| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/il.h" |
| 6 | |
| 7 | #include "vm/bit_vector.h" |
| 8 | #include "vm/bootstrap.h" |
| 9 | #include "vm/compiler/aot/dispatch_table_generator.h" |
| 10 | #include "vm/compiler/backend/code_statistics.h" |
| 11 | #include "vm/compiler/backend/constant_propagator.h" |
| 12 | #include "vm/compiler/backend/evaluator.h" |
| 13 | #include "vm/compiler/backend/flow_graph_compiler.h" |
| 14 | #include "vm/compiler/backend/linearscan.h" |
| 15 | #include "vm/compiler/backend/locations.h" |
| 16 | #include "vm/compiler/backend/loops.h" |
| 17 | #include "vm/compiler/backend/range_analysis.h" |
| 18 | #include "vm/compiler/ffi/frame_rebase.h" |
| 19 | #include "vm/compiler/ffi/native_calling_convention.h" |
| 20 | #include "vm/compiler/frontend/flow_graph_builder.h" |
| 21 | #include "vm/compiler/frontend/kernel_translation_helper.h" |
| 22 | #include "vm/compiler/jit/compiler.h" |
| 23 | #include "vm/compiler/method_recognizer.h" |
| 24 | #include "vm/cpu.h" |
| 25 | #include "vm/dart_entry.h" |
| 26 | #include "vm/object.h" |
| 27 | #include "vm/object_store.h" |
| 28 | #include "vm/os.h" |
| 29 | #include "vm/regexp_assembler_ir.h" |
| 30 | #include "vm/resolver.h" |
| 31 | #include "vm/runtime_entry.h" |
| 32 | #include "vm/scopes.h" |
| 33 | #include "vm/stack_frame.h" |
| 34 | #include "vm/stub_code.h" |
| 35 | #include "vm/symbols.h" |
| 36 | #include "vm/type_testing_stubs.h" |
| 37 | |
| 38 | #include "vm/compiler/backend/il_printer.h" |
| 39 | |
| 40 | namespace dart { |
| 41 | |
| 42 | DEFINE_FLAG(bool, |
| 43 | propagate_ic_data, |
| 44 | true, |
| 45 | "Propagate IC data from unoptimized to optimized IC calls." ); |
| 46 | DEFINE_FLAG(bool, |
| 47 | two_args_smi_icd, |
| 48 | true, |
| 49 | "Generate special IC stubs for two args Smi operations" ); |
| 50 | |
| 51 | class SubclassFinder { |
| 52 | public: |
| 53 | SubclassFinder(Zone* zone, |
| 54 | GrowableArray<intptr_t>* cids, |
| 55 | bool include_abstract) |
| 56 | : array_handles_(zone), |
| 57 | class_handles_(zone), |
| 58 | cids_(cids), |
| 59 | include_abstract_(include_abstract) {} |
| 60 | |
| 61 | void ScanSubClasses(const Class& klass) { |
| 62 | if (include_abstract_ || !klass.is_abstract()) { |
| 63 | cids_->Add(klass.id()); |
| 64 | } |
| 65 | ScopedHandle<GrowableObjectArray> array(&array_handles_); |
| 66 | ScopedHandle<Class> subclass(&class_handles_); |
| 67 | *array = klass.direct_subclasses(); |
| 68 | if (!array->IsNull()) { |
| 69 | for (intptr_t i = 0; i < array->Length(); ++i) { |
| 70 | *subclass ^= array->At(i); |
| 71 | ScanSubClasses(*subclass); |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | void ScanImplementorClasses(const Class& klass) { |
| 77 | // An implementor of [klass] is |
| 78 | // * the [klass] itself. |
| 79 | // * all implementors of the direct subclasses of [klass]. |
| 80 | // * all implementors of the direct implementors of [klass]. |
| 81 | if (include_abstract_ || !klass.is_abstract()) { |
| 82 | cids_->Add(klass.id()); |
| 83 | } |
| 84 | |
| 85 | ScopedHandle<GrowableObjectArray> array(&array_handles_); |
| 86 | ScopedHandle<Class> subclass_or_implementor(&class_handles_); |
| 87 | |
| 88 | *array = klass.direct_subclasses(); |
| 89 | if (!array->IsNull()) { |
| 90 | for (intptr_t i = 0; i < array->Length(); ++i) { |
| 91 | *subclass_or_implementor ^= (*array).At(i); |
| 92 | ScanImplementorClasses(*subclass_or_implementor); |
| 93 | } |
| 94 | } |
| 95 | *array = klass.direct_implementors(); |
| 96 | if (!array->IsNull()) { |
| 97 | for (intptr_t i = 0; i < array->Length(); ++i) { |
| 98 | *subclass_or_implementor ^= (*array).At(i); |
| 99 | ScanImplementorClasses(*subclass_or_implementor); |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | private: |
| 105 | ReusableHandleStack<GrowableObjectArray> array_handles_; |
| 106 | ReusableHandleStack<Class> class_handles_; |
| 107 | GrowableArray<intptr_t>* cids_; |
| 108 | const bool include_abstract_; |
| 109 | }; |
| 110 | |
| 111 | const CidRangeVector& HierarchyInfo::SubtypeRangesForClass( |
| 112 | const Class& klass, |
| 113 | bool include_abstract, |
| 114 | bool exclude_null) { |
| 115 | ClassTable* table = thread()->isolate()->class_table(); |
| 116 | const intptr_t cid_count = table->NumCids(); |
| 117 | std::unique_ptr<CidRangeVector[]>* cid_ranges = nullptr; |
| 118 | if (include_abstract) { |
| 119 | cid_ranges = exclude_null ? &cid_subtype_ranges_abstract_nonnullable_ |
| 120 | : &cid_subtype_ranges_abstract_nullable_; |
| 121 | } else { |
| 122 | cid_ranges = exclude_null ? &cid_subtype_ranges_nonnullable_ |
| 123 | : &cid_subtype_ranges_nullable_; |
| 124 | } |
| 125 | if (*cid_ranges == nullptr) { |
| 126 | cid_ranges->reset(new CidRangeVector[cid_count]); |
| 127 | } |
| 128 | CidRangeVector& ranges = (*cid_ranges)[klass.id()]; |
| 129 | if (ranges.length() == 0) { |
| 130 | if (!FLAG_precompiled_mode) { |
| 131 | BuildRangesForJIT(table, &ranges, klass, /*use_subtype_test=*/true, |
| 132 | include_abstract, exclude_null); |
| 133 | } else { |
| 134 | BuildRangesFor(table, &ranges, klass, /*use_subtype_test=*/true, |
| 135 | include_abstract, exclude_null); |
| 136 | } |
| 137 | } |
| 138 | return ranges; |
| 139 | } |
| 140 | |
| 141 | const CidRangeVector& HierarchyInfo::SubclassRangesForClass( |
| 142 | const Class& klass) { |
| 143 | ClassTable* table = thread()->isolate()->class_table(); |
| 144 | const intptr_t cid_count = table->NumCids(); |
| 145 | if (cid_subclass_ranges_ == nullptr) { |
| 146 | cid_subclass_ranges_.reset(new CidRangeVector[cid_count]); |
| 147 | } |
| 148 | |
| 149 | CidRangeVector& ranges = cid_subclass_ranges_[klass.id()]; |
| 150 | if (ranges.length() == 0) { |
| 151 | if (!FLAG_precompiled_mode) { |
| 152 | BuildRangesForJIT(table, &ranges, klass, |
| 153 | /*use_subtype_test=*/true, |
| 154 | /*include_abstract=*/false, |
| 155 | /*exclude_null=*/false); |
| 156 | } else { |
| 157 | BuildRangesFor(table, &ranges, klass, |
| 158 | /*use_subtype_test=*/false, |
| 159 | /*include_abstract=*/false, |
| 160 | /*exclude_null=*/false); |
| 161 | } |
| 162 | } |
| 163 | return ranges; |
| 164 | } |
| 165 | |
| 166 | // Build the ranges either for: |
| 167 | // "<obj> as <Type>", or |
| 168 | // "<obj> is <Type>" |
| 169 | void HierarchyInfo::BuildRangesFor(ClassTable* table, |
| 170 | CidRangeVector* ranges, |
| 171 | const Class& klass, |
| 172 | bool use_subtype_test, |
| 173 | bool include_abstract, |
| 174 | bool exclude_null) { |
| 175 | Zone* zone = thread()->zone(); |
| 176 | ClassTable* class_table = thread()->isolate()->class_table(); |
| 177 | |
| 178 | // Only really used if `use_subtype_test == true`. |
| 179 | const Type& dst_type = Type::Handle(zone, Type::RawCast(klass.RareType())); |
| 180 | AbstractType& cls_type = AbstractType::Handle(zone); |
| 181 | |
| 182 | Class& cls = Class::Handle(zone); |
| 183 | AbstractType& super_type = AbstractType::Handle(zone); |
| 184 | const intptr_t cid_count = table->NumCids(); |
| 185 | |
| 186 | // Iterate over all cids to find the ones to be included in the ranges. |
| 187 | intptr_t start = -1; |
| 188 | intptr_t end = -1; |
| 189 | for (intptr_t cid = kInstanceCid; cid < cid_count; ++cid) { |
| 190 | // Create local zone because deep hierarchies may allocate lots of handles |
| 191 | // within one iteration of this loop. |
| 192 | StackZone stack_zone(thread()); |
| 193 | HANDLESCOPE(thread()); |
| 194 | |
| 195 | // Some cases are "don't care", i.e., they may or may not be included, |
| 196 | // whatever yields the least number of ranges for efficiency. |
| 197 | if (!table->HasValidClassAt(cid)) continue; |
| 198 | if (cid == kTypeArgumentsCid) continue; |
| 199 | if (cid == kVoidCid) continue; |
| 200 | if (cid == kDynamicCid) continue; |
| 201 | if (cid == kNeverCid) continue; |
| 202 | if (cid == kNullCid && !exclude_null) continue; |
| 203 | cls = table->At(cid); |
| 204 | if (!include_abstract && cls.is_abstract()) continue; |
| 205 | if (cls.IsTopLevel()) continue; |
| 206 | |
| 207 | // We are either interested in [CidRange]es of subclasses or subtypes. |
| 208 | bool test_succeeded = false; |
| 209 | if (cid == kNullCid) { |
| 210 | ASSERT(exclude_null); |
| 211 | test_succeeded = false; |
| 212 | } else if (use_subtype_test) { |
| 213 | cls_type = cls.RareType(); |
| 214 | test_succeeded = cls_type.IsSubtypeOf(dst_type, Heap::kNew); |
| 215 | } else { |
| 216 | while (!cls.IsObjectClass()) { |
| 217 | if (cls.raw() == klass.raw()) { |
| 218 | test_succeeded = true; |
| 219 | break; |
| 220 | } |
| 221 | super_type = cls.super_type(); |
| 222 | const intptr_t type_class_id = super_type.type_class_id(); |
| 223 | cls = class_table->At(type_class_id); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | if (test_succeeded) { |
| 228 | // On success, open a new or continue any open range. |
| 229 | if (start == -1) start = cid; |
| 230 | end = cid; |
| 231 | } else if (start != -1) { |
| 232 | // On failure, close any open range from start to end |
| 233 | // (the latter is the most recent succesful "do-care" cid). |
| 234 | ASSERT(start <= end); |
| 235 | CidRange range(start, end); |
| 236 | ranges->Add(range); |
| 237 | start = -1; |
| 238 | end = -1; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | // Construct last range (either close open one, or add invalid). |
| 243 | if (start != -1) { |
| 244 | ASSERT(start <= end); |
| 245 | CidRange range(start, end); |
| 246 | ranges->Add(range); |
| 247 | } else if (ranges->length() == 0) { |
| 248 | CidRange range; |
| 249 | ASSERT(range.IsIllegalRange()); |
| 250 | ranges->Add(range); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | void HierarchyInfo::BuildRangesForJIT(ClassTable* table, |
| 255 | CidRangeVector* ranges, |
| 256 | const Class& dst_klass, |
| 257 | bool use_subtype_test, |
| 258 | bool include_abstract, |
| 259 | bool exclude_null) { |
| 260 | if (dst_klass.InVMIsolateHeap()) { |
| 261 | BuildRangesFor(table, ranges, dst_klass, use_subtype_test, include_abstract, |
| 262 | exclude_null); |
| 263 | return; |
| 264 | } |
| 265 | |
| 266 | Zone* zone = thread()->zone(); |
| 267 | GrowableArray<intptr_t> cids; |
| 268 | SubclassFinder finder(zone, &cids, include_abstract); |
| 269 | if (use_subtype_test) { |
| 270 | finder.ScanImplementorClasses(dst_klass); |
| 271 | } else { |
| 272 | finder.ScanSubClasses(dst_klass); |
| 273 | } |
| 274 | |
| 275 | // Sort all collected cids. |
| 276 | intptr_t* cids_array = cids.data(); |
| 277 | |
| 278 | qsort(cids_array, cids.length(), sizeof(intptr_t), |
| 279 | [](const void* a, const void* b) { |
| 280 | // MSAN seems unaware of allocations inside qsort. The linker flag |
| 281 | // -fsanitize=memory should give us a MSAN-aware version of libc... |
| 282 | MSAN_UNPOISON(static_cast<const intptr_t*>(a), sizeof(intptr_t)); |
| 283 | MSAN_UNPOISON(static_cast<const intptr_t*>(b), sizeof(intptr_t)); |
| 284 | return static_cast<int>(*static_cast<const intptr_t*>(a) - |
| 285 | *static_cast<const intptr_t*>(b)); |
| 286 | }); |
| 287 | |
| 288 | // Build ranges of all the cids. |
| 289 | Class& klass = Class::Handle(); |
| 290 | intptr_t left_cid = -1; |
| 291 | intptr_t last_cid = -1; |
| 292 | for (intptr_t i = 0; i < cids.length(); ++i) { |
| 293 | if (left_cid == -1) { |
| 294 | left_cid = last_cid = cids[i]; |
| 295 | } else { |
| 296 | const intptr_t current_cid = cids[i]; |
| 297 | |
| 298 | // Skip duplicates. |
| 299 | if (current_cid == last_cid) continue; |
| 300 | |
| 301 | // Consecutive numbers cids are ok. |
| 302 | if (current_cid == (last_cid + 1)) { |
| 303 | last_cid = current_cid; |
| 304 | } else { |
| 305 | // We sorted, after all! |
| 306 | RELEASE_ASSERT(last_cid < current_cid); |
| 307 | |
| 308 | intptr_t j = last_cid + 1; |
| 309 | for (; j < current_cid; ++j) { |
| 310 | if (table->HasValidClassAt(j)) { |
| 311 | klass = table->At(j); |
| 312 | if (!klass.IsTopLevel()) { |
| 313 | // If we care about abstract classes also, we cannot skip over any |
| 314 | // arbitrary abstract class, only those which are subtypes. |
| 315 | if (include_abstract) { |
| 316 | break; |
| 317 | } |
| 318 | |
| 319 | // If the class is concrete we cannot skip over it. |
| 320 | if (!klass.is_abstract()) { |
| 321 | break; |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | if (current_cid == j) { |
| 328 | // If there's only abstract cids between [last_cid] and the |
| 329 | // [current_cid] then we connect them. |
| 330 | last_cid = current_cid; |
| 331 | } else { |
| 332 | // Finish the current open cid range and start a new one. |
| 333 | ranges->Add(CidRange{left_cid, last_cid}); |
| 334 | left_cid = last_cid = current_cid; |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | // If there is an open cid-range which we haven't finished yet, we'll |
| 341 | // complete it. |
| 342 | if (left_cid != -1) { |
| 343 | ranges->Add(CidRange{left_cid, last_cid}); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | bool HierarchyInfo::CanUseSubtypeRangeCheckFor(const AbstractType& type) { |
| 348 | ASSERT(type.IsFinalized()); |
| 349 | |
| 350 | if (!type.IsInstantiated() || !type.IsType() || type.IsFunctionType() || |
| 351 | type.IsDartFunctionType()) { |
| 352 | return false; |
| 353 | } |
| 354 | |
| 355 | // The FutureOr<T> type cannot be handled by checking whether the instance is |
| 356 | // a subtype of FutureOr and then checking whether the type argument `T` |
| 357 | // matches. |
| 358 | // |
| 359 | // Instead we would need to perform multiple checks: |
| 360 | // |
| 361 | // instance is Null || instance is T || instance is Future<T> |
| 362 | // |
| 363 | if (type.IsFutureOrType()) { |
| 364 | return false; |
| 365 | } |
| 366 | |
| 367 | Zone* zone = thread()->zone(); |
| 368 | const Class& type_class = Class::Handle(zone, type.type_class()); |
| 369 | |
| 370 | // We can use class id range checks only if we don't have to test type |
| 371 | // arguments. |
| 372 | // |
| 373 | // This is e.g. true for "String" but also for "List<dynamic>". (A type for |
| 374 | // which the type arguments vector is filled with "dynamic" is known as a rare |
| 375 | // type) |
| 376 | if (type_class.IsGeneric()) { |
| 377 | // TODO(kustermann): We might want to consider extending this when the type |
| 378 | // arguments are not "dynamic" but instantiated-to-bounds. |
| 379 | const Type& rare_type = |
| 380 | Type::Handle(zone, Type::RawCast(type_class.RareType())); |
| 381 | if (!rare_type.IsSubtypeOf(type, Heap::kNew)) { |
| 382 | ASSERT(type.arguments() != TypeArguments::null()); |
| 383 | return false; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | return true; |
| 388 | } |
| 389 | |
| 390 | bool HierarchyInfo::CanUseGenericSubtypeRangeCheckFor( |
| 391 | const AbstractType& type) { |
| 392 | ASSERT(type.IsFinalized()); |
| 393 | |
| 394 | if (!type.IsType() || type.IsFunctionType() || type.IsDartFunctionType()) { |
| 395 | return false; |
| 396 | } |
| 397 | |
| 398 | // The FutureOr<T> type cannot be handled by checking whether the instance is |
| 399 | // a subtype of FutureOr and then checking whether the type argument `T` |
| 400 | // matches. |
| 401 | // |
| 402 | // Instead we would need to perform multiple checks: |
| 403 | // |
| 404 | // instance is Null || instance is T || instance is Future<T> |
| 405 | // |
| 406 | if (type.IsFutureOrType()) { |
| 407 | return false; |
| 408 | } |
| 409 | |
| 410 | // NOTE: We do allow non-instantiated types here (in comparison to |
| 411 | // [CanUseSubtypeRangeCheckFor], since we handle type parameters in the type |
| 412 | // expression in some cases (see below). |
| 413 | |
| 414 | Zone* zone = thread()->zone(); |
| 415 | const Class& type_class = Class::Handle(zone, type.type_class()); |
| 416 | const intptr_t num_type_parameters = type_class.NumTypeParameters(); |
| 417 | const intptr_t num_type_arguments = type_class.NumTypeArguments(); |
| 418 | |
| 419 | // This function should only be called for generic classes. |
| 420 | ASSERT(type_class.NumTypeParameters() > 0 && |
| 421 | type.arguments() != TypeArguments::null()); |
| 422 | |
| 423 | // If the type class is implemented the different implementations might have |
| 424 | // their type argument vector stored at different offsets and we can therefore |
| 425 | // not perform our optimized [CidRange]-based implementation. |
| 426 | // |
| 427 | // TODO(kustermann): If the class is implemented but all implementations |
| 428 | // store the instantator type argument vector at the same offset we can |
| 429 | // still do it! |
| 430 | if (type_class.is_implemented()) { |
| 431 | return false; |
| 432 | } |
| 433 | |
| 434 | const TypeArguments& ta = |
| 435 | TypeArguments::Handle(zone, Type::Cast(type).arguments()); |
| 436 | ASSERT(ta.Length() == num_type_arguments); |
| 437 | |
| 438 | // The last [num_type_pararameters] entries in the [TypeArguments] vector [ta] |
| 439 | // are the values we have to check against. Ensure we can handle all of them |
| 440 | // via [CidRange]-based checks or that it is a type parameter. |
| 441 | AbstractType& type_arg = AbstractType::Handle(zone); |
| 442 | for (intptr_t i = 0; i < num_type_parameters; ++i) { |
| 443 | type_arg = ta.TypeAt(num_type_arguments - num_type_parameters + i); |
| 444 | if (!CanUseSubtypeRangeCheckFor(type_arg) && !type_arg.IsTypeParameter()) { |
| 445 | return false; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | return true; |
| 450 | } |
| 451 | |
| 452 | bool HierarchyInfo::InstanceOfHasClassRange(const AbstractType& type, |
| 453 | intptr_t* lower_limit, |
| 454 | intptr_t* upper_limit) { |
| 455 | ASSERT(CompilerState::Current().is_aot()); |
| 456 | if (CanUseSubtypeRangeCheckFor(type)) { |
| 457 | const Class& type_class = |
| 458 | Class::Handle(thread()->zone(), type.type_class()); |
| 459 | const CidRangeVector& ranges = |
| 460 | SubtypeRangesForClass(type_class, |
| 461 | /*include_abstract=*/false, |
| 462 | /*exclude_null=*/true); |
| 463 | if (ranges.length() == 1) { |
| 464 | const CidRangeValue& range = ranges[0]; |
| 465 | if (!range.IsIllegalRange()) { |
| 466 | *lower_limit = range.cid_start; |
| 467 | *upper_limit = range.cid_end; |
| 468 | return true; |
| 469 | } |
| 470 | } |
| 471 | } |
| 472 | return false; |
| 473 | } |
| 474 | |
| 475 | #if defined(DEBUG) |
| 476 | void Instruction::CheckField(const Field& field) const { |
| 477 | ASSERT(field.IsZoneHandle()); |
| 478 | ASSERT(!Compiler::IsBackgroundCompilation() || !field.IsOriginal()); |
| 479 | } |
| 480 | #endif // DEBUG |
| 481 | |
| 482 | Definition::Definition(intptr_t deopt_id) : Instruction(deopt_id) {} |
| 483 | |
| 484 | // A value in the constant propagation lattice. |
| 485 | // - non-constant sentinel |
| 486 | // - a constant (any non-sentinel value) |
| 487 | // - unknown sentinel |
| 488 | Object& Definition::constant_value() { |
| 489 | if (constant_value_ == NULL) { |
| 490 | constant_value_ = &Object::ZoneHandle(ConstantPropagator::Unknown()); |
| 491 | } |
| 492 | return *constant_value_; |
| 493 | } |
| 494 | |
| 495 | Definition* Definition::OriginalDefinition() { |
| 496 | Definition* defn = this; |
| 497 | Value* unwrapped; |
| 498 | while ((unwrapped = defn->RedefinedValue()) != nullptr) { |
| 499 | defn = unwrapped->definition(); |
| 500 | } |
| 501 | return defn; |
| 502 | } |
| 503 | |
| 504 | Value* Definition::RedefinedValue() const { |
| 505 | return nullptr; |
| 506 | } |
| 507 | |
| 508 | Value* RedefinitionInstr::RedefinedValue() const { |
| 509 | return value(); |
| 510 | } |
| 511 | |
| 512 | Value* AssertAssignableInstr::RedefinedValue() const { |
| 513 | return value(); |
| 514 | } |
| 515 | |
| 516 | Value* AssertBooleanInstr::RedefinedValue() const { |
| 517 | return value(); |
| 518 | } |
| 519 | |
| 520 | Value* CheckBoundBase::RedefinedValue() const { |
| 521 | return index(); |
| 522 | } |
| 523 | |
| 524 | Value* CheckNullInstr::RedefinedValue() const { |
| 525 | return value(); |
| 526 | } |
| 527 | |
| 528 | Definition* Definition::OriginalDefinitionIgnoreBoxingAndConstraints() { |
| 529 | Definition* def = this; |
| 530 | while (true) { |
| 531 | Definition* orig; |
| 532 | if (def->IsConstraint() || def->IsBox() || def->IsUnbox() || |
| 533 | def->IsIntConverter()) { |
| 534 | orig = def->InputAt(0)->definition(); |
| 535 | } else { |
| 536 | orig = def->OriginalDefinition(); |
| 537 | } |
| 538 | if (orig == def) return def; |
| 539 | def = orig; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | bool Definition::IsArrayLength(Definition* def) { |
| 544 | if (def != nullptr) { |
| 545 | if (auto load = def->OriginalDefinitionIgnoreBoxingAndConstraints() |
| 546 | ->AsLoadField()) { |
| 547 | return load->IsImmutableLengthLoad(); |
| 548 | } |
| 549 | } |
| 550 | return false; |
| 551 | } |
| 552 | |
| 553 | const ICData* Instruction::GetICData( |
| 554 | const ZoneGrowableArray<const ICData*>& ic_data_array, |
| 555 | intptr_t deopt_id, |
| 556 | bool is_static_call) { |
| 557 | // The deopt_id can be outside the range of the IC data array for |
| 558 | // computations added in the optimizing compiler. |
| 559 | ASSERT(deopt_id != DeoptId::kNone); |
| 560 | if (deopt_id >= ic_data_array.length()) { |
| 561 | return nullptr; |
| 562 | } |
| 563 | const ICData* result = ic_data_array[deopt_id]; |
| 564 | ASSERT(result == nullptr || is_static_call == result->is_static_call()); |
| 565 | return result; |
| 566 | } |
| 567 | |
| 568 | intptr_t Instruction::Hashcode() const { |
| 569 | intptr_t result = tag(); |
| 570 | for (intptr_t i = 0; i < InputCount(); ++i) { |
| 571 | Value* value = InputAt(i); |
| 572 | intptr_t j = value->definition()->ssa_temp_index(); |
| 573 | result = result * 31 + j; |
| 574 | } |
| 575 | return result; |
| 576 | } |
| 577 | |
| 578 | bool Instruction::Equals(Instruction* other) const { |
| 579 | if (tag() != other->tag()) return false; |
| 580 | if (InputCount() != other->InputCount()) return false; |
| 581 | for (intptr_t i = 0; i < InputCount(); ++i) { |
| 582 | if (!InputAt(i)->Equals(other->InputAt(i))) return false; |
| 583 | } |
| 584 | return AttributesEqual(other); |
| 585 | } |
| 586 | |
| 587 | void Instruction::Unsupported(FlowGraphCompiler* compiler) { |
| 588 | compiler->Bailout(ToCString()); |
| 589 | UNREACHABLE(); |
| 590 | } |
| 591 | |
| 592 | bool Value::Equals(Value* other) const { |
| 593 | return definition() == other->definition(); |
| 594 | } |
| 595 | |
| 596 | static int OrderById(CidRange* const* a, CidRange* const* b) { |
| 597 | // Negative if 'a' should sort before 'b'. |
| 598 | ASSERT((*a)->IsSingleCid()); |
| 599 | ASSERT((*b)->IsSingleCid()); |
| 600 | return (*a)->cid_start - (*b)->cid_start; |
| 601 | } |
| 602 | |
| 603 | static int OrderByFrequencyThenId(CidRange* const* a, CidRange* const* b) { |
| 604 | const TargetInfo* target_info_a = static_cast<const TargetInfo*>(*a); |
| 605 | const TargetInfo* target_info_b = static_cast<const TargetInfo*>(*b); |
| 606 | // Negative if 'a' should sort before 'b'. |
| 607 | if (target_info_b->count != target_info_a->count) { |
| 608 | return (target_info_b->count - target_info_a->count); |
| 609 | } else { |
| 610 | return (*a)->cid_start - (*b)->cid_start; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | bool Cids::Equals(const Cids& other) const { |
| 615 | if (length() != other.length()) return false; |
| 616 | for (int i = 0; i < length(); i++) { |
| 617 | if (cid_ranges_[i]->cid_start != other.cid_ranges_[i]->cid_start || |
| 618 | cid_ranges_[i]->cid_end != other.cid_ranges_[i]->cid_end) { |
| 619 | return false; |
| 620 | } |
| 621 | } |
| 622 | return true; |
| 623 | } |
| 624 | |
| 625 | intptr_t Cids::ComputeLowestCid() const { |
| 626 | intptr_t min = kIntptrMax; |
| 627 | for (intptr_t i = 0; i < cid_ranges_.length(); ++i) { |
| 628 | min = Utils::Minimum(min, cid_ranges_[i]->cid_start); |
| 629 | } |
| 630 | return min; |
| 631 | } |
| 632 | |
| 633 | intptr_t Cids::ComputeHighestCid() const { |
| 634 | intptr_t max = -1; |
| 635 | for (intptr_t i = 0; i < cid_ranges_.length(); ++i) { |
| 636 | max = Utils::Maximum(max, cid_ranges_[i]->cid_end); |
| 637 | } |
| 638 | return max; |
| 639 | } |
| 640 | |
| 641 | bool Cids::HasClassId(intptr_t cid) const { |
| 642 | for (int i = 0; i < length(); i++) { |
| 643 | if (cid_ranges_[i]->Contains(cid)) { |
| 644 | return true; |
| 645 | } |
| 646 | } |
| 647 | return false; |
| 648 | } |
| 649 | |
| 650 | Cids* Cids::CreateMonomorphic(Zone* zone, intptr_t cid) { |
| 651 | Cids* cids = new (zone) Cids(zone); |
| 652 | cids->Add(new (zone) CidRange(cid, cid)); |
| 653 | return cids; |
| 654 | } |
| 655 | |
| 656 | Cids* Cids::CreateForArgument(Zone* zone, |
| 657 | const BinaryFeedback& binary_feedback, |
| 658 | int argument_number) { |
| 659 | Cids* cids = new (zone) Cids(zone); |
| 660 | for (intptr_t i = 0; i < binary_feedback.feedback_.length(); i++) { |
| 661 | ASSERT((argument_number == 0) || (argument_number == 1)); |
| 662 | const intptr_t cid = argument_number == 0 |
| 663 | ? binary_feedback.feedback_[i].first |
| 664 | : binary_feedback.feedback_[i].second; |
| 665 | cids->Add(new (zone) CidRange(cid, cid)); |
| 666 | } |
| 667 | |
| 668 | if (cids->length() != 0) { |
| 669 | cids->Sort(OrderById); |
| 670 | |
| 671 | // Merge adjacent class id ranges. |
| 672 | int dest = 0; |
| 673 | for (int src = 1; src < cids->length(); src++) { |
| 674 | if (cids->cid_ranges_[dest]->cid_end + 1 >= |
| 675 | cids->cid_ranges_[src]->cid_start) { |
| 676 | cids->cid_ranges_[dest]->cid_end = cids->cid_ranges_[src]->cid_end; |
| 677 | } else { |
| 678 | dest++; |
| 679 | if (src != dest) cids->cid_ranges_[dest] = cids->cid_ranges_[src]; |
| 680 | } |
| 681 | } |
| 682 | cids->SetLength(dest + 1); |
| 683 | } |
| 684 | |
| 685 | return cids; |
| 686 | } |
| 687 | |
| 688 | static intptr_t Usage(const Function& function) { |
