the hash function. |
387 | uint8_t hash_len; |
388 | // len is the number of bytes of |bytes| which are valid. |
389 | uint8_t len; |
390 | // bytes contains the DER bytes. |
391 | uint8_t bytes[19]; |
392 | }; |
393 | |
394 | // kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with |
395 | // different hash functions. |
396 | static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { |
397 | { |
398 | NID_md5, |
399 | MD5_DIGEST_LENGTH, |
400 | 18, |
401 | {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
402 | 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, |
403 | }, |
404 | { |
405 | NID_sha1, |
406 | SHA_DIGEST_LENGTH, |
407 | 15, |
408 | {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, |
409 | 0x00, 0x04, 0x14}, |
410 | }, |
411 | { |
412 | NID_sha224, |
413 | SHA224_DIGEST_LENGTH, |
414 | 19, |
415 | {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
416 | 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, |
417 | }, |
418 | { |
419 | NID_sha256, |
420 | SHA256_DIGEST_LENGTH, |
421 | 19, |
422 | {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
423 | 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, |
424 | }, |
425 | { |
426 | NID_sha384, |
427 | SHA384_DIGEST_LENGTH, |
428 | 19, |
429 | {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
430 | 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, |
431 | }, |
432 | { |
433 | NID_sha512, |
434 | SHA512_DIGEST_LENGTH, |
435 | 19, |
436 | {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
437 | 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, |
438 | }, |
439 | { |
440 | NID_undef, 0, 0, {0}, |
441 | }, |
442 | }; |
443 | |
444 | int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, |
445 | int *is_alloced, int hash_nid, const uint8_t *msg, |
446 | size_t msg_len) { |
447 | unsigned i; |
448 | |
449 | if (hash_nid == NID_md5_sha1) { |
450 | // Special case: SSL signature, just check the length. |
451 | if (msg_len != SSL_SIG_LENGTH) { |
452 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
453 | return 0; |
454 | } |
455 | |
456 | *out_msg = (uint8_t*) msg; |
457 | *out_msg_len = SSL_SIG_LENGTH; |
458 | *is_alloced = 0; |
459 | return 1; |
460 | } |
461 | |
462 | for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { |
463 | const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; |
464 | if (sig_prefix->nid != hash_nid) { |
465 | continue; |
466 | } |
467 | |
468 | if (msg_len != sig_prefix->hash_len) { |
469 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
470 | return 0; |
471 | } |
472 | |
473 | const uint8_t* prefix = sig_prefix->bytes; |
474 | unsigned prefix_len = sig_prefix->len; |
475 | unsigned signed_msg_len; |
476 | uint8_t *signed_msg; |
477 | |
478 | signed_msg_len = prefix_len + msg_len; |
479 | if (signed_msg_len < prefix_len) { |
480 | OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); |
481 | return 0; |
482 | } |
483 | |
484 | signed_msg = OPENSSL_malloc(signed_msg_len); |
485 | if (!signed_msg) { |
486 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
487 | return 0; |
488 | } |
489 | |
490 | OPENSSL_memcpy(signed_msg, prefix, prefix_len); |
491 | OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len); |
492 | |
493 | *out_msg = signed_msg; |
494 | *out_msg_len = signed_msg_len; |
495 | *is_alloced = 1; |
496 | |
497 | return 1; |
498 | } |
499 | |
500 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
501 | return 0; |
502 | } |
503 | |
504 | int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out, |
505 | unsigned *out_len, RSA *rsa) { |
506 | const unsigned rsa_size = RSA_size(rsa); |
507 | int ret = 0; |
508 | uint8_t *signed_msg = NULL; |
509 | size_t signed_msg_len = 0; |
510 | int signed_msg_is_alloced = 0; |
511 | size_t size_t_out_len; |
512 | |
513 | if (rsa->meth->sign) { |
