| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] |
| 56 | */ |
| 57 | /* ==================================================================== |
| 58 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| 59 | * |
| 60 | * Redistribution and use in source and binary forms, with or without |
| 61 | * modification, are permitted provided that the following conditions |
| 62 | * are met: |
| 63 | * |
| 64 | * 1. Redistributions of source code must retain the above copyright |
| 65 | * notice, this list of conditions and the following disclaimer. |
| 66 | * |
| 67 | * 2. Redistributions in binary form must reproduce the above copyright |
| 68 | * notice, this list of conditions and the following disclaimer in |
| 69 | * the documentation and/or other materials provided with the |
| 70 | * distribution. |
| 71 | * |
| 72 | * 3. All advertising materials mentioning features or use of this |
| 73 | * software must display the following acknowledgment: |
| 74 | * "This product includes software developed by the OpenSSL Project |
| 75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 76 | * |
| 77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 78 | * endorse or promote products derived from this software without |
| 79 | * prior written permission. For written permission, please contact |
| 80 | * openssl-core@openssl.org. |
| 81 | * |
| 82 | * 5. Products derived from this software may not be called "OpenSSL" |
| 83 | * nor may "OpenSSL" appear in their names without prior written |
| 84 | * permission of the OpenSSL Project. |
| 85 | * |
| 86 | * 6. Redistributions of any form whatsoever must retain the following |
| 87 | * acknowledgment: |
| 88 | * "This product includes software developed by the OpenSSL Project |
| 89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 90 | * |
| 91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 103 | * ==================================================================== |
| 104 | * |
| 105 | * This product includes cryptographic software written by Eric Young |
| 106 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 107 | * Hudson (tjh@cryptsoft.com). |
| 108 | * |
| 109 | */ |
| 110 | /* ==================================================================== |
| 111 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 112 | * ECC cipher suite support in OpenSSL originally developed by |
| 113 | * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ |
| 114 | |
| 115 | #include <openssl/ssl.h> |
| 116 | |
| 117 | #include <assert.h> |
| 118 | #include <limits.h> |
| 119 | #include <string.h> |
| 120 | |
| 121 | #include <utility> |
| 122 | |
| 123 | #include <openssl/bn.h> |
| 124 | #include <openssl/buf.h> |
| 125 | #include <openssl/bytestring.h> |
| 126 | #include <openssl/ec_key.h> |
| 127 | #include <openssl/err.h> |
| 128 | #include <openssl/mem.h> |
| 129 | #include <openssl/sha.h> |
| 130 | #include <openssl/x509.h> |
| 131 | |
| 132 | #include "../crypto/internal.h" |
| 133 | #include "internal.h" |
| 134 | |
| 135 | |
| 136 | BSSL_NAMESPACE_BEGIN |
| 137 | |
| 138 | CERT::CERT(const SSL_X509_METHOD *x509_method_arg) |
| 139 | : x509_method(x509_method_arg) {} |
| 140 | |
| 141 | CERT::~CERT() { |
| 142 | ssl_cert_clear_certs(this); |
| 143 | x509_method->cert_free(this); |
| 144 | } |
| 145 | |
| 146 | static CRYPTO_BUFFER *buffer_up_ref(CRYPTO_BUFFER *buffer) { |
| 147 | CRYPTO_BUFFER_up_ref(buffer); |
| 148 | return buffer; |
| 149 | } |
| 150 | |
| 151 | UniquePtr<CERT> ssl_cert_dup(CERT *cert) { |
| 152 | UniquePtr<CERT> ret = MakeUnique<CERT>(cert->x509_method); |
| 153 | if (!ret) { |
| 154 | return nullptr; |
| 155 | } |
| 156 | |
| 157 | if (cert->chain) { |
| 158 | ret->chain.reset(sk_CRYPTO_BUFFER_deep_copy( |
| 159 | cert->chain.get(), buffer_up_ref, CRYPTO_BUFFER_free)); |
| 160 | if (!ret->chain) { |
| 161 | return nullptr; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | ret->privatekey = UpRef(cert->privatekey); |
| 166 | ret->key_method = cert->key_method; |
| 167 | |
| 168 | if (!ret->sigalgs.CopyFrom(cert->sigalgs)) { |
| 169 | return nullptr; |
| 170 | } |
| 171 | |
| 172 | ret->cert_cb = cert->cert_cb; |
| 173 | ret->cert_cb_arg = cert->cert_cb_arg; |
| 174 | |
| 175 | ret->x509_method->cert_dup(ret.get(), cert); |
| 176 | |