| 689 | intptr_t count = function.usage_counter(); |
| 690 | if (count < 0) { |
| 691 | if (function.HasCode()) { |
| 692 | // 'function' is queued for optimized compilation |
| 693 | count = FLAG_optimization_counter_threshold; |
| 694 | } else { |
| 695 | // 'function' is queued for unoptimized compilation |
| 696 | count = FLAG_compilation_counter_threshold; |
| 697 | } |
| 698 | } else if (Code::IsOptimized(function.CurrentCode())) { |
| 699 | // 'function' was optimized and stopped counting |
| 700 | count = FLAG_optimization_counter_threshold; |
| 701 | } |
| 702 | return count; |
| 703 | } |
| 704 | |
| 705 | void CallTargets::CreateHelper(Zone* zone, const ICData& ic_data) { |
| 706 | Function& dummy = Function::Handle(zone); |
| 707 | |
| 708 | const intptr_t num_args_tested = ic_data.NumArgsTested(); |
| 709 | |
| 710 | for (int i = 0, n = ic_data.NumberOfChecks(); i < n; i++) { |
| 711 | if (ic_data.GetCountAt(i) == 0) { |
| 712 | continue; |
| 713 | } |
| 714 | |
| 715 | intptr_t id = kDynamicCid; |
| 716 | if (num_args_tested == 0) { |
| 717 | } else if (num_args_tested == 1) { |
| 718 | ic_data.GetOneClassCheckAt(i, &id, &dummy); |
| 719 | } else { |
| 720 | ASSERT(num_args_tested == 2); |
| 721 | GrowableArray<intptr_t> arg_ids; |
| 722 | ic_data.GetCheckAt(i, &arg_ids, &dummy); |
| 723 | id = arg_ids[0]; |
| 724 | } |
| 725 | Function& function = Function::ZoneHandle(zone, ic_data.GetTargetAt(i)); |
| 726 | intptr_t count = ic_data.GetCountAt(i); |
| 727 | cid_ranges_.Add(new (zone) TargetInfo(id, id, &function, count, |
| 728 | ic_data.GetExactnessAt(i))); |
| 729 | } |
| 730 | |
| 731 | if (ic_data.is_megamorphic()) { |
| 732 | ASSERT(num_args_tested == 1); // Only 1-arg ICData will turn megamorphic. |
| 733 | const String& name = String::Handle(zone, ic_data.target_name()); |
| 734 | const Array& descriptor = |
| 735 | Array::Handle(zone, ic_data.arguments_descriptor()); |
| 736 | Thread* thread = Thread::Current(); |
| 737 | const MegamorphicCache& cache = MegamorphicCache::Handle( |
| 738 | zone, MegamorphicCacheTable::Lookup(thread, name, descriptor)); |
| 739 | SafepointMutexLocker ml(thread->isolate()->megamorphic_mutex()); |
| 740 | MegamorphicCacheEntries entries(Array::Handle(zone, cache.buckets())); |
| 741 | for (intptr_t i = 0, n = entries.Length(); i < n; i++) { |
| 742 | const intptr_t id = |
| 743 | Smi::Value(entries[i].Get<MegamorphicCache::kClassIdIndex>()); |
| 744 | if (id == kIllegalCid) { |
| 745 | continue; |
| 746 | } |
| 747 | Function& function = Function::ZoneHandle(zone); |
| 748 | function ^= entries[i].Get<MegamorphicCache::kTargetFunctionIndex>(); |
| 749 | const intptr_t filled_entry_count = cache.filled_entry_count(); |
| 750 | ASSERT(filled_entry_count > 0); |
| 751 | cid_ranges_.Add(new (zone) TargetInfo( |
| 752 | id, id, &function, Usage(function) / filled_entry_count, |
| 753 | StaticTypeExactnessState::NotTracking())); |
| 754 | } |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | bool Cids::IsMonomorphic() const { |
| 759 | if (length() != 1) return false; |
| 760 | return cid_ranges_[0]->IsSingleCid(); |
| 761 | } |
| 762 | |
| 763 | intptr_t Cids::MonomorphicReceiverCid() const { |
| 764 | ASSERT(IsMonomorphic()); |
| 765 | return cid_ranges_[0]->cid_start; |
| 766 | } |
| 767 | |
| 768 | StaticTypeExactnessState CallTargets::MonomorphicExactness() const { |
| 769 | ASSERT(IsMonomorphic()); |
| 770 | return TargetAt(0)->exactness; |
| 771 | } |
| 772 | |
| 773 | const char* AssertAssignableInstr::KindToCString(Kind kind) { |
| 774 | switch (kind) { |
| 775 | #define KIND_CASE(name) \ |
| 776 | case k##name: \ |
| 777 | return #name; |
| 778 | FOR_EACH_ASSERT_ASSIGNABLE_KIND(KIND_CASE) |
| 779 | #undef KIND_CASE |
| 780 | default: |
| 781 | UNREACHABLE(); |
| 782 | return nullptr; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | bool AssertAssignableInstr::ParseKind(const char* str, Kind* out) { |
| 787 | #define KIND_CASE(name) \ |
| 788 | if (strcmp(str, #name) == 0) { \ |
| 789 | *out = Kind::k##name; \ |
| 790 | return true; \ |
| 791 | } |
| 792 | FOR_EACH_ASSERT_ASSIGNABLE_KIND(KIND_CASE) |
| 793 | #undef KIND_CASE |
| 794 | return false; |
| 795 | } |
| 796 | |
| 797 | CheckClassInstr::CheckClassInstr(Value* value, |
| 798 | intptr_t deopt_id, |
| 799 | const Cids& cids, |
| 800 | TokenPosition token_pos) |
| 801 | : TemplateInstruction(deopt_id), |
| 802 | cids_(cids), |
| 803 | licm_hoisted_(false), |
| 804 | is_bit_test_(IsCompactCidRange(cids)), |
| 805 | token_pos_(token_pos) { |
| 806 | // Expected useful check data. |
| 807 | const intptr_t number_of_checks = cids.length(); |
| 808 | ASSERT(number_of_checks > 0); |
| 809 | SetInputAt(0, value); |
| 810 | // Otherwise use CheckSmiInstr. |
| 811 | ASSERT(number_of_checks != 1 || !cids[0].IsSingleCid() || |
| 812 | cids[0].cid_start != kSmiCid); |
| 813 | } |
| 814 | |
| 815 | bool CheckClassInstr::AttributesEqual(Instruction* other) const { |
| 816 | CheckClassInstr* other_check = other->AsCheckClass(); |
| 817 | ASSERT(other_check != NULL); |
| 818 | return cids().Equals(other_check->cids()); |
| 819 | } |
| 820 | |
| 821 | bool CheckClassInstr::IsDeoptIfNull() const { |
| 822 | if (!cids().IsMonomorphic()) { |
| 823 | return false; |
| 824 | } |
| 825 | CompileType* in_type = value()->Type(); |
| 826 | const intptr_t cid = cids().MonomorphicReceiverCid(); |
| 827 | // Performance check: use CheckSmiInstr instead. |
| 828 | ASSERT(cid != kSmiCid); |
| 829 | return in_type->is_nullable() && (in_type->ToNullableCid() == cid); |
| 830 | } |
| 831 | |
| 832 | // Null object is a singleton of null-class (except for some sentinel, |
| 833 | // transitional temporaries). Instead of checking against the null class only |
| 834 | // we can check against null instance instead. |
| 835 | bool CheckClassInstr::IsDeoptIfNotNull() const { |
| 836 | if (!cids().IsMonomorphic()) { |
| 837 | return false; |
| 838 | } |
| 839 | const intptr_t cid = cids().MonomorphicReceiverCid(); |
| 840 | return cid == kNullCid; |
| 841 | } |
| 842 | |
| 843 | bool CheckClassInstr::IsCompactCidRange(const Cids& cids) { |
| 844 | const intptr_t number_of_checks = cids.length(); |
| 845 | // If there are only two checks, the extra register pressure needed for the |
| 846 | // dense-cid-range code is not justified. |
| 847 | if (number_of_checks <= 2) return false; |
| 848 | |
| 849 | // TODO(fschneider): Support smis in dense cid checks. |
| 850 | if (cids.HasClassId(kSmiCid)) return false; |
| 851 | |
| 852 | intptr_t min = cids.ComputeLowestCid(); |
| 853 | intptr_t max = cids.ComputeHighestCid(); |
| 854 | return (max - min) < compiler::target::kBitsPerWord; |
| 855 | } |
| 856 | |
| 857 | bool CheckClassInstr::IsBitTest() const { |
| 858 | return is_bit_test_; |
| 859 | } |
| 860 | |
| 861 | intptr_t CheckClassInstr::ComputeCidMask() const { |
| 862 | ASSERT(IsBitTest()); |
| 863 | const uintptr_t one = 1; |
| 864 | intptr_t min = cids_.ComputeLowestCid(); |
| 865 | intptr_t mask = 0; |
| 866 | for (intptr_t i = 0; i < cids_.length(); ++i) { |
| 867 | uintptr_t run; |
| 868 | uintptr_t range = one + cids_[i].Extent(); |
| 869 | if (range >= static_cast<uintptr_t>(compiler::target::kBitsPerWord)) { |
| 870 | run = -1; |
| 871 | } else { |
| 872 | run = (one << range) - 1; |
| 873 | } |
| 874 | mask |= run << (cids_[i].cid_start - min); |
| 875 | } |
| 876 | return mask; |
| 877 | } |
| 878 | |
| 879 | bool LoadFieldInstr::IsUnboxedLoad() const { |
| 880 | return slot().IsDartField() && |
| 881 | FlowGraphCompiler::IsUnboxedField(slot().field()); |
| 882 | } |
| 883 | |
| 884 | bool LoadFieldInstr::IsPotentialUnboxedLoad() const { |
| 885 | return slot().IsDartField() && |
| 886 | FlowGraphCompiler::IsPotentialUnboxedField(slot().field()); |
| 887 | } |
| 888 | |
| 889 | Representation LoadFieldInstr::representation() const { |
| 890 | if (IsUnboxedLoad()) { |
| 891 | const Field& field = slot().field(); |
| 892 | const intptr_t cid = field.UnboxedFieldCid(); |
| 893 | switch (cid) { |
| 894 | case kDoubleCid: |
| 895 | return kUnboxedDouble; |
| 896 | case kFloat32x4Cid: |
| 897 | return kUnboxedFloat32x4; |
| 898 | case kFloat64x2Cid: |
| 899 | return kUnboxedFloat64x2; |
| 900 | default: |
| 901 | if (field.is_non_nullable_integer()) { |
| 902 | return kUnboxedInt64; |
| 903 | } else { |
| 904 | UNREACHABLE(); |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | return kTagged; |
| 909 | } |
| 910 | |
| 911 | AllocateUninitializedContextInstr::AllocateUninitializedContextInstr( |
| 912 | TokenPosition token_pos, |
| 913 | intptr_t num_context_variables) |
| 914 | : token_pos_(token_pos), |
| 915 | num_context_variables_(num_context_variables), |
| 916 | identity_(AliasIdentity::Unknown()) { |
| 917 | // This instruction is not used in AOT for code size reasons. |
| 918 | ASSERT(!CompilerState::Current().is_aot()); |
| 919 | } |
| 920 | |
| 921 | bool StoreInstanceFieldInstr::IsUnboxedStore() const { |
| 922 | return slot().IsDartField() && |
| 923 | FlowGraphCompiler::IsUnboxedField(slot().field()); |
| 924 | } |
| 925 | |
| 926 | bool StoreInstanceFieldInstr::IsPotentialUnboxedStore() const { |
| 927 | return slot().IsDartField() && |
| 928 | FlowGraphCompiler::IsPotentialUnboxedField(slot().field()); |
| 929 | } |
| 930 | |
| 931 | Representation StoreInstanceFieldInstr::RequiredInputRepresentation( |
| 932 | intptr_t index) const { |
| 933 | ASSERT((index == 0) || (index == 1)); |
| 934 | if ((index == 1) && IsUnboxedStore()) { |
| 935 | const Field& field = slot().field(); |
| 936 | const intptr_t cid = field.UnboxedFieldCid(); |
| 937 | switch (cid) { |
| 938 | case kDoubleCid: |
| 939 | return kUnboxedDouble; |
| 940 | case kFloat32x4Cid: |
| 941 | return kUnboxedFloat32x4; |
| 942 | case kFloat64x2Cid: |
| 943 | return kUnboxedFloat64x2; |
| 944 | default: |
| 945 | if (field.is_non_nullable_integer()) { |
| 946 | return kUnboxedInt64; |
| 947 | } else { |
| 948 | UNREACHABLE(); |
| 949 | } |
| 950 | } |
| 951 | } |
| 952 | return kTagged; |
| 953 | } |
| 954 | |
| 955 | Instruction* StoreInstanceFieldInstr::Canonicalize(FlowGraph* flow_graph) { |
| 956 | // Dart objects are allocated null-initialized, which means we can eliminate |
| 957 | // all initializing stores which store null value. |
| 958 | // Context objects can be allocated uninitialized as a performance |
| 959 | // optimization in JIT mode - however in AOT mode we always allocate them |
| 960 | // null initialized. |
| 961 | if (is_initialization_ && |
| 962 | (!slot().IsContextSlot() || |
| 963 | !instance()->definition()->IsAllocateUninitializedContext()) && |
| 964 | value()->BindsToConstantNull()) { |
| 965 | return nullptr; |
| 966 | } |
| 967 | return this; |
| 968 | } |
| 969 | |
| 970 | bool GuardFieldClassInstr::AttributesEqual(Instruction* other) const { |
| 971 | return field().raw() == other->AsGuardFieldClass()->field().raw(); |
| 972 | } |
| 973 | |
| 974 | bool GuardFieldLengthInstr::AttributesEqual(Instruction* other) const { |
| 975 | return field().raw() == other->AsGuardFieldLength()->field().raw(); |
| 976 | } |
| 977 | |
| 978 | bool GuardFieldTypeInstr::AttributesEqual(Instruction* other) const { |
| 979 | return field().raw() == other->AsGuardFieldType()->field().raw(); |
| 980 | } |
| 981 | |
| 982 | Instruction* AssertSubtypeInstr::Canonicalize(FlowGraph* flow_graph) { |
| 983 | // If all inputs are constant, we can instantiate the sub and super type and |
| 984 | // remove this instruction if the subtype test succeeds. |
| 985 | if (super_type()->BindsToConstant() && sub_type()->BindsToConstant() && |
| 986 | instantiator_type_arguments()->BindsToConstant() && |
| 987 | function_type_arguments()->BindsToConstant()) { |
| 988 | auto Z = Thread::Current()->zone(); |
| 989 | const auto& constant_instantiator_type_args = |
| 990 | instantiator_type_arguments()->BoundConstant().IsNull() |
| 991 | ? TypeArguments::null_type_arguments() |
| 992 | : TypeArguments::Cast( |
| 993 | instantiator_type_arguments()->BoundConstant()); |
| 994 | const auto& constant_function_type_args = |
| 995 | function_type_arguments()->BoundConstant().IsNull() |
| 996 | ? TypeArguments::null_type_arguments() |
| 997 | : TypeArguments::Cast(function_type_arguments()->BoundConstant()); |
| 998 | auto& constant_sub_type = AbstractType::Handle( |
| 999 | Z, AbstractType::Cast(sub_type()->BoundConstant()).raw()); |
| 1000 | auto& constant_super_type = AbstractType::Handle( |
| 1001 | Z, AbstractType::Cast(super_type()->BoundConstant()).raw()); |
| 1002 | |
| 1003 | ASSERT(!constant_super_type.IsTypeRef()); |
| 1004 | ASSERT(!constant_sub_type.IsTypeRef()); |
| 1005 | |
| 1006 | if (AbstractType::InstantiateAndTestSubtype( |
| 1007 | &constant_sub_type, &constant_super_type, |
| 1008 | constant_instantiator_type_args, constant_function_type_args)) { |
| 1009 | return nullptr; |
| 1010 | } |
| 1011 | } |
| 1012 | return this; |
| 1013 | } |
| 1014 | |
| 1015 | bool StrictCompareInstr::AttributesEqual(Instruction* other) const { |
| 1016 | StrictCompareInstr* other_op = other->AsStrictCompare(); |
| 1017 | ASSERT(other_op != NULL); |
| 1018 | return ComparisonInstr::AttributesEqual(other) && |
| 1019 | (needs_number_check() == other_op->needs_number_check()); |
| 1020 | } |
| 1021 | |
| 1022 | bool MathMinMaxInstr::AttributesEqual(Instruction* other) const { |
| 1023 | MathMinMaxInstr* other_op = other->AsMathMinMax(); |
| 1024 | ASSERT(other_op != NULL); |
| 1025 | return (op_kind() == other_op->op_kind()) && |
| 1026 | (result_cid() == other_op->result_cid()); |
| 1027 | } |
| 1028 | |
| 1029 | bool BinaryIntegerOpInstr::AttributesEqual(Instruction* other) const { |
| 1030 | ASSERT(other->tag() == tag()); |
| 1031 | BinaryIntegerOpInstr* other_op = other->AsBinaryIntegerOp(); |
| 1032 | return (op_kind() == other_op->op_kind()) && |
| 1033 | (can_overflow() == other_op->can_overflow()) && |
| 1034 | (is_truncating() == other_op->is_truncating()); |
| 1035 | } |
| 1036 | |
| 1037 | bool LoadFieldInstr::AttributesEqual(Instruction* other) const { |
| 1038 | LoadFieldInstr* other_load = other->AsLoadField(); |
| 1039 | ASSERT(other_load != NULL); |
| 1040 | return &this->slot_ == &other_load->slot_; |
| 1041 | } |
| 1042 | |
| 1043 | bool LoadStaticFieldInstr::AttributesEqual(Instruction* other) const { |
| 1044 | ASSERT(IsFieldInitialized()); |
| 1045 | return field().raw() == other->AsLoadStaticField()->field().raw(); |
| 1046 | } |
| 1047 | |
| 1048 | bool LoadStaticFieldInstr::IsFieldInitialized() const { |
| 1049 | const Field& field = this->field(); |
| 1050 | return (field.StaticValue() != Object::sentinel().raw()) && |
| 1051 | (field.StaticValue() != Object::transition_sentinel().raw()); |
| 1052 | } |
| 1053 | |
| 1054 | Definition* LoadStaticFieldInstr::Canonicalize(FlowGraph* flow_graph) { |
| 1055 | // When precompiling, the fact that a field is currently initialized does not |
| 1056 | // make it safe to omit code that checks if the field needs initialization |
| 1057 | // because the field will be reset so it starts uninitialized in the process |
| 1058 | // running the precompiled code. We must be prepared to reinitialize fields. |
| 1059 | if (calls_initializer() && !FLAG_fields_may_be_reset && |
| 1060 | IsFieldInitialized()) { |
| 1061 | set_calls_initializer(false); |
| 1062 | } |
| 1063 | return this; |
| 1064 | } |
| 1065 | |
| 1066 | ConstantInstr::ConstantInstr(const Object& value, TokenPosition token_pos) |
| 1067 | : value_(value), token_pos_(token_pos) { |
| 1068 | // Check that the value is not an incorrect Integer representation. |
| 1069 | ASSERT(!value.IsMint() || !Smi::IsValid(Mint::Cast(value).AsInt64Value())); |
| 1070 | // Check that clones of fields are not stored as constants. |
| 1071 | ASSERT(!value.IsField() || Field::Cast(value).IsOriginal()); |
| 1072 | // Check that all non-Smi objects are heap allocated and in old space. |
| 1073 | ASSERT(value.IsSmi() || value.IsOld()); |
| 1074 | #if defined(DEBUG) |
| 1075 | // Generally, instances in the flow graph should be canonical. Smis, null |
| 1076 | // values, and sentinel values are canonical by construction and so we skip |
| 1077 | // them here. |
| 1078 | if (!value.IsNull() && !value.IsSmi() && value.IsInstance() && |
| 1079 | !value.IsCanonical() && (value.raw() != Object::sentinel().raw())) { |
| 1080 | // The only allowed type for which IsCanonical() never answers true is |
| 1081 | // TypeParameter. (They are treated as canonical due to how they are |
| 1082 | // created, but there is no way to canonicalize a new TypeParameter |
| 1083 | // instance containing the same information as an existing instance.) |
| 1084 | // |
| 1085 | // Arrays in ConstantInstrs are usually immutable and canonicalized, but |
| 1086 | // there are at least a couple of cases where one or both is not true: |
| 1087 | // |
| 1088 | // * The Arrays created as backing for ArgumentsDescriptors may not be |
| 1089 | // canonicalized for space reasons when inlined in the IL. However, they |
| 1090 | // are still immutable. |
| 1091 | // * The backtracking stack for IRRegExps is put into a ConstantInstr for |
| 1092 | // immediate use as an argument to the operations on that stack. In this |
| 1093 | // case, the Array representing it is neither immutable or canonical. |
| 1094 | // |
| 1095 | // In addition to complicating the story for Arrays, IRRegExp compilation |
| 1096 | // also uses other non-canonical values as "constants". For example, the bit |
| 1097 | // tables used for certain character classes are represented as TypedData, |
| 1098 | // and so those values are also neither immutable (as there are no immutable |
| 1099 | // TypedData values) or canonical. |
| 1100 | // |
| 1101 | // LibraryPrefixes are also never canonicalized since their equality is |
| 1102 | // their identity. |
| 1103 | ASSERT(value.IsTypeParameter() || value.IsArray() || value.IsTypedData() || |
| 1104 | value.IsLibraryPrefix()); |
| 1105 | } |
| 1106 | #endif |
| 1107 | } |
| 1108 | |
| 1109 | bool ConstantInstr::AttributesEqual(Instruction* other) const { |
| 1110 | ConstantInstr* other_constant = other->AsConstant(); |
| 1111 | ASSERT(other_constant != NULL); |
| 1112 | return (value().raw() == other_constant->value().raw() && |
| 1113 | representation() == other_constant->representation()); |
| 1114 | } |
| 1115 | |
| 1116 | UnboxedConstantInstr::UnboxedConstantInstr(const Object& value, |
| 1117 | Representation representation) |
| 1118 | : ConstantInstr(value), |
| 1119 | representation_(representation), |
| 1120 | constant_address_(0) { |
| 1121 | if (representation_ == kUnboxedDouble) { |
| 1122 | ASSERT(value.IsDouble()); |
| 1123 | constant_address_ = FindDoubleConstant(Double::Cast(value).value()); |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | // Returns true if the value represents a constant. |
| 1128 | bool Value::BindsToConstant() const { |
| 1129 | return definition()->IsConstant(); |
| 1130 | } |
| 1131 | |
| 1132 | // Returns true if the value represents constant null. |
| 1133 | bool Value::BindsToConstantNull() const { |
| 1134 | ConstantInstr* constant = definition()->AsConstant(); |
| 1135 | return (constant != NULL) && constant->value().IsNull(); |
| 1136 | } |
| 1137 | |
| 1138 | const Object& Value::BoundConstant() const { |
| 1139 | ASSERT(BindsToConstant()); |
| 1140 | ConstantInstr* constant = definition()->AsConstant(); |
| 1141 | ASSERT(constant != NULL); |
| 1142 | return constant->value(); |
| 1143 | } |
| 1144 | |
| 1145 | GraphEntryInstr::GraphEntryInstr(const ParsedFunction& parsed_function, |
| 1146 | intptr_t osr_id) |
| 1147 | : GraphEntryInstr(parsed_function, |
| 1148 | osr_id, |
| 1149 | CompilerState::Current().GetNextDeoptId()) {} |
| 1150 | |
| 1151 | GraphEntryInstr::GraphEntryInstr(const ParsedFunction& parsed_function, |
| 1152 | intptr_t osr_id, |
| 1153 | intptr_t deopt_id) |
| 1154 | : BlockEntryWithInitialDefs(0, |
| 1155 | kInvalidTryIndex, |
| 1156 | deopt_id, |
| 1157 | /*stack_depth*/ 0), |
| 1158 | parsed_function_(parsed_function), |
| 1159 | catch_entries_(), |
| 1160 | indirect_entries_(), |
| 1161 | osr_id_(osr_id), |
| 1162 | entry_count_(0), |
| 1163 | spill_slot_count_(0), |
| 1164 | fixed_slot_count_(0) {} |
| 1165 | |
| 1166 | ConstantInstr* GraphEntryInstr::constant_null() { |
| 1167 | ASSERT(initial_definitions()->length() > 0); |
| 1168 | for (intptr_t i = 0; i < initial_definitions()->length(); ++i) { |
| 1169 | ConstantInstr* defn = (*initial_definitions())[i]->AsConstant(); |
| 1170 | if (defn != NULL && defn->value().IsNull()) return defn; |
| 1171 | } |
| 1172 | UNREACHABLE(); |
| 1173 | return NULL; |
| 1174 | } |
| 1175 | |
| 1176 | CatchBlockEntryInstr* GraphEntryInstr::GetCatchEntry(intptr_t index) { |
| 1177 | // TODO(fschneider): Sort the catch entries by catch_try_index to avoid |
| 1178 | // searching. |
| 1179 | for (intptr_t i = 0; i < catch_entries_.length(); ++i) { |
| 1180 | if (catch_entries_[i]->catch_try_index() == index) return catch_entries_[i]; |
| 1181 | } |
| 1182 | return NULL; |
| 1183 | } |
| 1184 | |
| 1185 | bool GraphEntryInstr::IsCompiledForOsr() const { |
| 1186 | return osr_id_ != Compiler::kNoOSRDeoptId; |
| 1187 | } |
| 1188 | |
| 1189 | // ==== Support for visiting flow graphs. |
| 1190 | |
| 1191 | #define DEFINE_ACCEPT(ShortName, Attrs) \ |
| 1192 | void ShortName##Instr::(FlowGraphVisitor* visitor) { \ |
| 1193 | visitor->Visit##ShortName(this); \ |
| 1194 | } |
| 1195 | |
| 1196 | FOR_EACH_INSTRUCTION(DEFINE_ACCEPT) |
| 1197 | |
| 1198 | #undef DEFINE_ACCEPT |
| 1199 | |
| 1200 | void Instruction::SetEnvironment(Environment* deopt_env) { |
| 1201 | intptr_t use_index = 0; |
| 1202 | for (Environment::DeepIterator it(deopt_env); !it.Done(); it.Advance()) { |
| 1203 | Value* use = it.CurrentValue(); |
| 1204 | use->set_instruction(this); |
| 1205 | use->set_use_index(use_index++); |
| 1206 | } |
| 1207 | env_ = deopt_env; |
| 1208 | } |
| 1209 | |
| 1210 | void Instruction::RemoveEnvironment() { |
| 1211 | for (Environment::DeepIterator it(env()); !it.Done(); it.Advance()) { |
| 1212 | it.CurrentValue()->RemoveFromUseList(); |
| 1213 | } |
| 1214 | env_ = NULL; |
| 1215 | } |
| 1216 | |
| 1217 | void Instruction::ReplaceInEnvironment(Definition* current, |
| 1218 | Definition* replacement) { |
| 1219 | for (Environment::DeepIterator it(env()); !it.Done(); it.Advance()) { |
| 1220 | Value* use = it.CurrentValue(); |
| 1221 | if (use->definition() == current) { |
| 1222 | use->RemoveFromUseList(); |
| 1223 | use->set_definition(replacement); |
| 1224 | replacement->AddEnvUse(use); |
| 1225 | } |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | Instruction* Instruction::RemoveFromGraph(bool return_previous) { |
| 1230 | ASSERT(!IsBlockEntry()); |
| 1231 | ASSERT(!IsBranch()); |
| 1232 | ASSERT(!IsThrow()); |
| 1233 | ASSERT(!IsReturn()); |
| 1234 | ASSERT(!IsReThrow()); |
| 1235 | ASSERT(!IsGoto()); |
| 1236 | ASSERT(previous() != NULL); |
| 1237 | // We cannot assert that the instruction, if it is a definition, has no |
| 1238 | // uses. This function is used to remove instructions from the graph and |
| 1239 | // reinsert them elsewhere (e.g., hoisting). |
| 1240 | Instruction* prev_instr = previous(); |
| 1241 | Instruction* next_instr = next(); |
| 1242 | ASSERT(next_instr != NULL); |
| 1243 | ASSERT(!next_instr->IsBlockEntry()); |
| 1244 | prev_instr->LinkTo(next_instr); |
| 1245 | UnuseAllInputs(); |
| 1246 | // Reset the successor and previous instruction to indicate that the |
| 1247 | // instruction is removed from the graph. |
| 1248 | set_previous(NULL); |
| 1249 | set_next(NULL); |
| 1250 | return return_previous ? prev_instr : next_instr; |
| 1251 | } |
| 1252 | |
| 1253 | void Instruction::InsertAfter(Instruction* prev) { |
| 1254 | ASSERT(previous_ == NULL); |
| 1255 | ASSERT(next_ == NULL); |
| 1256 | previous_ = prev; |
| 1257 | next_ = prev->next_; |
| 1258 | next_->previous_ = this; |
| 1259 | previous_->next_ = this; |
| 1260 | |
| 1261 | // Update def-use chains whenever instructions are added to the graph |
| 1262 | // after initial graph construction. |
| 1263 | for (intptr_t i = InputCount() - 1; i >= 0; --i) { |
| 1264 | Value* input = InputAt(i); |
| 1265 | input->definition()->AddInputUse(input); |
| 1266 | } |
| 1267 | } |
| 1268 | |
| 1269 | Instruction* Instruction::AppendInstruction(Instruction* tail) { |
| 1270 | LinkTo(tail); |
| 1271 | // Update def-use chains whenever instructions are added to the graph |
| 1272 | // after initial graph construction. |
| 1273 | for (intptr_t i = tail->InputCount() - 1; i >= 0; --i) { |
| 1274 | Value* input = tail->InputAt(i); |
| 1275 | input->definition()->AddInputUse(input); |
| 1276 | } |
| 1277 | return tail; |
| 1278 | } |
| 1279 | |
| 1280 | BlockEntryInstr* Instruction::GetBlock() { |
| 1281 | // TODO(fschneider): Implement a faster way to get the block of an |
| 1282 | // instruction. |
| 1283 | Instruction* result = previous(); |
| 1284 | ASSERT(result != nullptr); |
| 1285 | while (!result->IsBlockEntry()) { |
| 1286 | result = result->previous(); |
| 1287 | ASSERT(result != nullptr); |
| 1288 | } |
| 1289 | return result->AsBlockEntry(); |
| 1290 | } |
| 1291 | |
| 1292 | void ForwardInstructionIterator::RemoveCurrentFromGraph() { |
| 1293 | current_ = current_->RemoveFromGraph(true); // Set current_ to previous. |
| 1294 | } |
| 1295 | |
| 1296 | void BackwardInstructionIterator::RemoveCurrentFromGraph() { |
| 1297 | current_ = current_->RemoveFromGraph(false); // Set current_ to next. |
| 1298 | } |
| 1299 | |
| 1300 | // Default implementation of visiting basic blocks. Can be overridden. |
| 1301 | void FlowGraphVisitor::VisitBlocks() { |
| 1302 | ASSERT(current_iterator_ == NULL); |
| 1303 | for (intptr_t i = 0; i < block_order_->length(); ++i) { |
| 1304 | BlockEntryInstr* entry = (*block_order_)[i]; |
| 1305 | entry->Accept(this); |
