| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/rsa.h> |
| 58 | |
| 59 | #include <limits.h> |
| 60 | #include <string.h> |
| 61 | |
| 62 | #include <openssl/bn.h> |
| 63 | #include <openssl/digest.h> |
| 64 | #include <openssl/engine.h> |
| 65 | #include <openssl/err.h> |
| 66 | #include <openssl/ex_data.h> |
| 67 | #include <openssl/md5.h> |
| 68 | #include <openssl/mem.h> |
| 69 | #include <openssl/nid.h> |
| 70 | #include <openssl/sha.h> |
| 71 | #include <openssl/thread.h> |
| 72 | |
| 73 | #include "../bn/internal.h" |
| 74 | #include "../delocate.h" |
| 75 | #include "../../internal.h" |
| 76 | #include "internal.h" |
| 77 | |
| 78 | |
| 79 | // RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme. |
| 80 | // Cryptography.io depends on this error code. |
| 81 | OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02) |
| 82 | |
| 83 | DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class) |
| 84 | |
| 85 | RSA *RSA_new(void) { return RSA_new_method(NULL); } |
| 86 | |
| 87 | RSA *RSA_new_method(const ENGINE *engine) { |
| 88 | RSA *rsa = OPENSSL_malloc(sizeof(RSA)); |
| 89 | if (rsa == NULL) { |
| 90 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 91 | return NULL; |
| 92 | } |
| 93 | |
| 94 | OPENSSL_memset(rsa, 0, sizeof(RSA)); |
| 95 | |
| 96 | if (engine) { |
| 97 | rsa->meth = ENGINE_get_RSA_method(engine); |
| 98 | } |
| 99 | |
| 100 | if (rsa->meth == NULL) { |
| 101 | rsa->meth = (RSA_METHOD *) RSA_default_method(); |
| 102 | } |
| 103 | METHOD_ref(rsa->meth); |
| 104 | |
| 105 | rsa->references = 1; |
| 106 | rsa->flags = rsa->meth->flags; |
| 107 | CRYPTO_MUTEX_init(&rsa->lock); |
| 108 | CRYPTO_new_ex_data(&rsa->ex_data); |
| 109 | |
| 110 | if (rsa->meth->init && !rsa->meth->init(rsa)) { |
| 111 | CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
| 112 | CRYPTO_MUTEX_cleanup(&rsa->lock); |
| 113 | METHOD_unref(rsa->meth); |
| 114 | OPENSSL_free(rsa); |
| 115 | return NULL; |
| 116 | } |
| 117 | |
| 118 | return rsa; |
| 119 | } |
| 120 | |
| 121 | void RSA_free(RSA *rsa) { |
| 122 | unsigned u; |
| 123 | |
| 124 | if (rsa == NULL) { |
| 125 | return; |
| 126 | } |
| 127 | |
| 128 | if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { |
| 129 | return; |
| 130 | } |
| 131 | |
| 132 | if (rsa->meth->finish) { |
| 133 | rsa->meth->finish(rsa); |
| 134 | } |
| 135 | METHOD_unref(rsa->meth); |
| 136 | |
| 137 | CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
| 138 | |
| 139 | BN_free(rsa->n); |
| 140 | BN_free(rsa->e); |
| 141 | BN_free(rsa->d); |
| 142 | BN_free(rsa->p); |
| 143 | BN_free(rsa->q); |
| 144 | BN_free(rsa->dmp1); |
| 145 | BN_free(rsa->dmq1); |
| 146 | BN_free(rsa->iqmp); |
| 147 | BN_MONT_CTX_free(rsa->mont_n); |
| 148 | BN_MONT_CTX_free(rsa->mont_p); |
| 149 | BN_MONT_CTX_free(rsa->mont_q); |
| 150 | BN_free(rsa->d_fixed); |
| 151 | BN_free(rsa->dmp1_fixed); |
| 152 | BN_free(rsa->dmq1_fixed); |
| 153 | BN_free(rsa->inv_small_mod_large_mont); |
| 154 | for (u = 0; u < rsa->num_blindings; u++) { |
| 155 | BN_BLINDING_free(rsa->blindings[u]); |
| 156 | } |
| 157 | OPENSSL_free(rsa->blindings); |
| 158 | OPENSSL_free(rsa->blindings_inuse); |
| 159 | CRYPTO_MUTEX_cleanup(&rsa->lock); |
| 160 | OPENSSL_free(rsa); |
| 161 | } |
| 162 | |
| 163 | int RSA_up_ref(RSA *rsa) { |
| 164 | CRYPTO_refcount_inc(&rsa->references); |
| 165 | return 1; |
| 166 | } |
| 167 | |
| 168 | unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); } |
| 169 | |
| 170 | void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, |
| 171 | const BIGNUM **out_d) { |
| 172 | if (out_n != NULL) { |
| 173 | *out_n = rsa->n; |
| 174 | } |