514 | return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa); |
515 | } |
516 | |
517 | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
518 | &signed_msg_is_alloced, hash_nid, in, in_len) || |
519 | !RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg, |
520 | signed_msg_len, RSA_PKCS1_PADDING)) { |
521 | goto err; |
522 | } |
523 | |
524 | *out_len = size_t_out_len; |
525 | ret = 1; |
526 | |
527 | err: |
528 | if (signed_msg_is_alloced) { |
529 | OPENSSL_free(signed_msg); |
530 | } |
531 | return ret; |
532 | } |
533 | |
534 | int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
535 | const uint8_t *in, size_t in_len, const EVP_MD *md, |
536 | const EVP_MD *mgf1_md, int salt_len) { |
537 | if (in_len != EVP_MD_size(md)) { |
538 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
539 | return 0; |
540 | } |
541 | |
542 | size_t padded_len = RSA_size(rsa); |
543 | uint8_t *padded = OPENSSL_malloc(padded_len); |
544 | if (padded == NULL) { |
545 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
546 | return 0; |
547 | } |
548 | |
549 | int ret = |
550 | RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, in, md, mgf1_md, salt_len) && |
551 | RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len, |
552 | RSA_NO_PADDING); |
553 | OPENSSL_free(padded); |
554 | return ret; |
555 | } |
556 | |
557 | int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len, |
558 | const uint8_t *sig, size_t sig_len, RSA *rsa) { |
559 | if (rsa->n == NULL || rsa->e == NULL) { |
560 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
561 | return 0; |
562 | } |
563 | |
564 | const size_t rsa_size = RSA_size(rsa); |
565 | uint8_t *buf = NULL; |
566 | int ret = 0; |
567 | uint8_t *signed_msg = NULL; |
568 | size_t signed_msg_len = 0, len; |
569 | int signed_msg_is_alloced = 0; |
570 | |
571 | if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) { |
572 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
573 | return 0; |
574 | } |
575 | |
576 | buf = OPENSSL_malloc(rsa_size); |
577 | if (!buf) { |
578 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
579 | return 0; |
580 | } |
581 | |
582 | if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len, |
583 | RSA_PKCS1_PADDING)) { |
584 | goto out; |
585 | } |
586 | |
587 | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
588 | &signed_msg_is_alloced, hash_nid, msg, msg_len)) { |
589 | goto out; |
590 | } |
591 | |
592 | // Check that no other information follows the hash value (FIPS 186-4 Section |
593 | // 5.5) and it matches the expected hash. |
594 | if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) { |
595 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
596 | goto out; |
597 | } |
598 | |
599 | ret = 1; |
600 | |
601 | out: |
602 | OPENSSL_free(buf); |
603 | if (signed_msg_is_alloced) { |
604 | OPENSSL_free(signed_msg); |
605 | } |
606 | return ret; |
607 | } |
608 | |
609 | int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *msg, size_t msg_len, |
610 | const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, |
611 | const uint8_t *sig, size_t sig_len) { |
612 | if (msg_len != EVP_MD_size(md)) { |
613 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
614 | return 0; |
615 | } |
616 | |
617 | size_t em_len = RSA_size(rsa); |
618 | uint8_t *em = OPENSSL_malloc(em_len); |
619 | if (em == NULL) { |
620 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
621 | return 0; |
622 | } |
623 | |
624 | int ret = 0; |
625 | if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) { |
626 | goto err; |
627 | } |
628 | |
629 | if (em_len != RSA_size(rsa)) { |
630 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
631 | goto err; |
632 | } |
633 | |
634 | ret = RSA_verify_PKCS1_PSS_mgf1(rsa, msg, md, mgf1_md, em, salt_len); |
635 | |
636 | err: |
637 | OPENSSL_free(em); |
638 | return ret; |
639 | } |
640 | |