| 1306 | ForwardInstructionIterator it(entry); |
| 1307 | current_iterator_ = ⁢ |
| 1308 | for (; !it.Done(); it.Advance()) { |
| 1309 | it.Current()->Accept(this); |
| 1310 | } |
| 1311 | current_iterator_ = NULL; |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | bool Value::NeedsWriteBarrier() { |
| 1316 | Value* value = this; |
| 1317 | do { |
| 1318 | if (value->Type()->IsNull() || |
| 1319 | (value->Type()->ToNullableCid() == kSmiCid) || |
| 1320 | (value->Type()->ToNullableCid() == kBoolCid)) { |
| 1321 | return false; |
| 1322 | } |
| 1323 | |
| 1324 | // Strictly speaking, the incremental barrier can only be skipped for |
| 1325 | // immediate objects (Smis) or permanent objects (vm-isolate heap or |
| 1326 | // image pages). Here we choose to skip the barrier for any constant on |
| 1327 | // the assumption it will remain reachable through the object pool. |
| 1328 | if (value->BindsToConstant()) { |
| 1329 | return false; |
| 1330 | } |
| 1331 | |
| 1332 | // Follow the chain of redefinitions as redefined value could have a more |
| 1333 | // accurate type (for example, AssertAssignable of Smi to a generic T). |
| 1334 | value = value->definition()->RedefinedValue(); |
| 1335 | } while (value != nullptr); |
| 1336 | |
| 1337 | return true; |
| 1338 | } |
| 1339 | |
| 1340 | void JoinEntryInstr::AddPredecessor(BlockEntryInstr* predecessor) { |
| 1341 | // Require the predecessors to be sorted by block_id to make managing |
| 1342 | // their corresponding phi inputs simpler. |
| 1343 | intptr_t pred_id = predecessor->block_id(); |
| 1344 | intptr_t index = 0; |
| 1345 | while ((index < predecessors_.length()) && |
| 1346 | (predecessors_[index]->block_id() < pred_id)) { |
| 1347 | ++index; |
| 1348 | } |
| 1349 | #if defined(DEBUG) |
| 1350 | for (intptr_t i = index; i < predecessors_.length(); ++i) { |
| 1351 | ASSERT(predecessors_[i]->block_id() != pred_id); |
| 1352 | } |
| 1353 | #endif |
| 1354 | predecessors_.InsertAt(index, predecessor); |
| 1355 | } |
| 1356 | |
| 1357 | intptr_t JoinEntryInstr::IndexOfPredecessor(BlockEntryInstr* pred) const { |
| 1358 | for (intptr_t i = 0; i < predecessors_.length(); ++i) { |
| 1359 | if (predecessors_[i] == pred) return i; |
| 1360 | } |
| 1361 | return -1; |
| 1362 | } |
| 1363 | |
| 1364 | void Value::AddToList(Value* value, Value** list) { |
| 1365 | ASSERT(value->next_use() == nullptr); |
| 1366 | ASSERT(value->previous_use() == nullptr); |
| 1367 | Value* next = *list; |
| 1368 | ASSERT(value != next); |
| 1369 | *list = value; |
| 1370 | value->set_next_use(next); |
| 1371 | value->set_previous_use(NULL); |
| 1372 | if (next != NULL) next->set_previous_use(value); |
| 1373 | } |
| 1374 | |
| 1375 | void Value::RemoveFromUseList() { |
| 1376 | Definition* def = definition(); |
| 1377 | Value* next = next_use(); |
| 1378 | if (this == def->input_use_list()) { |
| 1379 | def->set_input_use_list(next); |
| 1380 | if (next != NULL) next->set_previous_use(NULL); |
| 1381 | } else if (this == def->env_use_list()) { |
| 1382 | def->set_env_use_list(next); |
| 1383 | if (next != NULL) next->set_previous_use(NULL); |
| 1384 | } else if (Value* prev = previous_use()) { |
| 1385 | prev->set_next_use(next); |
| 1386 | if (next != NULL) next->set_previous_use(prev); |
| 1387 | } |
| 1388 | |
| 1389 | set_previous_use(NULL); |
| 1390 | set_next_use(NULL); |
| 1391 | } |
| 1392 | |
| 1393 | // True if the definition has a single input use and is used only in |
| 1394 | // environments at the same instruction as that input use. |
| 1395 | bool Definition::HasOnlyUse(Value* use) const { |
| 1396 | if (!HasOnlyInputUse(use)) { |
| 1397 | return false; |
| 1398 | } |
| 1399 | |
| 1400 | Instruction* target = use->instruction(); |
| 1401 | for (Value::Iterator it(env_use_list()); !it.Done(); it.Advance()) { |
| 1402 | if (it.Current()->instruction() != target) return false; |
| 1403 | } |
| 1404 | return true; |
| 1405 | } |
| 1406 | |
| 1407 | bool Definition::HasOnlyInputUse(Value* use) const { |
| 1408 | return (input_use_list() == use) && (use->next_use() == NULL); |
| 1409 | } |
| 1410 | |
| 1411 | void Definition::ReplaceUsesWith(Definition* other) { |
| 1412 | ASSERT(other != NULL); |
| 1413 | ASSERT(this != other); |
| 1414 | |
| 1415 | Value* current = NULL; |
| 1416 | Value* next = input_use_list(); |
| 1417 | if (next != NULL) { |
| 1418 | // Change all the definitions. |
| 1419 | while (next != NULL) { |
| 1420 | current = next; |
| 1421 | current->set_definition(other); |
| 1422 | current->RefineReachingType(other->Type()); |
| 1423 | next = current->next_use(); |
| 1424 | } |
| 1425 | |
| 1426 | // Concatenate the lists. |
| 1427 | next = other->input_use_list(); |
| 1428 | current->set_next_use(next); |
| 1429 | if (next != NULL) next->set_previous_use(current); |
| 1430 | other->set_input_use_list(input_use_list()); |
| 1431 | set_input_use_list(NULL); |
| 1432 | } |
| 1433 | |
| 1434 | // Repeat for environment uses. |
| 1435 | current = NULL; |
| 1436 | next = env_use_list(); |
| 1437 | if (next != NULL) { |
| 1438 | while (next != NULL) { |
| 1439 | current = next; |
| 1440 | current->set_definition(other); |
| 1441 | current->RefineReachingType(other->Type()); |
| 1442 | next = current->next_use(); |
| 1443 | } |
| 1444 | next = other->env_use_list(); |
| 1445 | current->set_next_use(next); |
| 1446 | if (next != NULL) next->set_previous_use(current); |
| 1447 | other->set_env_use_list(env_use_list()); |
| 1448 | set_env_use_list(NULL); |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | void Instruction::UnuseAllInputs() { |
| 1453 | for (intptr_t i = InputCount() - 1; i >= 0; --i) { |
| 1454 | InputAt(i)->RemoveFromUseList(); |
| 1455 | } |
| 1456 | for (Environment::DeepIterator it(env()); !it.Done(); it.Advance()) { |
| 1457 | it.CurrentValue()->RemoveFromUseList(); |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | void Instruction::RepairPushArgsInEnvironment() const { |
| 1462 | PushArgumentsArray* push_arguments = GetPushArguments(); |
| 1463 | ASSERT(push_arguments != nullptr); |
| 1464 | const intptr_t arg_count = ArgumentCount(); |
| 1465 | ASSERT(arg_count <= env()->Length()); |
| 1466 | const intptr_t env_base = env()->Length() - arg_count; |
| 1467 | for (intptr_t i = 0; i < arg_count; ++i) { |
| 1468 | env()->ValueAt(env_base + i)->BindToEnvironment(push_arguments->At(i)); |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | void Instruction::InheritDeoptTargetAfter(FlowGraph* flow_graph, |
| 1473 | Definition* call, |
| 1474 | Definition* result) { |
| 1475 | ASSERT(call->env() != NULL); |
| 1476 | deopt_id_ = DeoptId::ToDeoptAfter(call->deopt_id_); |
| 1477 | call->env()->DeepCopyAfterTo( |
| 1478 | flow_graph->zone(), this, call->ArgumentCount(), |
| 1479 | flow_graph->constant_dead(), |
| 1480 | result != NULL ? result : flow_graph->constant_dead()); |
| 1481 | } |
| 1482 | |
| 1483 | void Instruction::InheritDeoptTarget(Zone* zone, Instruction* other) { |
| 1484 | ASSERT(other->env() != NULL); |
| 1485 | CopyDeoptIdFrom(*other); |
| 1486 | other->env()->DeepCopyTo(zone, this); |
| 1487 | } |
| 1488 | |
| 1489 | void BranchInstr::InheritDeoptTarget(Zone* zone, Instruction* other) { |
| 1490 | ASSERT(env() == NULL); |
| 1491 | Instruction::InheritDeoptTarget(zone, other); |
| 1492 | comparison()->SetDeoptId(*this); |
| 1493 | } |
| 1494 | |
| 1495 | bool Instruction::IsDominatedBy(Instruction* dom) { |
| 1496 | BlockEntryInstr* block = GetBlock(); |
| 1497 | BlockEntryInstr* dom_block = dom->GetBlock(); |
| 1498 | |
| 1499 | if (dom->IsPhi()) { |
| 1500 | dom = dom_block; |
| 1501 | } |
| 1502 | |
| 1503 | if (block == dom_block) { |
| 1504 | if ((block == dom) || (this == block->last_instruction())) { |
| 1505 | return true; |
| 1506 | } |
| 1507 | |
| 1508 | if (IsPhi()) { |
| 1509 | return false; |
| 1510 | } |
| 1511 | |
| 1512 | for (Instruction* curr = dom->next(); curr != NULL; curr = curr->next()) { |
| 1513 | if (curr == this) return true; |
| 1514 | } |
| 1515 | |
| 1516 | return false; |
| 1517 | } |
| 1518 | |
| 1519 | return dom_block->Dominates(block); |
| 1520 | } |
| 1521 | |
| 1522 | bool Instruction::HasUnmatchedInputRepresentations() const { |
| 1523 | for (intptr_t i = 0; i < InputCount(); i++) { |
| 1524 | Definition* input = InputAt(i)->definition(); |
| 1525 | const Representation input_representation = RequiredInputRepresentation(i); |
| 1526 | if (input_representation != kNoRepresentation && |
| 1527 | input_representation != input->representation()) { |
| 1528 | return true; |
| 1529 | } |
| 1530 | } |
| 1531 | |
| 1532 | return false; |
| 1533 | } |
| 1534 | |
| 1535 | const intptr_t Instruction::kInstructionAttrs[Instruction::kNumInstructions] = { |
| 1536 | #define INSTR_ATTRS(type, attrs) InstrAttrs::attrs, |
| 1537 | FOR_EACH_INSTRUCTION(INSTR_ATTRS) |
| 1538 | #undef INSTR_ATTRS |
| 1539 | }; |
| 1540 | |
| 1541 | bool Instruction::CanTriggerGC() const { |
| 1542 | return (kInstructionAttrs[tag()] & InstrAttrs::kNoGC) == 0; |
| 1543 | } |
| 1544 | |
| 1545 | void Definition::ReplaceWithResult(Instruction* replacement, |
| 1546 | Definition* replacement_for_uses, |
| 1547 | ForwardInstructionIterator* iterator) { |
| 1548 | // Record replacement's input uses. |
| 1549 | for (intptr_t i = replacement->InputCount() - 1; i >= 0; --i) { |
| 1550 | Value* input = replacement->InputAt(i); |
| 1551 | input->definition()->AddInputUse(input); |
| 1552 | } |
| 1553 | // Take replacement's environment from this definition. |
| 1554 | ASSERT(replacement->env() == NULL); |
| 1555 | replacement->SetEnvironment(env()); |
| 1556 | ClearEnv(); |
| 1557 | // Replace all uses of this definition with replacement_for_uses. |
| 1558 | ReplaceUsesWith(replacement_for_uses); |
| 1559 | |
| 1560 | // Finally replace this one with the replacement instruction in the graph. |
| 1561 | previous()->LinkTo(replacement); |
| 1562 | if ((iterator != NULL) && (this == iterator->Current())) { |
| 1563 | // Remove through the iterator. |
| 1564 | replacement->LinkTo(this); |
| 1565 | iterator->RemoveCurrentFromGraph(); |
| 1566 | } else { |
| 1567 | replacement->LinkTo(next()); |
| 1568 | // Remove this definition's input uses. |
| 1569 | UnuseAllInputs(); |
| 1570 | } |
| 1571 | set_previous(NULL); |
| 1572 | set_next(NULL); |
| 1573 | } |
| 1574 | |
| 1575 | void Definition::ReplaceWith(Definition* other, |
| 1576 | ForwardInstructionIterator* iterator) { |
| 1577 | // Reuse this instruction's SSA name for other. |
| 1578 | ASSERT(!other->HasSSATemp()); |
| 1579 | if (HasSSATemp()) { |
| 1580 | other->set_ssa_temp_index(ssa_temp_index()); |
| 1581 | } |
| 1582 | ReplaceWithResult(other, other, iterator); |
| 1583 | } |
| 1584 | |
| 1585 | void BranchInstr::SetComparison(ComparisonInstr* new_comparison) { |
| 1586 | for (intptr_t i = new_comparison->InputCount() - 1; i >= 0; --i) { |
| 1587 | Value* input = new_comparison->InputAt(i); |
| 1588 | input->definition()->AddInputUse(input); |
| 1589 | input->set_instruction(this); |
| 1590 | } |
| 1591 | // There should be no need to copy or unuse an environment. |
| 1592 | ASSERT(comparison()->env() == NULL); |
| 1593 | ASSERT(new_comparison->env() == NULL); |
| 1594 | // Remove the current comparison's input uses. |
| 1595 | comparison()->UnuseAllInputs(); |
| 1596 | ASSERT(!new_comparison->HasUses()); |
| 1597 | comparison_ = new_comparison; |
| 1598 | } |
| 1599 | |
| 1600 | // ==== Postorder graph traversal. |
| 1601 | static bool IsMarked(BlockEntryInstr* block, |
| 1602 | GrowableArray<BlockEntryInstr*>* preorder) { |
| 1603 | // Detect that a block has been visited as part of the current |
| 1604 | // DiscoverBlocks (we can call DiscoverBlocks multiple times). The block |
| 1605 | // will be 'marked' by (1) having a preorder number in the range of the |
| 1606 | // preorder array and (2) being in the preorder array at that index. |
| 1607 | intptr_t i = block->preorder_number(); |
| 1608 | return (i >= 0) && (i < preorder->length()) && ((*preorder)[i] == block); |
| 1609 | } |
| 1610 | |
| 1611 | // Base class implementation used for JoinEntry and TargetEntry. |
| 1612 | bool BlockEntryInstr::DiscoverBlock(BlockEntryInstr* predecessor, |
| 1613 | GrowableArray<BlockEntryInstr*>* preorder, |
| 1614 | GrowableArray<intptr_t>* parent) { |
| 1615 | // If this block has a predecessor (i.e., is not the graph entry) we can |
| 1616 | // assume the preorder array is non-empty. |
| 1617 | ASSERT((predecessor == NULL) || !preorder->is_empty()); |
| 1618 | // Blocks with a single predecessor cannot have been reached before. |
| 1619 | ASSERT(IsJoinEntry() || !IsMarked(this, preorder)); |
| 1620 | |
| 1621 | // 1. If the block has already been reached, add current_block as a |
| 1622 | // basic-block predecessor and we are done. |
| 1623 | if (IsMarked(this, preorder)) { |
| 1624 | ASSERT(predecessor != NULL); |
| 1625 | AddPredecessor(predecessor); |
| 1626 | return false; |
| 1627 | } |
| 1628 | |
| 1629 | // 2. Otherwise, clear the predecessors which might have been computed on |
| 1630 | // some earlier call to DiscoverBlocks and record this predecessor. |
| 1631 | ClearPredecessors(); |
| 1632 | if (predecessor != NULL) AddPredecessor(predecessor); |
| 1633 | |
| 1634 | // 3. The predecessor is the spanning-tree parent. The graph entry has no |
| 1635 | // parent, indicated by -1. |
| 1636 | intptr_t parent_number = |
| 1637 | (predecessor == NULL) ? -1 : predecessor->preorder_number(); |
| 1638 | parent->Add(parent_number); |
| 1639 | |
| 1640 | // 4. Assign the preorder number and add the block entry to the list. |
| 1641 | set_preorder_number(preorder->length()); |
| 1642 | preorder->Add(this); |
| 1643 | |
| 1644 | // The preorder and parent arrays are indexed by |
| 1645 | // preorder block number, so they should stay in lockstep. |
| 1646 | ASSERT(preorder->length() == parent->length()); |
| 1647 | |
| 1648 | // 5. Iterate straight-line successors to record assigned variables and |
| 1649 | // find the last instruction in the block. The graph entry block consists |
| 1650 | // of only the entry instruction, so that is the last instruction in the |
| 1651 | // block. |
| 1652 | Instruction* last = this; |
| 1653 | for (ForwardInstructionIterator it(this); !it.Done(); it.Advance()) { |
| 1654 | last = it.Current(); |
| 1655 | } |
| 1656 | set_last_instruction(last); |
| 1657 | if (last->IsGoto()) last->AsGoto()->set_block(this); |
| 1658 | |
| 1659 | return true; |
| 1660 | } |
| 1661 | |
| 1662 | void GraphEntryInstr::RelinkToOsrEntry(Zone* zone, intptr_t max_block_id) { |
| 1663 | ASSERT(osr_id_ != Compiler::kNoOSRDeoptId); |
| 1664 | BitVector* block_marks = new (zone) BitVector(zone, max_block_id + 1); |
| 1665 | bool found = FindOsrEntryAndRelink(this, /*parent=*/NULL, block_marks); |
| 1666 | ASSERT(found); |
| 1667 | } |
| 1668 | |
| 1669 | bool BlockEntryInstr::FindOsrEntryAndRelink(GraphEntryInstr* graph_entry, |
| 1670 | Instruction* parent, |
| 1671 | BitVector* block_marks) { |
| 1672 | const intptr_t osr_id = graph_entry->osr_id(); |
| 1673 | |
| 1674 | // Search for the instruction with the OSR id. Use a depth first search |
| 1675 | // because basic blocks have not been discovered yet. Prune unreachable |
| 1676 | // blocks by replacing the normal entry with a jump to the block |
| 1677 | // containing the OSR entry point. |
| 1678 | |
| 1679 | // Do not visit blocks more than once. |
| 1680 | if (block_marks->Contains(block_id())) return false; |
| 1681 | block_marks->Add(block_id()); |
| 1682 | |
| 1683 | // Search this block for the OSR id. |
| 1684 | Instruction* instr = this; |
| 1685 | for (ForwardInstructionIterator it(this); !it.Done(); it.Advance()) { |
| 1686 | instr = it.Current(); |
| 1687 | if (instr->GetDeoptId() == osr_id) { |
| 1688 | // Sanity check that we found a stack check instruction. |
| 1689 | ASSERT(instr->IsCheckStackOverflow()); |
| 1690 | // Loop stack check checks are always in join blocks so that they can |
| 1691 | // be the target of a goto. |
| 1692 | ASSERT(IsJoinEntry()); |
| 1693 | // The instruction should be the first instruction in the block so |
| 1694 | // we can simply jump to the beginning of the block. |
| 1695 | ASSERT(instr->previous() == this); |
| 1696 | |
| 1697 | ASSERT(stack_depth() == instr->AsCheckStackOverflow()->stack_depth()); |
| 1698 | auto normal_entry = graph_entry->normal_entry(); |
| 1699 | auto osr_entry = new OsrEntryInstr( |
| 1700 | graph_entry, normal_entry->block_id(), normal_entry->try_index(), |
| 1701 | normal_entry->deopt_id(), stack_depth()); |
| 1702 | |
| 1703 | auto goto_join = new GotoInstr(AsJoinEntry(), |
| 1704 | CompilerState::Current().GetNextDeoptId()); |
| 1705 | ASSERT(parent != nullptr); |
| 1706 | goto_join->CopyDeoptIdFrom(*parent); |
| 1707 | osr_entry->LinkTo(goto_join); |
| 1708 | |
| 1709 | // Remove normal function entries & add osr entry. |
| 1710 | graph_entry->set_normal_entry(nullptr); |
| 1711 | graph_entry->set_unchecked_entry(nullptr); |
| 1712 | graph_entry->set_osr_entry(osr_entry); |
| 1713 | |
| 1714 | return true; |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | // Recursively search the successors. |
| 1719 | for (intptr_t i = instr->SuccessorCount() - 1; i >= 0; --i) { |
| 1720 | if (instr->SuccessorAt(i)->FindOsrEntryAndRelink(graph_entry, instr, |
| 1721 | block_marks)) { |
| 1722 | return true; |
| 1723 | } |
| 1724 | } |
| 1725 | return false; |
| 1726 | } |
| 1727 | |
| 1728 | bool BlockEntryInstr::Dominates(BlockEntryInstr* other) const { |
| 1729 | // TODO(fschneider): Make this faster by e.g. storing dominators for each |
| 1730 | // block while computing the dominator tree. |
| 1731 | ASSERT(other != NULL); |
| 1732 | BlockEntryInstr* current = other; |
| 1733 | while (current != NULL && current != this) { |
| 1734 | current = current->dominator(); |
| 1735 | } |
| 1736 | return current == this; |
| 1737 | } |
| 1738 | |
| 1739 | BlockEntryInstr* BlockEntryInstr::ImmediateDominator() const { |
| 1740 | Instruction* last = dominator()->last_instruction(); |
| 1741 | if ((last->SuccessorCount() == 1) && (last->SuccessorAt(0) == this)) { |
| 1742 | return dominator(); |
| 1743 | } |
| 1744 | return NULL; |
| 1745 | } |
| 1746 | |
| 1747 | bool BlockEntryInstr::() const { |
| 1748 | return loop_info_ != nullptr && loop_info_->header() == this; |
| 1749 | } |
| 1750 | |
| 1751 | intptr_t BlockEntryInstr::NestingDepth() const { |
| 1752 | return loop_info_ == nullptr ? 0 : loop_info_->NestingDepth(); |
| 1753 | } |
| 1754 | |
| 1755 | // Helper to mutate the graph during inlining. This block should be |
| 1756 | // replaced with new_block as a predecessor of all of this block's |
| 1757 | // successors. For each successor, the predecessors will be reordered |
| 1758 | // to preserve block-order sorting of the predecessors as well as the |
| 1759 | // phis if the successor is a join. |
| 1760 | void BlockEntryInstr::ReplaceAsPredecessorWith(BlockEntryInstr* new_block) { |
| 1761 | // Set the last instruction of the new block to that of the old block. |
| 1762 | Instruction* last = last_instruction(); |
| 1763 | new_block->set_last_instruction(last); |
| 1764 | // For each successor, update the predecessors. |
| 1765 | for (intptr_t sidx = 0; sidx < last->SuccessorCount(); ++sidx) { |
| 1766 | // If the successor is a target, update its predecessor. |
| 1767 | TargetEntryInstr* target = last->SuccessorAt(sidx)->AsTargetEntry(); |
| 1768 | if (target != NULL) { |
| 1769 | target->predecessor_ = new_block; |
| 1770 | continue; |
| 1771 | } |
| 1772 | // If the successor is a join, update each predecessor and the phis. |
| 1773 | JoinEntryInstr* join = last->SuccessorAt(sidx)->AsJoinEntry(); |
| 1774 | ASSERT(join != NULL); |
| 1775 | // Find the old predecessor index. |
| 1776 | intptr_t old_index = join->IndexOfPredecessor(this); |
| 1777 | intptr_t pred_count = join->PredecessorCount(); |
| 1778 | ASSERT(old_index >= 0); |
| 1779 | ASSERT(old_index < pred_count); |
| 1780 | // Find the new predecessor index while reordering the predecessors. |
| 1781 | intptr_t new_id = new_block->block_id(); |
| 1782 | intptr_t new_index = old_index; |
| 1783 | if (block_id() < new_id) { |
| 1784 | // Search upwards, bubbling down intermediate predecessors. |
| 1785 | for (; new_index < pred_count - 1; ++new_index) { |
| 1786 | if (join->predecessors_[new_index + 1]->block_id() > new_id) break; |
| 1787 | join->predecessors_[new_index] = join->predecessors_[new_index + 1]; |
| 1788 | } |
| 1789 | } else { |
| 1790 | // Search downwards, bubbling up intermediate predecessors. |
| 1791 | for (; new_index > 0; --new_index) { |
| 1792 | if (join->predecessors_[new_index - 1]->block_id() < new_id) break; |
| 1793 | join->predecessors_[new_index] = join->predecessors_[new_index - 1]; |
| 1794 | } |
| 1795 | } |
| 1796 | join->predecessors_[new_index] = new_block; |
| 1797 | // If the new and old predecessor index match there is nothing to update. |
| 1798 | if ((join->phis() == NULL) || (old_index == new_index)) return; |
| 1799 | // Otherwise, reorder the predecessor uses in each phi. |
| 1800 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 1801 | PhiInstr* phi = it.Current(); |
| 1802 | ASSERT(phi != NULL); |
| 1803 | ASSERT(pred_count == phi->InputCount()); |
| 1804 | // Save the predecessor use. |
| 1805 | Value* pred_use = phi->InputAt(old_index); |
| 1806 | // Move uses between old and new. |
| 1807 | intptr_t step = (old_index < new_index) ? 1 : -1; |
| 1808 | for (intptr_t use_idx = old_index; use_idx != new_index; |
| 1809 | use_idx += step) { |
| 1810 | phi->SetInputAt(use_idx, phi->InputAt(use_idx + step)); |
| 1811 | } |
| 1812 | // Write the predecessor use. |
| 1813 | phi->SetInputAt(new_index, pred_use); |
| 1814 | } |
| 1815 | } |
| 1816 | } |
| 1817 | |
| 1818 | void BlockEntryInstr::ClearAllInstructions() { |
| 1819 | JoinEntryInstr* join = this->AsJoinEntry(); |
| 1820 | if (join != NULL) { |
| 1821 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 1822 | it.Current()->UnuseAllInputs(); |
| 1823 | } |
| 1824 | } |
| 1825 | UnuseAllInputs(); |
| 1826 | for (ForwardInstructionIterator it(this); !it.Done(); it.Advance()) { |
| 1827 | it.Current()->UnuseAllInputs(); |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | PhiInstr* JoinEntryInstr::InsertPhi(intptr_t var_index, intptr_t var_count) { |
| 1832 | // Lazily initialize the array of phis. |
| 1833 | // Currently, phis are stored in a sparse array that holds the phi |
| 1834 | // for variable with index i at position i. |
| 1835 | // TODO(fschneider): Store phis in a more compact way. |
| 1836 | if (phis_ == NULL) { |
| 1837 | phis_ = new ZoneGrowableArray<PhiInstr*>(var_count); |
| 1838 | for (intptr_t i = 0; i < var_count; i++) { |
| 1839 | phis_->Add(NULL); |
| 1840 | } |
| 1841 | } |
| 1842 | ASSERT((*phis_)[var_index] == NULL); |
| 1843 | return (*phis_)[var_index] = new PhiInstr(this, PredecessorCount()); |
| 1844 | } |
| 1845 | |
| 1846 | void JoinEntryInstr::InsertPhi(PhiInstr* phi) { |
| 1847 | // Lazily initialize the array of phis. |
| 1848 | if (phis_ == NULL) { |
| 1849 | phis_ = new ZoneGrowableArray<PhiInstr*>(1); |
| 1850 | } |
| 1851 | phis_->Add(phi); |
| 1852 | } |
| 1853 | |
| 1854 | void JoinEntryInstr::RemovePhi(PhiInstr* phi) { |
| 1855 | ASSERT(phis_ != NULL); |
| 1856 | for (intptr_t index = 0; index < phis_->length(); ++index) { |
| 1857 | if (phi == (*phis_)[index]) { |
| 1858 | (*phis_)[index] = phis_->Last(); |
| 1859 | phis_->RemoveLast(); |
| 1860 | return; |
| 1861 | } |
| 1862 | } |
| 1863 | } |
| 1864 | |
| 1865 | void JoinEntryInstr::RemoveDeadPhis(Definition* replacement) { |
| 1866 | if (phis_ == NULL) return; |
| 1867 | |
| 1868 | intptr_t to_index = 0; |
| 1869 | for (intptr_t from_index = 0; from_index < phis_->length(); ++from_index) { |
| 1870 | PhiInstr* phi = (*phis_)[from_index]; |
| 1871 | if (phi != NULL) { |
| 1872 | if (phi->is_alive()) { |
| 1873 | (*phis_)[to_index++] = phi; |
| 1874 | for (intptr_t i = phi->InputCount() - 1; i >= 0; --i) { |
| 1875 | Value* input = phi->InputAt(i); |
| 1876 | input->definition()->AddInputUse(input); |
| 1877 | } |
| 1878 | } else { |
| 1879 | phi->ReplaceUsesWith(replacement); |
| 1880 | } |
| 1881 | } |
| 1882 | } |
| 1883 | if (to_index == 0) { |
| 1884 | phis_ = NULL; |
| 1885 | } else { |
| 1886 | phis_->TruncateTo(to_index); |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | intptr_t Instruction::SuccessorCount() const { |
| 1891 | return 0; |
| 1892 | } |
| 1893 | |
| 1894 | BlockEntryInstr* Instruction::SuccessorAt(intptr_t index) const { |
| 1895 | // Called only if index is in range. Only control-transfer instructions |
| 1896 | // can have non-zero successor counts and they override this function. |
| 1897 | UNREACHABLE(); |
| 1898 | return NULL; |
| 1899 | } |
| 1900 | |
| 1901 | intptr_t GraphEntryInstr::SuccessorCount() const { |
| 1902 | return (normal_entry() == nullptr ? 0 : 1) + |
| 1903 | (unchecked_entry() == nullptr ? 0 : 1) + |
| 1904 | (osr_entry() == nullptr ? 0 : 1) + catch_entries_.length(); |
| 1905 | } |
| 1906 | |
| 1907 | BlockEntryInstr* GraphEntryInstr::SuccessorAt(intptr_t index) const { |
| 1908 | if (normal_entry() != nullptr) { |
| 1909 | if (index == 0) return normal_entry_; |
| 1910 | index--; |
| 1911 | } |
| 1912 | if (unchecked_entry() != nullptr) { |
| 1913 | if (index == 0) return unchecked_entry(); |
| 1914 | index--; |
| 1915 | } |
| 1916 | if (osr_entry() != nullptr) { |
| 1917 | if (index == 0) return osr_entry(); |
| 1918 | index--; |
| 1919 | } |
| 1920 | return catch_entries_[index]; |
| 1921 | } |
| 1922 | |
| 1923 | intptr_t BranchInstr::SuccessorCount() const { |
| 1924 | return 2; |
| 1925 | } |
| 1926 | |
| 1927 | BlockEntryInstr* BranchInstr::SuccessorAt(intptr_t index) const { |
| 1928 | if (index == 0) return true_successor_; |
| 1929 | if (index == 1) return false_successor_; |