| 177 | ret->signed_cert_timestamp_list = UpRef(cert->signed_cert_timestamp_list); |
| 178 | ret->ocsp_response = UpRef(cert->ocsp_response); |
| 179 | |
| 180 | ret->sid_ctx_length = cert->sid_ctx_length; |
| 181 | OPENSSL_memcpy(ret->sid_ctx, cert->sid_ctx, sizeof(ret->sid_ctx)); |
| 182 | |
| 183 | if (cert->dc) { |
| 184 | ret->dc = cert->dc->Dup(); |
| 185 | if (!ret->dc) { |
| 186 | return nullptr; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | ret->dc_privatekey = UpRef(cert->dc_privatekey); |
| 191 | ret->dc_key_method = cert->dc_key_method; |
| 192 | |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | // Free up and clear all certificates and chains |
| 197 | void ssl_cert_clear_certs(CERT *cert) { |
| 198 | if (cert == NULL) { |
| 199 | return; |
| 200 | } |
| 201 | |
| 202 | cert->x509_method->cert_clear(cert); |
| 203 | |
| 204 | cert->chain.reset(); |
| 205 | cert->privatekey.reset(); |
| 206 | cert->key_method = nullptr; |
| 207 | |
| 208 | cert->dc.reset(); |
| 209 | cert->dc_privatekey.reset(); |
| 210 | cert->dc_key_method = nullptr; |
| 211 | } |
| 212 | |
| 213 | static void ssl_cert_set_cert_cb(CERT *cert, int (*cb)(SSL *ssl, void *arg), |
| 214 | void *arg) { |
| 215 | cert->cert_cb = cb; |
| 216 | cert->cert_cb_arg = arg; |
| 217 | } |
| 218 | |
| 219 | enum leaf_cert_and_privkey_result_t { |
| 220 | leaf_cert_and_privkey_error, |
| 221 | leaf_cert_and_privkey_ok, |
| 222 | leaf_cert_and_privkey_mismatch, |
| 223 | }; |
| 224 | |
| 225 | // check_leaf_cert_and_privkey checks whether the certificate in |leaf_buffer| |
| 226 | // and the private key in |privkey| are suitable and coherent. It returns |
| 227 | // |leaf_cert_and_privkey_error| and pushes to the error queue if a problem is |
| 228 | // found. If the certificate and private key are valid, but incoherent, it |
| 229 | // returns |leaf_cert_and_privkey_mismatch|. Otherwise it returns |
| 230 | // |leaf_cert_and_privkey_ok|. |
| 231 | static enum leaf_cert_and_privkey_result_t check_leaf_cert_and_privkey( |
| 232 | CRYPTO_BUFFER *leaf_buffer, EVP_PKEY *privkey) { |
| 233 | CBS cert_cbs; |
| 234 | CRYPTO_BUFFER_init_CBS(leaf_buffer, &cert_cbs); |
| 235 | UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs); |
| 236 | if (!pubkey) { |
| 237 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 238 | return leaf_cert_and_privkey_error; |
| 239 | } |
| 240 | |
| 241 | if (!ssl_is_key_type_supported(pubkey->type)) { |
| 242 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| 243 | return leaf_cert_and_privkey_error; |
| 244 | } |
| 245 | |
| 246 | // An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA |
| 247 | // certificates, so sanity-check the key usage extension. |
| 248 | if (pubkey->type == EVP_PKEY_EC && |
| 249 | !ssl_cert_check_key_usage(&cert_cbs, key_usage_digital_signature)) { |
| 250 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| 251 | return leaf_cert_and_privkey_error; |
| 252 | } |
| 253 | |
| 254 | if (privkey != NULL && |
| 255 | // Sanity-check that the private key and the certificate match. |
| 256 | !ssl_compare_public_and_private_key(pubkey.get(), privkey)) { |
| 257 | ERR_clear_error(); |
| 258 | return leaf_cert_and_privkey_mismatch; |
| 259 | } |
| 260 | |
| 261 | return leaf_cert_and_privkey_ok; |
| 262 | } |
| 263 | |
| 264 | static int cert_set_chain_and_key( |
| 265 | CERT *cert, CRYPTO_BUFFER *const *certs, size_t num_certs, |
| 266 | EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) { |
| 267 | if (num_certs == 0 || |
| 268 | (privkey == NULL && privkey_method == NULL)) { |
| 269 | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | if (privkey != NULL && privkey_method != NULL) { |
| 274 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD); |
| 275 | return 0; |
| 276 | } |
| 277 | |
| 278 | switch (check_leaf_cert_and_privkey(certs[0], privkey)) { |
| 279 | case leaf_cert_and_privkey_error: |
| 280 | return 0; |
| 281 | case leaf_cert_and_privkey_mismatch: |
| 282 | OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH); |
| 283 | return 0; |
| 284 | case leaf_cert_and_privkey_ok: |
| 285 | break; |
| 286 | } |
| 287 | |
| 288 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs_sk(sk_CRYPTO_BUFFER_new_null()); |
| 289 | if (!certs_sk) { |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | for (size_t i = 0; i < num_certs; i++) { |
