1 | /* Copyright (c) 2015, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | #include <openssl/ssl.h> |
16 | |
17 | #include <assert.h> |
18 | #include <string.h> |
19 | |
20 | #include <openssl/aead.h> |
21 | #include <openssl/err.h> |
22 | #include <openssl/rand.h> |
23 | |
24 | #include "../crypto/internal.h" |
25 | #include "internal.h" |
26 | |
27 | |
28 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
29 | #define FUZZER_MODE true |
30 | #else |
31 | #define FUZZER_MODE false |
32 | #endif |
33 | |
34 | BSSL_NAMESPACE_BEGIN |
35 | |
36 | SSLAEADContext::SSLAEADContext(uint16_t version_arg, bool is_dtls_arg, |
37 | const SSL_CIPHER *cipher_arg) |
38 | : cipher_(cipher_arg), |
39 | version_(version_arg), |
40 | is_dtls_(is_dtls_arg), |
41 | variable_nonce_included_in_record_(false), |
42 | random_variable_nonce_(false), |
43 | xor_fixed_nonce_(false), |
44 | omit_length_in_ad_(false), |
45 | ad_is_header_(false) { |
46 | OPENSSL_memset(fixed_nonce_, 0, sizeof(fixed_nonce_)); |
47 | } |
48 | |
49 | SSLAEADContext::~SSLAEADContext() {} |
50 | |
51 | UniquePtr<SSLAEADContext> SSLAEADContext::CreateNullCipher(bool is_dtls) { |
52 | return MakeUnique<SSLAEADContext>(0 /* version */, is_dtls, |
53 | nullptr /* cipher */); |
54 | } |
55 | |
56 | UniquePtr<SSLAEADContext> SSLAEADContext::Create( |
57 | enum evp_aead_direction_t direction, uint16_t version, bool is_dtls, |
58 | const SSL_CIPHER *cipher, Span<const uint8_t> enc_key, |
59 | Span<const uint8_t> mac_key, Span<const uint8_t> fixed_iv) { |
60 | const EVP_AEAD *aead; |
61 | uint16_t protocol_version; |
62 | size_t expected_mac_key_len, expected_fixed_iv_len; |
63 | if (!ssl_protocol_version_from_wire(&protocol_version, version) || |
64 | !ssl_cipher_get_evp_aead(&aead, &expected_mac_key_len, |
65 | &expected_fixed_iv_len, cipher, protocol_version, |
66 | is_dtls) || |
67 | // Ensure the caller returned correct key sizes. |
68 | expected_fixed_iv_len != fixed_iv.size() || |
69 | expected_mac_key_len != mac_key.size()) { |
70 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
71 | return nullptr; |
72 | } |
73 | |
74 | uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH]; |
75 | if (!mac_key.empty()) { |
76 | // This is a "stateful" AEAD (for compatibility with pre-AEAD cipher |
77 | // suites). |
78 | if (mac_key.size() + enc_key.size() + fixed_iv.size() > |
79 | sizeof(merged_key)) { |
80 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
81 | return nullptr; |
82 | } |
83 | OPENSSL_memcpy(merged_key, mac_key.data(), mac_key.size()); |
84 | OPENSSL_memcpy(merged_key + mac_key.size(), enc_key.data(), enc_key.size()); |
85 | OPENSSL_memcpy(merged_key + mac_key.size() + enc_key.size(), |
86 | fixed_iv.data(), fixed_iv.size()); |
87 | enc_key = MakeConstSpan(merged_key, |
88 | enc_key.size() + mac_key.size() + fixed_iv.size()); |
89 | } |
90 | |
91 | UniquePtr<SSLAEADContext> aead_ctx = |
92 | MakeUnique<SSLAEADContext>(version, is_dtls, cipher); |
93 | if (!aead_ctx) { |
94 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
95 | return nullptr; |
96 | } |
97 | |
98 | assert(aead_ctx->ProtocolVersion() == protocol_version); |
99 | |
100 | if (!EVP_AEAD_CTX_init_with_direction( |
101 | aead_ctx->ctx_.get(), aead, enc_key.data(), enc_key.size(), |
102 | EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) { |
103 | return nullptr; |
104 | } |
105 | |
106 | assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH); |
107 | static_assert(EVP_AEAD_MAX_NONCE_LENGTH < 256, |
108 | "variable_nonce_len doesn't fit in uint8_t" ); |
109 | aead_ctx->variable_nonce_len_ = (uint8_t)EVP_AEAD_nonce_length(aead); |
110 | if (mac_key.empty()) { |
111 | assert(fixed_iv.size() <= sizeof(aead_ctx->fixed_nonce_)); |
112 | OPENSSL_memcpy(aead_ctx->fixed_nonce_, fixed_iv.data(), fixed_iv.size()); |