| 1930 | UNREACHABLE(); |
| 1931 | return NULL; |
| 1932 | } |
| 1933 | |
| 1934 | intptr_t GotoInstr::SuccessorCount() const { |
| 1935 | return 1; |
| 1936 | } |
| 1937 | |
| 1938 | BlockEntryInstr* GotoInstr::SuccessorAt(intptr_t index) const { |
| 1939 | ASSERT(index == 0); |
| 1940 | return successor(); |
| 1941 | } |
| 1942 | |
| 1943 | void Instruction::Goto(JoinEntryInstr* entry) { |
| 1944 | LinkTo(new GotoInstr(entry, CompilerState::Current().GetNextDeoptId())); |
| 1945 | } |
| 1946 | |
| 1947 | bool IntConverterInstr::ComputeCanDeoptimize() const { |
| 1948 | return (to() == kUnboxedInt32) && !is_truncating() && |
| 1949 | !RangeUtils::Fits(value()->definition()->range(), |
| 1950 | RangeBoundary::kRangeBoundaryInt32); |
| 1951 | } |
| 1952 | |
| 1953 | bool UnboxInt32Instr::ComputeCanDeoptimize() const { |
| 1954 | if (SpeculativeModeOfInputs() == kNotSpeculative) { |
| 1955 | return false; |
| 1956 | } |
| 1957 | const intptr_t value_cid = value()->Type()->ToCid(); |
| 1958 | if (value_cid == kSmiCid) { |
| 1959 | return (compiler::target::kSmiBits > 32) && !is_truncating() && |
| 1960 | !RangeUtils::Fits(value()->definition()->range(), |
| 1961 | RangeBoundary::kRangeBoundaryInt32); |
| 1962 | } else if (value_cid == kMintCid) { |
| 1963 | return !is_truncating() && |
| 1964 | !RangeUtils::Fits(value()->definition()->range(), |
| 1965 | RangeBoundary::kRangeBoundaryInt32); |
| 1966 | } else if (is_truncating() && value()->definition()->IsBoxInteger()) { |
| 1967 | return false; |
| 1968 | } else if ((compiler::target::kSmiBits < 32) && value()->Type()->IsInt()) { |
| 1969 | return !RangeUtils::Fits(value()->definition()->range(), |
| 1970 | RangeBoundary::kRangeBoundaryInt32); |
| 1971 | } else { |
| 1972 | return true; |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | bool UnboxUint32Instr::ComputeCanDeoptimize() const { |
| 1977 | ASSERT(is_truncating()); |
| 1978 | if (SpeculativeModeOfInputs() == kNotSpeculative) { |
| 1979 | return false; |
| 1980 | } |
| 1981 | if ((value()->Type()->ToCid() == kSmiCid) || |
| 1982 | (value()->Type()->ToCid() == kMintCid)) { |
| 1983 | return false; |
| 1984 | } |
| 1985 | // Check input value's range. |
| 1986 | Range* value_range = value()->definition()->range(); |
| 1987 | return !RangeUtils::Fits(value_range, RangeBoundary::kRangeBoundaryInt64); |
| 1988 | } |
| 1989 | |
| 1990 | bool BinaryInt32OpInstr::ComputeCanDeoptimize() const { |
| 1991 | switch (op_kind()) { |
| 1992 | case Token::kBIT_AND: |
| 1993 | case Token::kBIT_OR: |
| 1994 | case Token::kBIT_XOR: |
| 1995 | return false; |
| 1996 | |
| 1997 | case Token::kSHR: |
| 1998 | return false; |
| 1999 | |
| 2000 | case Token::kSHL: |
| 2001 | // Currently only shifts by in range constant are supported, see |
| 2002 | // BinaryInt32OpInstr::IsSupported. |
| 2003 | return can_overflow(); |
| 2004 | |
| 2005 | case Token::kMOD: { |
| 2006 | UNREACHABLE(); |
| 2007 | } |
| 2008 | |
| 2009 | default: |
| 2010 | return can_overflow(); |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | bool BinarySmiOpInstr::ComputeCanDeoptimize() const { |
| 2015 | switch (op_kind()) { |
| 2016 | case Token::kBIT_AND: |
| 2017 | case Token::kBIT_OR: |
| 2018 | case Token::kBIT_XOR: |
| 2019 | return false; |
| 2020 | |
| 2021 | case Token::kSHR: |
| 2022 | return !RangeUtils::IsPositive(right_range()); |
| 2023 | |
| 2024 | case Token::kSHL: |
| 2025 | return can_overflow() || !RangeUtils::IsPositive(right_range()); |
| 2026 | |
| 2027 | case Token::kMOD: |
| 2028 | return RangeUtils::CanBeZero(right_range()); |
| 2029 | |
| 2030 | case Token::kTRUNCDIV: |
| 2031 | return RangeUtils::CanBeZero(right_range()) || |
| 2032 | RangeUtils::Overlaps(right_range(), -1, -1); |
| 2033 | |
| 2034 | default: |
| 2035 | return can_overflow(); |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | bool ShiftIntegerOpInstr::IsShiftCountInRange(int64_t max) const { |
| 2040 | return RangeUtils::IsWithin(shift_range(), 0, max); |
| 2041 | } |
| 2042 | |
| 2043 | bool BinaryIntegerOpInstr::RightIsPowerOfTwoConstant() const { |
| 2044 | if (!right()->definition()->IsConstant()) return false; |
| 2045 | const Object& constant = right()->definition()->AsConstant()->value(); |
| 2046 | if (!constant.IsSmi()) return false; |
| 2047 | const intptr_t int_value = Smi::Cast(constant).Value(); |
| 2048 | ASSERT(int_value != kIntptrMin); |
| 2049 | return Utils::IsPowerOfTwo(Utils::Abs(int_value)); |
| 2050 | } |
| 2051 | |
| 2052 | static intptr_t RepresentationBits(Representation r) { |
| 2053 | switch (r) { |
| 2054 | case kTagged: |
| 2055 | return compiler::target::kBitsPerWord - 1; |
| 2056 | case kUnboxedInt32: |
| 2057 | case kUnboxedUint32: |
| 2058 | return 32; |
| 2059 | case kUnboxedInt64: |
| 2060 | return 64; |
| 2061 | default: |
| 2062 | UNREACHABLE(); |
| 2063 | return 0; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | static int64_t RepresentationMask(Representation r) { |
| 2068 | return static_cast<int64_t>(static_cast<uint64_t>(-1) >> |
| 2069 | (64 - RepresentationBits(r))); |
| 2070 | } |
| 2071 | |
| 2072 | static Definition* CanonicalizeCommutativeDoubleArithmetic(Token::Kind op, |
| 2073 | Value* left, |
| 2074 | Value* right) { |
| 2075 | int64_t left_value; |
| 2076 | if (!Evaluator::ToIntegerConstant(left, &left_value)) { |
| 2077 | return NULL; |
| 2078 | } |
| 2079 | |
| 2080 | // Can't apply 0.0 * x -> 0.0 equivalence to double operation because |
| 2081 | // 0.0 * NaN is NaN not 0.0. |
| 2082 | // Can't apply 0.0 + x -> x to double because 0.0 + (-0.0) is 0.0 not -0.0. |
| 2083 | switch (op) { |
| 2084 | case Token::kMUL: |
| 2085 | if (left_value == 1) { |
| 2086 | if (right->definition()->representation() != kUnboxedDouble) { |
| 2087 | // Can't yet apply the equivalence because representation selection |
| 2088 | // did not run yet. We need it to guarantee that right value is |
| 2089 | // correctly coerced to double. The second canonicalization pass |
| 2090 | // will apply this equivalence. |
| 2091 | return NULL; |
| 2092 | } else { |
| 2093 | return right->definition(); |
| 2094 | } |
| 2095 | } |
| 2096 | break; |
| 2097 | default: |
| 2098 | break; |
| 2099 | } |
| 2100 | |
| 2101 | return NULL; |
| 2102 | } |
| 2103 | |
| 2104 | Definition* DoubleToFloatInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2105 | #ifdef DEBUG |
| 2106 | // Must only be used in Float32 StoreIndexedInstr or FloatToDoubleInstr or |
| 2107 | // Phis introduce by load forwarding. |
| 2108 | ASSERT(env_use_list() == NULL); |
| 2109 | for (Value* use = input_use_list(); use != NULL; use = use->next_use()) { |
| 2110 | ASSERT(use->instruction()->IsPhi() || |
| 2111 | use->instruction()->IsFloatToDouble() || |
| 2112 | (use->instruction()->IsStoreIndexed() && |
| 2113 | (use->instruction()->AsStoreIndexed()->class_id() == |
| 2114 | kTypedDataFloat32ArrayCid))); |
| 2115 | } |
| 2116 | #endif |
| 2117 | if (!HasUses()) return NULL; |
| 2118 | if (value()->definition()->IsFloatToDouble()) { |
| 2119 | // F2D(D2F(v)) == v. |
| 2120 | return value()->definition()->AsFloatToDouble()->value()->definition(); |
| 2121 | } |
| 2122 | return this; |
| 2123 | } |
| 2124 | |
| 2125 | Definition* FloatToDoubleInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2126 | return HasUses() ? this : NULL; |
| 2127 | } |
| 2128 | |
| 2129 | Definition* BinaryDoubleOpInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2130 | if (!HasUses()) return NULL; |
| 2131 | |
| 2132 | Definition* result = NULL; |
| 2133 | |
| 2134 | result = CanonicalizeCommutativeDoubleArithmetic(op_kind(), left(), right()); |
| 2135 | if (result != NULL) { |
| 2136 | return result; |
| 2137 | } |
| 2138 | |
| 2139 | result = CanonicalizeCommutativeDoubleArithmetic(op_kind(), right(), left()); |
| 2140 | if (result != NULL) { |
| 2141 | return result; |
| 2142 | } |
| 2143 | |
| 2144 | if ((op_kind() == Token::kMUL) && |
| 2145 | (left()->definition() == right()->definition())) { |
| 2146 | MathUnaryInstr* math_unary = new MathUnaryInstr( |
| 2147 | MathUnaryInstr::kDoubleSquare, new Value(left()->definition()), |
| 2148 | DeoptimizationTarget()); |
| 2149 | flow_graph->InsertBefore(this, math_unary, env(), FlowGraph::kValue); |
| 2150 | return math_unary; |
| 2151 | } |
| 2152 | |
| 2153 | return this; |
| 2154 | } |
| 2155 | |
| 2156 | Definition* DoubleTestOpInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2157 | return HasUses() ? this : NULL; |
| 2158 | } |
| 2159 | |
| 2160 | static bool IsCommutative(Token::Kind op) { |
| 2161 | switch (op) { |
| 2162 | case Token::kMUL: |
| 2163 | FALL_THROUGH; |
| 2164 | case Token::kADD: |
| 2165 | FALL_THROUGH; |
| 2166 | case Token::kBIT_AND: |
| 2167 | FALL_THROUGH; |
| 2168 | case Token::kBIT_OR: |
| 2169 | FALL_THROUGH; |
| 2170 | case Token::kBIT_XOR: |
| 2171 | return true; |
| 2172 | default: |
| 2173 | return false; |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | UnaryIntegerOpInstr* UnaryIntegerOpInstr::Make(Representation representation, |
| 2178 | Token::Kind op_kind, |
| 2179 | Value* value, |
| 2180 | intptr_t deopt_id, |
| 2181 | Range* range) { |
| 2182 | UnaryIntegerOpInstr* op = NULL; |
| 2183 | switch (representation) { |
| 2184 | case kTagged: |
| 2185 | op = new UnarySmiOpInstr(op_kind, value, deopt_id); |
| 2186 | break; |
| 2187 | case kUnboxedInt32: |
| 2188 | return NULL; |
| 2189 | case kUnboxedUint32: |
| 2190 | op = new UnaryUint32OpInstr(op_kind, value, deopt_id); |
| 2191 | break; |
| 2192 | case kUnboxedInt64: |
| 2193 | op = new UnaryInt64OpInstr(op_kind, value, deopt_id); |
| 2194 | break; |
| 2195 | default: |
| 2196 | UNREACHABLE(); |
| 2197 | return NULL; |
| 2198 | } |
| 2199 | |
| 2200 | if (op == NULL) { |
| 2201 | return op; |
| 2202 | } |
| 2203 | |
| 2204 | if (!Range::IsUnknown(range)) { |
| 2205 | op->set_range(*range); |
| 2206 | } |
| 2207 | |
| 2208 | ASSERT(op->representation() == representation); |
| 2209 | return op; |
| 2210 | } |
| 2211 | |
| 2212 | BinaryIntegerOpInstr* BinaryIntegerOpInstr::Make( |
| 2213 | Representation representation, |
| 2214 | Token::Kind op_kind, |
| 2215 | Value* left, |
| 2216 | Value* right, |
| 2217 | intptr_t deopt_id, |
| 2218 | bool can_overflow, |
| 2219 | bool is_truncating, |
| 2220 | Range* range, |
| 2221 | SpeculativeMode speculative_mode) { |
| 2222 | BinaryIntegerOpInstr* op = NULL; |
| 2223 | switch (representation) { |
| 2224 | case kTagged: |
| 2225 | op = new BinarySmiOpInstr(op_kind, left, right, deopt_id); |
| 2226 | break; |
| 2227 | case kUnboxedInt32: |
| 2228 | if (!BinaryInt32OpInstr::IsSupported(op_kind, left, right)) { |
| 2229 | return NULL; |
| 2230 | } |
| 2231 | op = new BinaryInt32OpInstr(op_kind, left, right, deopt_id); |
| 2232 | break; |
| 2233 | case kUnboxedUint32: |
| 2234 | if ((op_kind == Token::kSHR) || (op_kind == Token::kSHL)) { |
| 2235 | if (speculative_mode == kNotSpeculative) { |
| 2236 | op = new ShiftUint32OpInstr(op_kind, left, right, deopt_id); |
| 2237 | } else { |
| 2238 | op = |
| 2239 | new SpeculativeShiftUint32OpInstr(op_kind, left, right, deopt_id); |
| 2240 | } |
| 2241 | } else { |
| 2242 | op = new BinaryUint32OpInstr(op_kind, left, right, deopt_id); |
| 2243 | } |
| 2244 | break; |
| 2245 | case kUnboxedInt64: |
| 2246 | if ((op_kind == Token::kSHR) || (op_kind == Token::kSHL)) { |
| 2247 | if (speculative_mode == kNotSpeculative) { |
| 2248 | op = new ShiftInt64OpInstr(op_kind, left, right, deopt_id); |
| 2249 | } else { |
| 2250 | op = new SpeculativeShiftInt64OpInstr(op_kind, left, right, deopt_id); |
| 2251 | } |
| 2252 | } else { |
| 2253 | op = new BinaryInt64OpInstr(op_kind, left, right, deopt_id); |
| 2254 | } |
| 2255 | break; |
| 2256 | default: |
| 2257 | UNREACHABLE(); |
| 2258 | return NULL; |
| 2259 | } |
| 2260 | |
| 2261 | if (!Range::IsUnknown(range)) { |
| 2262 | op->set_range(*range); |
| 2263 | } |
| 2264 | |
| 2265 | op->set_can_overflow(can_overflow); |
| 2266 | if (is_truncating) { |
| 2267 | op->mark_truncating(); |
| 2268 | } |
| 2269 | |
| 2270 | ASSERT(op->representation() == representation); |
| 2271 | return op; |
| 2272 | } |
| 2273 | |
| 2274 | Definition* CheckedSmiOpInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2275 | if ((left()->Type()->ToCid() == kSmiCid) && |
| 2276 | (right()->Type()->ToCid() == kSmiCid)) { |
| 2277 | Definition* replacement = NULL; |
| 2278 | // Operations that can't deoptimize are specialized here: These include |
| 2279 | // bit-wise operators and comparisons. Other arithmetic operations can |
| 2280 | // overflow or divide by 0 and can't be specialized unless we have extra |
| 2281 | // range information. |
| 2282 | switch (op_kind()) { |
| 2283 | case Token::kBIT_AND: |
| 2284 | FALL_THROUGH; |
| 2285 | case Token::kBIT_OR: |
| 2286 | FALL_THROUGH; |
| 2287 | case Token::kBIT_XOR: |
| 2288 | replacement = new BinarySmiOpInstr( |
| 2289 | op_kind(), new Value(left()->definition()), |
| 2290 | new Value(right()->definition()), DeoptId::kNone); |
| 2291 | FALL_THROUGH; |
| 2292 | default: |
| 2293 | break; |
| 2294 | } |
| 2295 | if (replacement != NULL) { |
| 2296 | flow_graph->InsertBefore(this, replacement, env(), FlowGraph::kValue); |
| 2297 | return replacement; |
| 2298 | } |
| 2299 | } |
| 2300 | return this; |
| 2301 | } |
| 2302 | |
| 2303 | ComparisonInstr* CheckedSmiComparisonInstr::CopyWithNewOperands(Value* left, |
| 2304 | Value* right) { |
| 2305 | UNREACHABLE(); |
| 2306 | return NULL; |
| 2307 | } |
| 2308 | |
| 2309 | Definition* CheckedSmiComparisonInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2310 | CompileType* left_type = left()->Type(); |
| 2311 | CompileType* right_type = right()->Type(); |
| 2312 | intptr_t op_cid = kIllegalCid; |
| 2313 | SpeculativeMode speculative_mode = kGuardInputs; |
| 2314 | |
| 2315 | if ((left_type->ToCid() == kSmiCid) && (right_type->ToCid() == kSmiCid)) { |
| 2316 | op_cid = kSmiCid; |
| 2317 | } else if (FlowGraphCompiler::SupportsUnboxedInt64() && |
| 2318 | // TODO(dartbug.com/30480): handle nullable types here |
| 2319 | left_type->IsNullableInt() && !left_type->is_nullable() && |
| 2320 | right_type->IsNullableInt() && !right_type->is_nullable()) { |
| 2321 | op_cid = kMintCid; |
| 2322 | speculative_mode = kNotSpeculative; |
| 2323 | } |
| 2324 | |
| 2325 | if (op_cid != kIllegalCid) { |
| 2326 | Definition* replacement = NULL; |
| 2327 | if (Token::IsRelationalOperator(kind())) { |
| 2328 | replacement = new RelationalOpInstr( |
| 2329 | token_pos(), kind(), left()->CopyWithType(), right()->CopyWithType(), |
| 2330 | op_cid, DeoptId::kNone, speculative_mode); |
| 2331 | } else if (Token::IsEqualityOperator(kind())) { |
| 2332 | replacement = new EqualityCompareInstr( |
| 2333 | token_pos(), kind(), left()->CopyWithType(), right()->CopyWithType(), |
| 2334 | op_cid, DeoptId::kNone, speculative_mode); |
| 2335 | } |
| 2336 | if (replacement != NULL) { |
| 2337 | if (FLAG_trace_strong_mode_types && (op_cid == kMintCid)) { |
| 2338 | THR_Print("[Strong mode] Optimization: replacing %s with %s\n" , |
| 2339 | ToCString(), replacement->ToCString()); |
| 2340 | } |
| 2341 | flow_graph->InsertBefore(this, replacement, env(), FlowGraph::kValue); |
| 2342 | return replacement; |
| 2343 | } |
| 2344 | } |
| 2345 | return this; |
| 2346 | } |
| 2347 | |
| 2348 | Definition* BinaryIntegerOpInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2349 | // If both operands are constants evaluate this expression. Might |
| 2350 | // occur due to load forwarding after constant propagation pass |
| 2351 | // have already been run. |
| 2352 | |
| 2353 | if (left()->BindsToConstant() && right()->BindsToConstant()) { |
| 2354 | const Integer& result = Integer::Handle(Evaluator::BinaryIntegerEvaluate( |
| 2355 | left()->BoundConstant(), right()->BoundConstant(), op_kind(), |
| 2356 | is_truncating(), representation(), Thread::Current())); |
| 2357 | |
| 2358 | if (!result.IsNull()) { |
| 2359 | return flow_graph->TryCreateConstantReplacementFor(this, result); |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | if (left()->BindsToConstant() && !right()->BindsToConstant() && |
| 2364 | IsCommutative(op_kind())) { |
| 2365 | Value* l = left(); |
| 2366 | Value* r = right(); |
| 2367 | SetInputAt(0, r); |
| 2368 | SetInputAt(1, l); |
| 2369 | } |
| 2370 | |
| 2371 | int64_t rhs; |
| 2372 | if (!Evaluator::ToIntegerConstant(right(), &rhs)) { |
| 2373 | return this; |
| 2374 | } |
| 2375 | |
| 2376 | if (is_truncating()) { |
| 2377 | switch (op_kind()) { |
| 2378 | case Token::kMUL: |
| 2379 | case Token::kSUB: |
| 2380 | case Token::kADD: |
| 2381 | case Token::kBIT_AND: |
| 2382 | case Token::kBIT_OR: |
| 2383 | case Token::kBIT_XOR: |
| 2384 | rhs = Evaluator::TruncateTo(rhs, representation()); |
| 2385 | break; |
| 2386 | default: |
| 2387 | break; |
| 2388 | } |
| 2389 | } |
| 2390 | |
| 2391 | switch (op_kind()) { |
| 2392 | case Token::kMUL: |
| 2393 | if (rhs == 1) { |
| 2394 | return left()->definition(); |
| 2395 | } else if (rhs == 0) { |
| 2396 | return right()->definition(); |
| 2397 | } else if (rhs == 2) { |
| 2398 | const int64_t shift_1 = 1; |
| 2399 | ConstantInstr* constant_1 = |
| 2400 | flow_graph->GetConstant(Smi::Handle(Smi::New(shift_1))); |
| 2401 | BinaryIntegerOpInstr* shift = BinaryIntegerOpInstr::Make( |
| 2402 | representation(), Token::kSHL, left()->CopyWithType(), |
| 2403 | new Value(constant_1), GetDeoptId(), can_overflow(), |
| 2404 | is_truncating(), range(), SpeculativeModeOfInputs()); |
| 2405 | if (shift != nullptr) { |
| 2406 | // Assign a range to the shift factor, just in case range |
| 2407 | // analysis no longer runs after this rewriting. |
| 2408 | if (auto shift_with_range = shift->AsShiftIntegerOp()) { |
| 2409 | shift_with_range->set_shift_range( |
| 2410 | new Range(RangeBoundary::FromConstant(shift_1), |
| 2411 | RangeBoundary::FromConstant(shift_1))); |
| 2412 | } |
| 2413 | flow_graph->InsertBefore(this, shift, env(), FlowGraph::kValue); |
| 2414 | return shift; |
| 2415 | } |
| 2416 | } |
| 2417 | |
| 2418 | break; |
| 2419 | case Token::kADD: |
| 2420 | if (rhs == 0) { |
| 2421 | return left()->definition(); |
| 2422 | } |
| 2423 | break; |
| 2424 | case Token::kBIT_AND: |
| 2425 | if (rhs == 0) { |
| 2426 | return right()->definition(); |
| 2427 | } else if (rhs == RepresentationMask(representation())) { |
| 2428 | return left()->definition(); |
| 2429 | } |
| 2430 | break; |
| 2431 | case Token::kBIT_OR: |
| 2432 | if (rhs == 0) { |
| 2433 | return left()->definition(); |
| 2434 | } else if (rhs == RepresentationMask(representation())) { |
| 2435 | return right()->definition(); |
| 2436 | } |
| 2437 | break; |
| 2438 | case Token::kBIT_XOR: |
| 2439 | if (rhs == 0) { |
| 2440 | return left()->definition(); |
| 2441 | } else if (rhs == RepresentationMask(representation())) { |
| 2442 | UnaryIntegerOpInstr* bit_not = UnaryIntegerOpInstr::Make( |
| 2443 | representation(), Token::kBIT_NOT, left()->CopyWithType(), |
| 2444 | GetDeoptId(), range()); |
| 2445 | if (bit_not != NULL) { |
| 2446 | flow_graph->InsertBefore(this, bit_not, env(), FlowGraph::kValue); |
| 2447 | return bit_not; |
| 2448 | } |
| 2449 | } |
| 2450 | break; |
| 2451 | |
| 2452 | case Token::kSUB: |
| 2453 | if (rhs == 0) { |
| 2454 | return left()->definition(); |
| 2455 | } |
| 2456 | break; |
| 2457 | |
| 2458 | case Token::kTRUNCDIV: |
| 2459 | if (rhs == 1) { |
| 2460 | return left()->definition(); |
| 2461 | } else if (rhs == -1) { |
| 2462 | UnaryIntegerOpInstr* negation = UnaryIntegerOpInstr::Make( |
| 2463 | representation(), Token::kNEGATE, left()->CopyWithType(), |
| 2464 | GetDeoptId(), range()); |
| 2465 | if (negation != NULL) { |
| 2466 | flow_graph->InsertBefore(this, negation, env(), FlowGraph::kValue); |
| 2467 | return negation; |
| 2468 | } |
| 2469 | } |
| 2470 | break; |
| 2471 | |
| 2472 | case Token::kMOD: |
| 2473 | if (std::abs(rhs) == 1) { |
| 2474 | return flow_graph->TryCreateConstantReplacementFor(this, |
| 2475 | Object::smi_zero()); |
| 2476 | } |
| 2477 | break; |
| 2478 | |
| 2479 | case Token::kSHR: |
| 2480 | if (rhs == 0) { |
| 2481 | return left()->definition(); |
| 2482 | } else if (rhs < 0) { |
| 2483 | // Instruction will always throw on negative rhs operand. |
| 2484 | if (!CanDeoptimize()) { |
| 2485 | // For non-speculative operations (no deopt), let |
| 2486 | // the code generator deal with throw on slowpath. |
| 2487 | break; |
| 2488 | } |
| 2489 | ASSERT(GetDeoptId() != DeoptId::kNone); |
| 2490 | DeoptimizeInstr* deopt = |
| 2491 | new DeoptimizeInstr(ICData::kDeoptBinarySmiOp, GetDeoptId()); |
| 2492 | flow_graph->InsertBefore(this, deopt, env(), FlowGraph::kEffect); |
| 2493 | // Replace with zero since it always throws. |
| 2494 | return flow_graph->TryCreateConstantReplacementFor(this, |
| 2495 | Object::smi_zero()); |
| 2496 | } |
| 2497 | break; |
| 2498 | |
| 2499 | case Token::kSHL: { |
| 2500 | const intptr_t result_bits = RepresentationBits(representation()); |
| 2501 | if (rhs == 0) { |
| 2502 | return left()->definition(); |
| 2503 | } else if ((rhs >= kBitsPerInt64) || |
| 2504 | ((rhs >= result_bits) && is_truncating())) { |
| 2505 | return flow_graph->TryCreateConstantReplacementFor(this, |
| 2506 | Object::smi_zero()); |
| 2507 | } else if ((rhs < 0) || ((rhs >= result_bits) && !is_truncating())) { |
| 2508 | // Instruction will always throw on negative rhs operand or |
| 2509 | // deoptimize on large rhs operand. |
| 2510 | if (!CanDeoptimize()) { |
| 2511 | // For non-speculative operations (no deopt), let |
| 2512 | // the code generator deal with throw on slowpath. |
| 2513 | break; |
| 2514 | } |
| 2515 | ASSERT(GetDeoptId() != DeoptId::kNone); |
| 2516 | DeoptimizeInstr* deopt = |
| 2517 | new DeoptimizeInstr(ICData::kDeoptBinarySmiOp, GetDeoptId()); |
| 2518 | flow_graph->InsertBefore(this, deopt, env(), FlowGraph::kEffect); |
| 2519 | // Replace with zero since it overshifted or always throws. |
| 2520 | return flow_graph->TryCreateConstantReplacementFor(this, |
| 2521 | Object::smi_zero()); |
| 2522 | } |
| 2523 | break; |
| 2524 | } |
| 2525 | |
| 2526 | default: |
| 2527 | break; |
| 2528 | } |
| 2529 | |
| 2530 | return this; |
| 2531 | } |
| 2532 | |
| 2533 | // Optimizations that eliminate or simplify individual instructions. |
| 2534 | Instruction* Instruction::Canonicalize(FlowGraph* flow_graph) { |
| 2535 | return this; |
| 2536 | } |
| 2537 | |
| 2538 | Definition* Definition::Canonicalize(FlowGraph* flow_graph) { |
| 2539 | return this; |
| 2540 | } |
| 2541 | |
| 2542 | Definition* RedefinitionInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2543 | // Must not remove Redifinitions without uses until LICM, even though |
| 2544 | // Redefinition might not have any uses itself it can still be dominating |
| 2545 | // uses of the value it redefines and must serve as a barrier for those |
| 2546 | // uses. RenameUsesDominatedByRedefinitions would normalize the graph and |
| 2547 | // route those uses through this redefinition. |
| 2548 | if (!HasUses() && !flow_graph->is_licm_allowed()) { |
| 2549 | return NULL; |
| 2550 | } |
| 2551 | if ((constrained_type() != nullptr) && Type()->IsEqualTo(value()->Type())) { |
| 2552 | return value()->definition(); |
| 2553 | } |
| 2554 | return this; |
| 2555 | } |
| 2556 | |
| 2557 | Instruction* CheckStackOverflowInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2558 | switch (kind_) { |
| 2559 | case kOsrAndPreemption: |
| 2560 | return this; |
| 2561 | case kOsrOnly: |
| 2562 | // Don't need OSR entries in the optimized code. |
| 2563 | return NULL; |
| 2564 | } |
| 2565 | |
| 2566 | // Switch above exhausts all possibilities but some compilers can't figure |
| 2567 | // it out. |
| 2568 | UNREACHABLE(); |
| 2569 | return this; |
| 2570 | } |
| 2571 | |
| 2572 | bool LoadFieldInstr::IsImmutableLengthLoad() const { |
| 2573 | switch (slot().kind()) { |
| 2574 | case Slot::Kind::kArray_length: |
| 2575 | case Slot::Kind::kTypedDataBase_length: |
| 2576 | case Slot::Kind::kString_length: |
| 2577 | return true; |
| 2578 | case Slot::Kind::kGrowableObjectArray_length: |
| 2579 | return false; |
| 2580 | |
| 2581 | // Not length loads. |
| 2582 | case Slot::Kind::kLinkedHashMap_index: |
| 2583 | case Slot::Kind::kLinkedHashMap_data: |
| 2584 | case Slot::Kind::kLinkedHashMap_hash_mask: |
| 2585 | case Slot::Kind::kLinkedHashMap_used_data: |
| 2586 | case Slot::Kind::kLinkedHashMap_deleted_keys: |
| 2587 | case Slot::Kind::kArgumentsDescriptor_type_args_len: |
| 2588 | case Slot::Kind::kArgumentsDescriptor_positional_count: |
| 2589 | case Slot::Kind::kArgumentsDescriptor_count: |
| 2590 | case Slot::Kind::kArgumentsDescriptor_size: |
| 2591 | case Slot::Kind::kTypeArguments: |
| 2592 | case Slot::Kind::kTypedDataView_offset_in_bytes: |
| 2593 | case Slot::Kind::kTypedDataView_data: |
| 2594 | case Slot::Kind::kGrowableObjectArray_data: |
| 2595 | case Slot::Kind::kContext_parent: |
| 2596 | case Slot::Kind::kClosure_context: |
| 2597 | case Slot::Kind::kClosure_delayed_type_arguments: |
| 2598 | case Slot::Kind::kClosure_function: |
| 2599 | case Slot::Kind::kClosure_function_type_arguments: |
| 2600 | case Slot::Kind::kClosure_instantiator_type_arguments: |
| 2601 | case Slot::Kind::kClosure_hash: |
| 2602 | case Slot::Kind::kCapturedVariable: |
| 2603 | case Slot::Kind::kDartField: |
| 2604 | case Slot::Kind::kPointerBase_data_field: |
| 2605 | case Slot::Kind::kType_arguments: |
| 2606 | case Slot::Kind::kTypeArgumentsIndex: |
| 2607 | case Slot::Kind::kUnhandledException_exception: |
| 2608 | case Slot::Kind::kUnhandledException_stacktrace: |
| 2609 | return false; |
| 2610 | } |
| 2611 | UNREACHABLE(); |
| 2612 | return false; |
| 2613 | } |
| 2614 | |
| 2615 | bool LoadFieldInstr::IsFixedLengthArrayCid(intptr_t cid) { |
| 2616 | if (IsTypedDataClassId(cid) || IsExternalTypedDataClassId(cid)) { |