| 294 | if (!PushToStack(certs_sk.get(), UpRef(certs[i]))) { |
| 295 | return 0; |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | cert->privatekey = UpRef(privkey); |
| 300 | cert->key_method = privkey_method; |
| 301 | |
| 302 | cert->chain = std::move(certs_sk); |
| 303 | return 1; |
| 304 | } |
| 305 | |
| 306 | bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer) { |
| 307 | switch (check_leaf_cert_and_privkey(buffer.get(), cert->privatekey.get())) { |
| 308 | case leaf_cert_and_privkey_error: |
| 309 | return false; |
| 310 | case leaf_cert_and_privkey_mismatch: |
| 311 | // don't fail for a cert/key mismatch, just free current private key |
| 312 | // (when switching to a different cert & key, first this function should |
| 313 | // be used, then |ssl_set_pkey|. |
| 314 | cert->privatekey.reset(); |
| 315 | break; |
| 316 | case leaf_cert_and_privkey_ok: |
| 317 | break; |
| 318 | } |
| 319 | |
| 320 | cert->x509_method->cert_flush_cached_leaf(cert); |
| 321 | |
| 322 | if (cert->chain != nullptr) { |
| 323 | CRYPTO_BUFFER_free(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0)); |
| 324 | sk_CRYPTO_BUFFER_set(cert->chain.get(), 0, buffer.release()); |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | cert->chain.reset(sk_CRYPTO_BUFFER_new_null()); |
| 329 | if (cert->chain == nullptr) { |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | if (!PushToStack(cert->chain.get(), std::move(buffer))) { |
| 334 | cert->chain.reset(); |
| 335 | return false; |
| 336 | } |
| 337 | |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | bool ssl_has_certificate(const SSL_HANDSHAKE *hs) { |
| 342 | return hs->config->cert->chain != nullptr && |
| 343 | sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0) != nullptr && |
| 344 | ssl_has_private_key(hs); |
| 345 | } |
| 346 | |
| 347 | bool ssl_parse_cert_chain(uint8_t *out_alert, |
| 348 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain, |
| 349 | UniquePtr<EVP_PKEY> *out_pubkey, |
| 350 | uint8_t *out_leaf_sha256, CBS *cbs, |
| 351 | CRYPTO_BUFFER_POOL *pool) { |
| 352 | out_chain->reset(); |
| 353 | out_pubkey->reset(); |
| 354 | |
| 355 | CBS certificate_list; |
| 356 | if (!CBS_get_u24_length_prefixed(cbs, &certificate_list)) { |
| 357 | *out_alert = SSL_AD_DECODE_ERROR; |
| 358 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | if (CBS_len(&certificate_list) == 0) { |
| 363 | return true; |
| 364 | } |
| 365 | |
| 366 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain(sk_CRYPTO_BUFFER_new_null()); |
| 367 | if (!chain) { |
| 368 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 369 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 370 | return false; |
| 371 | } |
| 372 | |
| 373 | UniquePtr<EVP_PKEY> pubkey; |
| 374 | while (CBS_len(&certificate_list) > 0) { |
| 375 | CBS certificate; |
| 376 | if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) || |
| 377 | CBS_len(&certificate) == 0) { |
| 378 | *out_alert = SSL_AD_DECODE_ERROR; |
| 379 | OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); |
| 380 | return false; |
| 381 | } |
| 382 | |
| 383 | if (sk_CRYPTO_BUFFER_num(chain.get()) == 0) { |
| 384 | pubkey = ssl_cert_parse_pubkey(&certificate); |
| 385 | if (!pubkey) { |
| 386 | *out_alert = SSL_AD_DECODE_ERROR; |
| 387 | return false; |
| 388 | } |
| 389 | |
| 390 | // Retain the hash of the leaf certificate if requested. |
| 391 | if (out_leaf_sha256 != NULL) { |
| 392 | SHA256(CBS_data(&certificate), CBS_len(&certificate), out_leaf_sha256); |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | UniquePtr<CRYPTO_BUFFER> buf( |
| 397 | CRYPTO_BUFFER_new_from_CBS(&certificate, pool)); |
| 398 | if (!buf || |
| 399 | !PushToStack(chain.get(), std::move(buf))) { |
| 400 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 401 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 402 | return false; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | *out_chain = std::move(chain); |
| 407 | *out_pubkey = std::move(pubkey); |
| 408 | return true; |
| 409 | } |
| 410 | |
| 411 | bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb) { |
| 412 | if (!ssl_has_certificate(hs)) { |
| 413 | return CBB_add_u24(cbb, 0); |
| 414 | } |
| 415 | |
| 416 | CBB certs; |
| 417 | if (!CBB_add_u24_length_prefixed(cbb, &certs)) { |
