1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110/* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 * ECC cipher suite support in OpenSSL originally developed by
113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114 */
115/* ====================================================================
116 * Copyright 2005 Nokia. All rights reserved.
117 *
118 * The portions of the attached software ("Contribution") is developed by
119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120 * license.
121 *
122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124 * support (see RFC 4279) to OpenSSL.
125 *
126 * No patent licenses or other rights except those expressly stated in
127 * the OpenSSL open source license shall be deemed granted or received
128 * expressly, by implication, estoppel, or otherwise.
129 *
130 * No assurances are provided by Nokia that the Contribution does not
131 * infringe the patent or other intellectual property rights of any third
132 * party or that the license provides you with all the necessary rights
133 * to make use of the Contribution.
134 *
135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139 * OTHERWISE. */
140
141#include <openssl/ssl.h>
142
143#include <assert.h>
144#include <string.h>
145
146#include <openssl/buf.h>
147#include <openssl/err.h>
148#include <openssl/md5.h>
149#include <openssl/mem.h>
150#include <openssl/sha.h>
151#include <openssl/stack.h>
152
153#include "internal.h"
154#include "../crypto/internal.h"
155
156
157BSSL_NAMESPACE_BEGIN
158
159static constexpr SSL_CIPHER kCiphers[] = {
160 // The RSA ciphers
161 // Cipher 02
162 {
163 SSL3_TXT_RSA_NULL_SHA,
164 "TLS_RSA_WITH_NULL_SHA",
165 SSL3_CK_RSA_NULL_SHA,
166 SSL_kRSA,
167 SSL_aRSA,
168 SSL_eNULL,
169 SSL_SHA1,
170 SSL_HANDSHAKE_MAC_DEFAULT,
171 },
172
173 // Cipher 0A
174 {
175 SSL3_TXT_RSA_DES_192_CBC3_SHA,
176 "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
177 SSL3_CK_RSA_DES_192_CBC3_SHA,
178 SSL_kRSA,
179 SSL_aRSA,
180 SSL_3DES,
181 SSL_SHA1,
182 SSL_HANDSHAKE_MAC_DEFAULT,
183 },
184
185
186 // New AES ciphersuites
187
188 // Cipher 2F
189 {
190 TLS1_TXT_RSA_WITH_AES_128_SHA,
191 "TLS_RSA_WITH_AES_128_CBC_SHA",
192 TLS1_CK_RSA_WITH_AES_128_SHA,
193 SSL_kRSA,
194 SSL_aRSA,
195 SSL_AES128,
196 SSL_SHA1,
197 SSL_HANDSHAKE_MAC_DEFAULT,
198 },
199
200 // Cipher 35
201 {
202 TLS1_TXT_RSA_WITH_AES_256_SHA,
203 "TLS_RSA_WITH_AES_256_CBC_SHA",
204 TLS1_CK_RSA_WITH_AES_256_SHA,
205 SSL_kRSA,
206 SSL_aRSA,
207 SSL_AES256,
208 SSL_SHA1,
209 SSL_HANDSHAKE_MAC_DEFAULT,
210 },
211
212 // PSK cipher suites.
213
214 // Cipher 8C
215 {
216 TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
217 "TLS_PSK_WITH_AES_128_CBC_SHA",
218 TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
219 SSL_kPSK,
220 SSL_aPSK,
221 SSL_AES128,
222 SSL_SHA1,
223 SSL_HANDSHAKE_MAC_DEFAULT,
224 },
225
226 // Cipher 8D
227 {
228 TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
229 "TLS_PSK_WITH_AES_256_CBC_SHA",
230 TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
231 SSL_kPSK,
232 SSL_aPSK,
233 SSL_AES256,
234 SSL_SHA1,
235 SSL_HANDSHAKE_MAC_DEFAULT,
236 },
237
238 // GCM ciphersuites from RFC5288
239
240 // Cipher 9C
241 {
242 TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
243 "TLS_RSA_WITH_AES_128_GCM_SHA256",
244 TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
245 SSL_kRSA,
246 SSL_aRSA,
247 SSL_AES128GCM,
248 SSL_AEAD,
249 SSL_HANDSHAKE_MAC_SHA256,
250 },
251
252 // Cipher 9D
253 {
254 TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
255 "TLS_RSA_WITH_AES_256_GCM_SHA384",
256 TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
257 SSL_kRSA,
258 SSL_aRSA,
259 SSL_AES256GCM,
260 SSL_AEAD,
261 SSL_HANDSHAKE_MAC_SHA384,
262 },
263
264 // TLS 1.3 suites.