| 175 | if (out_e != NULL) { |
| 176 | *out_e = rsa->e; |
| 177 | } |
| 178 | if (out_d != NULL) { |
| 179 | *out_d = rsa->d; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, |
| 184 | const BIGNUM **out_q) { |
| 185 | if (out_p != NULL) { |
| 186 | *out_p = rsa->p; |
| 187 | } |
| 188 | if (out_q != NULL) { |
| 189 | *out_q = rsa->q; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, |
| 194 | const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { |
| 195 | if (out_dmp1 != NULL) { |
| 196 | *out_dmp1 = rsa->dmp1; |
| 197 | } |
| 198 | if (out_dmq1 != NULL) { |
| 199 | *out_dmq1 = rsa->dmq1; |
| 200 | } |
| 201 | if (out_iqmp != NULL) { |
| 202 | *out_iqmp = rsa->iqmp; |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) { |
| 207 | if ((rsa->n == NULL && n == NULL) || |
| 208 | (rsa->e == NULL && e == NULL)) { |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | if (n != NULL) { |
| 213 | BN_free(rsa->n); |
| 214 | rsa->n = n; |
| 215 | } |
| 216 | if (e != NULL) { |
| 217 | BN_free(rsa->e); |
| 218 | rsa->e = e; |
| 219 | } |
| 220 | if (d != NULL) { |
| 221 | BN_free(rsa->d); |
| 222 | rsa->d = d; |
| 223 | } |
| 224 | |
| 225 | return 1; |
| 226 | } |
| 227 | |
| 228 | int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) { |
| 229 | if ((rsa->p == NULL && p == NULL) || |
| 230 | (rsa->q == NULL && q == NULL)) { |
| 231 | return 0; |
| 232 | } |
| 233 | |
| 234 | if (p != NULL) { |
| 235 | BN_free(rsa->p); |
| 236 | rsa->p = p; |
| 237 | } |
| 238 | if (q != NULL) { |
| 239 | BN_free(rsa->q); |
| 240 | rsa->q = q; |
| 241 | } |
| 242 | |
| 243 | return 1; |
| 244 | } |
| 245 | |
| 246 | int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { |
| 247 | if ((rsa->dmp1 == NULL && dmp1 == NULL) || |
| 248 | (rsa->dmq1 == NULL && dmq1 == NULL) || |
| 249 | (rsa->iqmp == NULL && iqmp == NULL)) { |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | if (dmp1 != NULL) { |
| 254 | BN_free(rsa->dmp1); |
| 255 | rsa->dmp1 = dmp1; |
| 256 | } |
| 257 | if (dmq1 != NULL) { |
| 258 | BN_free(rsa->dmq1); |
| 259 | rsa->dmq1 = dmq1; |
| 260 | } |
| 261 | if (iqmp != NULL) { |
| 262 | BN_free(rsa->iqmp); |
| 263 | rsa->iqmp = iqmp; |
| 264 | } |
| 265 | |
| 266 | return 1; |
| 267 | } |
| 268 | |
| 269 | int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| 270 | int padding) { |
| 271 | size_t out_len; |
| 272 | |
| 273 | if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| 274 | return -1; |
| 275 | } |
| 276 | |
| 277 | if (out_len > INT_MAX) { |
| 278 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| 279 | return -1; |
| 280 | } |
| 281 | return out_len; |
| 282 | } |
| 283 | |
| 284 | int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| 285 | const uint8_t *in, size_t in_len, int padding) { |
| 286 | if (rsa->meth->sign_raw) { |
| 287 | return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
| 288 | } |
| 289 | |
| 290 | return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
| 291 | } |
| 292 | |
| 293 | int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| 294 | int padding) { |
| 295 | size_t out_len; |
| 296 | |
| 297 | if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| 298 | return -1; |
| 299 | } |
| 300 | |
| 301 | if (out_len > INT_MAX) { |
| 302 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| 303 | return -1; |
| 304 | } |
| 305 | return out_len; |
| 306 | } |
| 307 | |
| 308 | int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| 309 | const uint8_t *in, size_t in_len, int padding) { |
| 310 | if (rsa->meth->decrypt) { |
| 311 | return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| 312 | } |
| 313 | |