| 418 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 419 | return false; |
| 420 | } |
| 421 | |
| 422 | STACK_OF(CRYPTO_BUFFER) *chain = hs->config->cert->chain.get(); |
| 423 | for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) { |
| 424 | CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i); |
| 425 | CBB child; |
| 426 | if (!CBB_add_u24_length_prefixed(&certs, &child) || |
| 427 | !CBB_add_bytes(&child, CRYPTO_BUFFER_data(buffer), |
| 428 | CRYPTO_BUFFER_len(buffer)) || |
| 429 | !CBB_flush(&certs)) { |
| 430 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| 431 | return false; |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | return CBB_flush(cbb); |
| 436 | } |
| 437 | |
| 438 | // ssl_cert_skip_to_spki parses a DER-encoded, X.509 certificate from |in| and |
| 439 | // positions |*out_tbs_cert| to cover the TBSCertificate, starting at the |
| 440 | // subjectPublicKeyInfo. |
| 441 | static bool ssl_cert_skip_to_spki(const CBS *in, CBS *out_tbs_cert) { |
| 442 | /* From RFC 5280, section 4.1 |
| 443 | * Certificate ::= SEQUENCE { |
| 444 | * tbsCertificate TBSCertificate, |
| 445 | * signatureAlgorithm AlgorithmIdentifier, |
| 446 | * signatureValue BIT STRING } |
| 447 | |
| 448 | * TBSCertificate ::= SEQUENCE { |
| 449 | * version [0] EXPLICIT Version DEFAULT v1, |
| 450 | * serialNumber CertificateSerialNumber, |
| 451 | * signature AlgorithmIdentifier, |
| 452 | * issuer Name, |
| 453 | * validity Validity, |
| 454 | * subject Name, |
| 455 | * subjectPublicKeyInfo SubjectPublicKeyInfo, |
| 456 | * ... } */ |
| 457 | CBS buf = *in; |
| 458 | |
| 459 | CBS toplevel; |
| 460 | if (!CBS_get_asn1(&buf, &toplevel, CBS_ASN1_SEQUENCE) || |
| 461 | CBS_len(&buf) != 0 || |
| 462 | !CBS_get_asn1(&toplevel, out_tbs_cert, CBS_ASN1_SEQUENCE) || |
| 463 | // version |
| 464 | !CBS_get_optional_asn1( |
| 465 | out_tbs_cert, NULL, NULL, |
| 466 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 467 | // serialNumber |
| 468 | !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_INTEGER) || |
| 469 | // signature algorithm |
| 470 | !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) || |
| 471 | // issuer |
| 472 | !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) || |
| 473 | // validity |
| 474 | !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) || |
| 475 | // subject |
| 476 | !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE)) { |
| 477 | return false; |
| 478 | } |
| 479 | |
| 480 | return true; |
| 481 | } |
| 482 | |
| 483 | UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in) { |
| 484 | CBS buf = *in, tbs_cert; |
| 485 | if (!ssl_cert_skip_to_spki(&buf, &tbs_cert)) { |
| 486 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); |
| 487 | return nullptr; |
| 488 | } |
| 489 | |
| 490 | return UniquePtr<EVP_PKEY>(EVP_parse_public_key(&tbs_cert)); |
| 491 | } |
| 492 | |
| 493 | bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, |
| 494 | const EVP_PKEY *privkey) { |
| 495 | if (EVP_PKEY_is_opaque(privkey)) { |
| 496 | // We cannot check an opaque private key and have to trust that it |
| 497 | // matches. |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | switch (EVP_PKEY_cmp(pubkey, privkey)) { |
| 502 | case 1: |
| 503 | return true; |
| 504 | case 0: |
| 505 | OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH); |
| 506 | return false; |
| 507 | case -1: |
| 508 | OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH); |
| 509 | return false; |
| 510 | case -2: |
| 511 | OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE); |
| 512 | return false; |
| 513 | } |
| 514 | |
| 515 | assert(0); |
| 516 | return false; |
| 517 | } |
| 518 | |
| 519 | bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey) { |
| 520 | if (privkey == nullptr) { |
| 521 | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); |
| 522 | return false; |
| 523 | } |
| 524 | |
| 525 | if (cert->chain == nullptr || |
| 526 | sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) == nullptr) { |
| 527 | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); |
| 528 | return false; |
| 529 | } |
| 530 | |
| 531 | CBS cert_cbs; |
| 532 | CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0), |
| 533 | &cert_cbs); |
| 534 | UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs); |