265
266 // Cipher 1301
267 {
268 TLS1_TXT_AES_128_GCM_SHA256,
269 "TLS_AES_128_GCM_SHA256",
270 TLS1_CK_AES_128_GCM_SHA256,
271 SSL_kGENERIC,
272 SSL_aGENERIC,
273 SSL_AES128GCM,
274 SSL_AEAD,
275 SSL_HANDSHAKE_MAC_SHA256,
276 },
277
278 // Cipher 1302
279 {
280 TLS1_TXT_AES_256_GCM_SHA384,
281 "TLS_AES_256_GCM_SHA384",
282 TLS1_CK_AES_256_GCM_SHA384,
283 SSL_kGENERIC,
284 SSL_aGENERIC,
285 SSL_AES256GCM,
286 SSL_AEAD,
287 SSL_HANDSHAKE_MAC_SHA384,
288 },
289
290 // Cipher 1303
291 {
292 TLS1_TXT_CHACHA20_POLY1305_SHA256,
293 "TLS_CHACHA20_POLY1305_SHA256",
294 TLS1_CK_CHACHA20_POLY1305_SHA256,
295 SSL_kGENERIC,
296 SSL_aGENERIC,
297 SSL_CHACHA20POLY1305,
298 SSL_AEAD,
299 SSL_HANDSHAKE_MAC_SHA256,
300 },
301
302 // Cipher C009
303 {
304 TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
305 "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
306 TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
307 SSL_kECDHE,
308 SSL_aECDSA,
309 SSL_AES128,
310 SSL_SHA1,
311 SSL_HANDSHAKE_MAC_DEFAULT,
312 },
313
314 // Cipher C00A
315 {
316 TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
317 "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
318 TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
319 SSL_kECDHE,
320 SSL_aECDSA,
321 SSL_AES256,
322 SSL_SHA1,
323 SSL_HANDSHAKE_MAC_DEFAULT,
324 },
325
326 // Cipher C013
327 {
328 TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
329 "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
330 TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
331 SSL_kECDHE,
332 SSL_aRSA,
333 SSL_AES128,
334 SSL_SHA1,
335 SSL_HANDSHAKE_MAC_DEFAULT,
336 },
337
338 // Cipher C014
339 {
340 TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
341 "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
342 TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
343 SSL_kECDHE,
344 SSL_aRSA,
345 SSL_AES256,
346 SSL_SHA1,
347 SSL_HANDSHAKE_MAC_DEFAULT,
348 },
349
350 // GCM based TLS v1.2 ciphersuites from RFC5289
351
352 // Cipher C02B
353 {
354 TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
355 "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
356 TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
357 SSL_kECDHE,
358 SSL_aECDSA,
359 SSL_AES128GCM,
360 SSL_AEAD,
361 SSL_HANDSHAKE_MAC_SHA256,
362 },
363
364 // Cipher C02C
365 {
366 TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
367 "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
368 TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
369 SSL_kECDHE,
370 SSL_aECDSA,
371 SSL_AES256GCM,
372 SSL_AEAD,
373 SSL_HANDSHAKE_MAC_SHA384,
374 },
375
376 // Cipher C02F
377 {
378 TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
379 "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
380 TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
381 SSL_kECDHE,
382 SSL_aRSA,
383 SSL_AES128GCM,
384 SSL_AEAD,
385 SSL_HANDSHAKE_MAC_SHA256,
386 },
387
388 // Cipher C030
389 {
390 TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
391 "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
392 TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
393 SSL_kECDHE,
394 SSL_aRSA,
395 SSL_AES256GCM,
396 SSL_AEAD,
397 SSL_HANDSHAKE_MAC_SHA384,
398 },
399
400 // ECDHE-PSK cipher suites.
401
402 // Cipher C035
403 {
404 TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
405 "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
406 TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
407 SSL_kECDHE,
408 SSL_aPSK,
409 SSL_AES128,
410 SSL_SHA1,
411 SSL_HANDSHAKE_MAC_DEFAULT,
412 },
413
414 // Cipher C036
415 {
416 TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
417 "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA",
418 TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
419 SSL_kECDHE,
420 SSL_aPSK,
421 SSL_AES256,
422 SSL_SHA1,
423 SSL_HANDSHAKE_MAC_DEFAULT,
424 },
425
426 // ChaCha20-Poly1305 cipher suites.
427
428 // Cipher CCA8
429 {
430 TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
431 "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
432 TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
433 SSL_kECDHE,
434 SSL_aRSA,
435 SSL_CHACHA20POLY1305,
436 SSL_AEAD,
437 SSL_HANDSHAKE_MAC_SHA256,
438 },
439
440 // Cipher CCA9
441 {
442 TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
443 "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
444 TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
445 SSL_kECDHE,
446 SSL_aECDSA,
447 SSL_CHACHA20POLY1305,
448 SSL_AEAD,
449 SSL_HANDSHAKE_MAC_SHA256,
450 },
451
452 // Cipher CCAB
453 {
454 TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
455 "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",
456 TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
457 SSL_kECDHE,
458 SSL_aPSK,
459 SSL_CHACHA20POLY1305,
460 SSL_AEAD,
461 SSL_HANDSHAKE_MAC_SHA256,
462 },
463
464};
465
466Span<const SSL_CIPHER> AllCiphers() {
467 return MakeConstSpan(kCiphers, OPENSSL_ARRAY_SIZE(kCiphers));
468}
469
470#define CIPHER_ADD 1
471#define CIPHER_KILL 2
472#define CIPHER_DEL 3
473#define CIPHER_ORD 4
474#define CIPHER_SPECIAL 5
475
476typedef struct cipher_order_st {
477 const SSL_CIPHER *cipher;
478 bool active;
479 bool in_group;
480 struct cipher_order_st *next, *prev;
481} CIPHER_ORDER;
482
483typedef struct cipher_alias_st {
484 // name is the name of the cipher alias.
485 const char *name;
486
487 // The following fields are bitmasks for the corresponding fields on
488 // |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
489 // bit corresponding to the cipher's value is set to 1. If any bitmask is
490 // all zeroes, the alias matches nothing. Use |~0u| for the default value.
491 uint32_t algorithm_mkey;
492 uint32_t algorithm_auth;
493 uint32_t algorithm_enc;
494 uint32_t algorithm_mac;
495
496 // min_version, if non-zero, matches all ciphers which were added in that
497 // particular protocol version.
498 uint16_t min_version;
499} CIPHER_ALIAS;
500
501static const CIPHER_ALIAS kCipherAliases[] = {
502 // "ALL" doesn't include eNULL. It must be explicitly enabled.
503 {"ALL", ~0u, ~0u, ~0u, ~0u, 0},
504
505 // The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing.
506
507 // key exchange aliases
508 // (some of those using only a single bit here combine
509 // multiple key exchange algs according to the RFCs.
510 {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
511
512 {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
513 {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
514 {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
515
516 {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
517
518 // server authentication aliases
519 {"aRSA", ~0u, SSL_aRSA, ~0u, ~0u, 0},
520 {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
521 {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
522 {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
523
524 // aliases combining key exchange and server authentication
525 {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
526 {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
527 {"RSA", SSL_kRSA, SSL_aRSA, ~0u, ~0u, 0},
528 {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
529
530 // symmetric encryption aliases
531 {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0},
532 {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0},
533 {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0},
534 {"AES", ~0u, ~0u, SSL_AES, ~0u, 0},
535 {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0},
536 {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0},
537
538 // MAC aliases
539 {"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0},
540 {"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0},
541
542 // Legacy protocol minimum version aliases. "TLSv1" is intentionally the
543 // same as "SSLv3".