| 314 | return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| 315 | } |
| 316 | |
| 317 | int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| 318 | int padding) { |
| 319 | size_t out_len; |
| 320 | |
| 321 | if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| 322 | return -1; |
| 323 | } |
| 324 | |
| 325 | if (out_len > INT_MAX) { |
| 326 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| 327 | return -1; |
| 328 | } |
| 329 | return out_len; |
| 330 | } |
| 331 | |
| 332 | int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| 333 | int padding) { |
| 334 | size_t out_len; |
| 335 | |
| 336 | if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| 337 | return -1; |
| 338 | } |
| 339 | |
| 340 | if (out_len > INT_MAX) { |
| 341 | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| 342 | return -1; |
| 343 | } |
| 344 | return out_len; |
| 345 | } |
| 346 | |
| 347 | unsigned RSA_size(const RSA *rsa) { |
| 348 | if (rsa->meth->size) { |
| 349 | return rsa->meth->size(rsa); |
| 350 | } |
| 351 | |
| 352 | return rsa_default_size(rsa); |
| 353 | } |
| 354 | |
| 355 | int RSA_is_opaque(const RSA *rsa) { |
| 356 | return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); |
| 357 | } |
| 358 | |
| 359 | int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
| 360 | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
| 361 | int index; |
| 362 | if (!CRYPTO_get_ex_new_index(g_rsa_ex_data_class_bss_get(), &index, argl, |
| 363 | argp, free_func)) { |
| 364 | return -1; |
| 365 | } |
| 366 | return index; |
| 367 | } |
| 368 | |
| 369 | int RSA_set_ex_data(RSA *rsa, int idx, void *arg) { |
| 370 | return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg); |
| 371 | } |
| 372 | |
| 373 | void *RSA_get_ex_data(const RSA *rsa, int idx) { |
| 374 | return CRYPTO_get_ex_data(&rsa->ex_data, idx); |
| 375 | } |
| 376 | |
| 377 | // SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's |
| 378 | // the length of an MD5 and SHA1 hash. |
| 379 | static const unsigned SSL_SIG_LENGTH = 36; |
| 380 | |
| 381 | // pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is |
| 382 | // to be signed with PKCS#1. |
| 383 | struct pkcs1_sig_prefix { |
| 384 | // nid identifies the hash function. |
| 385 | int nid; |
| 386 | // hash_len is the expected length of the hash function. |
| 387 | uint8_t hash_len; |
| 388 | // len is the number of bytes of |bytes| which are valid. |
| 389 | uint8_t len; |
| 390 | // bytes contains the DER bytes. |
| 391 | uint8_t bytes[19]; |
| 392 | }; |
| 393 | |
| 394 | // kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with |
| 395 | // different hash functions. |
| 396 | static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { |
| 397 | { |
| 398 | NID_md5, |
| 399 | MD5_DIGEST_LENGTH, |
| 400 | 18, |
| 401 | {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 402 | 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, |
| 403 | }, |
| 404 | { |
| 405 | NID_sha1, |
| 406 | SHA_DIGEST_LENGTH, |
| 407 | 15, |
| 408 | {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, |
| 409 | 0x00, 0x04, 0x14}, |
| 410 | }, |
| 411 | { |
| 412 | NID_sha224, |
| 413 | SHA224_DIGEST_LENGTH, |
| 414 | 19, |
| 415 | {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 416 | 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, |
| 417 | }, |
| 418 | { |
| 419 | NID_sha256, |
| 420 | SHA256_DIGEST_LENGTH, |
| 421 | 19, |
| 422 | {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 423 | 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, |
| 424 | }, |
| 425 | { |
| 426 | NID_sha384, |
| 427 | SHA384_DIGEST_LENGTH, |