| 535 | if (!pubkey) { |
| 536 | OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE); |
| 537 | return false; |
| 538 | } |
| 539 | |
| 540 | return ssl_compare_public_and_private_key(pubkey.get(), privkey); |
| 541 | } |
| 542 | |
| 543 | bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit) { |
| 544 | CBS buf = *in; |
| 545 | |
| 546 | CBS tbs_cert, outer_extensions; |
| 547 | int has_extensions; |
| 548 | if (!ssl_cert_skip_to_spki(&buf, &tbs_cert) || |
| 549 | // subjectPublicKeyInfo |
| 550 | !CBS_get_asn1(&tbs_cert, NULL, CBS_ASN1_SEQUENCE) || |
| 551 | // issuerUniqueID |
| 552 | !CBS_get_optional_asn1( |
| 553 | &tbs_cert, NULL, NULL, |
| 554 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1) || |
| 555 | // subjectUniqueID |
| 556 | !CBS_get_optional_asn1( |
| 557 | &tbs_cert, NULL, NULL, |
| 558 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 2) || |
| 559 | !CBS_get_optional_asn1( |
| 560 | &tbs_cert, &outer_extensions, &has_extensions, |
| 561 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) { |
| 562 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); |
| 563 | return false; |
| 564 | } |
| 565 | |
| 566 | if (!has_extensions) { |
| 567 | return true; |
| 568 | } |
| 569 | |
| 570 | CBS extensions; |
| 571 | if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) { |
| 572 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); |
| 573 | return false; |
| 574 | } |
| 575 | |
| 576 | while (CBS_len(&extensions) > 0) { |
| 577 | CBS extension, oid, contents; |
| 578 | if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) || |
| 579 | !CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) || |
| 580 | (CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) && |
| 581 | !CBS_get_asn1(&extension, NULL, CBS_ASN1_BOOLEAN)) || |
| 582 | !CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) || |
| 583 | CBS_len(&extension) != 0) { |
| 584 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); |
| 585 | return false; |
| 586 | } |
| 587 | |
| 588 | static const uint8_t kKeyUsageOID[3] = {0x55, 0x1d, 0x0f}; |
| 589 | if (CBS_len(&oid) != sizeof(kKeyUsageOID) || |
| 590 | OPENSSL_memcmp(CBS_data(&oid), kKeyUsageOID, sizeof(kKeyUsageOID)) != |
| 591 | 0) { |
| 592 | continue; |
| 593 | } |
| 594 | |
| 595 | CBS bit_string; |
| 596 | if (!CBS_get_asn1(&contents, &bit_string, CBS_ASN1_BITSTRING) || |
| 597 | CBS_len(&contents) != 0) { |
| 598 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); |
| 599 | return false; |
| 600 | } |
| 601 | |
| 602 | // This is the KeyUsage extension. See |
| 603 | // https://tools.ietf.org/html/rfc5280#section-4.2.1.3 |
| 604 | if (!CBS_is_valid_asn1_bitstring(&bit_string)) { |
| 605 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | if (!CBS_asn1_bitstring_has_bit(&bit_string, bit)) { |
| 610 | OPENSSL_PUT_ERROR(SSL, SSL_R_KEY_USAGE_BIT_INCORRECT); |
| 611 | return false; |
| 612 | } |
| 613 | |
| 614 | return true; |
| 615 | } |
| 616 | |
| 617 | // No KeyUsage extension found. |
| 618 | return true; |
| 619 | } |
| 620 | |
| 621 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl, |
| 622 | uint8_t *out_alert, |
| 623 | CBS *cbs) { |
| 624 | CRYPTO_BUFFER_POOL *const pool = ssl->ctx->pool; |
| 625 | |
| 626 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ret(sk_CRYPTO_BUFFER_new_null()); |
| 627 | if (!ret) { |
| 628 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 629 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 630 | return nullptr; |
| 631 | } |
| 632 | |
| 633 | CBS child; |
| 634 | if (!CBS_get_u16_length_prefixed(cbs, &child)) { |
| 635 | *out_alert = SSL_AD_DECODE_ERROR; |
| 636 | OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH); |
| 637 | return nullptr; |
| 638 | } |
| 639 | |
| 640 | while (CBS_len(&child) > 0) { |
| 641 | CBS distinguished_name; |
| 642 | if (!CBS_get_u16_length_prefixed(&child, &distinguished_name)) { |
| 643 | *out_alert = SSL_AD_DECODE_ERROR; |
| 644 | OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG); |
| 645 | return nullptr; |
| 646 | } |
| 647 | |
| 648 | UniquePtr<CRYPTO_BUFFER> buffer( |
| 649 | CRYPTO_BUFFER_new_from_CBS(&distinguished_name, pool)); |
| 650 | if (!buffer || |
| 651 | !PushToStack(ret.get(), std::move(buffer))) { |