544 {"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
545 {"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
546 {"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION},
547
548 // Legacy strength classes.
549 {"HIGH", ~0u, ~0u, ~0u, ~0u, 0},
550 {"FIPS", ~0u, ~0u, ~0u, ~0u, 0},
551
552 // Temporary no-op aliases corresponding to removed SHA-2 legacy CBC
553 // ciphers. These should be removed after 2018-05-14.
554 {"SHA256", 0, 0, 0, 0, 0},
555 {"SHA384", 0, 0, 0, 0, 0},
556};
557
558static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases);
559
560bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
561 size_t *out_mac_secret_len,
562 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
563 uint16_t version, bool is_dtls) {
564 *out_aead = NULL;
565 *out_mac_secret_len = 0;
566 *out_fixed_iv_len = 0;
567
568 const bool is_tls12 = version == TLS1_2_VERSION && !is_dtls;
569 const bool is_tls13 = version == TLS1_3_VERSION && !is_dtls;
570
571 if (cipher->algorithm_mac == SSL_AEAD) {
572 if (cipher->algorithm_enc == SSL_AES128GCM) {
573 if (is_tls12) {
574 *out_aead = EVP_aead_aes_128_gcm_tls12();
575 } else if (is_tls13) {
576 *out_aead = EVP_aead_aes_128_gcm_tls13();
577 } else {
578 *out_aead = EVP_aead_aes_128_gcm();
579 }
580 *out_fixed_iv_len = 4;
581 } else if (cipher->algorithm_enc == SSL_AES256GCM) {
582 if (is_tls12) {
583 *out_aead = EVP_aead_aes_256_gcm_tls12();
584 } else if (is_tls13) {
585 *out_aead = EVP_aead_aes_256_gcm_tls13();
586 } else {
587 *out_aead = EVP_aead_aes_256_gcm();
588 }
589 *out_fixed_iv_len = 4;
590 } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
591 *out_aead = EVP_aead_chacha20_poly1305();
592 *out_fixed_iv_len = 12;
593 } else {
594 return false;
595 }
596
597 // In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
598 // above computes the TLS 1.2 construction.
599 if (version >= TLS1_3_VERSION) {
600 *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
601 }
602 } else if (cipher->algorithm_mac == SSL_SHA1) {
603 if (cipher->algorithm_enc == SSL_eNULL) {
604 *out_aead = EVP_aead_null_sha1_tls();
605 } else if (cipher->algorithm_enc == SSL_3DES) {
606 if (version == TLS1_VERSION) {
607 *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
608 *out_fixed_iv_len = 8;
609 } else {
610 *out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
611 }
612 } else if (cipher->algorithm_enc == SSL_AES128) {
613 if (version == TLS1_VERSION) {
614 *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
615 *out_fixed_iv_len = 16;
616 } else {
617 *out_aead = EVP_aead_aes_128_cbc_sha1_tls();
618 }
619 } else if (cipher->algorithm_enc == SSL_AES256) {
620 if (version == TLS1_VERSION) {
621 *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
622 *out_fixed_iv_len = 16;
623 } else {
624 *out_aead = EVP_aead_aes_256_cbc_sha1_tls();
625 }
626 } else {
627 return false;
628 }
629
630 *out_mac_secret_len = SHA_DIGEST_LENGTH;
631 } else {
632 return false;
633 }
634
635 return true;
636}
637
638const EVP_MD *ssl_get_handshake_digest(uint16_t version,
639 const SSL_CIPHER *cipher) {
640 switch (cipher->algorithm_prf) {
641 case SSL_HANDSHAKE_MAC_DEFAULT:
642 return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1();
643 case SSL_HANDSHAKE_MAC_SHA256:
644 return EVP_sha256();
645 case SSL_HANDSHAKE_MAC_SHA384:
646 return EVP_sha384();
647 default:
648 assert(0);
649 return NULL;
650 }
651}
652
653static bool is_cipher_list_separator(char c, bool is_strict) {
654 if (c == ':') {
655 return true;
656 }
657 return !is_strict && (c == ' ' || c == ';' || c == ',');
658}
659
660// rule_equals returns whether the NUL-terminated string |rule| is equal to the
661// |buf_len| bytes at |buf|.
662static bool rule_equals(const char *rule, const char *buf, size_t buf_len) {
663 // |strncmp| alone only checks that |buf| is a prefix of |rule|.
664 return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
665}
666
667static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
668 CIPHER_ORDER **tail) {
669 if (curr == *tail) {
670 return;
671 }
672 if (curr == *head) {
673 *head = curr->next;
674 }
675 if (curr->prev != NULL) {
676 curr->prev->next = curr->next;
677 }
678 if (curr->next != NULL) {
679 curr->next->prev = curr->prev;
680 }
681 (*tail)->next = curr;
682 curr->prev = *tail;
683 curr->next = NULL;
684 *tail = curr;
685}
686
687static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
688 CIPHER_ORDER **tail) {
689 if (curr == *head) {
690 return;
691 }
692 if (curr == *tail) {
693 *tail = curr->prev;
694 }
695 if (curr->next != NULL) {
696 curr->next->prev = curr->prev;
697 }
698 if (curr->prev != NULL) {
699 curr->prev->next = curr->next;
700 }
701 (*head)->prev = curr;
702 curr->next = *head;
703 curr->prev = NULL;
704 *head = curr;
705}
706
707static bool ssl_cipher_collect_ciphers(Array<CIPHER_ORDER> *out_co_list,
708 CIPHER_ORDER **out_head,
709 CIPHER_ORDER **out_tail) {
710 Array<CIPHER_ORDER> co_list;
711 if (!co_list.Init(OPENSSL_ARRAY_SIZE(kCiphers))) {
712 return false;
713 }
714
715 size_t co_list_num = 0;
716 for (const SSL_CIPHER &cipher : kCiphers) {
717 // TLS 1.3 ciphers do not participate in this mechanism.