113 | aead_ctx->fixed_nonce_len_ = fixed_iv.size(); |
114 | |
115 | if (cipher->algorithm_enc & SSL_CHACHA20POLY1305) { |
116 | // The fixed nonce into the actual nonce (the sequence number). |
117 | aead_ctx->xor_fixed_nonce_ = true; |
118 | aead_ctx->variable_nonce_len_ = 8; |
119 | } else { |
120 | // The fixed IV is prepended to the nonce. |
121 | assert(fixed_iv.size() <= aead_ctx->variable_nonce_len_); |
122 | aead_ctx->variable_nonce_len_ -= fixed_iv.size(); |
123 | } |
124 | |
125 | // AES-GCM uses an explicit nonce. |
126 | if (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) { |
127 | aead_ctx->variable_nonce_included_in_record_ = true; |
128 | } |
129 | |
130 | // The TLS 1.3 construction XORs the fixed nonce into the sequence number |
131 | // and omits the additional data. |
132 | if (protocol_version >= TLS1_3_VERSION) { |
133 | aead_ctx->xor_fixed_nonce_ = true; |
134 | aead_ctx->variable_nonce_len_ = 8; |
135 | aead_ctx->variable_nonce_included_in_record_ = false; |
136 | aead_ctx->ad_is_header_ = true; |
137 | assert(fixed_iv.size() >= aead_ctx->variable_nonce_len_); |
138 | } |
139 | } else { |
140 | assert(protocol_version < TLS1_3_VERSION); |
141 | aead_ctx->variable_nonce_included_in_record_ = true; |
142 | aead_ctx->random_variable_nonce_ = true; |
143 | aead_ctx->omit_length_in_ad_ = true; |
144 | } |
145 | |
146 | return aead_ctx; |
147 | } |
148 | |
149 | UniquePtr<SSLAEADContext> SSLAEADContext::CreatePlaceholderForQUIC( |
150 | uint16_t version, const SSL_CIPHER *cipher) { |
151 | return MakeUnique<SSLAEADContext>(version, false, cipher); |
152 | } |
153 | |
154 | void SSLAEADContext::SetVersionIfNullCipher(uint16_t version) { |
155 | if (is_null_cipher()) { |
156 | version_ = version; |
157 | } |
158 | } |
159 | |
160 | uint16_t SSLAEADContext::ProtocolVersion() const { |
161 | uint16_t protocol_version; |
162 | if(!ssl_protocol_version_from_wire(&protocol_version, version_)) { |
163 | assert(false); |
164 | return 0; |
165 | } |
166 | return protocol_version; |
167 | } |
168 | |
169 | uint16_t SSLAEADContext::RecordVersion() const { |
170 | if (version_ == 0) { |
171 | assert(is_null_cipher()); |
172 | return is_dtls_ ? DTLS1_VERSION : TLS1_VERSION; |
173 | } |
174 | |
175 | if (ProtocolVersion() <= TLS1_2_VERSION) { |
176 | return version_; |
177 | } |
178 | |
179 | return TLS1_2_VERSION; |
180 | } |
181 | |
182 | size_t SSLAEADContext::ExplicitNonceLen() const { |
183 | if (!FUZZER_MODE && variable_nonce_included_in_record_) { |
184 | return variable_nonce_len_; |
185 | } |
186 | return 0; |
187 | } |
188 | |
189 | bool SSLAEADContext::SuffixLen(size_t *out_suffix_len, const size_t in_len, |
190 | const size_t ) const { |
191 | if (is_null_cipher() || FUZZER_MODE) { |
192 | *out_suffix_len = extra_in_len; |
193 | return true; |
194 | } |
195 | return !!EVP_AEAD_CTX_tag_len(ctx_.get(), out_suffix_len, in_len, |
196 | extra_in_len); |
197 | } |
198 | |
199 | bool SSLAEADContext::CiphertextLen(size_t *out_len, const size_t in_len, |
200 | const size_t ) const { |
201 | size_t len; |
202 | if (!SuffixLen(&len, in_len, extra_in_len)) { |
203 | return false; |
204 | } |
205 | len += ExplicitNonceLen(); |
206 | len += in_len; |
207 | if (len < in_len || len >= 0xffff) { |
208 | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
209 | return false; |
210 | } |
211 | *out_len = len; |
212 | return true; |
213 | } |
214 | |
215 | size_t SSLAEADContext::MaxOverhead() const { |
216 | return ExplicitNonceLen() + |
217 | (is_null_cipher() || FUZZER_MODE |
218 | ? 0 |
219 | : EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get()))); |
220 | } |
221 | |
222 | Span<const uint8_t> SSLAEADContext::GetAdditionalData( |
223 | uint8_t storage[13], uint8_t type, uint16_t record_version, |
224 | const uint8_t seqnum[8], size_t plaintext_len, Span<const uint8_t> ) { |