| 652 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 653 | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| 654 | return nullptr; |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | if (!ssl->ctx->x509_method->check_client_CA_list(ret.get())) { |
| 659 | *out_alert = SSL_AD_DECODE_ERROR; |
| 660 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 661 | return nullptr; |
| 662 | } |
| 663 | |
| 664 | return ret; |
| 665 | } |
| 666 | |
| 667 | bool ssl_has_client_CAs(const SSL_CONFIG *cfg) { |
| 668 | const STACK_OF(CRYPTO_BUFFER) *names = cfg->client_CA.get(); |
| 669 | if (names == nullptr) { |
| 670 | names = cfg->ssl->ctx->client_CA.get(); |
| 671 | } |
| 672 | if (names == nullptr) { |
| 673 | return false; |
| 674 | } |
| 675 | return sk_CRYPTO_BUFFER_num(names) > 0; |
| 676 | } |
| 677 | |
| 678 | bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb) { |
| 679 | CBB child, name_cbb; |
| 680 | if (!CBB_add_u16_length_prefixed(cbb, &child)) { |
| 681 | return false; |
| 682 | } |
| 683 | |
| 684 | const STACK_OF(CRYPTO_BUFFER) *names = hs->config->client_CA.get(); |
| 685 | if (names == NULL) { |
| 686 | names = hs->ssl->ctx->client_CA.get(); |
| 687 | } |
| 688 | if (names == NULL) { |
| 689 | return CBB_flush(cbb); |
| 690 | } |
| 691 | |
| 692 | for (const CRYPTO_BUFFER *name : names) { |
| 693 | if (!CBB_add_u16_length_prefixed(&child, &name_cbb) || |
| 694 | !CBB_add_bytes(&name_cbb, CRYPTO_BUFFER_data(name), |
| 695 | CRYPTO_BUFFER_len(name))) { |
| 696 | return false; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | return CBB_flush(cbb); |
| 701 | } |
| 702 | |
| 703 | bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, |
| 704 | const CRYPTO_BUFFER *leaf) { |
| 705 | assert(ssl_protocol_version(hs->ssl) < TLS1_3_VERSION); |
| 706 | |
| 707 | // Check the certificate's type matches the cipher. |
| 708 | if (!(hs->new_cipher->algorithm_auth & ssl_cipher_auth_mask_for_key(pkey))) { |
| 709 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE); |
| 710 | return false; |
| 711 | } |
| 712 | |
| 713 | if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) { |
| 714 | // Check the key's group and point format are acceptable. |
| 715 | EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey); |
| 716 | uint16_t group_id; |
| 717 | if (!ssl_nid_to_group_id( |
| 718 | &group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) || |
| 719 | !tls1_check_group_id(hs, group_id) || |
| 720 | EC_KEY_get_conv_form(ec_key) != POINT_CONVERSION_UNCOMPRESSED) { |
| 721 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT); |
| 722 | return false; |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | return true; |
| 727 | } |
| 728 | |
| 729 | bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs) { |
| 730 | SSL *const ssl = hs->ssl; |
| 731 | if (!ssl_has_certificate(hs)) { |
| 732 | // Nothing to do. |
| 733 | return true; |
| 734 | } |
| 735 | |
| 736 | if (!ssl->ctx->x509_method->ssl_auto_chain_if_needed(hs)) { |
| 737 | return false; |
| 738 | } |
| 739 | |
| 740 | CBS leaf; |
| 741 | CRYPTO_BUFFER_init_CBS( |
| 742 | sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0), &leaf); |
| 743 | |
| 744 | if (ssl_signing_with_dc(hs)) { |
| 745 | hs->local_pubkey = UpRef(hs->config->cert->dc->pkey); |
| 746 | } else { |
| 747 | hs->local_pubkey = ssl_cert_parse_pubkey(&leaf); |
| 748 | } |
| 749 | return hs->local_pubkey != NULL; |
| 750 | } |
| 751 | |
| 752 | |
| 753 | // Delegated credentials. |
| 754 | |
| 755 | DC::DC() = default; |
| 756 | DC::~DC() = default; |
| 757 | |
| 758 | UniquePtr<DC> DC::Dup() { |
| 759 | bssl::UniquePtr<DC> ret = MakeUnique<DC>(); |
| 760 | if (!ret) { |
| 761 | return nullptr; |
| 762 | } |
| 763 | |
| 764 | ret->raw = UpRef(raw); |
| 765 | ret->expected_cert_verify_algorithm = expected_cert_verify_algorithm; |
| 766 | ret->pkey = UpRef(pkey); |
| 767 | return ret; |
| 768 | } |
| 769 | |
| 770 | // static |
| 771 | UniquePtr<DC> DC::Parse(CRYPTO_BUFFER *in, uint8_t *out_alert) { |
| 772 | UniquePtr<DC> dc = MakeUnique<DC>(); |
| 773 | if (!dc) { |
| 774 | *out_alert = SSL_AD_INTERNAL_ERROR; |
| 775 | return nullptr; |
| 776 | } |
| 777 | |
| 778 | dc->raw = UpRef(in); |
| 779 | |
| 780 | CBS pubkey, deleg, sig; |
| 781 | uint32_t valid_time; |
| 782 | uint16_t algorithm; |
| 783 | CRYPTO_BUFFER_init_CBS(dc->raw.get(), &deleg); |