718 if (cipher.algorithm_mkey != SSL_kGENERIC) {
719 co_list[co_list_num].cipher = &cipher;
720 co_list[co_list_num].next = NULL;
721 co_list[co_list_num].prev = NULL;
722 co_list[co_list_num].active = false;
723 co_list[co_list_num].in_group = false;
724 co_list_num++;
725 }
726 }
727
728 // Prepare linked list from list entries.
729 if (co_list_num > 0) {
730 co_list[0].prev = NULL;
731
732 if (co_list_num > 1) {
733 co_list[0].next = &co_list[1];
734
735 for (size_t i = 1; i < co_list_num - 1; i++) {
736 co_list[i].prev = &co_list[i - 1];
737 co_list[i].next = &co_list[i + 1];
738 }
739
740 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
741 }
742
743 co_list[co_list_num - 1].next = NULL;
744
745 *out_head = &co_list[0];
746 *out_tail = &co_list[co_list_num - 1];
747 } else {
748 *out_head = nullptr;
749 *out_tail = nullptr;
750 }
751 *out_co_list = std::move(co_list);
752 return true;
753}
754
755SSLCipherPreferenceList::~SSLCipherPreferenceList() {
756 OPENSSL_free(in_group_flags);
757}
758
759bool SSLCipherPreferenceList::Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers_arg,
760 Span<const bool> in_group_flags_arg) {
761 if (sk_SSL_CIPHER_num(ciphers_arg.get()) != in_group_flags_arg.size()) {
762 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
763 return false;
764 }
765
766 Array<bool> copy;
767 if (!copy.CopyFrom(in_group_flags_arg)) {
768 return false;
769 }
770 ciphers = std::move(ciphers_arg);
771 size_t unused_len;
772 copy.Release(&in_group_flags, &unused_len);
773 return true;
774}
775
776bool SSLCipherPreferenceList::Init(const SSLCipherPreferenceList& other) {
777 size_t size = sk_SSL_CIPHER_num(other.ciphers.get());
778 Span<const bool> other_flags(other.in_group_flags, size);
779 UniquePtr<STACK_OF(SSL_CIPHER)> other_ciphers(sk_SSL_CIPHER_dup(
780 other.ciphers.get()));
781 if (!other_ciphers) {
782 return false;
783 }
784 return Init(std::move(other_ciphers), other_flags);
785}
786
787void SSLCipherPreferenceList::Remove(const SSL_CIPHER *cipher) {
788 size_t index;
789 if (!sk_SSL_CIPHER_find(ciphers.get(), &index, cipher)) {
790 return;
791 }
792 if (!in_group_flags[index] /* last element of group */ && index > 0) {
793 in_group_flags[index-1] = false;
794 }
795 for (size_t i = index; i < sk_SSL_CIPHER_num(ciphers.get()) - 1; ++i) {
796 in_group_flags[i] = in_group_flags[i+1];
797 }
798 sk_SSL_CIPHER_delete(ciphers.get(), index);
799}
800
801// ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
802// parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
803// head and tail of the list to |*head_p| and |*tail_p|, respectively.
804//
805// - If |cipher_id| is non-zero, only that cipher is selected.
806// - Otherwise, if |strength_bits| is non-negative, it selects ciphers
807// of that strength.
808// - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
809// |min_version|.
810static void ssl_cipher_apply_rule(
811 uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
812 uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule,
813 int strength_bits, bool in_group, CIPHER_ORDER **head_p,
814 CIPHER_ORDER **tail_p) {
815 CIPHER_ORDER *head, *tail, *curr, *next, *last;
816 const SSL_CIPHER *cp;
817 bool reverse = false;
818
819 if (cipher_id == 0 && strength_bits == -1 && min_version == 0 &&
820 (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) {
821 // The rule matches nothing, so bail early.
822 return;
823 }
824
825 if (rule == CIPHER_DEL) {
826 // needed to maintain sorting between currently deleted ciphers
827 reverse = true;
828 }
829
830 head = *head_p;
831 tail = *tail_p;
832
833 if (reverse) {
834 next = tail;
835 last = head;
836 } else {
837 next = head;
838 last = tail;
839 }
840
841 curr = NULL;
842 for (;;) {
843 if (curr == last) {
844 break;
845 }
846
847 curr = next;
848 if (curr == NULL) {
849 break;
850 }
851
852 next = reverse ? curr->prev : curr->next;
853 cp = curr->cipher;
854
855 // Selection criteria is either a specific cipher, the value of
856 // |strength_bits|, or the algorithms used.
857 if (cipher_id != 0) {
858 if (cipher_id != cp->id) {
859 continue;
860 }
861 } else if (strength_bits >= 0) {
862 if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
863 continue;
864 }
865 } else {
866 if (!(alg_mkey & cp->algorithm_mkey) ||
867 !(alg_auth & cp->algorithm_auth) ||
868 !(alg_enc & cp->algorithm_enc) ||
869 !(alg_mac & cp->algorithm_mac) ||
870 (min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version) ||
871 // The NULL cipher must be selected explicitly.
872 cp->algorithm_enc == SSL_eNULL) {
873 continue;
874 }
875 }
876
877 // add the cipher if it has not been added yet.