| 428 | 19, |
| 429 | {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 430 | 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, |
| 431 | }, |
| 432 | { |
| 433 | NID_sha512, |
| 434 | SHA512_DIGEST_LENGTH, |
| 435 | 19, |
| 436 | {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 437 | 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, |
| 438 | }, |
| 439 | { |
| 440 | NID_undef, 0, 0, {0}, |
| 441 | }, |
| 442 | }; |
| 443 | |
| 444 | int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, |
| 445 | int *is_alloced, int hash_nid, const uint8_t *msg, |
| 446 | size_t msg_len) { |
| 447 | unsigned i; |
| 448 | |
| 449 | if (hash_nid == NID_md5_sha1) { |
| 450 | // Special case: SSL signature, just check the length. |
| 451 | if (msg_len != SSL_SIG_LENGTH) { |
| 452 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | *out_msg = (uint8_t*) msg; |
| 457 | *out_msg_len = SSL_SIG_LENGTH; |
| 458 | *is_alloced = 0; |
| 459 | return 1; |
| 460 | } |
| 461 | |
| 462 | for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { |
| 463 | const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; |
| 464 | if (sig_prefix->nid != hash_nid) { |
| 465 | continue; |
| 466 | } |
| 467 | |
| 468 | if (msg_len != sig_prefix->hash_len) { |
| 469 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| 470 | return 0; |
| 471 | } |
| 472 | |
| 473 | const uint8_t* prefix = sig_prefix->bytes; |
| 474 | unsigned prefix_len = sig_prefix->len; |
| 475 | unsigned signed_msg_len; |
| 476 | uint8_t *signed_msg; |
| 477 | |
| 478 | signed_msg_len = prefix_len + msg_len; |
| 479 | if (signed_msg_len < prefix_len) { |
| 480 | OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | signed_msg = OPENSSL_malloc(signed_msg_len); |
| 485 | if (!signed_msg) { |
| 486 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 487 | return 0; |
| 488 | } |
| 489 | |
| 490 | OPENSSL_memcpy(signed_msg, prefix, prefix_len); |
| 491 | OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len); |
| 492 | |
| 493 | *out_msg = signed_msg; |
| 494 | *out_msg_len = signed_msg_len; |
| 495 | *is_alloced = 1; |
| 496 | |
| 497 | return 1; |
| 498 | } |
| 499 | |
| 500 | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| 501 | return 0; |
| 502 | } |
| 503 | |
| 504 | int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out, |
| 505 | unsigned *out_len, RSA *rsa) { |
| 506 | const unsigned rsa_size = RSA_size(rsa); |
| 507 | int ret = 0; |
| 508 | uint8_t *signed_msg = NULL; |
| 509 | size_t signed_msg_len = 0; |
| 510 | int signed_msg_is_alloced = 0; |
| 511 | size_t size_t_out_len; |
| 512 | |
| 513 | if (rsa->meth->sign) { |
| 514 | return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa); |
| 515 | } |
| 516 | |
| 517 | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
| 518 | &signed_msg_is_alloced, hash_nid, in, in_len) || |
| 519 | !RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg, |
| 520 | signed_msg_len, RSA_PKCS1_PADDING)) { |
| 521 | goto err; |
| 522 | } |
| 523 | |
| 524 | *out_len = size_t_out_len; |
| 525 | ret = 1; |
| 526 | |
| 527 | err: |
| 528 | if (signed_msg_is_alloced) { |
| 529 | OPENSSL_free(signed_msg); |
| 530 | } |
| 531 | return ret; |
| 532 | } |
| 533 | |
| 534 | int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| 535 | const uint8_t *in, size_t in_len, const EVP_MD *md, |
| 536 | const EVP_MD *mgf1_md, int salt_len) { |
| 537 | if (in_len != EVP_MD_size(md)) { |
| 538 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| 539 | return 0; |
| 540 | } |
| 541 | |
| 542 | size_t padded_len = RSA_size(rsa); |
| 543 | uint8_t *padded = OPENSSL_malloc(padded_len); |