| 784 | if (!CBS_get_u32(&deleg, &valid_time) || |
| 785 | !CBS_get_u16(&deleg, &dc->expected_cert_verify_algorithm) || |
| 786 | !CBS_get_u24_length_prefixed(&deleg, &pubkey) || |
| 787 | !CBS_get_u16(&deleg, &algorithm) || |
| 788 | !CBS_get_u16_length_prefixed(&deleg, &sig) || |
| 789 | CBS_len(&deleg) != 0) { |
| 790 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 791 | *out_alert = SSL_AD_DECODE_ERROR; |
| 792 | return nullptr; |
| 793 | } |
| 794 | |
| 795 | dc->pkey.reset(EVP_parse_public_key(&pubkey)); |
| 796 | if (dc->pkey == nullptr) { |
| 797 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| 798 | *out_alert = SSL_AD_DECODE_ERROR; |
| 799 | return nullptr; |
| 800 | } |
| 801 | |
| 802 | return dc; |
| 803 | } |
| 804 | |
| 805 | // ssl_can_serve_dc returns true if the host has configured a DC that it can |
| 806 | // serve in the handshake. Specifically, it checks that a DC has been |
| 807 | // configured and that the DC signature algorithm is supported by the peer. |
| 808 | static bool ssl_can_serve_dc(const SSL_HANDSHAKE *hs) { |
| 809 | // Check that a DC has been configured. |
| 810 | const CERT *cert = hs->config->cert.get(); |
| 811 | if (cert->dc == nullptr || |
| 812 | cert->dc->raw == nullptr || |
| 813 | (cert->dc_privatekey == nullptr && cert->dc_key_method == nullptr)) { |
| 814 | return false; |
| 815 | } |
| 816 | |
| 817 | // Check that 1.3 or higher has been negotiated. |
| 818 | const DC *dc = cert->dc.get(); |
| 819 | assert(hs->ssl->s3->have_version); |
| 820 | if (ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { |
| 821 | return false; |
| 822 | } |
| 823 | |
| 824 | // Check that the DC signature algorithm is supported by the peer. |
| 825 | Span<const uint16_t> peer_sigalgs = tls1_get_peer_verify_algorithms(hs); |
| 826 | bool sigalg_found = false; |
| 827 | for (uint16_t peer_sigalg : peer_sigalgs) { |
| 828 | if (dc->expected_cert_verify_algorithm == peer_sigalg) { |
| 829 | sigalg_found = true; |
| 830 | break; |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | return sigalg_found; |
| 835 | } |
| 836 | |
| 837 | bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs) { |
| 838 | // As of draft-ietf-tls-subcert-03, only the server may use delegated |
| 839 | // credentials to authenticate itself. |
| 840 | return hs->ssl->server && |
| 841 | hs->delegated_credential_requested && |
| 842 | ssl_can_serve_dc(hs); |
| 843 | } |
| 844 | |
| 845 | static int cert_set_dc(CERT *cert, CRYPTO_BUFFER *const raw, EVP_PKEY *privkey, |
| 846 | const SSL_PRIVATE_KEY_METHOD *key_method) { |
| 847 | if (privkey == nullptr && key_method == nullptr) { |
| 848 | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| 849 | return 0; |
| 850 | } |
| 851 | |
| 852 | if (privkey != nullptr && key_method != nullptr) { |
| 853 | OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD); |
| 854 | return 0; |
| 855 | } |
| 856 | |
| 857 | uint8_t alert; |
| 858 | UniquePtr<DC> dc = DC::Parse(raw, &alert); |
| 859 | if (dc == nullptr) { |
| 860 | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_DELEGATED_CREDENTIAL); |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | if (privkey) { |
| 865 | // Check that the public and private keys match. |
| 866 | if (!ssl_compare_public_and_private_key(dc->pkey.get(), privkey)) { |
| 867 | OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH); |
| 868 | return 0; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | cert->dc = std::move(dc); |
| 873 | cert->dc_privatekey = UpRef(privkey); |
| 874 | cert->dc_key_method = key_method; |
| 875 | |
| 876 | return 1; |
| 877 | } |
| 878 | |
| 879 | BSSL_NAMESPACE_END |
| 880 | |
| 881 | using namespace bssl; |
| 882 | |
| 883 | int SSL_set_chain_and_key(SSL *ssl, CRYPTO_BUFFER *const *certs, |
| 884 | size_t num_certs, EVP_PKEY *privkey, |
| 885 | const SSL_PRIVATE_KEY_METHOD *privkey_method) { |
| 886 | if (!ssl->config) { |
| 887 | return 0; |
| 888 | } |
| 889 | return cert_set_chain_and_key(ssl->config->cert.get(), certs, num_certs, |
| 890 | privkey, privkey_method); |
| 891 | } |
| 892 | |
| 893 | int SSL_CTX_set_chain_and_key(SSL_CTX *ctx, CRYPTO_BUFFER *const *certs, |
| 894 | size_t num_certs, EVP_PKEY *privkey, |
| 895 | const SSL_PRIVATE_KEY_METHOD *privkey_method) { |
| 896 | return cert_set_chain_and_key(ctx->cert.get(), certs, num_certs, privkey, |