| 2617 | return true; |
| 2618 | } |
| 2619 | |
| 2620 | switch (cid) { |
| 2621 | case kArrayCid: |
| 2622 | case kImmutableArrayCid: |
| 2623 | return true; |
| 2624 | default: |
| 2625 | return false; |
| 2626 | } |
| 2627 | } |
| 2628 | |
| 2629 | bool LoadFieldInstr::IsTypedDataViewFactory(const Function& function) { |
| 2630 | auto kind = function.recognized_kind(); |
| 2631 | switch (kind) { |
| 2632 | case MethodRecognizer::kTypedData_ByteDataView_factory: |
| 2633 | case MethodRecognizer::kTypedData_Int8ArrayView_factory: |
| 2634 | case MethodRecognizer::kTypedData_Uint8ArrayView_factory: |
| 2635 | case MethodRecognizer::kTypedData_Uint8ClampedArrayView_factory: |
| 2636 | case MethodRecognizer::kTypedData_Int16ArrayView_factory: |
| 2637 | case MethodRecognizer::kTypedData_Uint16ArrayView_factory: |
| 2638 | case MethodRecognizer::kTypedData_Int32ArrayView_factory: |
| 2639 | case MethodRecognizer::kTypedData_Uint32ArrayView_factory: |
| 2640 | case MethodRecognizer::kTypedData_Int64ArrayView_factory: |
| 2641 | case MethodRecognizer::kTypedData_Uint64ArrayView_factory: |
| 2642 | case MethodRecognizer::kTypedData_Float32ArrayView_factory: |
| 2643 | case MethodRecognizer::kTypedData_Float64ArrayView_factory: |
| 2644 | case MethodRecognizer::kTypedData_Float32x4ArrayView_factory: |
| 2645 | case MethodRecognizer::kTypedData_Int32x4ArrayView_factory: |
| 2646 | case MethodRecognizer::kTypedData_Float64x2ArrayView_factory: |
| 2647 | return true; |
| 2648 | default: |
| 2649 | return false; |
| 2650 | } |
| 2651 | } |
| 2652 | |
| 2653 | Definition* ConstantInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2654 | return HasUses() ? this : NULL; |
| 2655 | } |
| 2656 | |
| 2657 | // A math unary instruction has a side effect (exception |
| 2658 | // thrown) if the argument is not a number. |
| 2659 | // TODO(srdjan): eliminate if has no uses and input is guaranteed to be number. |
| 2660 | Definition* MathUnaryInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2661 | return this; |
| 2662 | } |
| 2663 | |
| 2664 | bool LoadFieldInstr::TryEvaluateLoad(const Object& instance, |
| 2665 | const Slot& field, |
| 2666 | Object* result) { |
| 2667 | switch (field.kind()) { |
| 2668 | case Slot::Kind::kDartField: |
| 2669 | return TryEvaluateLoad(instance, field.field(), result); |
| 2670 | |
| 2671 | case Slot::Kind::kArgumentsDescriptor_type_args_len: |
| 2672 | if (instance.IsArray() && Array::Cast(instance).IsImmutable()) { |
| 2673 | ArgumentsDescriptor desc(Array::Cast(instance)); |
| 2674 | *result = Smi::New(desc.TypeArgsLen()); |
| 2675 | return true; |
| 2676 | } |
| 2677 | return false; |
| 2678 | |
| 2679 | default: |
| 2680 | break; |
| 2681 | } |
| 2682 | return false; |
| 2683 | } |
| 2684 | |
| 2685 | bool LoadFieldInstr::TryEvaluateLoad(const Object& instance, |
| 2686 | const Field& field, |
| 2687 | Object* result) { |
| 2688 | if (!field.is_final() || !instance.IsInstance()) { |
| 2689 | return false; |
| 2690 | } |
| 2691 | |
| 2692 | // Check that instance really has the field which we |
| 2693 | // are trying to load from. |
| 2694 | Class& cls = Class::Handle(instance.clazz()); |
| 2695 | while (cls.raw() != Class::null() && cls.raw() != field.Owner()) { |
| 2696 | cls = cls.SuperClass(); |
| 2697 | } |
| 2698 | if (cls.raw() != field.Owner()) { |
| 2699 | // Failed to find the field in class or its superclasses. |
| 2700 | return false; |
| 2701 | } |
| 2702 | |
| 2703 | // Object has the field: execute the load. |
| 2704 | *result = Instance::Cast(instance).GetField(field); |
| 2705 | return true; |
| 2706 | } |
| 2707 | |
| 2708 | bool LoadFieldInstr::Evaluate(const Object& instance, Object* result) { |
| 2709 | return TryEvaluateLoad(instance, slot(), result); |
| 2710 | } |
| 2711 | |
| 2712 | Definition* LoadFieldInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2713 | if (!HasUses() && !calls_initializer()) return nullptr; |
| 2714 | |
| 2715 | if (IsImmutableLengthLoad()) { |
| 2716 | ASSERT(!calls_initializer()); |
| 2717 | Definition* array = instance()->definition()->OriginalDefinition(); |
| 2718 | if (StaticCallInstr* call = array->AsStaticCall()) { |
| 2719 | // For fixed length arrays if the array is the result of a known |
| 2720 | // constructor call we can replace the length load with the length |
| 2721 | // argument passed to the constructor. |
| 2722 | if (call->is_known_list_constructor() && |
| 2723 | IsFixedLengthArrayCid(call->Type()->ToCid())) { |
| 2724 | return call->ArgumentAt(1); |
| 2725 | } else if (call->function().recognized_kind() == |
| 2726 | MethodRecognizer::kByteDataFactory) { |
| 2727 | // Similarly, we check for the ByteData constructor and forward its |
| 2728 | // explicit length argument appropriately. |
| 2729 | return call->ArgumentAt(1); |
| 2730 | } else if (IsTypedDataViewFactory(call->function())) { |
| 2731 | // Typed data view factories all take three arguments (after |
| 2732 | // the implicit type arguments parameter): |
| 2733 | // |
| 2734 | // 1) _TypedList buffer -- the underlying data for the view |
| 2735 | // 2) int offsetInBytes -- the offset into the buffer to start viewing |
| 2736 | // 3) int length -- the number of elements in the view |
| 2737 | // |
| 2738 | // Here, we forward the third. |
| 2739 | return call->ArgumentAt(3); |
| 2740 | } |
| 2741 | } else if (CreateArrayInstr* create_array = array->AsCreateArray()) { |
| 2742 | if (slot().kind() == Slot::Kind::kArray_length) { |
| 2743 | return create_array->num_elements()->definition(); |
| 2744 | } |
| 2745 | } else if (LoadFieldInstr* load_array = array->AsLoadField()) { |
| 2746 | // For arrays with guarded lengths, replace the length load |
| 2747 | // with a constant. |
| 2748 | const Slot& slot = load_array->slot(); |
| 2749 | if (slot.IsDartField()) { |
| 2750 | if (slot.field().guarded_list_length() >= 0) { |
| 2751 | return flow_graph->GetConstant( |
| 2752 | Smi::Handle(Smi::New(slot.field().guarded_list_length()))); |
| 2753 | } |
| 2754 | } |
| 2755 | } |
| 2756 | } else if (slot().kind() == Slot::Kind::kTypedDataView_data) { |
| 2757 | // This case cover the first explicit argument to typed data view |
| 2758 | // factories, the data (buffer). |
| 2759 | ASSERT(!calls_initializer()); |
| 2760 | Definition* array = instance()->definition()->OriginalDefinition(); |
| 2761 | if (StaticCallInstr* call = array->AsStaticCall()) { |
| 2762 | if (IsTypedDataViewFactory(call->function())) { |
| 2763 | return call->ArgumentAt(1); |
| 2764 | } |
| 2765 | } |
| 2766 | } else if (slot().kind() == Slot::Kind::kTypedDataView_offset_in_bytes) { |
| 2767 | // This case cover the second explicit argument to typed data view |
| 2768 | // factories, the offset into the buffer. |
| 2769 | ASSERT(!calls_initializer()); |
| 2770 | Definition* array = instance()->definition()->OriginalDefinition(); |
| 2771 | if (StaticCallInstr* call = array->AsStaticCall()) { |
| 2772 | if (IsTypedDataViewFactory(call->function())) { |
| 2773 | return call->ArgumentAt(2); |
| 2774 | } else if (call->function().recognized_kind() == |
| 2775 | MethodRecognizer::kByteDataFactory) { |
| 2776 | // A _ByteDataView returned from the ByteData constructor always |
| 2777 | // has an offset of 0. |
| 2778 | return flow_graph->GetConstant(Object::smi_zero()); |
| 2779 | } |
| 2780 | } |
| 2781 | } else if (slot().IsTypeArguments()) { |
| 2782 | ASSERT(!calls_initializer()); |
| 2783 | Definition* array = instance()->definition()->OriginalDefinition(); |
| 2784 | if (StaticCallInstr* call = array->AsStaticCall()) { |
| 2785 | if (call->is_known_list_constructor()) { |
| 2786 | return call->ArgumentAt(0); |
| 2787 | } else if (IsTypedDataViewFactory(call->function())) { |
| 2788 | return flow_graph->constant_null(); |
| 2789 | } |
| 2790 | switch (call->function().recognized_kind()) { |
| 2791 | case MethodRecognizer::kByteDataFactory: |
| 2792 | case MethodRecognizer::kLinkedHashMap_getData: |
| 2793 | return flow_graph->constant_null(); |
| 2794 | default: |
| 2795 | break; |
| 2796 | } |
| 2797 | } else if (CreateArrayInstr* create_array = array->AsCreateArray()) { |
| 2798 | return create_array->element_type()->definition(); |
| 2799 | } else if (LoadFieldInstr* load_array = array->AsLoadField()) { |
| 2800 | const Slot& slot = load_array->slot(); |
| 2801 | switch (slot.kind()) { |
| 2802 | case Slot::Kind::kDartField: { |
| 2803 | // For trivially exact fields we know that type arguments match |
| 2804 | // static type arguments exactly. |
| 2805 | const Field& field = slot.field(); |
| 2806 | if (field.static_type_exactness_state().IsTriviallyExact()) { |
| 2807 | return flow_graph->GetConstant(TypeArguments::Handle( |
| 2808 | AbstractType::Handle(field.type()).arguments())); |
| 2809 | } |
| 2810 | break; |
| 2811 | } |
| 2812 | |
| 2813 | case Slot::Kind::kLinkedHashMap_data: |
| 2814 | return flow_graph->constant_null(); |
| 2815 | |
| 2816 | default: |
| 2817 | break; |
| 2818 | } |
| 2819 | } |
| 2820 | } |
| 2821 | |
| 2822 | // Try folding away loads from constant objects. |
| 2823 | if (instance()->BindsToConstant()) { |
| 2824 | Object& result = Object::Handle(); |
| 2825 | if (Evaluate(instance()->BoundConstant(), &result)) { |
| 2826 | if (result.IsSmi() || result.IsOld()) { |
| 2827 | return flow_graph->GetConstant(result); |
| 2828 | } |
| 2829 | } |
| 2830 | } |
| 2831 | |
| 2832 | return this; |
| 2833 | } |
| 2834 | |
| 2835 | Definition* AssertBooleanInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2836 | if (FLAG_eliminate_type_checks) { |
| 2837 | if (value()->Type()->ToCid() == kBoolCid) { |
| 2838 | return value()->definition(); |
| 2839 | } |
| 2840 | |
| 2841 | // In strong mode type is already verified either by static analysis |
| 2842 | // or runtime checks, so AssertBoolean just ensures that value is not null. |
| 2843 | if (!value()->Type()->is_nullable()) { |
| 2844 | return value()->definition(); |
| 2845 | } |
| 2846 | } |
| 2847 | |
| 2848 | return this; |
| 2849 | } |
| 2850 | |
| 2851 | Definition* AssertAssignableInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2852 | // We need dst_type() to be a constant AbstractType to perform any |
| 2853 | // canonicalization. |
| 2854 | if (!dst_type()->BindsToConstant()) return this; |
| 2855 | const auto& abs_type = AbstractType::Cast(dst_type()->BoundConstant()); |
| 2856 | |
| 2857 | if (abs_type.IsTopTypeForSubtyping() || |
| 2858 | (FLAG_eliminate_type_checks && |
| 2859 | value()->Type()->IsAssignableTo(abs_type))) { |
| 2860 | return value()->definition(); |
| 2861 | } |
| 2862 | if (abs_type.IsInstantiated()) { |
| 2863 | return this; |
| 2864 | } |
| 2865 | |
| 2866 | // For uninstantiated target types: If the instantiator and function |
| 2867 | // type arguments are constant, instantiate the target type here. |
| 2868 | // Note: these constant type arguments might not necessarily correspond |
| 2869 | // to the correct instantiator because AssertAssignable might |
| 2870 | // be located in the unreachable part of the graph (e.g. |
| 2871 | // it might be dominated by CheckClass that always fails). |
| 2872 | // This means that the code below must guard against such possibility. |
| 2873 | Zone* Z = Thread::Current()->zone(); |
| 2874 | |
| 2875 | const TypeArguments* instantiator_type_args = nullptr; |
| 2876 | const TypeArguments* function_type_args = nullptr; |
| 2877 | |
| 2878 | if (instantiator_type_arguments()->BindsToConstant()) { |
| 2879 | const Object& val = instantiator_type_arguments()->BoundConstant(); |
| 2880 | instantiator_type_args = (val.raw() == TypeArguments::null()) |
| 2881 | ? &TypeArguments::null_type_arguments() |
| 2882 | : &TypeArguments::Cast(val); |
| 2883 | } |
| 2884 | |
| 2885 | if (function_type_arguments()->BindsToConstant()) { |
| 2886 | const Object& val = function_type_arguments()->BoundConstant(); |
| 2887 | function_type_args = |
| 2888 | (val.raw() == TypeArguments::null()) |
| 2889 | ? &TypeArguments::null_type_arguments() |
| 2890 | : &TypeArguments::Cast(function_type_arguments()->BoundConstant()); |
| 2891 | } |
| 2892 | |
| 2893 | // If instantiator_type_args are not constant try to match the pattern |
| 2894 | // obj.field.:type_arguments where field's static type exactness state |
| 2895 | // tells us that all values stored in the field have exact superclass. |
| 2896 | // In this case we know the prefix of the actual type arguments vector |
| 2897 | // and can try to instantiate the type using just the prefix. |
| 2898 | // |
| 2899 | // Note: TypeParameter::InstantiateFrom returns an error if we try |
| 2900 | // to instantiate it from a vector that is too short. |
| 2901 | if (instantiator_type_args == nullptr) { |
| 2902 | if (LoadFieldInstr* load_type_args = |
| 2903 | instantiator_type_arguments()->definition()->AsLoadField()) { |
| 2904 | if (load_type_args->slot().IsTypeArguments()) { |
| 2905 | if (LoadFieldInstr* load_field = load_type_args->instance() |
| 2906 | ->definition() |
| 2907 | ->OriginalDefinition() |
| 2908 | ->AsLoadField()) { |
| 2909 | if (load_field->slot().IsDartField() && |
| 2910 | load_field->slot() |
| 2911 | .field() |
| 2912 | .static_type_exactness_state() |
| 2913 | .IsHasExactSuperClass()) { |
| 2914 | instantiator_type_args = &TypeArguments::Handle( |
| 2915 | Z, AbstractType::Handle(Z, load_field->slot().field().type()) |
| 2916 | .arguments()); |
| 2917 | } |
| 2918 | } |
| 2919 | } |
| 2920 | } |
| 2921 | } |
| 2922 | |
| 2923 | if ((instantiator_type_args != nullptr) && (function_type_args != nullptr)) { |
| 2924 | AbstractType& new_dst_type = AbstractType::Handle( |
| 2925 | Z, abs_type.InstantiateFrom(*instantiator_type_args, |
| 2926 | *function_type_args, kAllFree, Heap::kOld)); |
| 2927 | if (new_dst_type.IsNull()) { |
| 2928 | // Failed instantiation in dead code. |
| 2929 | return this; |
| 2930 | } |
| 2931 | if (new_dst_type.IsTypeRef()) { |
| 2932 | new_dst_type = TypeRef::Cast(new_dst_type).type(); |
| 2933 | } |
| 2934 | new_dst_type = new_dst_type.Canonicalize(); |
| 2935 | |
| 2936 | // Successfully instantiated destination type: update the type attached |
| 2937 | // to this instruction and set type arguments to null because we no |
| 2938 | // longer need them (the type was instantiated). |
| 2939 | dst_type()->BindTo(flow_graph->GetConstant(new_dst_type)); |
| 2940 | instantiator_type_arguments()->BindTo(flow_graph->constant_null()); |
| 2941 | function_type_arguments()->BindTo(flow_graph->constant_null()); |
| 2942 | |
| 2943 | if (new_dst_type.IsTopTypeForSubtyping() || |
| 2944 | (FLAG_eliminate_type_checks && |
| 2945 | value()->Type()->IsAssignableTo(new_dst_type))) { |
| 2946 | return value()->definition(); |
| 2947 | } |
| 2948 | } |
| 2949 | return this; |
| 2950 | } |
| 2951 | |
| 2952 | Definition* InstantiateTypeArgumentsInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2953 | return HasUses() ? this : NULL; |
| 2954 | } |
| 2955 | |
| 2956 | LocationSummary* DebugStepCheckInstr::MakeLocationSummary(Zone* zone, |
| 2957 | bool opt) const { |
| 2958 | const intptr_t kNumInputs = 0; |
| 2959 | const intptr_t kNumTemps = 0; |
| 2960 | LocationSummary* locs = new (zone) |
| 2961 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 2962 | return locs; |
| 2963 | } |
| 2964 | |
| 2965 | Instruction* DebugStepCheckInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2966 | return NULL; |
| 2967 | } |
| 2968 | |
| 2969 | Definition* BoxInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2970 | if (input_use_list() == nullptr) { |
| 2971 | // Environments can accommodate any representation. No need to box. |
| 2972 | return value()->definition(); |
| 2973 | } |
| 2974 | |
| 2975 | // Fold away Box<rep>(Unbox<rep>(v)) if value is known to be of the |
| 2976 | // right class. |
| 2977 | UnboxInstr* unbox_defn = value()->definition()->AsUnbox(); |
| 2978 | if ((unbox_defn != NULL) && |
| 2979 | (unbox_defn->representation() == from_representation()) && |
| 2980 | (unbox_defn->value()->Type()->ToCid() == Type()->ToCid())) { |
| 2981 | return unbox_defn->value()->definition(); |
| 2982 | } |
| 2983 | |
| 2984 | return this; |
| 2985 | } |
| 2986 | |
| 2987 | bool BoxIntegerInstr::ValueFitsSmi() const { |
| 2988 | Range* range = value()->definition()->range(); |
| 2989 | return RangeUtils::Fits(range, RangeBoundary::kRangeBoundarySmi); |
| 2990 | } |
| 2991 | |
| 2992 | Definition* BoxIntegerInstr::Canonicalize(FlowGraph* flow_graph) { |
| 2993 | if (input_use_list() == nullptr) { |
| 2994 | // Environments can accommodate any representation. No need to box. |
| 2995 | return value()->definition(); |
| 2996 | } |
| 2997 | |
| 2998 | return this; |
| 2999 | } |
| 3000 | |
| 3001 | Definition* BoxInt64Instr::Canonicalize(FlowGraph* flow_graph) { |
| 3002 | Definition* replacement = BoxIntegerInstr::Canonicalize(flow_graph); |
| 3003 | if (replacement != this) { |
| 3004 | return replacement; |
| 3005 | } |
| 3006 | |
| 3007 | // For all x, box(unbox(x)) = x. |
| 3008 | if (auto unbox = value()->definition()->AsUnboxInt64()) { |
| 3009 | if (unbox->SpeculativeModeOfInputs() == kNotSpeculative) { |
| 3010 | return unbox->value()->definition(); |
| 3011 | } |
| 3012 | } else if (auto unbox = value()->definition()->AsUnboxedConstant()) { |
| 3013 | return flow_graph->GetConstant(unbox->value()); |
| 3014 | } |
| 3015 | |
| 3016 | // Find a more precise box instruction. |
| 3017 | if (auto conv = value()->definition()->AsIntConverter()) { |
| 3018 | Definition* replacement; |
| 3019 | if (conv->from() == kUntagged) { |
| 3020 | return this; |
| 3021 | } |
| 3022 | switch (conv->from()) { |
| 3023 | case kUnboxedInt32: |
| 3024 | replacement = new BoxInt32Instr(conv->value()->CopyWithType()); |
| 3025 | break; |
| 3026 | case kUnboxedUint32: |
| 3027 | replacement = new BoxUint32Instr(conv->value()->CopyWithType()); |
| 3028 | break; |
| 3029 | default: |
| 3030 | UNREACHABLE(); |
| 3031 | break; |
| 3032 | } |
| 3033 | flow_graph->InsertBefore(this, replacement, NULL, FlowGraph::kValue); |
| 3034 | return replacement; |
| 3035 | } |
| 3036 | |
| 3037 | return this; |
| 3038 | } |
| 3039 | |
| 3040 | Definition* UnboxInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3041 | if (!HasUses() && !CanDeoptimize()) return NULL; |
| 3042 | |
| 3043 | // Fold away Unbox<rep>(Box<rep>(v)). |
| 3044 | BoxInstr* box_defn = value()->definition()->AsBox(); |
| 3045 | if ((box_defn != NULL) && |
| 3046 | (box_defn->from_representation() == representation())) { |
| 3047 | return box_defn->value()->definition(); |
| 3048 | } |
| 3049 | |
| 3050 | if (representation() == kUnboxedDouble && value()->BindsToConstant()) { |
| 3051 | UnboxedConstantInstr* uc = NULL; |
| 3052 | |
| 3053 | const Object& val = value()->BoundConstant(); |
| 3054 | if (val.IsSmi()) { |
| 3055 | const Double& double_val = Double::ZoneHandle( |
| 3056 | flow_graph->zone(), |
| 3057 | Double::NewCanonical(Smi::Cast(val).AsDoubleValue())); |
| 3058 | uc = new UnboxedConstantInstr(double_val, kUnboxedDouble); |
| 3059 | } else if (val.IsDouble()) { |
| 3060 | uc = new UnboxedConstantInstr(val, kUnboxedDouble); |
| 3061 | } |
| 3062 | |
| 3063 | if (uc != NULL) { |
| 3064 | flow_graph->InsertBefore(this, uc, NULL, FlowGraph::kValue); |
| 3065 | return uc; |
| 3066 | } |
| 3067 | } |
| 3068 | |
| 3069 | return this; |
| 3070 | } |
| 3071 | |
| 3072 | Definition* UnboxIntegerInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3073 | if (!HasUses() && !CanDeoptimize()) return NULL; |
| 3074 | |
| 3075 | // Do not attempt to fold this instruction if we have not matched |
| 3076 | // input/output representations yet. |
| 3077 | if (HasUnmatchedInputRepresentations()) { |
| 3078 | return this; |
| 3079 | } |
| 3080 | |
| 3081 | // Fold away UnboxInteger<rep_to>(BoxInteger<rep_from>(v)). |
| 3082 | BoxIntegerInstr* box_defn = value()->definition()->AsBoxInteger(); |
| 3083 | if (box_defn != NULL && !box_defn->HasUnmatchedInputRepresentations()) { |
| 3084 | Representation from_representation = |
| 3085 | box_defn->value()->definition()->representation(); |
| 3086 | if (from_representation == representation()) { |
| 3087 | return box_defn->value()->definition(); |
| 3088 | } else { |
| 3089 | // Only operate on explicit unboxed operands. |
| 3090 | IntConverterInstr* converter = new IntConverterInstr( |
| 3091 | from_representation, representation(), |
| 3092 | box_defn->value()->CopyWithType(), |
| 3093 | (representation() == kUnboxedInt32) ? GetDeoptId() : DeoptId::kNone); |
| 3094 | // TODO(vegorov): marking resulting converter as truncating when |
| 3095 | // unboxing can't deoptimize is a workaround for the missing |
| 3096 | // deoptimization environment when we insert converter after |
| 3097 | // EliminateEnvironments and there is a mismatch between predicates |
| 3098 | // UnboxIntConverterInstr::CanDeoptimize and UnboxInt32::CanDeoptimize. |
| 3099 | if ((representation() == kUnboxedInt32) && |
| 3100 | (is_truncating() || !CanDeoptimize())) { |
| 3101 | converter->mark_truncating(); |
| 3102 | } |
| 3103 | flow_graph->InsertBefore(this, converter, env(), FlowGraph::kValue); |
| 3104 | return converter; |
| 3105 | } |
| 3106 | } |
| 3107 | |
| 3108 | return this; |
| 3109 | } |
| 3110 | |
| 3111 | Definition* UnboxInt32Instr::Canonicalize(FlowGraph* flow_graph) { |
| 3112 | Definition* replacement = UnboxIntegerInstr::Canonicalize(flow_graph); |
| 3113 | if (replacement != this) { |
| 3114 | return replacement; |
| 3115 | } |
| 3116 | |
| 3117 | ConstantInstr* c = value()->definition()->AsConstant(); |
| 3118 | if ((c != NULL) && c->value().IsSmi()) { |
| 3119 | if (!is_truncating()) { |
| 3120 | // Check that constant fits into 32-bit integer. |
| 3121 | const int64_t value = static_cast<int64_t>(Smi::Cast(c->value()).Value()); |
| 3122 | if (!Utils::IsInt(32, value)) { |
| 3123 | return this; |
| 3124 | } |
| 3125 | } |
| 3126 | |
| 3127 | UnboxedConstantInstr* uc = |
| 3128 | new UnboxedConstantInstr(c->value(), kUnboxedInt32); |
| 3129 | if (c->range() != NULL) { |
| 3130 | uc->set_range(*c->range()); |
| 3131 | } |
| 3132 | flow_graph->InsertBefore(this, uc, NULL, FlowGraph::kValue); |
| 3133 | return uc; |
| 3134 | } |
| 3135 | |
| 3136 | return this; |
| 3137 | } |
| 3138 | |
| 3139 | Definition* UnboxInt64Instr::Canonicalize(FlowGraph* flow_graph) { |
| 3140 | Definition* replacement = UnboxIntegerInstr::Canonicalize(flow_graph); |
| 3141 | if (replacement != this) { |
| 3142 | return replacement; |
| 3143 | } |
| 3144 | |
| 3145 | // Currently we perform this only on 64-bit architectures. |
| 3146 | if (compiler::target::kBitsPerWord == 64) { |
| 3147 | ConstantInstr* c = value()->definition()->AsConstant(); |
| 3148 | if (c != NULL && (c->value().IsSmi() || c->value().IsMint())) { |
| 3149 | UnboxedConstantInstr* uc = |
| 3150 | new UnboxedConstantInstr(c->value(), kUnboxedInt64); |
| 3151 | if (c->range() != NULL) { |
| 3152 | uc->set_range(*c->range()); |
| 3153 | } |
| 3154 | flow_graph->InsertBefore(this, uc, NULL, FlowGraph::kValue); |
| 3155 | return uc; |
| 3156 | } |
| 3157 | } |
| 3158 | |
| 3159 | return this; |
| 3160 | } |
| 3161 | |
| 3162 | Definition* IntConverterInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3163 | if (!HasUses()) return NULL; |
| 3164 | |
| 3165 | IntConverterInstr* box_defn = value()->definition()->AsIntConverter(); |
| 3166 | if ((box_defn != NULL) && (box_defn->representation() == from())) { |
| 3167 | // Do not erase truncating conversions from 64-bit value to 32-bit values |
| 3168 | // because such conversions erase upper 32 bits. |
| 3169 | if ((box_defn->from() == kUnboxedInt64) && box_defn->is_truncating()) { |
| 3170 | return this; |
| 3171 | } |
| 3172 | |
| 3173 | // It's safe to discard any other conversions from and then back to the same |
| 3174 | // integer type. |
| 3175 | if (box_defn->from() == to()) { |
| 3176 | return box_defn->value()->definition(); |
| 3177 | } |
| 3178 | |
| 3179 | // Do not merge conversions where the first starts from Untagged or the |
| 3180 | // second ends at Untagged, since we expect to see either UnboxedIntPtr |
| 3181 | // or UnboxedFfiIntPtr as the other type in an Untagged conversion. |
| 3182 | if ((box_defn->from() == kUntagged) || (to() == kUntagged)) { |
| 3183 | return this; |
| 3184 | } |
| 3185 | |
| 3186 | IntConverterInstr* converter = new IntConverterInstr( |
| 3187 | box_defn->from(), representation(), box_defn->value()->CopyWithType(), |
| 3188 | (to() == kUnboxedInt32) ? GetDeoptId() : DeoptId::kNone); |
| 3189 | if ((representation() == kUnboxedInt32) && is_truncating()) { |
| 3190 | converter->mark_truncating(); |
| 3191 | } |
| 3192 | flow_graph->InsertBefore(this, converter, env(), FlowGraph::kValue); |
| 3193 | return converter; |
| 3194 | } |
| 3195 | |
| 3196 | UnboxInt64Instr* unbox_defn = value()->definition()->AsUnboxInt64(); |
| 3197 | if (unbox_defn != NULL && (from() == kUnboxedInt64) && |
| 3198 | (to() == kUnboxedInt32) && unbox_defn->HasOnlyInputUse(value())) { |
| 3199 | // TODO(vegorov): there is a duplication of code between UnboxedIntCoverter |
| 3200 | // and code path that unboxes Mint into Int32. We should just schedule |
| 3201 | // these instructions close to each other instead of fusing them. |
| 3202 | Definition* replacement = |
| 3203 | new UnboxInt32Instr(is_truncating() ? UnboxInt32Instr::kTruncate |
| 3204 | : UnboxInt32Instr::kNoTruncation, |
| 3205 | unbox_defn->value()->CopyWithType(), GetDeoptId()); |
| 3206 | flow_graph->InsertBefore(this, replacement, env(), FlowGraph::kValue); |
| 3207 | return replacement; |
| 3208 | } |
| 3209 | |
| 3210 | return this; |
| 3211 | } |
| 3212 | |
| 3213 | // Tests for a FP comparison that cannot be negated |
| 3214 | // (to preserve NaN semantics). |
| 3215 | static bool IsFpCompare(ComparisonInstr* comp) { |
| 3216 | if (comp->IsRelationalOp()) { |