| 544 | if (padded == NULL) { |
| 545 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | int ret = |
| 550 | RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, in, md, mgf1_md, salt_len) && |
| 551 | RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len, |
| 552 | RSA_NO_PADDING); |
| 553 | OPENSSL_free(padded); |
| 554 | return ret; |
| 555 | } |
| 556 | |
| 557 | int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len, |
| 558 | const uint8_t *sig, size_t sig_len, RSA *rsa) { |
| 559 | if (rsa->n == NULL || rsa->e == NULL) { |
| 560 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| 561 | return 0; |
| 562 | } |
| 563 | |
| 564 | const size_t rsa_size = RSA_size(rsa); |
| 565 | uint8_t *buf = NULL; |
| 566 | int ret = 0; |
| 567 | uint8_t *signed_msg = NULL; |
| 568 | size_t signed_msg_len = 0, len; |
| 569 | int signed_msg_is_alloced = 0; |
| 570 | |
| 571 | if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) { |
| 572 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | buf = OPENSSL_malloc(rsa_size); |
| 577 | if (!buf) { |
| 578 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len, |
| 583 | RSA_PKCS1_PADDING)) { |
| 584 | goto out; |
| 585 | } |
| 586 | |
| 587 | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
| 588 | &signed_msg_is_alloced, hash_nid, msg, msg_len)) { |
| 589 | goto out; |
| 590 | } |
| 591 | |
| 592 | // Check that no other information follows the hash value (FIPS 186-4 Section |
| 593 | // 5.5) and it matches the expected hash. |
| 594 | if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) { |
| 595 | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
| 596 | goto out; |
| 597 | } |
| 598 | |
| 599 | ret = 1; |
| 600 | |
| 601 | out: |
| 602 | OPENSSL_free(buf); |
| 603 | if (signed_msg_is_alloced) { |
| 604 | OPENSSL_free(signed_msg); |
| 605 | } |
| 606 | return ret; |
| 607 | } |
| 608 | |
| 609 | int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *msg, size_t msg_len, |
| 610 | const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, |
| 611 | const uint8_t *sig, size_t sig_len) { |
| 612 | if (msg_len != EVP_MD_size(md)) { |
| 613 | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | size_t em_len = RSA_size(rsa); |
| 618 | uint8_t *em = OPENSSL_malloc(em_len); |
| 619 | if (em == NULL) { |
| 620 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | int ret = 0; |
| 625 | if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) { |
| 626 | goto err; |
| 627 | } |
| 628 | |
| 629 | if (em_len != RSA_size(rsa)) { |
| 630 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 631 | goto err; |
| 632 | } |
| 633 | |
| 634 | ret = RSA_verify_PKCS1_PSS_mgf1(rsa, msg, md, mgf1_md, em, salt_len); |
| 635 | |
| 636 | err: |
| 637 | OPENSSL_free(em); |
| 638 | return ret; |
| 639 | } |
| 640 | |
| 641 | static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv, |
| 642 | const BIGNUM *m, int check_reduced, BN_CTX *ctx) { |
| 643 | BN_CTX_start(ctx); |
| 644 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 645 | int ret = tmp != NULL && |
| 646 | bn_mul_consttime(tmp, a, ainv, ctx) && |
| 647 | bn_div_consttime(NULL, tmp, tmp, m, ctx); |
| 648 | if (ret) { |
| 649 | *out_ok = BN_is_one(tmp); |
| 650 | if (check_reduced && (BN_is_negative(ainv) || BN_cmp(ainv, m) >= 0)) { |
| 651 | *out_ok = 0; |
| 652 | } |
| 653 | } |
| 654 | BN_CTX_end(ctx); |
| 655 | return ret; |
| 656 | } |
| 657 | |
| 658 | int RSA_check_key(const RSA *key) { |
| 659 | BIGNUM n, pm1, qm1, lcm, dmp1, dmq1, iqmp_times_q; |
| 660 | BN_CTX *ctx; |
| 661 | int ok = 0, has_crt_values; |
| 662 | |
| 663 | if (RSA_is_opaque(key)) { |