878 if (rule == CIPHER_ADD) {
879 // reverse == false
880 if (!curr->active) {
881 ll_append_tail(&head, curr, &tail);
882 curr->active = true;
883 curr->in_group = in_group;
884 }
885 }
886
887 // Move the added cipher to this location
888 else if (rule == CIPHER_ORD) {
889 // reverse == false
890 if (curr->active) {
891 ll_append_tail(&head, curr, &tail);
892 curr->in_group = false;
893 }
894 } else if (rule == CIPHER_DEL) {
895 // reverse == true
896 if (curr->active) {
897 // most recently deleted ciphersuites get best positions
898 // for any future CIPHER_ADD (note that the CIPHER_DEL loop
899 // works in reverse to maintain the order)
900 ll_append_head(&head, curr, &tail);
901 curr->active = false;
902 curr->in_group = false;
903 }
904 } else if (rule == CIPHER_KILL) {
905 // reverse == false
906 if (head == curr) {
907 head = curr->next;
908 } else {
909 curr->prev->next = curr->next;
910 }
911
912 if (tail == curr) {
913 tail = curr->prev;
914 }
915 curr->active = false;
916 if (curr->next != NULL) {
917 curr->next->prev = curr->prev;
918 }
919 if (curr->prev != NULL) {
920 curr->prev->next = curr->next;
921 }
922 curr->next = NULL;
923 curr->prev = NULL;
924 }
925 }
926
927 *head_p = head;
928 *tail_p = tail;
929}
930
931static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
932 CIPHER_ORDER **tail_p) {
933 // This routine sorts the ciphers with descending strength. The sorting must
934 // keep the pre-sorted sequence, so we apply the normal sorting routine as
935 // '+' movement to the end of the list.
936 int max_strength_bits = 0;
937 CIPHER_ORDER *curr = *head_p;
938 while (curr != NULL) {
939 if (curr->active &&
940 SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
941 max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
942 }
943 curr = curr->next;
944 }
945
946 Array<int> number_uses;
947 if (!number_uses.Init(max_strength_bits + 1)) {
948 return false;
949 }
950 OPENSSL_memset(number_uses.data(), 0, (max_strength_bits + 1) * sizeof(int));
951
952 // Now find the strength_bits values actually used.
953 curr = *head_p;
954 while (curr != NULL) {
955 if (curr->active) {
956 number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
957 }
958 curr = curr->next;
959 }
960
961 // Go through the list of used strength_bits values in descending order.
962 for (int i = max_strength_bits; i >= 0; i--) {
963 if (number_uses[i] > 0) {
964 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, false, head_p,
965 tail_p);
966 }
967 }
968
969 return true;
970}
971
972static bool ssl_cipher_process_rulestr(const char *rule_str,
973 CIPHER_ORDER **head_p,
974 CIPHER_ORDER **tail_p, bool strict) {
975 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
976 uint16_t min_version;
977 const char *l, *buf;
978 int rule;
979 bool multi, skip_rule, in_group = false, has_group = false;
980 size_t j, buf_len;
981 uint32_t cipher_id;
982 char ch;
983
984 l = rule_str;
985 for (;;) {
986 ch = *l;
987
988 if (ch == '\0') {
989 break; // done
990 }
991
992 if (in_group) {
993 if (ch == ']') {
994 if (*tail_p) {
995 (*tail_p)->in_group = false;
996 }
997 in_group = false;
998 l++;
999 continue;
1000 }
1001
1002 if (ch == '|') {
1003 rule = CIPHER_ADD;
1004 l++;
1005 continue;
1006 } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
1007 !(ch >= '0' && ch <= '9')) {
1008 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
1009 return false;
1010 } else {
1011 rule = CIPHER_ADD;
1012 }
1013 } else if (ch == '-') {
1014 rule = CIPHER_DEL;
1015 l++;
1016 } else if (ch == '+') {
1017 rule = CIPHER_ORD;
1018 l++;
1019 } else if (ch == '!') {
1020 rule = CIPHER_KILL;
1021 l++;
1022 } else if (ch == '@') {
1023 rule = CIPHER_SPECIAL;
1024 l++;
1025 } else if (ch == '[') {
1026 assert(!in_group);
1027 in_group = true;
1028 has_group = true;
1029 l++;
1030 continue;
1031 } else {
1032 rule = CIPHER_ADD;
1033 }
1034
1035 // If preference groups are enabled, the only legal operator is +.
1036 // Otherwise the in_group bits will get mixed up.
1037 if (has_group && rule != CIPHER_ADD) {
1038 OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
1039 return false;
1040 }
1041
1042 if (is_cipher_list_separator(ch, strict)) {
1043 l++;
1044 continue;
1045 }
1046
1047 multi = false;
1048 cipher_id = 0;
1049 alg_mkey = ~0u;
1050 alg_auth = ~0u;
1051 alg_enc = ~0u;
1052 alg_mac = ~0u;
1053 min_version = 0;
1054 skip_rule = false;
1055
1056 for (;;) {
1057 ch = *l;
1058 buf = l;
1059 buf_len = 0;
1060 while ((ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') ||
1061 (ch >= 'a' && ch <= 'z') || ch == '-' || ch == '.' || ch == '_') {
1062 ch = *(++l);
1063 buf_len++;
1064 }
1065
1066 if (buf_len == 0) {
1067 // We hit something we cannot deal with, it is no command or separator
1068 // nor alphanumeric, so we call this an error.
1069 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1070 return false;
1071 }
1072
1073 if (rule == CIPHER_SPECIAL) {
1074 break;
1075 }
1076
1077 // Look for a matching exact cipher. These aren't allowed in multipart
1078 // rules.
1079 if (!multi && ch != '+') {
1080 for (j = 0; j < OPENSSL_ARRAY_SIZE(kCiphers); j++) {
1081 const SSL_CIPHER *cipher = &kCiphers[j];
1082 if (rule_equals(cipher->name, buf, buf_len) ||
1083 rule_equals(cipher->standard_name, buf, buf_len)) {
1084 cipher_id = cipher->id;
1085 break;
1086 }
1087 }
1088 }
1089 if (cipher_id == 0) {
1090 // If not an exact cipher, look for a matching cipher alias.
1091 for (j = 0; j < kCipherAliasesLen; j++) {
1092 if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
1093 alg_mkey &= kCipherAliases[j].algorithm_mkey;
1094 alg_auth &= kCipherAliases[j].algorithm_auth;
1095 alg_enc &= kCipherAliases[j].algorithm_enc;
1096 alg_mac &= kCipherAliases[j].algorithm_mac;
1097
1098 if (min_version != 0 &&
1099 min_version != kCipherAliases[j].min_version) {
1100 skip_rule = true;
1101 } else {
1102 min_version = kCipherAliases[j].min_version;
1103 }
1104 break;
1105 }
1106 }
1107 if (j == kCipherAliasesLen) {
1108 skip_rule = true;
1109 if (strict) {
1110 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1111 return false;
1112 }
1113 }
1114 }
1115
1116 // Check for a multipart rule.