| 3217 | return comp->operation_cid() == kDoubleCid; |
| 3218 | } |
| 3219 | return false; |
| 3220 | } |
| 3221 | |
| 3222 | Definition* BooleanNegateInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3223 | Definition* defn = value()->definition(); |
| 3224 | // Convert e.g. !(x > y) into (x <= y) for non-FP x, y. |
| 3225 | if (defn->IsComparison() && defn->HasOnlyUse(value()) && |
| 3226 | defn->Type()->ToCid() == kBoolCid) { |
| 3227 | ComparisonInstr* comp = defn->AsComparison(); |
| 3228 | if (!IsFpCompare(comp)) { |
| 3229 | comp->NegateComparison(); |
| 3230 | return defn; |
| 3231 | } |
| 3232 | } |
| 3233 | return this; |
| 3234 | } |
| 3235 | |
| 3236 | static bool MayBeBoxableNumber(intptr_t cid) { |
| 3237 | return (cid == kDynamicCid) || (cid == kMintCid) || (cid == kDoubleCid); |
| 3238 | } |
| 3239 | |
| 3240 | static bool MayBeNumber(CompileType* type) { |
| 3241 | if (type->IsNone()) { |
| 3242 | return false; |
| 3243 | } |
| 3244 | const AbstractType& unwrapped_type = |
| 3245 | AbstractType::Handle(type->ToAbstractType()->UnwrapFutureOr()); |
| 3246 | // Note that type 'Number' is a subtype of itself. |
| 3247 | return unwrapped_type.IsTopTypeForSubtyping() || |
| 3248 | unwrapped_type.IsObjectType() || unwrapped_type.IsTypeParameter() || |
| 3249 | unwrapped_type.IsSubtypeOf(Type::Handle(Type::Number()), Heap::kOld); |
| 3250 | } |
| 3251 | |
| 3252 | // Returns a replacement for a strict comparison and signals if the result has |
| 3253 | // to be negated. |
| 3254 | static Definition* CanonicalizeStrictCompare(StrictCompareInstr* compare, |
| 3255 | bool* negated, |
| 3256 | bool is_branch) { |
| 3257 | // Use propagated cid and type information to eliminate number checks. |
| 3258 | // If one of the inputs is not a boxable number (Mint, Double), or |
| 3259 | // is not a subtype of num, no need for number checks. |
| 3260 | if (compare->needs_number_check()) { |
| 3261 | if (!MayBeBoxableNumber(compare->left()->Type()->ToCid()) || |
| 3262 | !MayBeBoxableNumber(compare->right()->Type()->ToCid())) { |
| 3263 | compare->set_needs_number_check(false); |
| 3264 | } else if (!MayBeNumber(compare->left()->Type()) || |
| 3265 | !MayBeNumber(compare->right()->Type())) { |
| 3266 | compare->set_needs_number_check(false); |
| 3267 | } |
| 3268 | } |
| 3269 | *negated = false; |
| 3270 | PassiveObject& constant = PassiveObject::Handle(); |
| 3271 | Value* other = NULL; |
| 3272 | if (compare->right()->BindsToConstant()) { |
| 3273 | constant = compare->right()->BoundConstant().raw(); |
| 3274 | other = compare->left(); |
| 3275 | } else if (compare->left()->BindsToConstant()) { |
| 3276 | constant = compare->left()->BoundConstant().raw(); |
| 3277 | other = compare->right(); |
| 3278 | } else { |
| 3279 | return compare; |
| 3280 | } |
| 3281 | |
| 3282 | const bool can_merge = is_branch || (other->Type()->ToCid() == kBoolCid); |
| 3283 | Definition* other_defn = other->definition(); |
| 3284 | Token::Kind kind = compare->kind(); |
| 3285 | // Handle e === true. |
| 3286 | if ((kind == Token::kEQ_STRICT) && (constant.raw() == Bool::True().raw()) && |
| 3287 | can_merge) { |
| 3288 | return other_defn; |
| 3289 | } |
| 3290 | // Handle e !== false. |
| 3291 | if ((kind == Token::kNE_STRICT) && (constant.raw() == Bool::False().raw()) && |
| 3292 | can_merge) { |
| 3293 | return other_defn; |
| 3294 | } |
| 3295 | // Handle e !== true. |
| 3296 | if ((kind == Token::kNE_STRICT) && (constant.raw() == Bool::True().raw()) && |
| 3297 | other_defn->IsComparison() && can_merge && |
| 3298 | other_defn->HasOnlyUse(other)) { |
| 3299 | ComparisonInstr* comp = other_defn->AsComparison(); |
| 3300 | if (!IsFpCompare(comp)) { |
| 3301 | *negated = true; |
| 3302 | return other_defn; |
| 3303 | } |
| 3304 | } |
| 3305 | // Handle e === false. |
| 3306 | if ((kind == Token::kEQ_STRICT) && (constant.raw() == Bool::False().raw()) && |
| 3307 | other_defn->IsComparison() && can_merge && |
| 3308 | other_defn->HasOnlyUse(other)) { |
| 3309 | ComparisonInstr* comp = other_defn->AsComparison(); |
| 3310 | if (!IsFpCompare(comp)) { |
| 3311 | *negated = true; |
| 3312 | return other_defn; |
| 3313 | } |
| 3314 | } |
| 3315 | return compare; |
| 3316 | } |
| 3317 | |
| 3318 | static bool BindsToGivenConstant(Value* v, intptr_t expected) { |
| 3319 | return v->BindsToConstant() && v->BoundConstant().IsSmi() && |
| 3320 | (Smi::Cast(v->BoundConstant()).Value() == expected); |
| 3321 | } |
| 3322 | |
| 3323 | // Recognize patterns (a & b) == 0 and (a & 2^n) != 2^n. |
| 3324 | static bool RecognizeTestPattern(Value* left, Value* right, bool* negate) { |
| 3325 | if (!right->BindsToConstant() || !right->BoundConstant().IsSmi()) { |
| 3326 | return false; |
| 3327 | } |
| 3328 | |
| 3329 | const intptr_t value = Smi::Cast(right->BoundConstant()).Value(); |
| 3330 | if ((value != 0) && !Utils::IsPowerOfTwo(value)) { |
| 3331 | return false; |
| 3332 | } |
| 3333 | |
| 3334 | BinarySmiOpInstr* mask_op = left->definition()->AsBinarySmiOp(); |
| 3335 | if ((mask_op == NULL) || (mask_op->op_kind() != Token::kBIT_AND) || |
| 3336 | !mask_op->HasOnlyUse(left)) { |
| 3337 | return false; |
| 3338 | } |
| 3339 | |
| 3340 | if (value == 0) { |
| 3341 | // Recognized (a & b) == 0 pattern. |
| 3342 | *negate = false; |
| 3343 | return true; |
| 3344 | } |
| 3345 | |
| 3346 | // Recognize |
| 3347 | if (BindsToGivenConstant(mask_op->left(), value) || |
| 3348 | BindsToGivenConstant(mask_op->right(), value)) { |
| 3349 | // Recognized (a & 2^n) == 2^n pattern. It's equivalent to (a & 2^n) != 0 |
| 3350 | // so we need to negate original comparison. |
| 3351 | *negate = true; |
| 3352 | return true; |
| 3353 | } |
| 3354 | |
| 3355 | return false; |
| 3356 | } |
| 3357 | |
| 3358 | Instruction* BranchInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3359 | Zone* zone = flow_graph->zone(); |
| 3360 | // Only handle strict-compares. |
| 3361 | if (comparison()->IsStrictCompare()) { |
| 3362 | bool negated = false; |
| 3363 | Definition* replacement = CanonicalizeStrictCompare( |
| 3364 | comparison()->AsStrictCompare(), &negated, /* is_branch = */ true); |
| 3365 | if (replacement == comparison()) { |
| 3366 | return this; |
| 3367 | } |
| 3368 | ComparisonInstr* comp = replacement->AsComparison(); |
| 3369 | if ((comp == NULL) || comp->CanDeoptimize() || |
| 3370 | comp->HasUnmatchedInputRepresentations()) { |
| 3371 | return this; |
| 3372 | } |
| 3373 | |
| 3374 | // Replace the comparison if the replacement is used at this branch, |
| 3375 | // and has exactly one use. |
| 3376 | Value* use = comp->input_use_list(); |
| 3377 | if ((use->instruction() == this) && comp->HasOnlyUse(use)) { |
| 3378 | if (negated) { |
| 3379 | comp->NegateComparison(); |
| 3380 | } |
| 3381 | RemoveEnvironment(); |
| 3382 | flow_graph->CopyDeoptTarget(this, comp); |
| 3383 | // Unlink environment from the comparison since it is copied to the |
| 3384 | // branch instruction. |
| 3385 | comp->RemoveEnvironment(); |
| 3386 | |
| 3387 | comp->RemoveFromGraph(); |
| 3388 | SetComparison(comp); |
| 3389 | if (FLAG_trace_optimization) { |
| 3390 | THR_Print("Merging comparison v%" Pd "\n" , comp->ssa_temp_index()); |
| 3391 | } |
| 3392 | // Clear the comparison's temp index and ssa temp index since the |
| 3393 | // value of the comparison is not used outside the branch anymore. |
| 3394 | ASSERT(comp->input_use_list() == NULL); |
| 3395 | comp->ClearSSATempIndex(); |
| 3396 | comp->ClearTempIndex(); |
| 3397 | } |
| 3398 | } else if (comparison()->IsEqualityCompare() && |
| 3399 | comparison()->operation_cid() == kSmiCid) { |
| 3400 | BinarySmiOpInstr* bit_and = NULL; |
| 3401 | bool negate = false; |
| 3402 | if (RecognizeTestPattern(comparison()->left(), comparison()->right(), |
| 3403 | &negate)) { |
| 3404 | bit_and = comparison()->left()->definition()->AsBinarySmiOp(); |
| 3405 | } else if (RecognizeTestPattern(comparison()->right(), comparison()->left(), |
| 3406 | &negate)) { |
| 3407 | bit_and = comparison()->right()->definition()->AsBinarySmiOp(); |
| 3408 | } |
| 3409 | if (bit_and != NULL) { |
| 3410 | if (FLAG_trace_optimization) { |
| 3411 | THR_Print("Merging test smi v%" Pd "\n" , bit_and->ssa_temp_index()); |
| 3412 | } |
| 3413 | TestSmiInstr* test = new TestSmiInstr( |
| 3414 | comparison()->token_pos(), |
| 3415 | negate ? Token::NegateComparison(comparison()->kind()) |
| 3416 | : comparison()->kind(), |
| 3417 | bit_and->left()->Copy(zone), bit_and->right()->Copy(zone)); |
| 3418 | ASSERT(!CanDeoptimize()); |
| 3419 | RemoveEnvironment(); |
| 3420 | flow_graph->CopyDeoptTarget(this, bit_and); |
| 3421 | SetComparison(test); |
| 3422 | bit_and->RemoveFromGraph(); |
| 3423 | } |
| 3424 | } |
| 3425 | return this; |
| 3426 | } |
| 3427 | |
| 3428 | Definition* StrictCompareInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3429 | if (!HasUses()) return NULL; |
| 3430 | bool negated = false; |
| 3431 | Definition* replacement = CanonicalizeStrictCompare(this, &negated, |
| 3432 | /* is_branch = */ false); |
| 3433 | if (negated && replacement->IsComparison()) { |
| 3434 | ASSERT(replacement != this); |
| 3435 | replacement->AsComparison()->NegateComparison(); |
| 3436 | } |
| 3437 | return replacement; |
| 3438 | } |
| 3439 | |
| 3440 | Instruction* CheckClassInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3441 | const intptr_t value_cid = value()->Type()->ToCid(); |
| 3442 | if (value_cid == kDynamicCid) { |
| 3443 | return this; |
| 3444 | } |
| 3445 | |
| 3446 | return cids().HasClassId(value_cid) ? NULL : this; |
| 3447 | } |
| 3448 | |
| 3449 | Definition* LoadClassIdInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3450 | // TODO(dartbug.com/40188): Allow this to canonicalize into an untagged |
| 3451 | // constant and make a subsequent DispatchTableCallInstr canonicalize into a |
| 3452 | // StaticCall. |
| 3453 | if (representation() == kUntagged) return this; |
| 3454 | const intptr_t cid = object()->Type()->ToCid(); |
| 3455 | if (cid != kDynamicCid) { |
| 3456 | const auto& smi = Smi::ZoneHandle(flow_graph->zone(), Smi::New(cid)); |
| 3457 | return flow_graph->GetConstant(smi); |
| 3458 | } |
| 3459 | return this; |
| 3460 | } |
| 3461 | |
| 3462 | Instruction* CheckClassIdInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3463 | if (value()->BindsToConstant()) { |
| 3464 | const Object& constant_value = value()->BoundConstant(); |
| 3465 | if (constant_value.IsSmi() && |
| 3466 | cids_.Contains(Smi::Cast(constant_value).Value())) { |
| 3467 | return NULL; |
| 3468 | } |
| 3469 | } |
| 3470 | return this; |
| 3471 | } |
| 3472 | |
| 3473 | TestCidsInstr::TestCidsInstr(TokenPosition token_pos, |
| 3474 | Token::Kind kind, |
| 3475 | Value* value, |
| 3476 | const ZoneGrowableArray<intptr_t>& cid_results, |
| 3477 | intptr_t deopt_id) |
| 3478 | : TemplateComparison(token_pos, kind, deopt_id), |
| 3479 | cid_results_(cid_results), |
| 3480 | licm_hoisted_(false) { |
| 3481 | ASSERT((kind == Token::kIS) || (kind == Token::kISNOT)); |
| 3482 | SetInputAt(0, value); |
| 3483 | set_operation_cid(kObjectCid); |
| 3484 | #ifdef DEBUG |
| 3485 | ASSERT(cid_results[0] == kSmiCid); |
| 3486 | if (deopt_id == DeoptId::kNone) { |
| 3487 | // The entry for Smi can be special, but all other entries have |
| 3488 | // to match in the no-deopt case. |
| 3489 | for (intptr_t i = 4; i < cid_results.length(); i += 2) { |
| 3490 | ASSERT(cid_results[i + 1] == cid_results[3]); |
| 3491 | } |
| 3492 | } |
| 3493 | #endif |
| 3494 | } |
| 3495 | |
| 3496 | Definition* TestCidsInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3497 | CompileType* in_type = left()->Type(); |
| 3498 | intptr_t cid = in_type->ToCid(); |
| 3499 | if (cid == kDynamicCid) return this; |
| 3500 | |
| 3501 | const ZoneGrowableArray<intptr_t>& data = cid_results(); |
| 3502 | const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0; |
| 3503 | for (intptr_t i = 0; i < data.length(); i += 2) { |
| 3504 | if (data[i] == cid) { |
| 3505 | return (data[i + 1] == true_result) |
| 3506 | ? flow_graph->GetConstant(Bool::True()) |
| 3507 | : flow_graph->GetConstant(Bool::False()); |
| 3508 | } |
| 3509 | } |
| 3510 | |
| 3511 | if (!CanDeoptimize()) { |
| 3512 | ASSERT(deopt_id() == DeoptId::kNone); |
| 3513 | return (data[data.length() - 1] == true_result) |
| 3514 | ? flow_graph->GetConstant(Bool::False()) |
| 3515 | : flow_graph->GetConstant(Bool::True()); |
| 3516 | } |
| 3517 | |
| 3518 | // TODO(sra): Handle nullable input, possibly canonicalizing to a compare |
| 3519 | // against `null`. |
| 3520 | return this; |
| 3521 | } |
| 3522 | |
| 3523 | Instruction* GuardFieldClassInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3524 | if (field().guarded_cid() == kDynamicCid) { |
| 3525 | return NULL; // Nothing to guard. |
| 3526 | } |
| 3527 | |
| 3528 | if (field().is_nullable() && value()->Type()->IsNull()) { |
| 3529 | return NULL; |
| 3530 | } |
| 3531 | |
| 3532 | const intptr_t cid = field().is_nullable() ? value()->Type()->ToNullableCid() |
| 3533 | : value()->Type()->ToCid(); |
| 3534 | if (field().guarded_cid() == cid) { |
| 3535 | return NULL; // Value is guaranteed to have this cid. |
| 3536 | } |
| 3537 | |
| 3538 | return this; |
| 3539 | } |
| 3540 | |
| 3541 | Instruction* GuardFieldLengthInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3542 | if (!field().needs_length_check()) { |
| 3543 | return NULL; // Nothing to guard. |
| 3544 | } |
| 3545 | |
| 3546 | const intptr_t expected_length = field().guarded_list_length(); |
| 3547 | if (expected_length == Field::kUnknownFixedLength) { |
| 3548 | return this; |
| 3549 | } |
| 3550 | |
| 3551 | // Check if length is statically known. |
| 3552 | StaticCallInstr* call = value()->definition()->AsStaticCall(); |
| 3553 | if (call == NULL) { |
| 3554 | return this; |
| 3555 | } |
| 3556 | |
| 3557 | ConstantInstr* length = NULL; |
| 3558 | if (call->is_known_list_constructor() && |
| 3559 | LoadFieldInstr::IsFixedLengthArrayCid(call->Type()->ToCid())) { |
| 3560 | length = call->ArgumentAt(1)->AsConstant(); |
| 3561 | } else if (call->function().recognized_kind() == |
| 3562 | MethodRecognizer::kByteDataFactory) { |
| 3563 | length = call->ArgumentAt(1)->AsConstant(); |
| 3564 | } else if (LoadFieldInstr::IsTypedDataViewFactory(call->function())) { |
| 3565 | length = call->ArgumentAt(3)->AsConstant(); |
| 3566 | } |
| 3567 | if ((length != NULL) && length->value().IsSmi() && |
| 3568 | Smi::Cast(length->value()).Value() == expected_length) { |
| 3569 | return NULL; // Expected length matched. |
| 3570 | } |
| 3571 | |
| 3572 | return this; |
| 3573 | } |
| 3574 | |
| 3575 | Instruction* GuardFieldTypeInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3576 | return field().static_type_exactness_state().NeedsFieldGuard() ? this |
| 3577 | : nullptr; |
| 3578 | } |
| 3579 | |
| 3580 | Instruction* CheckSmiInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3581 | return (value()->Type()->ToCid() == kSmiCid) ? NULL : this; |
| 3582 | } |
| 3583 | |
| 3584 | Instruction* CheckEitherNonSmiInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3585 | if ((left()->Type()->ToCid() == kDoubleCid) || |
| 3586 | (right()->Type()->ToCid() == kDoubleCid)) { |
| 3587 | return NULL; // Remove from the graph. |
| 3588 | } |
| 3589 | return this; |
| 3590 | } |
| 3591 | |
| 3592 | Definition* CheckNullInstr::Canonicalize(FlowGraph* flow_graph) { |
| 3593 | return (!value()->Type()->is_nullable()) ? value()->definition() : this; |
| 3594 | } |
| 3595 | |
| 3596 | bool CheckNullInstr::AttributesEqual(Instruction* other) const { |
| 3597 | CheckNullInstr* other_check = other->AsCheckNull(); |
| 3598 | ASSERT(other_check != nullptr); |
| 3599 | return function_name().Equals(other_check->function_name()) && |
| 3600 | exception_type() == other_check->exception_type(); |
| 3601 | } |
| 3602 | |
| 3603 | BoxInstr* BoxInstr::Create(Representation from, Value* value) { |
| 3604 | switch (from) { |
| 3605 | case kUnboxedInt32: |
| 3606 | return new BoxInt32Instr(value); |
| 3607 | |
| 3608 | case kUnboxedUint32: |
| 3609 | return new BoxUint32Instr(value); |
| 3610 | |
| 3611 | case kUnboxedInt64: |
| 3612 | return new BoxInt64Instr(value); |
| 3613 | |
| 3614 | case kUnboxedDouble: |
| 3615 | case kUnboxedFloat: |
| 3616 | case kUnboxedFloat32x4: |
| 3617 | case kUnboxedFloat64x2: |
| 3618 | case kUnboxedInt32x4: |
| 3619 | return new BoxInstr(from, value); |
| 3620 | |
| 3621 | default: |
| 3622 | UNREACHABLE(); |
| 3623 | return NULL; |
| 3624 | } |
| 3625 | } |
| 3626 | |
| 3627 | UnboxInstr* UnboxInstr::Create(Representation to, |
| 3628 | Value* value, |
| 3629 | intptr_t deopt_id, |
| 3630 | SpeculativeMode speculative_mode) { |
| 3631 | switch (to) { |
| 3632 | case kUnboxedInt32: |
| 3633 | // We must truncate if we can't deoptimize. |
| 3634 | return new UnboxInt32Instr( |
| 3635 | speculative_mode == SpeculativeMode::kNotSpeculative |
| 3636 | ? UnboxInt32Instr::kTruncate |
| 3637 | : UnboxInt32Instr::kNoTruncation, |
| 3638 | value, deopt_id, speculative_mode); |
| 3639 | |
| 3640 | case kUnboxedUint32: |
| 3641 | return new UnboxUint32Instr(value, deopt_id, speculative_mode); |
| 3642 | |
| 3643 | case kUnboxedInt64: |
| 3644 | return new UnboxInt64Instr(value, deopt_id, speculative_mode); |
| 3645 | |
| 3646 | case kUnboxedDouble: |
| 3647 | case kUnboxedFloat: |
| 3648 | case kUnboxedFloat32x4: |
| 3649 | case kUnboxedFloat64x2: |
| 3650 | case kUnboxedInt32x4: |
| 3651 | ASSERT(FlowGraphCompiler::SupportsUnboxedDoubles()); |
| 3652 | return new UnboxInstr(to, value, deopt_id, speculative_mode); |
| 3653 | |
| 3654 | default: |
| 3655 | UNREACHABLE(); |
| 3656 | return NULL; |
| 3657 | } |
| 3658 | } |
| 3659 | |
| 3660 | bool UnboxInstr::CanConvertSmi() const { |
| 3661 | switch (representation()) { |
| 3662 | case kUnboxedDouble: |
| 3663 | case kUnboxedFloat: |
| 3664 | case kUnboxedInt32: |
| 3665 | case kUnboxedInt64: |
| 3666 | return true; |
| 3667 | |
| 3668 | case kUnboxedFloat32x4: |
| 3669 | case kUnboxedFloat64x2: |
| 3670 | case kUnboxedInt32x4: |
| 3671 | return false; |
| 3672 | |
| 3673 | default: |
| 3674 | UNREACHABLE(); |
| 3675 | return false; |
| 3676 | } |
| 3677 | } |
| 3678 | |
| 3679 | const BinaryFeedback* BinaryFeedback::Create(Zone* zone, |
| 3680 | const ICData& ic_data) { |
| 3681 | BinaryFeedback* result = new (zone) BinaryFeedback(zone); |
| 3682 | if (ic_data.NumArgsTested() == 2) { |
| 3683 | for (intptr_t i = 0, n = ic_data.NumberOfChecks(); i < n; i++) { |
| 3684 | if (ic_data.GetCountAt(i) == 0) { |
| 3685 | continue; |
| 3686 | } |
| 3687 | GrowableArray<intptr_t> arg_ids; |
| 3688 | ic_data.GetClassIdsAt(i, &arg_ids); |
| 3689 | result->feedback_.Add({arg_ids[0], arg_ids[1]}); |
| 3690 | } |
| 3691 | } |
| 3692 | return result; |
| 3693 | } |
| 3694 | |
| 3695 | const BinaryFeedback* BinaryFeedback::CreateMonomorphic(Zone* zone, |
| 3696 | intptr_t receiver_cid, |
| 3697 | intptr_t argument_cid) { |
| 3698 | BinaryFeedback* result = new (zone) BinaryFeedback(zone); |
| 3699 | result->feedback_.Add({receiver_cid, argument_cid}); |
| 3700 | return result; |
| 3701 | } |
| 3702 | |
| 3703 | const CallTargets* CallTargets::CreateMonomorphic(Zone* zone, |
| 3704 | intptr_t receiver_cid, |
| 3705 | const Function& target) { |
| 3706 | CallTargets* targets = new (zone) CallTargets(zone); |
| 3707 | const intptr_t count = 1; |
| 3708 | targets->cid_ranges_.Add(new (zone) TargetInfo( |
| 3709 | receiver_cid, receiver_cid, &Function::ZoneHandle(zone, target.raw()), |
| 3710 | count, StaticTypeExactnessState::NotTracking())); |
| 3711 | return targets; |
| 3712 | } |
| 3713 | |
| 3714 | const CallTargets* CallTargets::Create(Zone* zone, const ICData& ic_data) { |
| 3715 | CallTargets* targets = new (zone) CallTargets(zone); |
| 3716 | targets->CreateHelper(zone, ic_data); |
| 3717 | targets->Sort(OrderById); |
| 3718 | targets->MergeIntoRanges(); |
| 3719 | return targets; |
| 3720 | } |
| 3721 | |
| 3722 | const CallTargets* CallTargets::CreateAndExpand(Zone* zone, |
| 3723 | const ICData& ic_data) { |
| 3724 | CallTargets& targets = *new (zone) CallTargets(zone); |
| 3725 | targets.CreateHelper(zone, ic_data); |
| 3726 | |
| 3727 | if (targets.is_empty() || targets.IsMonomorphic()) { |
| 3728 | return &targets; |
| 3729 | } |
| 3730 | |
| 3731 | targets.Sort(OrderById); |
| 3732 | |
| 3733 | Array& args_desc_array = Array::Handle(zone, ic_data.arguments_descriptor()); |
| 3734 | ArgumentsDescriptor args_desc(args_desc_array); |
| 3735 | String& name = String::Handle(zone, ic_data.target_name()); |
| 3736 | |
| 3737 | Function& fn = Function::Handle(zone); |
| 3738 | |
| 3739 | intptr_t length = targets.length(); |
| 3740 | |
| 3741 | // Merging/extending cid ranges is also done in Cids::CreateAndExpand. |
| 3742 | // If changing this code, consider also adjusting Cids code. |
| 3743 | |
| 3744 | // Spread class-ids to preceding classes where a lookup yields the same |
| 3745 | // method. A polymorphic target is not really the same method since its |
| 3746 | // behaviour depends on the receiver class-id, so we don't spread the |
| 3747 | // class-ids in that case. |
| 3748 | for (int idx = 0; idx < length; idx++) { |
| 3749 | int lower_limit_cid = (idx == 0) ? -1 : targets[idx - 1].cid_end; |
| 3750 | auto target_info = targets.TargetAt(idx); |
| 3751 | const Function& target = *target_info->target; |
| 3752 | if (target.is_polymorphic_target()) continue; |
| 3753 | for (int i = target_info->cid_start - 1; i > lower_limit_cid; i--) { |
| 3754 | bool class_is_abstract = false; |
| 3755 | if (FlowGraphCompiler::LookupMethodFor(i, name, args_desc, &fn, |
| 3756 | &class_is_abstract) && |
| 3757 | fn.raw() == target.raw()) { |
| 3758 | if (!class_is_abstract) { |
| 3759 | target_info->cid_start = i; |
| 3760 | target_info->exactness = StaticTypeExactnessState::NotTracking(); |
| 3761 | } |
| 3762 | } else { |
| 3763 | break; |
| 3764 | } |
| 3765 | } |
| 3766 | } |
| 3767 | |
| 3768 | // Spread class-ids to following classes where a lookup yields the same |
| 3769 | // method. |
| 3770 | const intptr_t max_cid = Isolate::Current()->class_table()->NumCids(); |
| 3771 | for (int idx = 0; idx < length; idx++) { |
| 3772 | int upper_limit_cid = |
| 3773 | (idx == length - 1) ? max_cid : targets[idx + 1].cid_start; |
| 3774 | auto target_info = targets.TargetAt(idx); |
| 3775 | const Function& target = *target_info->target; |
| 3776 | if (target.is_polymorphic_target()) continue; |
| 3777 | // The code below makes attempt to avoid spreading class-id range |
| 3778 | // into a suffix that consists purely of abstract classes to |
| 3779 | // shorten the range. |
| 3780 | // However such spreading is beneficial when it allows to |
| 3781 | // merge to consequtive ranges. |
| 3782 | intptr_t cid_end_including_abstract = target_info->cid_end; |
| 3783 | for (int i = target_info->cid_end + 1; i < upper_limit_cid; i++) { |
| 3784 | bool class_is_abstract = false; |
| 3785 | if (FlowGraphCompiler::LookupMethodFor(i, name, args_desc, &fn, |
| 3786 | &class_is_abstract) && |
| 3787 | fn.raw() == target.raw()) { |
| 3788 | cid_end_including_abstract = i; |
| 3789 | if (!class_is_abstract) { |
| 3790 | target_info->cid_end = i; |
| 3791 | target_info->exactness = StaticTypeExactnessState::NotTracking(); |
| 3792 | } |
| 3793 | } else { |
| 3794 | break; |
| 3795 | } |
| 3796 | } |
| 3797 | |
| 3798 | // Check if we have a suffix that consists of abstract classes |
| 3799 | // and expand into it if that would allow us to merge this |
| 3800 | // range with subsequent range. |
| 3801 | if ((cid_end_including_abstract > target_info->cid_end) && |
| 3802 | (idx < length - 1) && |
| 3803 | ((cid_end_including_abstract + 1) == targets[idx + 1].cid_start) && |
| 3804 | (target.raw() == targets.TargetAt(idx + 1)->target->raw())) { |
| 3805 | target_info->cid_end = cid_end_including_abstract; |
| 3806 | target_info->exactness = StaticTypeExactnessState::NotTracking(); |
| 3807 | } |
| 3808 | } |
| 3809 | targets.MergeIntoRanges(); |
| 3810 | return &targets; |
| 3811 | } |
| 3812 | |
| 3813 | void CallTargets::MergeIntoRanges() { |
| 3814 | if (length() == 0) { |
| 3815 | return; // For correctness not performance: must not update length to 1. |
| 3816 | } |
| 3817 | |
| 3818 | // Merge adjacent class id ranges. |
| 3819 | int dest = 0; |
| 3820 | // We merge entries that dispatch to the same target, but polymorphic targets |
| 3821 | // are not really the same target since they depend on the class-id, so we |
| 3822 | // don't merge them. |
| 3823 | for (int src = 1; src < length(); src++) { |
| 3824 | const Function& target = *TargetAt(dest)->target; |
| 3825 | if (TargetAt(dest)->cid_end + 1 >= TargetAt(src)->cid_start && |
| 3826 | target.raw() == TargetAt(src)->target->raw() && |
| 3827 | !target.is_polymorphic_target()) { |
| 3828 | TargetAt(dest)->cid_end = TargetAt(src)->cid_end; |
| 3829 | TargetAt(dest)->count += TargetAt(src)->count; |
| 3830 | TargetAt(dest)->exactness = StaticTypeExactnessState::NotTracking(); |
| 3831 | } else { |
| 3832 | dest++; |
| 3833 | if (src != dest) { |
| 3834 | // Use cid_ranges_ instead of TargetAt when updating the pointer. |
| 3835 | cid_ranges_[dest] = TargetAt(src); |
| 3836 | } |
| 3837 | } |
| 3838 | } |
| 3839 | SetLength(dest + 1); |
| 3840 | Sort(OrderByFrequencyThenId); |
| 3841 | } |
| 3842 | |
| 3843 | void CallTargets::Print() const { |
| 3844 | for (intptr_t i = 0; i < length(); i++) { |
| 3845 | THR_Print("cid = [%" Pd ", %" Pd "], count = %" Pd ", target = %s\n" , |
| 3846 | TargetAt(i)->cid_start, TargetAt(i)->cid_end, TargetAt(i)->count, |
| 3847 | TargetAt(i)->target->ToQualifiedCString()); |
| 3848 | } |
| 3849 | } |
| 3850 | |
| 3851 | // Shared code generation methods (EmitNativeCode and |
| 3852 | // MakeLocationSummary). Only assembly code that can be shared across all |