225 | if (ad_is_header_) { |
226 | return header; |
227 | } |
228 | |
229 | OPENSSL_memcpy(storage, seqnum, 8); |
230 | size_t len = 8; |
231 | storage[len++] = type; |
232 | storage[len++] = static_cast<uint8_t>((record_version >> 8)); |
233 | storage[len++] = static_cast<uint8_t>(record_version); |
234 | if (!omit_length_in_ad_) { |
235 | storage[len++] = static_cast<uint8_t>((plaintext_len >> 8)); |
236 | storage[len++] = static_cast<uint8_t>(plaintext_len); |
237 | } |
238 | return MakeConstSpan(storage, len); |
239 | } |
240 | |
241 | bool SSLAEADContext::Open(Span<uint8_t> *out, uint8_t type, |
242 | uint16_t record_version, const uint8_t seqnum[8], |
243 | Span<const uint8_t> , Span<uint8_t> in) { |
244 | if (is_null_cipher() || FUZZER_MODE) { |
245 | // Handle the initial NULL cipher. |
246 | *out = in; |
247 | return true; |
248 | } |
249 | |
250 | // TLS 1.2 AEADs include the length in the AD and are assumed to have fixed |
251 | // overhead. Otherwise the parameter is unused. |
252 | size_t plaintext_len = 0; |
253 | if (!omit_length_in_ad_) { |
254 | size_t overhead = MaxOverhead(); |
255 | if (in.size() < overhead) { |
256 | // Publicly invalid. |
257 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); |
258 | return false; |
259 | } |
260 | plaintext_len = in.size() - overhead; |
261 | } |
262 | |
263 | uint8_t ad_storage[13]; |
264 | Span<const uint8_t> ad = GetAdditionalData(ad_storage, type, record_version, |
265 | seqnum, plaintext_len, header); |
266 | |
267 | // Assemble the nonce. |
268 | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
269 | size_t nonce_len = 0; |
270 | |
271 | // Prepend the fixed nonce, or left-pad with zeros if XORing. |
272 | if (xor_fixed_nonce_) { |
273 | nonce_len = fixed_nonce_len_ - variable_nonce_len_; |
274 | OPENSSL_memset(nonce, 0, nonce_len); |
275 | } else { |
276 | OPENSSL_memcpy(nonce, fixed_nonce_, fixed_nonce_len_); |
277 | nonce_len += fixed_nonce_len_; |
278 | } |
279 | |
280 | // Add the variable nonce. |
281 | if (variable_nonce_included_in_record_) { |
282 | if (in.size() < variable_nonce_len_) { |
283 | // Publicly invalid. |
284 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); |
285 | return false; |
286 | } |
287 | OPENSSL_memcpy(nonce + nonce_len, in.data(), variable_nonce_len_); |
288 | in = in.subspan(variable_nonce_len_); |
289 | } else { |
290 | assert(variable_nonce_len_ == 8); |
291 | OPENSSL_memcpy(nonce + nonce_len, seqnum, variable_nonce_len_); |
292 | } |
293 | nonce_len += variable_nonce_len_; |
294 | |
295 | // XOR the fixed nonce, if necessary. |
296 | if (xor_fixed_nonce_) { |
297 | assert(nonce_len == fixed_nonce_len_); |
298 | for (size_t i = 0; i < fixed_nonce_len_; i++) { |
299 | nonce[i] ^= fixed_nonce_[i]; |
300 | } |
301 | } |
302 | |
303 | // Decrypt in-place. |
304 | size_t len; |
305 | if (!EVP_AEAD_CTX_open(ctx_.get(), in.data(), &len, in.size(), nonce, |
306 | nonce_len, in.data(), in.size(), ad.data(), |
307 | ad.size())) { |
308 | return false; |
309 | } |
310 | *out = in.subspan(0, len); |
311 | return true; |
312 | } |
313 | |
314 | bool SSLAEADContext::SealScatter(uint8_t *out_prefix, uint8_t *out, |
315 | uint8_t *out_suffix, uint8_t type, |
316 | uint16_t record_version, |
317 | const uint8_t seqnum[8], |
318 | Span<const uint8_t> , const uint8_t *in, |
319 | size_t in_len, const uint8_t *, |
320 | size_t ) { |
321 | const size_t prefix_len = ExplicitNonceLen(); |
322 | size_t suffix_len; |
323 | if (!SuffixLen(&suffix_len, in_len, extra_in_len)) { |
324 | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
325 | return false; |
326 | } |
327 | if ((in != out && buffers_alias(in, in_len, out, in_len)) || |
328 | buffers_alias(in, in_len, out_prefix, prefix_len) || |
329 | buffers_alias(in, in_len, out_suffix, suffix_len)) { |