1117 if (ch != '+') {
1118 break;
1119 }
1120 l++;
1121 multi = true;
1122 }
1123
1124 // Ok, we have the rule, now apply it.
1125 if (rule == CIPHER_SPECIAL) {
1126 if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) {
1127 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1128 return false;
1129 }
1130 if (!ssl_cipher_strength_sort(head_p, tail_p)) {
1131 return false;
1132 }
1133
1134 // We do not support any "multi" options together with "@", so throw away
1135 // the rest of the command, if any left, until end or ':' is found.
1136 while (*l != '\0' && !is_cipher_list_separator(*l, strict)) {
1137 l++;
1138 }
1139 } else if (!skip_rule) {
1140 ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
1141 min_version, rule, -1, in_group, head_p, tail_p);
1142 }
1143 }
1144
1145 if (in_group) {
1146 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1147 return false;
1148 }
1149
1150 return true;
1151}
1152
1153bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
1154 const char *rule_str, bool strict) {
1155 // Return with error if nothing to do.
1156 if (rule_str == NULL || out_cipher_list == NULL) {
1157 return false;
1158 }
1159
1160 // Now we have to collect the available ciphers from the compiled in ciphers.
1161 // We cannot get more than the number compiled in, so it is used for
1162 // allocation.
1163 Array<CIPHER_ORDER> co_list;
1164 CIPHER_ORDER *head = nullptr, *tail = nullptr;
1165 if (!ssl_cipher_collect_ciphers(&co_list, &head, &tail)) {
1166 return false;
1167 }
1168
1169 // Now arrange all ciphers by preference:
1170 // TODO(davidben): Compute this order once and copy it.
1171
1172 // Everything else being equal, prefer ECDHE_ECDSA and ECDHE_RSA over other
1173 // key exchange mechanisms
1174 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1,
1175 false, &head, &tail);
1176 ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false,
1177 &head, &tail);
1178 ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head,
1179 &tail);
1180
1181 // Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
1182 // CHACHA20 unless there is hardware support for fast and constant-time
1183 // AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the
1184 // old one.
1185 if (EVP_has_aes_hardware()) {
1186 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1,
1187 false, &head, &tail);
1188 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1,
1189 false, &head, &tail);
1190 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
1191 -1, false, &head, &tail);
1192 } else {
1193 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
1194 -1, false, &head, &tail);
1195 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1,
1196 false, &head, &tail);
1197 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1,
1198 false, &head, &tail);
1199 }
1200
1201 // Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC,
1202 // 3DES_EDE_CBC_SHA.
1203 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, false,
1204 &head, &tail);
1205 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, false,
1206 &head, &tail);
1207 ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, false,
1208 &head, &tail);
1209
1210 // Temporarily enable everything else for sorting
1211 ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false, &head,
1212 &tail);
1213
1214 // Move ciphers without forward secrecy to the end.
1215 ssl_cipher_apply_rule(0, (SSL_kRSA | SSL_kPSK), ~0u, ~0u, ~0u, 0, CIPHER_ORD,
1216 -1, false, &head, &tail);
1217
1218 // Now disable everything (maintaining the ordering!)
1219 ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head,
1220 &tail);
1221
1222 // If the rule_string begins with DEFAULT, apply the default rule before
1223 // using the (possibly available) additional rules.
1224 const char *rule_p = rule_str;
1225 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1226 if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail,
1227 strict)) {
1228 return false;
1229 }
1230 rule_p += 7;
1231 if (*rule_p == ':') {
1232 rule_p++;
1233 }
1234 }
1235
1236 if (*rule_p != '\0' &&
1237 !ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) {
1238 return false;
1239 }
1240
1241 // Allocate new "cipherstack" for the result, return with error
1242 // if we cannot get one.
1243 UniquePtr<STACK_OF(SSL_CIPHER)> cipherstack(sk_SSL_CIPHER_new_null());
1244 Array<bool> in_group_flags;
1245 if (cipherstack == nullptr ||
1246 !in_group_flags.Init(OPENSSL_ARRAY_SIZE(kCiphers))) {
1247 return false;
1248 }
1249
1250 // The cipher selection for the list is done. The ciphers are added
1251 // to the resulting precedence to the STACK_OF(SSL_CIPHER).
1252 size_t num_in_group_flags = 0;
1253 for (CIPHER_ORDER *curr = head; curr != NULL; curr = curr->next) {
1254 if (curr->active) {
1255 if (!sk_SSL_CIPHER_push(cipherstack.get(), curr->cipher)) {
1256 return false;
1257 }
1258 in_group_flags[num_in_group_flags++] = curr->in_group;
1259 }
1260 }
1261
1262 UniquePtr<SSLCipherPreferenceList> pref_list =
1263 MakeUnique<SSLCipherPreferenceList>();
1264 if (!pref_list ||
1265 !pref_list->Init(
1266 std::move(cipherstack),
1267 MakeConstSpan(in_group_flags).subspan(0, num_in_group_flags))) {
1268 return false;
1269 }
1270
1271 *out_cipher_list = std::move(pref_list);
1272
1273 // Configuring an empty cipher list is an error but still updates the
1274 // output.
1275 if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers.get()) == 0) {
1276 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
1277 return false;
1278 }
1279
1280 return true;
1281}
1282
1283uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
1284 uint32_t id = cipher->id;
1285 // All OpenSSL cipher IDs are prefaced with 0x03. Historically this referred
1286 // to SSLv2 vs SSLv3.