| 3853 | // architectures can be used. Machine specific register allocation and code |
| 3854 | // generation is located in intermediate_language_<arch>.cc |
| 3855 | |
| 3856 | #define __ compiler->assembler()-> |
| 3857 | |
| 3858 | LocationSummary* GraphEntryInstr::MakeLocationSummary(Zone* zone, |
| 3859 | bool optimizing) const { |
| 3860 | UNREACHABLE(); |
| 3861 | return NULL; |
| 3862 | } |
| 3863 | |
| 3864 | LocationSummary* JoinEntryInstr::MakeLocationSummary(Zone* zone, |
| 3865 | bool optimizing) const { |
| 3866 | UNREACHABLE(); |
| 3867 | return NULL; |
| 3868 | } |
| 3869 | |
| 3870 | void JoinEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3871 | __ Bind(compiler->GetJumpLabel(this)); |
| 3872 | if (!compiler->is_optimizing()) { |
| 3873 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, GetDeoptId(), |
| 3874 | TokenPosition::kNoSource); |
| 3875 | } |
| 3876 | if (HasParallelMove()) { |
| 3877 | compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| 3878 | } |
| 3879 | } |
| 3880 | |
| 3881 | LocationSummary* TargetEntryInstr::MakeLocationSummary(Zone* zone, |
| 3882 | bool optimizing) const { |
| 3883 | UNREACHABLE(); |
| 3884 | return NULL; |
| 3885 | } |
| 3886 | |
| 3887 | void TargetEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3888 | __ Bind(compiler->GetJumpLabel(this)); |
| 3889 | |
| 3890 | // TODO(kusterman): Remove duplicate between |
| 3891 | // {TargetEntryInstr,FunctionEntryInstr}::EmitNativeCode. |
| 3892 | if (!compiler->is_optimizing()) { |
| 3893 | if (compiler->NeedsEdgeCounter(this)) { |
| 3894 | compiler->EmitEdgeCounter(preorder_number()); |
| 3895 | } |
| 3896 | |
| 3897 | // The deoptimization descriptor points after the edge counter code for |
| 3898 | // uniformity with ARM, where we can reuse pattern matching code that |
| 3899 | // matches backwards from the end of the pattern. |
| 3900 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, GetDeoptId(), |
| 3901 | TokenPosition::kNoSource); |
| 3902 | } |
| 3903 | if (HasParallelMove()) { |
| 3904 | if (compiler::Assembler::EmittingComments()) { |
| 3905 | compiler->EmitComment(parallel_move()); |
| 3906 | } |
| 3907 | compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| 3908 | } |
| 3909 | } |
| 3910 | |
| 3911 | LocationSummary* FunctionEntryInstr::MakeLocationSummary( |
| 3912 | Zone* zone, |
| 3913 | bool optimizing) const { |
| 3914 | UNREACHABLE(); |
| 3915 | return NULL; |
| 3916 | } |
| 3917 | |
| 3918 | void FunctionEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3919 | #if defined(TARGET_ARCH_X64) |
| 3920 | // Ensure the start of the monomorphic checked entry is 2-byte aligned (see |
| 3921 | // also Assembler::MonomorphicCheckedEntry()). |
| 3922 | if (__ CodeSize() % 2 == 1) { |
| 3923 | __ nop(); |
| 3924 | } |
| 3925 | #endif |
| 3926 | if (tag() == Instruction::kFunctionEntry) { |
| 3927 | __ Bind(compiler->GetJumpLabel(this)); |
| 3928 | } |
| 3929 | |
| 3930 | if (this == compiler->flow_graph().graph_entry()->unchecked_entry()) { |
| 3931 | __ BindUncheckedEntryPoint(); |
| 3932 | } |
| 3933 | |
| 3934 | // In the AOT compiler we want to reduce code size, so generate no |
| 3935 | // fall-through code in [FlowGraphCompiler::CompileGraph()]. |
| 3936 | // (As opposed to here where we don't check for the return value of |
| 3937 | // [Intrinsify]). |
| 3938 | const Function& function = compiler->parsed_function().function(); |
| 3939 | |
| 3940 | if (function.NeedsMonomorphicCheckedEntry(compiler->zone())) { |
| 3941 | compiler->SpecialStatsBegin(CombinedCodeStatistics::kTagCheckedEntry); |
| 3942 | if (!FLAG_precompiled_mode) { |
| 3943 | __ MonomorphicCheckedEntryJIT(); |
| 3944 | } else { |
| 3945 | __ MonomorphicCheckedEntryAOT(); |
| 3946 | } |
| 3947 | compiler->SpecialStatsEnd(CombinedCodeStatistics::kTagCheckedEntry); |
| 3948 | } |
| 3949 | |
| 3950 | // NOTE: Because of the presence of multiple entry-points, we generate several |
| 3951 | // times the same intrinsification & frame setup. That's why we cannot rely on |
| 3952 | // the constant pool being `false` when we come in here. |
| 3953 | #if defined(TARGET_USES_OBJECT_POOL) |
| 3954 | __ set_constant_pool_allowed(false); |
| 3955 | #endif |
| 3956 | |
| 3957 | if (compiler->TryIntrinsify() && compiler->skip_body_compilation()) { |
| 3958 | return; |
| 3959 | } |
| 3960 | compiler->EmitPrologue(); |
| 3961 | |
| 3962 | #if defined(TARGET_USES_OBJECT_POOL) |
| 3963 | ASSERT(__ constant_pool_allowed()); |
| 3964 | #endif |
| 3965 | |
| 3966 | if (!compiler->is_optimizing()) { |
| 3967 | if (compiler->NeedsEdgeCounter(this)) { |
| 3968 | compiler->EmitEdgeCounter(preorder_number()); |
| 3969 | } |
| 3970 | |
| 3971 | // The deoptimization descriptor points after the edge counter code for |
| 3972 | // uniformity with ARM, where we can reuse pattern matching code that |
| 3973 | // matches backwards from the end of the pattern. |
| 3974 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kDeopt, GetDeoptId(), |
| 3975 | TokenPosition::kNoSource); |
| 3976 | } |
| 3977 | if (HasParallelMove()) { |
| 3978 | if (compiler::Assembler::EmittingComments()) { |
| 3979 | compiler->EmitComment(parallel_move()); |
| 3980 | } |
| 3981 | compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| 3982 | } |
| 3983 | } |
| 3984 | |
| 3985 | LocationSummary* NativeEntryInstr::MakeLocationSummary(Zone* zone, |
| 3986 | bool optimizing) const { |
| 3987 | UNREACHABLE(); |
| 3988 | } |
| 3989 | |
| 3990 | LocationSummary* OsrEntryInstr::MakeLocationSummary(Zone* zone, |
| 3991 | bool optimizing) const { |
| 3992 | UNREACHABLE(); |
| 3993 | return NULL; |
| 3994 | } |
| 3995 | |
| 3996 | void OsrEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 3997 | ASSERT(!CompilerState::Current().is_aot()); |
| 3998 | ASSERT(compiler->is_optimizing()); |
| 3999 | __ Bind(compiler->GetJumpLabel(this)); |
| 4000 | |
| 4001 | // NOTE: Because the graph can have multiple entrypoints, we generate several |
| 4002 | // times the same intrinsification & frame setup. That's why we cannot rely on |
| 4003 | // the constant pool being `false` when we come in here. |
| 4004 | #if defined(TARGET_USES_OBJECT_POOL) |
| 4005 | __ set_constant_pool_allowed(false); |
| 4006 | #endif |
| 4007 | |
| 4008 | compiler->EmitPrologue(); |
| 4009 | |
| 4010 | #if defined(TARGET_USES_OBJECT_POOL) |
| 4011 | ASSERT(__ constant_pool_allowed()); |
| 4012 | #endif |
| 4013 | |
| 4014 | if (HasParallelMove()) { |
| 4015 | if (compiler::Assembler::EmittingComments()) { |
| 4016 | compiler->EmitComment(parallel_move()); |
| 4017 | } |
| 4018 | compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| 4019 | } |
| 4020 | } |
| 4021 | |
| 4022 | void IndirectGotoInstr::ComputeOffsetTable(FlowGraphCompiler* compiler) { |
| 4023 | ASSERT(SuccessorCount() == offsets_.Length()); |
| 4024 | intptr_t element_size = offsets_.ElementSizeInBytes(); |
| 4025 | for (intptr_t i = 0; i < SuccessorCount(); i++) { |
| 4026 | TargetEntryInstr* target = SuccessorAt(i); |
| 4027 | auto* label = compiler->GetJumpLabel(target); |
| 4028 | RELEASE_ASSERT(label != nullptr); |
| 4029 | RELEASE_ASSERT(label->IsBound()); |
| 4030 | intptr_t offset = label->Position(); |
| 4031 | RELEASE_ASSERT(offset > 0); |
| 4032 | offsets_.SetInt32(i * element_size, offset); |
| 4033 | } |
| 4034 | } |
| 4035 | |
| 4036 | LocationSummary* IndirectEntryInstr::MakeLocationSummary( |
| 4037 | Zone* zone, |
| 4038 | bool optimizing) const { |
| 4039 | return JoinEntryInstr::MakeLocationSummary(zone, optimizing); |
| 4040 | } |
| 4041 | |
| 4042 | void IndirectEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4043 | JoinEntryInstr::EmitNativeCode(compiler); |
| 4044 | } |
| 4045 | |
| 4046 | LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| 4047 | bool opt) const { |
| 4048 | const intptr_t kNumInputs = 0; |
| 4049 | const intptr_t kNumTemps = 0; |
| 4050 | LocationSummary* locs = new (zone) LocationSummary( |
| 4051 | zone, kNumInputs, kNumTemps, |
| 4052 | calls_initializer() ? LocationSummary::kCall : LocationSummary::kNoCall); |
| 4053 | locs->set_out(0, calls_initializer() ? Location::RegisterLocation( |
| 4054 | InitStaticFieldABI::kResultReg) |
| 4055 | : Location::RequiresRegister()); |
| 4056 | return locs; |
| 4057 | } |
| 4058 | |
| 4059 | void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4060 | const Register result = locs()->out(0).reg(); |
| 4061 | |
| 4062 | compiler->used_static_fields().Add(&field()); |
| 4063 | |
| 4064 | // Note: static fields ids won't be changed by hot-reload. |
| 4065 | const intptr_t field_table_offset = |
| 4066 | compiler::target::Thread::field_table_values_offset(); |
| 4067 | const intptr_t field_offset = compiler::target::FieldTable::OffsetOf(field()); |
| 4068 | |
| 4069 | __ LoadMemoryValue(result, THR, static_cast<int32_t>(field_table_offset)); |
| 4070 | __ LoadMemoryValue(result, result, static_cast<int32_t>(field_offset)); |
| 4071 | |
| 4072 | if (calls_initializer()) { |
| 4073 | compiler::Label call_runtime, no_call; |
| 4074 | __ CompareObject(result, Object::sentinel()); |
| 4075 | |
| 4076 | if (!field().is_late()) { |
| 4077 | __ BranchIf(EQUAL, &call_runtime); |
| 4078 | __ CompareObject(result, Object::transition_sentinel()); |
| 4079 | } |
| 4080 | |
| 4081 | __ BranchIf(NOT_EQUAL, &no_call); |
| 4082 | |
| 4083 | __ Bind(&call_runtime); |
| 4084 | __ LoadObject(InitStaticFieldABI::kFieldReg, |
| 4085 | Field::ZoneHandle(field().Original())); |
| 4086 | |
| 4087 | auto object_store = compiler->isolate()->object_store(); |
| 4088 | const auto& init_static_field_stub = Code::ZoneHandle( |
| 4089 | compiler->zone(), object_store->init_static_field_stub()); |
| 4090 | compiler->GenerateStubCall(token_pos(), init_static_field_stub, |
| 4091 | /*kind=*/PcDescriptorsLayout::kOther, locs(), |
| 4092 | deopt_id()); |
| 4093 | __ Bind(&no_call); |
| 4094 | } |
| 4095 | } |
| 4096 | |
| 4097 | void LoadFieldInstr::EmitNativeCodeForInitializerCall( |
| 4098 | FlowGraphCompiler* compiler) { |
| 4099 | ASSERT(calls_initializer()); |
| 4100 | ASSERT(locs()->in(0).reg() == InitInstanceFieldABI::kInstanceReg); |
| 4101 | ASSERT(locs()->out(0).reg() == InitInstanceFieldABI::kResultReg); |
| 4102 | ASSERT(slot().IsDartField()); |
| 4103 | const Field& field = slot().field(); |
| 4104 | const Field& original_field = Field::ZoneHandle(field.Original()); |
| 4105 | |
| 4106 | compiler::Label no_call; |
| 4107 | __ CompareObject(InitInstanceFieldABI::kResultReg, Object::sentinel()); |
| 4108 | __ BranchIf(NOT_EQUAL, &no_call); |
| 4109 | |
| 4110 | __ LoadObject(InitInstanceFieldABI::kFieldReg, original_field); |
| 4111 | |
| 4112 | auto object_store = compiler->isolate()->object_store(); |
| 4113 | auto& stub = Code::ZoneHandle(compiler->zone()); |
| 4114 | if (field.needs_load_guard()) { |
| 4115 | stub = object_store->init_instance_field_stub(); |
| 4116 | } else if (field.is_late()) { |
| 4117 | if (!field.has_nontrivial_initializer()) { |
| 4118 | // Common stub calls runtime which will throw an exception. |
| 4119 | stub = object_store->init_instance_field_stub(); |
| 4120 | } else { |
| 4121 | // Stubs for late field initialization call initializer |
| 4122 | // function directly, so make sure one is created. |
| 4123 | original_field.EnsureInitializerFunction(); |
| 4124 | |
| 4125 | if (field.is_final()) { |
| 4126 | stub = object_store->init_late_final_instance_field_stub(); |
| 4127 | } else { |
| 4128 | stub = object_store->init_late_instance_field_stub(); |
| 4129 | } |
| 4130 | } |
| 4131 | } else { |
| 4132 | UNREACHABLE(); |
| 4133 | } |
| 4134 | |
| 4135 | // Instruction inputs are popped from the stack at this point, |
| 4136 | // so deoptimization environment has to be adjusted. |
| 4137 | // This adjustment is done in FlowGraph::AttachEnvironment. |
| 4138 | compiler->GenerateStubCall(token_pos(), stub, |
| 4139 | /*kind=*/PcDescriptorsLayout::kOther, locs(), |
| 4140 | deopt_id()); |
| 4141 | __ Bind(&no_call); |
| 4142 | } |
| 4143 | |
| 4144 | LocationSummary* ThrowInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 4145 | const intptr_t kNumInputs = 1; |
| 4146 | const intptr_t kNumTemps = 0; |
| 4147 | LocationSummary* summary = new (zone) |
| 4148 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 4149 | summary->set_in(0, Location::RegisterLocation(ThrowABI::kExceptionReg)); |
| 4150 | return summary; |
| 4151 | } |
| 4152 | |
| 4153 | void ThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4154 | auto object_store = compiler->isolate()->object_store(); |
| 4155 | const auto& throw_stub = |
| 4156 | Code::ZoneHandle(compiler->zone(), object_store->throw_stub()); |
| 4157 | |
| 4158 | compiler->GenerateStubCall(token_pos(), throw_stub, |
| 4159 | /*kind=*/PcDescriptorsLayout::kOther, locs(), |
| 4160 | deopt_id()); |
| 4161 | // Issue(dartbug.com/41353): Right now we have to emit an extra breakpoint |
| 4162 | // instruction: The ThrowInstr will terminate the current block. The very |
| 4163 | // next machine code instruction might get a pc descriptor attached with a |
| 4164 | // different try-index. If we removed this breakpoint instruction, the |
| 4165 | // runtime might associated this call with the try-index of the next |
| 4166 | // instruction. |
| 4167 | __ Breakpoint(); |
| 4168 | } |
| 4169 | |
| 4170 | LocationSummary* ReThrowInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 4171 | const intptr_t kNumInputs = 2; |
| 4172 | const intptr_t kNumTemps = 0; |
| 4173 | LocationSummary* summary = new (zone) |
| 4174 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 4175 | summary->set_in(0, Location::RegisterLocation(ReThrowABI::kExceptionReg)); |
| 4176 | summary->set_in(1, Location::RegisterLocation(ReThrowABI::kStackTraceReg)); |
| 4177 | return summary; |
| 4178 | } |
| 4179 | |
| 4180 | void ReThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4181 | auto object_store = compiler->isolate()->object_store(); |
| 4182 | const auto& re_throw_stub = |
| 4183 | Code::ZoneHandle(compiler->zone(), object_store->re_throw_stub()); |
| 4184 | |
| 4185 | compiler->SetNeedsStackTrace(catch_try_index()); |
| 4186 | compiler->GenerateStubCall(token_pos(), re_throw_stub, |
| 4187 | /*kind=*/PcDescriptorsLayout::kOther, locs(), |
| 4188 | deopt_id()); |
| 4189 | // Issue(dartbug.com/41353): Right now we have to emit an extra breakpoint |
| 4190 | // instruction: The ThrowInstr will terminate the current block. The very |
| 4191 | // next machine code instruction might get a pc descriptor attached with a |
| 4192 | // different try-index. If we removed this breakpoint instruction, the |
| 4193 | // runtime might associated this call with the try-index of the next |
| 4194 | // instruction. |
| 4195 | __ Breakpoint(); |
| 4196 | } |
| 4197 | |
| 4198 | LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone, |
| 4199 | bool opt) const { |
| 4200 | const intptr_t kNumInputs = 1; |
| 4201 | const intptr_t kNumTemps = 0; |
| 4202 | LocationSummary* locs = new (zone) |
| 4203 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 4204 | locs->set_in(0, Location::RegisterLocation(AssertBooleanABI::kObjectReg)); |
| 4205 | locs->set_out(0, Location::RegisterLocation(AssertBooleanABI::kObjectReg)); |
| 4206 | return locs; |
| 4207 | } |
| 4208 | |
| 4209 | void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4210 | // Check that the type of the value is allowed in conditional context. |
| 4211 | ASSERT(locs()->always_calls()); |
| 4212 | |
| 4213 | auto object_store = compiler->isolate()->object_store(); |
| 4214 | const auto& assert_boolean_stub = |
| 4215 | Code::ZoneHandle(compiler->zone(), object_store->assert_boolean_stub()); |
| 4216 | |
| 4217 | compiler::Label done; |
| 4218 | __ CompareObject(AssertBooleanABI::kObjectReg, Object::null_instance()); |
| 4219 | __ BranchIf(NOT_EQUAL, &done); |
| 4220 | compiler->GenerateStubCall(token_pos(), assert_boolean_stub, |
| 4221 | /*kind=*/PcDescriptorsLayout::kOther, locs(), |
| 4222 | deopt_id()); |
| 4223 | __ Bind(&done); |
| 4224 | } |
| 4225 | |
| 4226 | LocationSummary* PhiInstr::MakeLocationSummary(Zone* zone, |
| 4227 | bool optimizing) const { |
| 4228 | UNREACHABLE(); |
| 4229 | return NULL; |
| 4230 | } |
| 4231 | |
| 4232 | void PhiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4233 | UNREACHABLE(); |
| 4234 | } |
| 4235 | |
| 4236 | LocationSummary* RedefinitionInstr::MakeLocationSummary(Zone* zone, |
| 4237 | bool optimizing) const { |
| 4238 | UNREACHABLE(); |
| 4239 | return NULL; |
| 4240 | } |
| 4241 | |
| 4242 | void RedefinitionInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4243 | UNREACHABLE(); |
| 4244 | } |
| 4245 | |
| 4246 | LocationSummary* ReachabilityFenceInstr::MakeLocationSummary( |
| 4247 | Zone* zone, |
| 4248 | bool optimizing) const { |
| 4249 | LocationSummary* summary = new (zone) |
| 4250 | LocationSummary(zone, 1, 0, LocationSummary::ContainsCall::kNoCall); |
| 4251 | // Keep the parameter alive and reachable, in any location. |
| 4252 | summary->set_in(0, Location::Any()); |
| 4253 | return summary; |
| 4254 | } |
| 4255 | |
| 4256 | void ReachabilityFenceInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4257 | // No native code, but we rely on the parameter being passed in here so that |
| 4258 | // it stays alive and reachable. |
| 4259 | } |
| 4260 | |
| 4261 | LocationSummary* ParameterInstr::MakeLocationSummary(Zone* zone, |
| 4262 | bool optimizing) const { |
| 4263 | UNREACHABLE(); |
| 4264 | return NULL; |
| 4265 | } |
| 4266 | |
| 4267 | void ParameterInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4268 | UNREACHABLE(); |
| 4269 | } |
| 4270 | |
| 4271 | void NativeParameterInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4272 | // The native entry frame has size -kExitLinkSlotFromFp. In order to access |
| 4273 | // the top of stack from above the entry frame, we add a constant to account |
| 4274 | // for the two frame pointers and two return addresses of the entry frame. |
| 4275 | constexpr intptr_t kEntryFramePadding = 4; |
| 4276 | compiler::ffi::FrameRebase rebase( |
| 4277 | /*old_base=*/SPREG, /*new_base=*/FPREG, |
| 4278 | (-kExitLinkSlotFromEntryFp + kEntryFramePadding) * |
| 4279 | compiler::target::kWordSize, |
| 4280 | compiler->zone()); |
| 4281 | const auto& src = |
| 4282 | rebase.Rebase(marshaller_.NativeLocationOfNativeParameter(index_)); |
| 4283 | NoTemporaryAllocator no_temp; |
| 4284 | const Location out_loc = locs()->out(0); |
| 4285 | const Representation out_rep = representation(); |
| 4286 | compiler->EmitMoveFromNative(out_loc, out_rep, src, &no_temp); |
| 4287 | } |
| 4288 | |
| 4289 | LocationSummary* NativeParameterInstr::MakeLocationSummary(Zone* zone, |
| 4290 | bool opt) const { |
| 4291 | ASSERT(opt); |
| 4292 | Location output = Location::Any(); |
| 4293 | if (representation() == kUnboxedInt64 && compiler::target::kWordSize < 8) { |
| 4294 | output = Location::Pair(Location::RequiresRegister(), |
| 4295 | Location::RequiresFpuRegister()); |
| 4296 | } else { |
| 4297 | output = RegisterKindForResult() == Location::kRegister |
| 4298 | ? Location::RequiresRegister() |
| 4299 | : Location::RequiresFpuRegister(); |
| 4300 | } |
| 4301 | return LocationSummary::Make(zone, /*num_inputs=*/0, output, |
| 4302 | LocationSummary::kNoCall); |
| 4303 | } |
| 4304 | |
| 4305 | bool ParallelMoveInstr::IsRedundant() const { |
| 4306 | for (intptr_t i = 0; i < moves_.length(); i++) { |
| 4307 | if (!moves_[i]->IsRedundant()) { |
| 4308 | return false; |
| 4309 | } |
| 4310 | } |
| 4311 | return true; |
| 4312 | } |
| 4313 | |
| 4314 | LocationSummary* ParallelMoveInstr::MakeLocationSummary(Zone* zone, |
| 4315 | bool optimizing) const { |
| 4316 | return NULL; |
| 4317 | } |
| 4318 | |
| 4319 | void ParallelMoveInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4320 | UNREACHABLE(); |
| 4321 | } |
| 4322 | |
| 4323 | LocationSummary* ConstraintInstr::MakeLocationSummary(Zone* zone, |
| 4324 | bool optimizing) const { |
| 4325 | UNREACHABLE(); |
| 4326 | return NULL; |
| 4327 | } |
| 4328 | |
| 4329 | void ConstraintInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4330 | UNREACHABLE(); |
| 4331 | } |
| 4332 | |
| 4333 | LocationSummary* MaterializeObjectInstr::MakeLocationSummary( |
| 4334 | Zone* zone, |
| 4335 | bool optimizing) const { |
| 4336 | UNREACHABLE(); |
| 4337 | return NULL; |
| 4338 | } |
| 4339 | |
| 4340 | void MaterializeObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4341 | UNREACHABLE(); |
| 4342 | } |
| 4343 | |
| 4344 | // This function should be kept in sync with |
| 4345 | // FlowGraphCompiler::SlowPathEnvironmentFor(). |
| 4346 | void MaterializeObjectInstr::RemapRegisters(intptr_t* cpu_reg_slots, |
| 4347 | intptr_t* fpu_reg_slots) { |
| 4348 | if (registers_remapped_) { |
| 4349 | return; |
| 4350 | } |
| 4351 | registers_remapped_ = true; |
| 4352 | |
| 4353 | for (intptr_t i = 0; i < InputCount(); i++) { |
| 4354 | locations_[i] = LocationRemapForSlowPath( |
| 4355 | LocationAt(i), InputAt(i)->definition(), cpu_reg_slots, fpu_reg_slots); |
| 4356 | } |
| 4357 | } |
| 4358 | |
| 4359 | const char* SpecialParameterInstr::KindToCString(SpecialParameterKind k) { |
| 4360 | switch (k) { |
| 4361 | #define KIND_CASE(Name) \ |
| 4362 | case SpecialParameterKind::k##Name: \ |
| 4363 | return #Name; |
| 4364 | FOR_EACH_SPECIAL_PARAMETER_KIND(KIND_CASE) |
| 4365 | #undef KIND_CASE |
| 4366 | } |
| 4367 | return nullptr; |
| 4368 | } |
| 4369 | |
| 4370 | bool SpecialParameterInstr::ParseKind(const char* str, |
| 4371 | SpecialParameterKind* out) { |
| 4372 | ASSERT(str != nullptr && out != nullptr); |
| 4373 | #define KIND_CASE(Name) \ |
| 4374 | if (strcmp(str, #Name) == 0) { \ |
| 4375 | *out = SpecialParameterKind::k##Name; \ |
| 4376 | return true; \ |
| 4377 | } |
| 4378 | FOR_EACH_SPECIAL_PARAMETER_KIND(KIND_CASE) |
| 4379 | #undef KIND_CASE |
| 4380 | return false; |
| 4381 | } |
| 4382 | |
| 4383 | LocationSummary* SpecialParameterInstr::MakeLocationSummary(Zone* zone, |
| 4384 | bool opt) const { |
| 4385 | // Only appears in initial definitions, never in normal code. |
| 4386 | UNREACHABLE(); |
| 4387 | return NULL; |
| 4388 | } |
| 4389 | |
| 4390 | void SpecialParameterInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4391 | // Only appears in initial definitions, never in normal code. |
| 4392 | UNREACHABLE(); |
| 4393 | } |
| 4394 | |
| 4395 | LocationSummary* MakeTempInstr::MakeLocationSummary(Zone* zone, |
| 4396 | bool optimizing) const { |
| 4397 | ASSERT(!optimizing); |
| 4398 | null_->InitializeLocationSummary(zone, optimizing); |
| 4399 | return null_->locs(); |
| 4400 | } |
| 4401 | |
| 4402 | void MakeTempInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4403 | ASSERT(!compiler->is_optimizing()); |
| 4404 | null_->EmitNativeCode(compiler); |
| 4405 | } |
| 4406 | |
| 4407 | LocationSummary* DropTempsInstr::MakeLocationSummary(Zone* zone, |
| 4408 | bool optimizing) const { |
| 4409 | ASSERT(!optimizing); |
| 4410 | return (InputCount() == 1) |
| 4411 | ? LocationSummary::Make(zone, 1, Location::SameAsFirstInput(), |
| 4412 | LocationSummary::kNoCall) |
| 4413 | : LocationSummary::Make(zone, 0, Location::NoLocation(), |
| 4414 | LocationSummary::kNoCall); |
| 4415 | } |
| 4416 | |
| 4417 | void DropTempsInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4418 | ASSERT(!compiler->is_optimizing()); |
| 4419 | // Assert that register assignment is correct. |
| 4420 | ASSERT((InputCount() == 0) || (locs()->out(0).reg() == locs()->in(0).reg())); |
| 4421 | __ Drop(num_temps()); |
| 4422 | } |
| 4423 | |
| 4424 | StrictCompareInstr::StrictCompareInstr(TokenPosition token_pos, |
| 4425 | Token::Kind kind, |
| 4426 | Value* left, |
| 4427 | Value* right, |
| 4428 | bool needs_number_check, |
| 4429 | intptr_t deopt_id) |
| 4430 | : TemplateComparison(token_pos, kind, deopt_id), |
| 4431 | needs_number_check_(needs_number_check) { |
| 4432 | ASSERT((kind == Token::kEQ_STRICT) || (kind == Token::kNE_STRICT)); |
| 4433 | SetInputAt(0, left); |
| 4434 | SetInputAt(1, right); |
| 4435 | } |
| 4436 | |
| 4437 | Condition StrictCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| 4438 | BranchLabels labels) { |
| 4439 | Location left = locs()->in(0); |
| 4440 | Location right = locs()->in(1); |
| 4441 | ASSERT(!left.IsConstant() || !right.IsConstant()); |
| 4442 | Condition true_condition; |
| 4443 | if (left.IsConstant()) { |
| 4444 | if (TryEmitBoolTest(compiler, labels, 1, left.constant(), |
| 4445 | &true_condition)) { |
| 4446 | return true_condition; |
| 4447 | } |
| 4448 | true_condition = EmitComparisonCodeRegConstant( |
| 4449 | compiler, labels, right.reg(), left.constant()); |
| 4450 | } else if (right.IsConstant()) { |
| 4451 | if (TryEmitBoolTest(compiler, labels, 0, right.constant(), |
| 4452 | &true_condition)) { |
| 4453 | return true_condition; |
| 4454 | } |
| 4455 | true_condition = EmitComparisonCodeRegConstant(compiler, labels, left.reg(), |
| 4456 | right.constant()); |
| 4457 | } else { |
| 4458 | true_condition = compiler->EmitEqualityRegRegCompare( |
| 4459 | left.reg(), right.reg(), needs_number_check(), token_pos(), deopt_id()); |
| 4460 | } |
| 4461 | return true_condition != kInvalidCondition && (kind() != Token::kEQ_STRICT) |
| 4462 | ? InvertCondition(true_condition) |
| 4463 | : true_condition; |
| 4464 | } |
| 4465 | |
| 4466 | bool StrictCompareInstr::TryEmitBoolTest(FlowGraphCompiler* compiler, |
| 4467 | BranchLabels labels, |
| 4468 | intptr_t input_index, |
| 4469 | const Object& obj, |
| 4470 | Condition* true_condition_out) { |
| 4471 | CompileType* input_type = InputAt(input_index)->Type(); |
| 4472 | if (input_type->ToCid() == kBoolCid && obj.GetClassId() == kBoolCid) { |
| 4473 | bool invert = (kind() != Token::kEQ_STRICT) ^ !Bool::Cast(obj).value(); |
| 4474 | *true_condition_out = |