330 | OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); |
331 | return false; |
332 | } |
333 | |
334 | if (is_null_cipher() || FUZZER_MODE) { |
335 | // Handle the initial NULL cipher. |
336 | OPENSSL_memmove(out, in, in_len); |
337 | OPENSSL_memmove(out_suffix, extra_in, extra_in_len); |
338 | return true; |
339 | } |
340 | |
341 | uint8_t ad_storage[13]; |
342 | Span<const uint8_t> ad = GetAdditionalData(ad_storage, type, record_version, |
343 | seqnum, in_len, header); |
344 | |
345 | // Assemble the nonce. |
346 | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
347 | size_t nonce_len = 0; |
348 | |
349 | // Prepend the fixed nonce, or left-pad with zeros if XORing. |
350 | if (xor_fixed_nonce_) { |
351 | nonce_len = fixed_nonce_len_ - variable_nonce_len_; |
352 | OPENSSL_memset(nonce, 0, nonce_len); |
353 | } else { |
354 | OPENSSL_memcpy(nonce, fixed_nonce_, fixed_nonce_len_); |
355 | nonce_len += fixed_nonce_len_; |
356 | } |
357 | |
358 | // Select the variable nonce. |
359 | if (random_variable_nonce_) { |
360 | assert(variable_nonce_included_in_record_); |
361 | if (!RAND_bytes(nonce + nonce_len, variable_nonce_len_)) { |
362 | return false; |
363 | } |
364 | } else { |
365 | // When sending we use the sequence number as the variable part of the |
366 | // nonce. |
367 | assert(variable_nonce_len_ == 8); |
368 | OPENSSL_memcpy(nonce + nonce_len, seqnum, variable_nonce_len_); |
369 | } |
370 | nonce_len += variable_nonce_len_; |
371 | |
372 | // Emit the variable nonce if included in the record. |
373 | if (variable_nonce_included_in_record_) { |
374 | assert(!xor_fixed_nonce_); |
375 | if (buffers_alias(in, in_len, out_prefix, variable_nonce_len_)) { |
376 | OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); |
377 | return false; |
378 | } |
379 | OPENSSL_memcpy(out_prefix, nonce + fixed_nonce_len_, |
380 | variable_nonce_len_); |
381 | } |
382 | |
383 | // XOR the fixed nonce, if necessary. |
384 | if (xor_fixed_nonce_) { |
385 | assert(nonce_len == fixed_nonce_len_); |
386 | for (size_t i = 0; i < fixed_nonce_len_; i++) { |
387 | nonce[i] ^= fixed_nonce_[i]; |
388 | } |
389 | } |
390 | |
391 | size_t written_suffix_len; |
392 | bool result = !!EVP_AEAD_CTX_seal_scatter( |
393 | ctx_.get(), out, out_suffix, &written_suffix_len, suffix_len, nonce, |
394 | nonce_len, in, in_len, extra_in, extra_in_len, ad.data(), ad.size()); |
395 | assert(!result || written_suffix_len == suffix_len); |
396 | return result; |
397 | } |
398 | |
399 | bool SSLAEADContext::Seal(uint8_t *out, size_t *out_len, size_t max_out_len, |
400 | uint8_t type, uint16_t record_version, |
401 | const uint8_t seqnum[8], Span<const uint8_t> , |
402 | const uint8_t *in, size_t in_len) { |
403 | const size_t prefix_len = ExplicitNonceLen(); |
404 | size_t suffix_len; |
405 | if (!SuffixLen(&suffix_len, in_len, 0)) { |
406 | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
407 | return false; |
408 | } |
409 | if (in_len + prefix_len < in_len || |
410 | in_len + prefix_len + suffix_len < in_len + prefix_len) { |
411 | OPENSSL_PUT_ERROR(CIPHER, SSL_R_RECORD_TOO_LARGE); |
412 | return false; |
413 | } |
414 | if (in_len + prefix_len + suffix_len > max_out_len) { |
415 | OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
416 | return false; |
417 | } |
418 | |
419 | if (!SealScatter(out, out + prefix_len, out + prefix_len + in_len, type, |
420 | record_version, seqnum, header, in, in_len, 0, 0)) { |
421 | return false; |
422 | } |
423 | *out_len = prefix_len + in_len + suffix_len; |
424 | return true; |
425 | } |
426 | |
427 | bool SSLAEADContext::GetIV(const uint8_t **out_iv, size_t *out_iv_len) const { |
428 | return !is_null_cipher() && |
429 | EVP_AEAD_CTX_get_iv(ctx_.get(), out_iv, out_iv_len); |
430 | } |
431 | |
432 | BSSL_NAMESPACE_END |
433 | |