1287 assert((id & 0xff000000) == 0x03000000);
1288 return id & 0xffff;
1289}
1290
1291uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key) {
1292 switch (EVP_PKEY_id(key)) {
1293 case EVP_PKEY_RSA:
1294 return SSL_aRSA;
1295 case EVP_PKEY_EC:
1296 case EVP_PKEY_ED25519:
1297 // Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers.
1298 return SSL_aECDSA;
1299 default:
1300 return 0;
1301 }
1302}
1303
1304bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
1305 return (cipher->algorithm_auth & SSL_aCERT) != 0;
1306}
1307
1308bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
1309 // Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is
1310 // optional or omitted in all others.
1311 return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
1312}
1313
1314size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
1315 size_t block_size;
1316 switch (cipher->algorithm_enc) {
1317 case SSL_3DES:
1318 block_size = 8;
1319 break;
1320 case SSL_AES128:
1321 case SSL_AES256:
1322 block_size = 16;
1323 break;
1324 default:
1325 return 0;
1326 }
1327
1328 // All supported TLS 1.0 ciphers use SHA-1.
1329 assert(cipher->algorithm_mac == SSL_SHA1);
1330 size_t ret = 1 + SHA_DIGEST_LENGTH;
1331 ret += block_size - (ret % block_size);
1332 return ret;
1333}
1334
1335BSSL_NAMESPACE_END
1336
1337using namespace bssl;
1338
1339static constexpr int ssl_cipher_id_cmp_inner(const SSL_CIPHER *a,
1340 const SSL_CIPHER *b) {
1341 // C++11's constexpr functions must have a body consisting of just a
1342 // return-statement.
1343 return (a->id > b->id) ? 1 : ((a->id < b->id) ? -1 : 0);
1344}
1345
1346static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
1347 return ssl_cipher_id_cmp_inner(reinterpret_cast<const SSL_CIPHER *>(in_a),
1348 reinterpret_cast<const SSL_CIPHER *>(in_b));
1349}
1350
1351template <typename T, size_t N>
1352static constexpr size_t countof(T const (&)[N]) {
1353 return N;
1354}
1355
1356template <typename T, size_t I>
1357static constexpr int check_order(const T (&arr)[I], size_t N) {
1358 // C++11's constexpr functions must have a body consisting of just a
1359 // return-statement.
1360 return N > 1 ? ((ssl_cipher_id_cmp_inner(&arr[N - 2], &arr[N - 1]) < 0)
1361 ? check_order(arr, N - 1)
1362 : 0)
1363 : 1;
1364}
1365
1366static_assert(check_order(kCiphers, countof(kCiphers)) == 1,
1367 "Ciphers are not sorted, bsearch won't work");
1368
1369const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
1370 SSL_CIPHER c;
1371
1372 c.id = 0x03000000L | value;
1373 return reinterpret_cast<const SSL_CIPHER *>(bsearch(
1374 &c, kCiphers, OPENSSL_ARRAY_SIZE(kCiphers), sizeof(SSL_CIPHER),
1375 ssl_cipher_id_cmp));
1376}
1377
1378uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
1379
1380int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) {
1381 return (cipher->algorithm_mac & SSL_AEAD) != 0;
1382}
1383
1384int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) {
1385 switch (cipher->algorithm_enc) {
1386 case SSL_eNULL:
1387 return NID_undef;
1388 case SSL_3DES:
1389 return NID_des_ede3_cbc;
1390 case SSL_AES128:
1391 return NID_aes_128_cbc;
1392 case SSL_AES256:
1393 return NID_aes_256_cbc;
1394 case SSL_AES128GCM:
1395 return NID_aes_128_gcm;
1396 case SSL_AES256GCM:
1397 return NID_aes_256_gcm;
1398 case SSL_CHACHA20POLY1305:
1399 return NID_chacha20_poly1305;
1400 }
1401 assert(0);
1402 return NID_undef;
1403}
1404
1405int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) {
1406 switch (cipher->algorithm_mac) {
1407 case SSL_AEAD:
1408 return NID_undef;
1409 case SSL_SHA1:
1410 return NID_sha1;
1411 }
1412 assert(0);
1413 return NID_undef;
1414}
1415
1416int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) {
1417 switch (cipher->algorithm_mkey) {
1418 case SSL_kRSA:
1419 return NID_kx_rsa;
1420 case SSL_kECDHE:
1421 return NID_kx_ecdhe;
1422 case SSL_kPSK:
1423 return NID_kx_psk;
1424 case SSL_kGENERIC:
1425 return NID_kx_any;
1426 }
1427 assert(0);
1428 return NID_undef;
1429}
1430
1431int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) {
1432 switch (cipher->algorithm_auth) {
1433 case SSL_aRSA:
1434 return NID_auth_rsa;
1435 case SSL_aECDSA:
1436 return NID_auth_ecdsa;
1437 case SSL_aPSK:
1438 return NID_auth_psk;
1439 case SSL_aGENERIC:
1440 return NID_auth_any;
1441 }
1442 assert(0);
1443 return NID_undef;
1444}
1445
1446int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) {
1447 switch (cipher->algorithm_prf) {
1448 case SSL_HANDSHAKE_MAC_DEFAULT:
1449 return NID_md5_sha1;
1450 case SSL_HANDSHAKE_MAC_SHA256:
1451 return NID_sha256;
1452 case SSL_HANDSHAKE_MAC_SHA384:
1453 return NID_sha384;
1454 }
1455 assert(0);
1456 return NID_undef;
1457}
1458
1459int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
1460 return (cipher->algorithm_enc & SSL_eNULL) == 0 &&
1461 cipher->algorithm_mac != SSL_AEAD;
1462}
1463
1464uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
1465 if (cipher->algorithm_mkey == SSL_kGENERIC ||
1466 cipher->algorithm_auth == SSL_aGENERIC) {
1467 return TLS1_3_VERSION;
1468 }
1469
1470 if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
1471 // Cipher suites before TLS 1.2 use the default PRF, while all those added
1472 // afterwards specify a particular hash.