641 | static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv, |
642 | const BIGNUM *m, int check_reduced, BN_CTX *ctx) { |
643 | BN_CTX_start(ctx); |
644 | BIGNUM *tmp = BN_CTX_get(ctx); |
645 | int ret = tmp != NULL && |
646 | bn_mul_consttime(tmp, a, ainv, ctx) && |
647 | bn_div_consttime(NULL, tmp, tmp, m, ctx); |
648 | if (ret) { |
649 | *out_ok = BN_is_one(tmp); |
650 | if (check_reduced && (BN_is_negative(ainv) || BN_cmp(ainv, m) >= 0)) { |
651 | *out_ok = 0; |
652 | } |
653 | } |
654 | BN_CTX_end(ctx); |
655 | return ret; |
656 | } |
657 | |
658 | int RSA_check_key(const RSA *key) { |
659 | BIGNUM n, pm1, qm1, lcm, dmp1, dmq1, iqmp_times_q; |
660 | BN_CTX *ctx; |
661 | int ok = 0, has_crt_values; |
662 | |
663 | if (RSA_is_opaque(key)) { |
664 | // Opaque keys can't be checked. |
665 | return 1; |
666 | } |
667 | |
668 | if ((key->p != NULL) != (key->q != NULL)) { |
669 | OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); |
670 | return 0; |
671 | } |
672 | |
673 | if (!key->n || !key->e) { |
674 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
675 | return 0; |
676 | } |
677 | |
678 | if (!key->d || !key->p) { |
679 | // For a public key, or without p and q, there's nothing that can be |
680 | // checked. |
681 | return 1; |
682 | } |
683 | |
684 | ctx = BN_CTX_new(); |
685 | if (ctx == NULL) { |
686 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
687 | return 0; |
688 | } |
689 | |
690 | BN_init(&n); |
691 | BN_init(&pm1); |
692 | BN_init(&qm1); |
693 | BN_init(&lcm); |
694 | BN_init(&dmp1); |
695 | BN_init(&dmq1); |
696 | BN_init(&iqmp_times_q); |
697 | |
698 | int d_ok; |
699 | if (!bn_mul_consttime(&n, key->p, key->q, ctx) || |
700 | // lcm = lcm(p, q) |
701 | !bn_usub_consttime(&pm1, key->p, BN_value_one()) || |
702 | !bn_usub_consttime(&qm1, key->q, BN_value_one()) || |
703 | !bn_lcm_consttime(&lcm, &pm1, &qm1, ctx) || |
704 | // Other implementations use the Euler totient rather than the Carmichael |
705 | // totient, so allow unreduced |key->d|. |
706 | !check_mod_inverse(&d_ok, key->e, key->d, &lcm, |
707 | 0 /* don't require reduced */, ctx)) { |
708 | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
709 | goto out; |
710 | } |
711 | |
712 | if (BN_cmp(&n, key->n) != 0) { |
713 | OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
714 | goto out; |
715 | } |
716 | |
717 | if (!d_ok) { |
718 | OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); |
719 | goto out; |
720 | } |
721 | |
722 | if (BN_is_negative(key->d) || BN_cmp(key->d, key->n) >= 0) { |
723 | OPENSSL_PUT_ERROR(RSA, RSA_R_D_OUT_OF_RANGE); |
724 | goto out; |
725 | } |
726 | |
727 | has_crt_values = key->dmp1 != NULL; |
728 | if (has_crt_values != (key->dmq1 != NULL) || |
729 | has_crt_values != (key->iqmp != NULL)) { |
730 | OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); |
731 | goto out; |
732 | } |
733 | |
734 | if (has_crt_values) { |
735 | int dmp1_ok, dmq1_ok, iqmp_ok; |
736 | if (!check_mod_inverse(&dmp1_ok, key->e, key->dmp1, &pm1, |
737 | 1 /* check reduced */, ctx) || |
738 | !check_mod_inverse(&dmq1_ok, key->e, key->dmq1, &qm1, |
739 | 1 /* check reduced */, ctx) || |
740 | !check_mod_inverse(&iqmp_ok, key->q, key->iqmp, key->p, |
741 | 1 /* check reduced */, ctx)) { |
742 | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
743 | goto out; |
744 | } |
745 | |
746 | if (!dmp1_ok || !dmq1_ok || !iqmp_ok) { |
747 | OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); |
748 | goto out; |
749 | } |
750 | } |
751 | |
752 | ok = 1; |
753 | |
754 | out: |
755 | BN_free(&n); |
756 | BN_free(&pm1); |
757 | BN_free(&qm1); |
758 | BN_free(&lcm); |
759 | BN_free(&dmp1); |
760 | BN_free(&dmq1); |
761 | BN_free(&iqmp_times_q); |
762 | BN_CTX_free(ctx); |
763 | |
764 | return ok; |
765 | } |
766 | |
767 | |
768 | // This is the product of the 132 smallest odd primes, from 3 to 751. |