| 897 | privkey_method); |
| 898 | } |
| 899 | |
| 900 | int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len, |
| 901 | const uint8_t *der) { |
| 902 | UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL)); |
| 903 | if (!buffer) { |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | return ssl_set_cert(ctx->cert.get(), std::move(buffer)); |
| 908 | } |
| 909 | |
| 910 | int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { |
| 911 | UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL)); |
| 912 | if (!buffer || !ssl->config) { |
| 913 | return 0; |
| 914 | } |
| 915 | |
| 916 | return ssl_set_cert(ssl->config->cert.get(), std::move(buffer)); |
| 917 | } |
| 918 | |
| 919 | void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg), |
| 920 | void *arg) { |
| 921 | ssl_cert_set_cert_cb(ctx->cert.get(), cb, arg); |
| 922 | } |
| 923 | |
| 924 | void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) { |
| 925 | if (!ssl->config) { |
| 926 | return; |
| 927 | } |
| 928 | ssl_cert_set_cert_cb(ssl->config->cert.get(), cb, arg); |
| 929 | } |
| 930 | |
| 931 | const STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates(const SSL *ssl) { |
| 932 | SSL_SESSION *session = SSL_get_session(ssl); |
| 933 | if (session == NULL) { |
| 934 | return NULL; |
| 935 | } |
| 936 | |
| 937 | return session->certs.get(); |
| 938 | } |
| 939 | |
| 940 | const STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs(const SSL *ssl) { |
| 941 | if (ssl->s3->hs == NULL) { |
| 942 | return NULL; |
| 943 | } |
| 944 | return ssl->s3->hs->ca_names.get(); |
| 945 | } |
| 946 | |
| 947 | static int set_signed_cert_timestamp_list(CERT *cert, const uint8_t *list, |
| 948 | size_t list_len) { |
| 949 | CBS sct_list; |
| 950 | CBS_init(&sct_list, list, list_len); |
| 951 | if (!ssl_is_sct_list_valid(&sct_list)) { |
| 952 | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SCT_LIST); |
| 953 | return 0; |
| 954 | } |
| 955 | |
| 956 | cert->signed_cert_timestamp_list.reset( |
| 957 | CRYPTO_BUFFER_new(CBS_data(&sct_list), CBS_len(&sct_list), nullptr)); |
| 958 | return cert->signed_cert_timestamp_list != nullptr; |
| 959 | } |
| 960 | |
| 961 | int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list, |
| 962 | size_t list_len) { |
| 963 | return set_signed_cert_timestamp_list(ctx->cert.get(), list, list_len); |
| 964 | } |
| 965 | |
| 966 | int SSL_set_signed_cert_timestamp_list(SSL *ssl, const uint8_t *list, |
| 967 | size_t list_len) { |
| 968 | if (!ssl->config) { |
| 969 | return 0; |
| 970 | } |
| 971 | return set_signed_cert_timestamp_list(ssl->config->cert.get(), list, |
| 972 | list_len); |
| 973 | } |
| 974 | |
| 975 | int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response, |
| 976 | size_t response_len) { |
| 977 | ctx->cert->ocsp_response.reset( |
| 978 | CRYPTO_BUFFER_new(response, response_len, nullptr)); |
| 979 | return ctx->cert->ocsp_response != nullptr; |
| 980 | } |
| 981 | |
| 982 | int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response, |
| 983 | size_t response_len) { |
| 984 | if (!ssl->config) { |
| 985 | return 0; |
| 986 | } |
| 987 | ssl->config->cert->ocsp_response.reset( |
| 988 | CRYPTO_BUFFER_new(response, response_len, nullptr)); |
| 989 | return ssl->config->cert->ocsp_response != nullptr; |
| 990 | } |
| 991 | |
| 992 | void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list) { |
| 993 | ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx); |
| 994 | ctx->client_CA.reset(name_list); |
| 995 | } |
| 996 | |
| 997 | void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list) { |
| 998 | if (!ssl->config) { |
| 999 | return; |
| 1000 | } |
| 1001 | ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl->config.get()); |
| 1002 | ssl->config->client_CA.reset(name_list); |
| 1003 | } |
| 1004 | |
| 1005 | int SSL_set1_delegated_credential(SSL *ssl, CRYPTO_BUFFER *dc, EVP_PKEY *pkey, |
| 1006 | const SSL_PRIVATE_KEY_METHOD *key_method) { |
| 1007 | if (!ssl->config) { |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | return cert_set_dc(ssl->config->cert.get(), dc, pkey, key_method); |
| 1012 | } |
| 1013 | |
| 1014 | int SSL_delegated_credential_used(const SSL *ssl) { |
| 1015 | return ssl->s3->delegated_credential_used; |
| 1016 | } |
| 1017 | |