| 664 | // Opaque keys can't be checked. |
| 665 | return 1; |
| 666 | } |
| 667 | |
| 668 | if ((key->p != NULL) != (key->q != NULL)) { |
| 669 | OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | if (!key->n || !key->e) { |
| 674 | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | if (!key->d || !key->p) { |
| 679 | // For a public key, or without p and q, there's nothing that can be |
| 680 | // checked. |
| 681 | return 1; |
| 682 | } |
| 683 | |
| 684 | ctx = BN_CTX_new(); |
| 685 | if (ctx == NULL) { |
| 686 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 687 | return 0; |
| 688 | } |
| 689 | |
| 690 | BN_init(&n); |
| 691 | BN_init(&pm1); |
| 692 | BN_init(&qm1); |
| 693 | BN_init(&lcm); |
| 694 | BN_init(&dmp1); |
| 695 | BN_init(&dmq1); |
| 696 | BN_init(&iqmp_times_q); |
| 697 | |
| 698 | int d_ok; |
| 699 | if (!bn_mul_consttime(&n, key->p, key->q, ctx) || |
| 700 | // lcm = lcm(p, q) |
| 701 | !bn_usub_consttime(&pm1, key->p, BN_value_one()) || |
| 702 | !bn_usub_consttime(&qm1, key->q, BN_value_one()) || |
| 703 | !bn_lcm_consttime(&lcm, &pm1, &qm1, ctx) || |
| 704 | // Other implementations use the Euler totient rather than the Carmichael |
| 705 | // totient, so allow unreduced |key->d|. |
| 706 | !check_mod_inverse(&d_ok, key->e, key->d, &lcm, |
| 707 | 0 /* don't require reduced */, ctx)) { |
| 708 | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| 709 | goto out; |
| 710 | } |
| 711 | |
| 712 | if (BN_cmp(&n, key->n) != 0) { |
| 713 | OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
| 714 | goto out; |
| 715 | } |
| 716 | |
| 717 | if (!d_ok) { |
| 718 | OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); |
| 719 | goto out; |
| 720 | } |
| 721 | |
| 722 | if (BN_is_negative(key->d) || BN_cmp(key->d, key->n) >= 0) { |
| 723 | OPENSSL_PUT_ERROR(RSA, RSA_R_D_OUT_OF_RANGE); |
| 724 | goto out; |
| 725 | } |
| 726 | |
| 727 | has_crt_values = key->dmp1 != NULL; |
| 728 | if (has_crt_values != (key->dmq1 != NULL) || |
| 729 | has_crt_values != (key->iqmp != NULL)) { |
| 730 | OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); |
| 731 | goto out; |
| 732 | } |
| 733 | |
| 734 | if (has_crt_values) { |
| 735 | int dmp1_ok, dmq1_ok, iqmp_ok; |
| 736 | if (!check_mod_inverse(&dmp1_ok, key->e, key->dmp1, &pm1, |
| 737 | 1 /* check reduced */, ctx) || |
| 738 | !check_mod_inverse(&dmq1_ok, key->e, key->dmq1, &qm1, |
| 739 | 1 /* check reduced */, ctx) || |
| 740 | !check_mod_inverse(&iqmp_ok, key->q, key->iqmp, key->p, |
| 741 | 1 /* check reduced */, ctx)) { |
| 742 | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| 743 | goto out; |
| 744 | } |
| 745 | |
| 746 | if (!dmp1_ok || !dmq1_ok || !iqmp_ok) { |
| 747 | OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); |
| 748 | goto out; |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | ok = 1; |
| 753 | |
| 754 | out: |
| 755 | BN_free(&n); |
| 756 | BN_free(&pm1); |
| 757 | BN_free(&qm1); |
| 758 | BN_free(&lcm); |
| 759 | BN_free(&dmp1); |
| 760 | BN_free(&dmq1); |
| 761 | BN_free(&iqmp_times_q); |
| 762 | BN_CTX_free(ctx); |
| 763 | |
| 764 | return ok; |
| 765 | } |
| 766 | |
| 767 | |
| 768 | // This is the product of the 132 smallest odd primes, from 3 to 751. |
| 769 | static const BN_ULONG kSmallFactorsLimbs[] = { |
| 770 | TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f), |
| 771 | TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b), |
| 772 | TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871), |
| 773 | TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3), |
| 774 | TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893), |