769 | static const BN_ULONG kSmallFactorsLimbs[] = { |
770 | TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f), |
771 | TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b), |
772 | TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871), |
773 | TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3), |
774 | TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893), |
775 | TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e), |
776 | TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea), |
777 | TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727), |
778 | 0x000017b1 |
779 | }; |
780 | |
781 | DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) { |
782 | out->d = (BN_ULONG *) kSmallFactorsLimbs; |
783 | out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs); |
784 | out->dmax = out->width; |
785 | out->neg = 0; |
786 | out->flags = BN_FLG_STATIC_DATA; |
787 | } |
788 | |
789 | int RSA_check_fips(RSA *key) { |
790 | if (RSA_is_opaque(key)) { |
791 | // Opaque keys can't be checked. |
792 | OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
793 | return 0; |
794 | } |
795 | |
796 | if (!RSA_check_key(key)) { |
797 | return 0; |
798 | } |
799 | |
800 | BN_CTX *ctx = BN_CTX_new(); |
801 | if (ctx == NULL) { |
802 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
803 | return 0; |
804 | } |
805 | |
806 | BIGNUM small_gcd; |
807 | BN_init(&small_gcd); |
808 | |
809 | int ret = 1; |
810 | |
811 | // Perform partial public key validation of RSA keys (SP 800-89 5.3.3). |
812 | enum bn_primality_result_t primality_result; |
813 | if (BN_num_bits(key->e) <= 16 || |
814 | BN_num_bits(key->e) > 256 || |
815 | !BN_is_odd(key->n) || |
816 | !BN_is_odd(key->e) || |
817 | !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) || |
818 | !BN_is_one(&small_gcd) || |
819 | !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n, |
820 | BN_prime_checks, ctx, NULL) || |
821 | primality_result != bn_non_prime_power_composite) { |
822 | OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
823 | ret = 0; |
824 | } |
825 | |
826 | BN_free(&small_gcd); |
827 | BN_CTX_free(ctx); |
828 | |
829 | if (!ret || key->d == NULL || key->p == NULL) { |
830 | // On a failure or on only a public key, there's nothing else can be |
831 | // checked. |
832 | return ret; |
833 | } |
834 | |
835 | // FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG, |
836 | // section 9.9, it is not known whether |rsa| will be used for signing or |
837 | // encryption, so either pair-wise consistency self-test is acceptable. We |
838 | // perform a signing test. |
839 | uint8_t data[32] = {0}; |
840 | unsigned sig_len = RSA_size(key); |
841 | uint8_t *sig = OPENSSL_malloc(sig_len); |
842 | if (sig == NULL) { |
843 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
844 | return 0; |
845 | } |
846 | |
847 | if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) { |
848 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
849 | ret = 0; |
850 | goto cleanup; |
851 | } |
852 | #if defined(BORINGSSL_FIPS_BREAK_RSA_PWCT) |
853 | data[0] = ~data[0]; |
854 | #endif |
855 | if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) { |
856 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
857 | ret = 0; |
858 | } |
859 | |
860 | cleanup: |
861 | OPENSSL_free(sig); |
862 | |
863 | return ret; |
864 | } |
865 | |
866 | int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
867 | size_t len) { |
868 | if (rsa->meth->private_transform) { |
869 | return rsa->meth->private_transform(rsa, out, in, len); |
870 | } |
871 | |
872 | return rsa_default_private_transform(rsa, out, in, len); |
873 | } |
874 | |
875 | int RSA_flags(const RSA *rsa) { return rsa->flags; } |
876 | |
877 | int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { |
878 | return 1; |
879 | } |
880 | |