1473 return TLS1_2_VERSION;
1474 }
1475 return SSL3_VERSION;
1476}
1477
1478uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
1479 if (cipher->algorithm_mkey == SSL_kGENERIC ||
1480 cipher->algorithm_auth == SSL_aGENERIC) {
1481 return TLS1_3_VERSION;
1482 }
1483 return TLS1_2_VERSION;
1484}
1485
1486// return the actual cipher being used
1487const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
1488 if (cipher != NULL) {
1489 return cipher->name;
1490 }
1491
1492 return "(NONE)";
1493}
1494
1495const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) {
1496 return cipher->standard_name;
1497}
1498
1499const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
1500 if (cipher == NULL) {
1501 return "";
1502 }
1503
1504 switch (cipher->algorithm_mkey) {
1505 case SSL_kRSA:
1506 return "RSA";
1507
1508 case SSL_kECDHE:
1509 switch (cipher->algorithm_auth) {
1510 case SSL_aECDSA:
1511 return "ECDHE_ECDSA";
1512 case SSL_aRSA:
1513 return "ECDHE_RSA";
1514 case SSL_aPSK:
1515 return "ECDHE_PSK";
1516 default:
1517 assert(0);
1518 return "UNKNOWN";
1519 }
1520
1521 case SSL_kPSK:
1522 assert(cipher->algorithm_auth == SSL_aPSK);
1523 return "PSK";
1524
1525 case SSL_kGENERIC:
1526 assert(cipher->algorithm_auth == SSL_aGENERIC);
1527 return "GENERIC";
1528
1529 default:
1530 assert(0);
1531 return "UNKNOWN";
1532 }
1533}
1534
1535char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
1536 if (cipher == NULL) {
1537 return NULL;
1538 }
1539
1540 return OPENSSL_strdup(SSL_CIPHER_standard_name(cipher));
1541}
1542
1543int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
1544 if (cipher == NULL) {
1545 return 0;
1546 }
1547
1548 int alg_bits, strength_bits;
1549 switch (cipher->algorithm_enc) {
1550 case SSL_AES128:
1551 case SSL_AES128GCM:
1552 alg_bits = 128;
1553 strength_bits = 128;
1554 break;
1555
1556 case SSL_AES256:
1557 case SSL_AES256GCM:
1558 case SSL_CHACHA20POLY1305:
1559 alg_bits = 256;
1560 strength_bits = 256;
1561 break;
1562
1563 case SSL_3DES:
1564 alg_bits = 168;
1565 strength_bits = 112;
1566 break;
1567
1568 case SSL_eNULL:
1569 alg_bits = 0;
1570 strength_bits = 0;
1571 break;
1572
1573 default:
1574 assert(0);
1575 alg_bits = 0;
1576 strength_bits = 0;
1577 }
1578
1579 if (out_alg_bits != NULL) {
1580 *out_alg_bits = alg_bits;
1581 }
1582 return strength_bits;
1583}
1584
1585const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
1586 int len) {
1587 const char *kx, *au, *enc, *mac;
1588 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1589
1590 alg_mkey = cipher->algorithm_mkey;
1591 alg_auth = cipher->algorithm_auth;
1592 alg_enc = cipher->algorithm_enc;
1593 alg_mac = cipher->algorithm_mac;
1594
1595 switch (alg_mkey) {
1596 case SSL_kRSA:
1597 kx = "RSA";
1598 break;
1599
1600 case SSL_kECDHE:
1601 kx = "ECDH";
1602 break;
1603
1604 case SSL_kPSK:
1605 kx = "PSK";
1606 break;
1607
1608 case SSL_kGENERIC:
1609 kx = "GENERIC";
1610 break;
1611
1612 default:
1613 kx = "unknown";
1614 }
1615
1616 switch (alg_auth) {
1617 case SSL_aRSA:
1618 au = "RSA";
1619 break;
1620
1621 case SSL_aECDSA:
1622 au = "ECDSA";
1623 break;
1624
1625 case SSL_aPSK:
1626 au = "PSK";
1627 break;
1628
1629 case SSL_aGENERIC:
1630 au = "GENERIC";
1631 break;
1632
1633 default:
1634 au = "unknown";
1635 break;
1636 }
1637
1638 switch (alg_enc) {
1639 case SSL_3DES:
1640 enc = "3DES(168)";
1641 break;
1642
1643 case SSL_AES128:
1644 enc = "AES(128)";
1645 break;
1646
1647 case SSL_AES256:
1648 enc = "AES(256)";
1649 break;
1650
1651 case SSL_AES128GCM:
1652 enc = "AESGCM(128)";
1653 break;
1654
1655 case SSL_AES256GCM:
1656 enc = "AESGCM(256)";
1657 break;
1658
1659 case SSL_CHACHA20POLY1305:
1660 enc = "ChaCha20-Poly1305";
1661 break;
1662
1663 case SSL_eNULL:
1664 enc="None";
1665 break;
1666
1667 default:
1668 enc = "unknown";
1669 break;
1670 }
1671
1672 switch (alg_mac) {
1673 case SSL_SHA1:
1674 mac = "SHA1";
1675 break;
1676
1677 case SSL_AEAD:
1678 mac = "AEAD";
1679 break;
1680
1681 default:
1682 mac = "unknown";
1683 break;
1684 }
1685
1686 if (buf == NULL) {
1687 len = 128;
1688 buf = (char *)OPENSSL_malloc(len);
1689 if (buf == NULL) {
1690 return NULL;
1691 }
1692 } else if (len < 128) {
1693 return "Buffer too small";
1694 }
1695
1696 BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
1697 cipher->name, kx, au, enc, mac);
1698 return buf;
1699}
1700
1701const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
1702 return "TLSv1/SSLv3";
1703}
1704
1705STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; }
1706
1707int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
1708
1709const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
1710
1711const char *SSL_COMP_get0_name(const SSL_COMP *comp) { return comp->name; }
1712
1713int SSL_COMP_get_id(const SSL_COMP *comp) { return comp->id; }
1714
1715void SSL_COMP_free_compression_methods(void) {}
1716