| 775 | TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e), |
| 776 | TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea), |
| 777 | TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727), |
| 778 | 0x000017b1 |
| 779 | }; |
| 780 | |
| 781 | DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) { |
| 782 | out->d = (BN_ULONG *) kSmallFactorsLimbs; |
| 783 | out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs); |
| 784 | out->dmax = out->width; |
| 785 | out->neg = 0; |
| 786 | out->flags = BN_FLG_STATIC_DATA; |
| 787 | } |
| 788 | |
| 789 | int RSA_check_fips(RSA *key) { |
| 790 | if (RSA_is_opaque(key)) { |
| 791 | // Opaque keys can't be checked. |
| 792 | OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
| 793 | return 0; |
| 794 | } |
| 795 | |
| 796 | if (!RSA_check_key(key)) { |
| 797 | return 0; |
| 798 | } |
| 799 | |
| 800 | BN_CTX *ctx = BN_CTX_new(); |
| 801 | if (ctx == NULL) { |
| 802 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 803 | return 0; |
| 804 | } |
| 805 | |
| 806 | BIGNUM small_gcd; |
| 807 | BN_init(&small_gcd); |
| 808 | |
| 809 | int ret = 1; |
| 810 | |
| 811 | // Perform partial public key validation of RSA keys (SP 800-89 5.3.3). |
| 812 | enum bn_primality_result_t primality_result; |
| 813 | if (BN_num_bits(key->e) <= 16 || |
| 814 | BN_num_bits(key->e) > 256 || |
| 815 | !BN_is_odd(key->n) || |
| 816 | !BN_is_odd(key->e) || |
| 817 | !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) || |
| 818 | !BN_is_one(&small_gcd) || |
| 819 | !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n, |
| 820 | BN_prime_checks, ctx, NULL) || |
| 821 | primality_result != bn_non_prime_power_composite) { |
| 822 | OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
| 823 | ret = 0; |
| 824 | } |
| 825 | |
| 826 | BN_free(&small_gcd); |
| 827 | BN_CTX_free(ctx); |
| 828 | |
| 829 | if (!ret || key->d == NULL || key->p == NULL) { |
| 830 | // On a failure or on only a public key, there's nothing else can be |
| 831 | // checked. |
| 832 | return ret; |
| 833 | } |
| 834 | |
| 835 | // FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG, |
| 836 | // section 9.9, it is not known whether |rsa| will be used for signing or |
| 837 | // encryption, so either pair-wise consistency self-test is acceptable. We |
| 838 | // perform a signing test. |
| 839 | uint8_t data[32] = {0}; |
| 840 | unsigned sig_len = RSA_size(key); |
| 841 | uint8_t *sig = OPENSSL_malloc(sig_len); |
| 842 | if (sig == NULL) { |
| 843 | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| 844 | return 0; |
| 845 | } |
| 846 | |
| 847 | if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) { |
| 848 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 849 | ret = 0; |
| 850 | goto cleanup; |
| 851 | } |
| 852 | #if defined(BORINGSSL_FIPS_BREAK_RSA_PWCT) |
| 853 | data[0] = ~data[0]; |
| 854 | #endif |
| 855 | if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) { |
| 856 | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| 857 | ret = 0; |
| 858 | } |
| 859 | |
| 860 | cleanup: |
| 861 | OPENSSL_free(sig); |
| 862 | |
| 863 | return ret; |
| 864 | } |
| 865 | |
| 866 | int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
| 867 | size_t len) { |
| 868 | if (rsa->meth->private_transform) { |
| 869 | return rsa->meth->private_transform(rsa, out, in, len); |
| 870 | } |
| 871 | |
| 872 | return rsa_default_private_transform(rsa, out, in, len); |
| 873 | } |
| 874 | |
| 875 | int RSA_flags(const RSA *rsa) { return rsa->flags; } |
| 876 | |
| 877 | int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { |
| 878 | return 1; |
| 879 | } |
| 880 | |