| 4475 | compiler->EmitBoolTest(locs()->in(input_index).reg(), labels, invert); |
| 4476 | return true; |
| 4477 | } |
| 4478 | return false; |
| 4479 | } |
| 4480 | |
| 4481 | LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone, |
| 4482 | bool opt) const { |
| 4483 | const intptr_t kNumInputs = 1; |
| 4484 | return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| 4485 | LocationSummary::kNoCall); |
| 4486 | } |
| 4487 | |
| 4488 | void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4489 | const Register object = locs()->in(0).reg(); |
| 4490 | const Register result = locs()->out(0).reg(); |
| 4491 | if (input_can_be_smi_ && this->object()->Type()->CanBeSmi()) { |
| 4492 | if (representation() == kTagged) { |
| 4493 | __ LoadTaggedClassIdMayBeSmi(result, object); |
| 4494 | } else { |
| 4495 | __ LoadClassIdMayBeSmi(result, object); |
| 4496 | } |
| 4497 | } else { |
| 4498 | __ LoadClassId(result, object); |
| 4499 | if (representation() == kTagged) { |
| 4500 | __ SmiTag(result); |
| 4501 | } |
| 4502 | } |
| 4503 | } |
| 4504 | |
| 4505 | LocationSummary* InstanceCallInstr::MakeLocationSummary(Zone* zone, |
| 4506 | bool optimizing) const { |
| 4507 | return MakeCallSummary(zone, this); |
| 4508 | } |
| 4509 | |
| 4510 | static CodePtr TwoArgsSmiOpInlineCacheEntry(Token::Kind kind) { |
| 4511 | if (!FLAG_two_args_smi_icd) { |
| 4512 | return Code::null(); |
| 4513 | } |
| 4514 | switch (kind) { |
| 4515 | case Token::kADD: |
| 4516 | return StubCode::SmiAddInlineCache().raw(); |
| 4517 | case Token::kLT: |
| 4518 | return StubCode::SmiLessInlineCache().raw(); |
| 4519 | case Token::kEQ: |
| 4520 | return StubCode::SmiEqualInlineCache().raw(); |
| 4521 | default: |
| 4522 | return Code::null(); |
| 4523 | } |
| 4524 | } |
| 4525 | |
| 4526 | bool InstanceCallBaseInstr::CanReceiverBeSmiBasedOnInterfaceTarget( |
| 4527 | Zone* zone) const { |
| 4528 | if (!interface_target().IsNull()) { |
| 4529 | // Note: target_type is fully instantiated rare type (all type parameters |
| 4530 | // are replaced with dynamic) so checking if Smi is assignable to |
| 4531 | // it would compute correctly whether or not receiver can be a smi. |
| 4532 | const AbstractType& target_type = AbstractType::Handle( |
| 4533 | zone, Class::Handle(zone, interface_target().Owner()).RareType()); |
| 4534 | if (!CompileType::Smi().IsAssignableTo(target_type)) { |
| 4535 | return false; |
| 4536 | } |
| 4537 | } |
| 4538 | // In all other cases conservatively assume that the receiver can be a smi. |
| 4539 | return true; |
| 4540 | } |
| 4541 | |
| 4542 | Representation InstanceCallBaseInstr::RequiredInputRepresentation( |
| 4543 | intptr_t idx) const { |
| 4544 | // The first input is the array of types |
| 4545 | // for generic functions |
| 4546 | if (type_args_len() > 0) { |
| 4547 | if (idx == 0) { |
| 4548 | return kTagged; |
| 4549 | } |
| 4550 | idx--; |
| 4551 | } |
| 4552 | return FlowGraph::ParameterRepresentationAt(interface_target(), idx); |
| 4553 | } |
| 4554 | |
| 4555 | intptr_t InstanceCallBaseInstr::ArgumentsSize() const { |
| 4556 | if (interface_target().IsNull()) { |
| 4557 | return ArgumentCountWithoutTypeArgs() + ((type_args_len() > 0) ? 1 : 0); |
| 4558 | } |
| 4559 | |
| 4560 | return FlowGraph::ParameterOffsetAt(interface_target(), |
| 4561 | ArgumentCountWithoutTypeArgs(), |
| 4562 | /*last_slot=*/false) + |
| 4563 | ((type_args_len() > 0) ? 1 : 0); |
| 4564 | } |
| 4565 | |
| 4566 | Representation InstanceCallBaseInstr::representation() const { |
| 4567 | return FlowGraph::ReturnRepresentationOf(interface_target()); |
| 4568 | } |
| 4569 | |
| 4570 | void InstanceCallBaseInstr::UpdateReceiverSminess(Zone* zone) { |
| 4571 | if (CompilerState::Current().is_aot() && !receiver_is_not_smi()) { |
| 4572 | if (!Receiver()->Type()->CanBeSmi() || |
| 4573 | !CanReceiverBeSmiBasedOnInterfaceTarget(zone)) { |
| 4574 | set_receiver_is_not_smi(true); |
| 4575 | } |
| 4576 | } |
| 4577 | } |
| 4578 | |
| 4579 | void InstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4580 | Zone* zone = compiler->zone(); |
| 4581 | const ICData* call_ic_data = NULL; |
| 4582 | if (!FLAG_propagate_ic_data || !compiler->is_optimizing() || |
| 4583 | (ic_data() == NULL)) { |
| 4584 | const Array& arguments_descriptor = |
| 4585 | Array::Handle(zone, GetArgumentsDescriptor()); |
| 4586 | |
| 4587 | AbstractType& receivers_static_type = AbstractType::Handle(zone); |
| 4588 | if (receivers_static_type_ != nullptr) { |
| 4589 | receivers_static_type = receivers_static_type_->raw(); |
| 4590 | } |
| 4591 | |
| 4592 | call_ic_data = compiler->GetOrAddInstanceCallICData( |
| 4593 | deopt_id(), function_name(), arguments_descriptor, |
| 4594 | checked_argument_count(), receivers_static_type); |
| 4595 | } else { |
| 4596 | call_ic_data = &ICData::ZoneHandle(zone, ic_data()->raw()); |
| 4597 | } |
| 4598 | |
| 4599 | UpdateReceiverSminess(zone); |
| 4600 | |
| 4601 | if ((compiler->is_optimizing() || compiler->function().HasBytecode()) && |
| 4602 | HasICData()) { |
| 4603 | ASSERT(HasICData()); |
| 4604 | if (compiler->is_optimizing() && (ic_data()->NumberOfUsedChecks() > 0)) { |
| 4605 | const ICData& unary_ic_data = |
| 4606 | ICData::ZoneHandle(zone, ic_data()->AsUnaryClassChecks()); |
| 4607 | compiler->GenerateInstanceCall(deopt_id(), token_pos(), locs(), |
| 4608 | unary_ic_data, entry_kind(), |
| 4609 | !receiver_is_not_smi()); |
| 4610 | } else { |
| 4611 | // Call was not visited yet, use original ICData in order to populate it. |
| 4612 | compiler->GenerateInstanceCall(deopt_id(), token_pos(), locs(), |
| 4613 | *call_ic_data, entry_kind(), |
| 4614 | !receiver_is_not_smi()); |
| 4615 | } |
| 4616 | } else { |
| 4617 | // Unoptimized code. |
| 4618 | compiler->AddCurrentDescriptor(PcDescriptorsLayout::kRewind, deopt_id(), |
| 4619 | token_pos()); |
| 4620 | bool is_smi_two_args_op = false; |
| 4621 | const Code& stub = |
| 4622 | Code::ZoneHandle(TwoArgsSmiOpInlineCacheEntry(token_kind())); |
| 4623 | if (!stub.IsNull()) { |
| 4624 | // We have a dedicated inline cache stub for this operation, add an |
| 4625 | // an initial Smi/Smi check with count 0. |
| 4626 | is_smi_two_args_op = call_ic_data->AddSmiSmiCheckForFastSmiStubs(); |
| 4627 | } |
| 4628 | if (is_smi_two_args_op) { |
| 4629 | ASSERT(ArgumentCount() == 2); |
| 4630 | compiler->EmitInstanceCallJIT(stub, *call_ic_data, deopt_id(), |
| 4631 | token_pos(), locs(), entry_kind()); |
| 4632 | } else { |
| 4633 | compiler->GenerateInstanceCall(deopt_id(), token_pos(), locs(), |
| 4634 | *call_ic_data, entry_kind(), |
| 4635 | !receiver_is_not_smi()); |
| 4636 | } |
| 4637 | } |
| 4638 | } |
| 4639 | |
| 4640 | bool InstanceCallInstr::MatchesCoreName(const String& name) { |
| 4641 | return Library::IsPrivateCoreLibName(function_name(), name); |
| 4642 | } |
| 4643 | |
| 4644 | FunctionPtr InstanceCallBaseInstr::ResolveForReceiverClass( |
| 4645 | const Class& cls, |
| 4646 | bool allow_add /* = true */) { |
| 4647 | const Array& args_desc_array = Array::Handle(GetArgumentsDescriptor()); |
| 4648 | ArgumentsDescriptor args_desc(args_desc_array); |
| 4649 | return Resolver::ResolveDynamicForReceiverClass(cls, function_name(), |
| 4650 | args_desc, allow_add); |
| 4651 | } |
| 4652 | |
| 4653 | const CallTargets& InstanceCallInstr::Targets() { |
| 4654 | if (targets_ == nullptr) { |
| 4655 | Zone* zone = Thread::Current()->zone(); |
| 4656 | if (HasICData()) { |
| 4657 | targets_ = CallTargets::CreateAndExpand(zone, *ic_data()); |
| 4658 | } else { |
| 4659 | targets_ = new (zone) CallTargets(zone); |
| 4660 | ASSERT(targets_->is_empty()); |
| 4661 | } |
| 4662 | } |
| 4663 | return *targets_; |
| 4664 | } |
| 4665 | |
| 4666 | const BinaryFeedback& InstanceCallInstr::BinaryFeedback() { |
| 4667 | if (binary_ == nullptr) { |
| 4668 | Zone* zone = Thread::Current()->zone(); |
| 4669 | if (HasICData()) { |
| 4670 | binary_ = BinaryFeedback::Create(zone, *ic_data()); |
| 4671 | } else { |
| 4672 | binary_ = new (zone) class BinaryFeedback(zone); |
| 4673 | } |
| 4674 | } |
| 4675 | return *binary_; |
| 4676 | } |
| 4677 | |
| 4678 | Representation DispatchTableCallInstr::RequiredInputRepresentation( |
| 4679 | intptr_t idx) const { |
| 4680 | if (idx == (InputCount() - 1)) { |
| 4681 | return kUntagged; |
| 4682 | } |
| 4683 | |
| 4684 | // The first input is the array of types |
| 4685 | // for generic functions |
| 4686 | if (type_args_len() > 0) { |
| 4687 | if (idx == 0) { |
| 4688 | return kTagged; |
| 4689 | } |
| 4690 | idx--; |
| 4691 | } |
| 4692 | return FlowGraph::ParameterRepresentationAt(interface_target(), idx); |
| 4693 | } |
| 4694 | |
| 4695 | intptr_t DispatchTableCallInstr::ArgumentsSize() const { |
| 4696 | if (interface_target().IsNull()) { |
| 4697 | return ArgumentCountWithoutTypeArgs() + ((type_args_len() > 0) ? 1 : 0); |
| 4698 | } |
| 4699 | |
| 4700 | return FlowGraph::ParameterOffsetAt(interface_target(), |
| 4701 | ArgumentCountWithoutTypeArgs(), |
| 4702 | /*last_slot=*/false) + |
| 4703 | ((type_args_len() > 0) ? 1 : 0); |
| 4704 | } |
| 4705 | |
| 4706 | Representation DispatchTableCallInstr::representation() const { |
| 4707 | return FlowGraph::ReturnRepresentationOf(interface_target()); |
| 4708 | } |
| 4709 | |
| 4710 | DispatchTableCallInstr* DispatchTableCallInstr::FromCall( |
| 4711 | Zone* zone, |
| 4712 | const InstanceCallBaseInstr* call, |
| 4713 | Value* cid, |
| 4714 | const Function& interface_target, |
| 4715 | const compiler::TableSelector* selector) { |
| 4716 | InputsArray* args = new (zone) InputsArray(zone, call->ArgumentCount() + 1); |
| 4717 | for (intptr_t i = 0; i < call->ArgumentCount(); i++) { |
| 4718 | args->Add(call->ArgumentValueAt(i)->CopyWithType()); |
| 4719 | } |
| 4720 | args->Add(cid); |
| 4721 | auto dispatch_table_call = new (zone) DispatchTableCallInstr( |
| 4722 | call->token_pos(), interface_target, selector, args, |
| 4723 | call->type_args_len(), call->argument_names()); |
| 4724 | if (call->has_inlining_id()) { |
| 4725 | dispatch_table_call->set_inlining_id(call->inlining_id()); |
| 4726 | } |
| 4727 | return dispatch_table_call; |
| 4728 | } |
| 4729 | |
| 4730 | void DispatchTableCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4731 | Array& arguments_descriptor = Array::ZoneHandle(); |
| 4732 | if (selector()->requires_args_descriptor) { |
| 4733 | ArgumentsInfo args_info(type_args_len(), ArgumentCount(), ArgumentsSize(), |
| 4734 | argument_names()); |
| 4735 | arguments_descriptor = args_info.ToArgumentsDescriptor(); |
| 4736 | } |
| 4737 | const Register cid_reg = locs()->in(0).reg(); |
| 4738 | compiler->EmitDispatchTableCall(cid_reg, selector()->offset, |
| 4739 | arguments_descriptor); |
| 4740 | compiler->EmitCallsiteMetadata(token_pos(), DeoptId::kNone, |
| 4741 | PcDescriptorsLayout::kOther, locs()); |
| 4742 | if (selector()->called_on_null && !selector()->on_null_interface) { |
| 4743 | Value* receiver = ArgumentValueAt(FirstArgIndex()); |
| 4744 | if (receiver->Type()->is_nullable()) { |
| 4745 | const String& function_name = |
| 4746 | String::ZoneHandle(interface_target().name()); |
| 4747 | compiler->AddNullCheck(token_pos(), function_name); |
| 4748 | } |
| 4749 | } |
| 4750 | __ Drop(ArgumentsSize()); |
| 4751 | |
| 4752 | compiler->AddDispatchTableCallTarget(selector()); |
| 4753 | } |
| 4754 | |
| 4755 | Representation StaticCallInstr::RequiredInputRepresentation( |
| 4756 | intptr_t idx) const { |
| 4757 | // The first input is the array of types |
| 4758 | // for generic functions |
| 4759 | if (type_args_len() > 0 || function().IsFactory()) { |
| 4760 | if (idx == 0) { |
| 4761 | return kTagged; |
| 4762 | } |
| 4763 | idx--; |
| 4764 | } |
| 4765 | return FlowGraph::ParameterRepresentationAt(function(), idx); |
| 4766 | } |
| 4767 | |
| 4768 | intptr_t StaticCallInstr::ArgumentsSize() const { |
| 4769 | return FlowGraph::ParameterOffsetAt(function(), |
| 4770 | ArgumentCountWithoutTypeArgs(), |
| 4771 | /*last_slot=*/false) + |
| 4772 | ((type_args_len() > 0) ? 1 : 0); |
| 4773 | } |
| 4774 | |
| 4775 | Representation StaticCallInstr::representation() const { |
| 4776 | return FlowGraph::ReturnRepresentationOf(function()); |
| 4777 | } |
| 4778 | |
| 4779 | const CallTargets& StaticCallInstr::Targets() { |
| 4780 | if (targets_ == nullptr) { |
| 4781 | Zone* zone = Thread::Current()->zone(); |
| 4782 | if (HasICData()) { |
| 4783 | targets_ = CallTargets::CreateAndExpand(zone, *ic_data()); |
| 4784 | } else { |
| 4785 | targets_ = new (zone) CallTargets(zone); |
| 4786 | ASSERT(targets_->is_empty()); |
| 4787 | } |
| 4788 | } |
| 4789 | return *targets_; |
| 4790 | } |
| 4791 | |
| 4792 | const BinaryFeedback& StaticCallInstr::BinaryFeedback() { |
| 4793 | if (binary_ == nullptr) { |
| 4794 | Zone* zone = Thread::Current()->zone(); |
| 4795 | if (HasICData()) { |
| 4796 | binary_ = BinaryFeedback::Create(zone, *ic_data()); |
| 4797 | } else { |
| 4798 | binary_ = new (zone) class BinaryFeedback(zone); |
| 4799 | } |
| 4800 | } |
| 4801 | return *binary_; |
| 4802 | } |
| 4803 | |
| 4804 | bool CallTargets::HasSingleRecognizedTarget() const { |
| 4805 | if (!HasSingleTarget()) return false; |
| 4806 | return FirstTarget().recognized_kind() != MethodRecognizer::kUnknown; |
| 4807 | } |
| 4808 | |
| 4809 | bool CallTargets::HasSingleTarget() const { |
| 4810 | if (length() == 0) return false; |
| 4811 | for (int i = 0; i < length(); i++) { |
| 4812 | if (TargetAt(i)->target->raw() != TargetAt(0)->target->raw()) return false; |
| 4813 | } |
| 4814 | return true; |
| 4815 | } |
| 4816 | |
| 4817 | const Function& CallTargets::FirstTarget() const { |
| 4818 | ASSERT(length() != 0); |
| 4819 | ASSERT(TargetAt(0)->target->IsZoneHandle()); |
| 4820 | return *TargetAt(0)->target; |
| 4821 | } |
| 4822 | |
| 4823 | const Function& CallTargets::MostPopularTarget() const { |
| 4824 | ASSERT(length() != 0); |
| 4825 | ASSERT(TargetAt(0)->target->IsZoneHandle()); |
| 4826 | for (int i = 1; i < length(); i++) { |
| 4827 | ASSERT(TargetAt(i)->count <= TargetAt(0)->count); |
| 4828 | } |
| 4829 | return *TargetAt(0)->target; |
| 4830 | } |
| 4831 | |
| 4832 | intptr_t CallTargets::AggregateCallCount() const { |
| 4833 | intptr_t sum = 0; |
| 4834 | for (int i = 0; i < length(); i++) { |
| 4835 | sum += TargetAt(i)->count; |
| 4836 | } |
| 4837 | return sum; |
| 4838 | } |
| 4839 | |
| 4840 | bool PolymorphicInstanceCallInstr::HasOnlyDispatcherOrImplicitAccessorTargets() |
| 4841 | const { |
| 4842 | const intptr_t len = targets_.length(); |
| 4843 | Function& target = Function::Handle(); |
| 4844 | for (intptr_t i = 0; i < len; i++) { |
| 4845 | target = targets_.TargetAt(i)->target->raw(); |
| 4846 | if (!target.IsDispatcherOrImplicitAccessor()) { |
| 4847 | return false; |
| 4848 | } |
| 4849 | } |
| 4850 | return true; |
| 4851 | } |
| 4852 | |
| 4853 | intptr_t PolymorphicInstanceCallInstr::CallCount() const { |
| 4854 | return targets().AggregateCallCount(); |
| 4855 | } |
| 4856 | |
| 4857 | LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary( |
| 4858 | Zone* zone, |
| 4859 | bool optimizing) const { |
| 4860 | return MakeCallSummary(zone, this); |
| 4861 | } |
| 4862 | |
| 4863 | void PolymorphicInstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 4864 | ArgumentsInfo args_info(type_args_len(), ArgumentCount(), ArgumentsSize(), |
| 4865 | argument_names()); |
| 4866 | UpdateReceiverSminess(compiler->zone()); |
| 4867 | compiler->EmitPolymorphicInstanceCall( |
| 4868 | this, targets(), args_info, deopt_id(), token_pos(), locs(), complete(), |
| 4869 | total_call_count(), !receiver_is_not_smi()); |
| 4870 | } |
| 4871 | |
| 4872 | TypePtr PolymorphicInstanceCallInstr::ComputeRuntimeType( |
| 4873 | const CallTargets& targets) { |
| 4874 | bool is_string = true; |
| 4875 | bool is_integer = true; |
| 4876 | bool is_double = true; |
| 4877 | |
| 4878 | const intptr_t num_checks = targets.length(); |
| 4879 | for (intptr_t i = 0; i < num_checks; i++) { |
| 4880 | ASSERT(targets.TargetAt(i)->target->raw() == |
| 4881 | targets.TargetAt(0)->target->raw()); |
| 4882 | const intptr_t start = targets[i].cid_start; |
| 4883 | const intptr_t end = targets[i].cid_end; |
| 4884 | for (intptr_t cid = start; cid <= end; cid++) { |
| 4885 | is_string = is_string && IsStringClassId(cid); |
| 4886 | is_integer = is_integer && IsIntegerClassId(cid); |
| 4887 | is_double = is_double && (cid == kDoubleCid); |
| 4888 | } |
| 4889 | } |
| 4890 | |
| 4891 | if (is_string) { |
| 4892 | ASSERT(!is_integer); |
| 4893 | ASSERT(!is_double); |
| 4894 | return Type::StringType(); |
| 4895 | } else if (is_integer) { |
| 4896 | ASSERT(!is_double); |
| 4897 | return Type::IntType(); |
| 4898 | } else if (is_double) { |
| 4899 | return Type::Double(); |
| 4900 | } |
| 4901 | |
| 4902 | return Type::null(); |
| 4903 | } |
| 4904 | |
| 4905 | Definition* InstanceCallInstr::Canonicalize(FlowGraph* flow_graph) { |
| 4906 | const intptr_t receiver_cid = Receiver()->Type()->ToCid(); |
| 4907 | |
| 4908 | // We could turn cold call sites for known receiver cids into a StaticCall. |
| 4909 | // However, that keeps the ICData of the InstanceCall from being updated. |
| 4910 | // This is fine if there is no later deoptimization, but if there is, then |
| 4911 | // the InstanceCall with the updated ICData for this receiver may then be |
| 4912 | // better optimized by the compiler. |
| 4913 | // |
| 4914 | // TODO(dartbug.com/37291): Allow this optimization, but accumulate affected |
| 4915 | // InstanceCallInstrs and the corresponding reciever cids during compilation. |
| 4916 | // After compilation, add receiver checks to the ICData for those call sites. |
| 4917 | if (Targets().is_empty()) return this; |
| 4918 | |
| 4919 | const CallTargets* new_target = |
| 4920 | FlowGraphCompiler::ResolveCallTargetsForReceiverCid( |
| 4921 | receiver_cid, |
| 4922 | String::Handle(flow_graph->zone(), ic_data()->target_name()), |
| 4923 | Array::Handle(flow_graph->zone(), ic_data()->arguments_descriptor())); |
| 4924 | if (new_target == NULL) { |
| 4925 | // No specialization. |
| 4926 | return this; |
| 4927 | } |
| 4928 | |
| 4929 | ASSERT(new_target->HasSingleTarget()); |
| 4930 | const Function& target = new_target->FirstTarget(); |
| 4931 | StaticCallInstr* specialized = StaticCallInstr::FromCall( |
| 4932 | flow_graph->zone(), this, target, new_target->AggregateCallCount()); |
| 4933 | flow_graph->InsertBefore(this, specialized, env(), FlowGraph::kValue); |
| 4934 | return specialized; |
| 4935 | } |
| 4936 | |
| 4937 | Definition* DispatchTableCallInstr::Canonicalize(FlowGraph* flow_graph) { |
| 4938 | // TODO(dartbug.com/40188): Allow this to canonicalize into a StaticCall when |
| 4939 | // when input class id is constant; |
| 4940 | return this; |
| 4941 | } |
| 4942 | |
| 4943 | Definition* PolymorphicInstanceCallInstr::Canonicalize(FlowGraph* flow_graph) { |
| 4944 | if (!IsSureToCallSingleRecognizedTarget()) { |
| 4945 | return this; |
| 4946 | } |
| 4947 | |
| 4948 | const Function& target = targets().FirstTarget(); |
| 4949 | if (target.recognized_kind() == MethodRecognizer::kObjectRuntimeType) { |
| 4950 | const AbstractType& type = |
| 4951 | AbstractType::Handle(ComputeRuntimeType(targets_)); |
| 4952 | if (!type.IsNull()) { |
| 4953 | return flow_graph->GetConstant(type); |
| 4954 | } |
| 4955 | } |
| 4956 | |
| 4957 | return this; |
| 4958 | } |
| 4959 | |
| 4960 | bool PolymorphicInstanceCallInstr::IsSureToCallSingleRecognizedTarget() const { |
| 4961 | if (CompilerState::Current().is_aot() && !complete()) return false; |
| 4962 | return targets_.HasSingleRecognizedTarget(); |
| 4963 | } |
| 4964 | |
| 4965 | bool StaticCallInstr::InitResultType(Zone* zone) { |
| 4966 | const intptr_t list_cid = FactoryRecognizer::GetResultCidOfListFactory( |
| 4967 | zone, function(), ArgumentCount()); |
| 4968 | if (list_cid != kDynamicCid) { |
| 4969 | SetResultType(zone, CompileType::FromCid(list_cid)); |
| 4970 | set_is_known_list_constructor(true); |
| 4971 | return true; |
| 4972 | } else if (function().has_pragma()) { |
| 4973 | const intptr_t recognized_cid = |
| 4974 | MethodRecognizer::ResultCidFromPragma(function()); |
| 4975 | if (recognized_cid != kDynamicCid) { |
| 4976 | SetResultType(zone, CompileType::FromCid(recognized_cid)); |
| 4977 | return true; |
| 4978 | } |
| 4979 | } |
| 4980 | return false; |
| 4981 | } |
| 4982 | |
| 4983 | Definition* StaticCallInstr::Canonicalize(FlowGraph* flow_graph) { |
| 4984 | if (!CompilerState::Current().is_aot()) { |
| 4985 | return this; |
| 4986 | } |
| 4987 | |
| 4988 | if (function().recognized_kind() == MethodRecognizer::kObjectRuntimeType) { |
| 4989 | if (input_use_list() == NULL) { |
| 4990 | // This function has only environment uses. In precompiled mode it is |
| 4991 | // fine to remove it - because we will never deoptimize. |
| 4992 | return flow_graph->constant_dead(); |
| 4993 | } |
| 4994 | } |
| 4995 | |
| 4996 | return this; |
| 4997 | } |
| 4998 | |
| 4999 | LocationSummary* StaticCallInstr::MakeLocationSummary(Zone* zone, |
| 5000 | bool optimizing) const { |
| 5001 | return MakeCallSummary(zone, this); |
| 5002 | } |
| 5003 | |
| 5004 | void StaticCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5005 | Zone* zone = compiler->zone(); |
| 5006 | const ICData* call_ic_data = NULL; |
| 5007 | if (!FLAG_propagate_ic_data || !compiler->is_optimizing() || |
| 5008 | (ic_data() == NULL)) { |
| 5009 | const Array& arguments_descriptor = |
| 5010 | Array::Handle(zone, GetArgumentsDescriptor()); |
| 5011 | const int num_args_checked = |
| 5012 | MethodRecognizer::NumArgsCheckedForStaticCall(function()); |
| 5013 | call_ic_data = compiler->GetOrAddStaticCallICData( |
| 5014 | deopt_id(), function(), arguments_descriptor, num_args_checked, |
| 5015 | rebind_rule_); |
| 5016 | } else { |
| 5017 | call_ic_data = &ICData::ZoneHandle(ic_data()->raw()); |
| 5018 | } |
| 5019 | ArgumentsInfo args_info(type_args_len(), ArgumentCount(), ArgumentsSize(), |
| 5020 | argument_names()); |
| 5021 | compiler->GenerateStaticCall(deopt_id(), token_pos(), function(), args_info, |
| 5022 | locs(), *call_ic_data, rebind_rule_, |
| 5023 | entry_kind()); |
| 5024 | if (function().IsFactory()) { |
| 5025 | TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info(); |
| 5026 | if (type_usage_info != nullptr) { |
| 5027 | const Class& klass = Class::Handle(function().Owner()); |
| 5028 | RegisterTypeArgumentsUse(compiler->function(), type_usage_info, klass, |
| 5029 | ArgumentAt(0)); |
| 5030 | } |
| 5031 | } |
| 5032 | } |
| 5033 | |
| 5034 | intptr_t AssertAssignableInstr::statistics_tag() const { |
| 5035 | switch (kind_) { |
| 5036 | case kParameterCheck: |
| 5037 | return CombinedCodeStatistics::kTagAssertAssignableParameterCheck; |
| 5038 | case kInsertedByFrontend: |
| 5039 | return CombinedCodeStatistics::kTagAssertAssignableInsertedByFrontend; |
| 5040 | case kFromSource: |
| 5041 | return CombinedCodeStatistics::kTagAssertAssignableFromSource; |
| 5042 | case kUnknown: |
| 5043 | break; |
| 5044 | } |
| 5045 | |
| 5046 | return tag(); |
| 5047 | } |
| 5048 | |
| 5049 | void AssertAssignableInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5050 | compiler->GenerateAssertAssignable(value()->Type(), token_pos(), deopt_id(), |
| 5051 | dst_name(), locs()); |
| 5052 | ASSERT(locs()->in(0).reg() == locs()->out(0).reg()); |
| 5053 | } |
| 5054 | |
| 5055 | LocationSummary* AssertSubtypeInstr::MakeLocationSummary(Zone* zone, |
| 5056 | bool opt) const { |
| 5057 | if (!sub_type()->BindsToConstant() || !super_type()->BindsToConstant()) { |
| 5058 | // TODO(dartbug.com/40813): Handle setting up the non-constant case. |
| 5059 | UNREACHABLE(); |
| 5060 | } |
| 5061 | const intptr_t kNumInputs = 4; |
| 5062 | const intptr_t kNumTemps = 0; |
| 5063 | LocationSummary* summary = new (zone) |
| 5064 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| 5065 | summary->set_in(0, Location::RegisterLocation( |
| 5066 | TypeTestABI::kInstantiatorTypeArgumentsReg)); |
| 5067 | summary->set_in( |
| 5068 | 1, Location::RegisterLocation(TypeTestABI::kFunctionTypeArgumentsReg)); |
| 5069 | summary->set_in(2, |
| 5070 | Location::Constant(sub_type()->definition()->AsConstant())); |
| 5071 | summary->set_in(3, |
| 5072 | Location::Constant(super_type()->definition()->AsConstant())); |
| 5073 | return summary; |
| 5074 | } |
| 5075 | |
| 5076 | void AssertSubtypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5077 | __ PushRegister(locs()->in(0).reg()); |
| 5078 | __ PushRegister(locs()->in(1).reg()); |
| 5079 | __ PushObject(locs()->in(2).constant()); |
| 5080 | __ PushObject(locs()->in(3).constant()); |
| 5081 | __ PushObject(dst_name()); |
| 5082 | |
| 5083 | compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| 5084 | kSubtypeCheckRuntimeEntry, 5, locs()); |
| 5085 | |
| 5086 | __ Drop(5); |
| 5087 | } |
| 5088 | |
| 5089 | LocationSummary* DeoptimizeInstr::MakeLocationSummary(Zone* zone, |
| 5090 | bool opt) const { |
| 5091 | return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall); |
| 5092 | } |
| 5093 | |
| 5094 | void DeoptimizeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5095 | __ Jump(compiler->AddDeoptStub(deopt_id(), deopt_reason_)); |
| 5096 | } |
| 5097 | |
| 5098 | void CheckClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5099 | compiler::Label* deopt = |
| 5100 | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckClass, |
| 5101 | licm_hoisted_ ? ICData::kHoisted : 0); |
| 5102 | if (IsNullCheck()) { |
| 5103 | EmitNullCheck(compiler, deopt); |
| 5104 | return; |
| 5105 | } |
| 5106 | |
| 5107 | ASSERT(!cids_.IsMonomorphic() || !cids_.HasClassId(kSmiCid)); |
| 5108 | Register value = locs()->in(0).reg(); |
| 5109 | Register temp = locs()->temp(0).reg(); |
| 5110 | compiler::Label is_ok; |
| 5111 | |
| 5112 | __ BranchIfSmi(value, cids_.HasClassId(kSmiCid) ? &is_ok : deopt); |
| 5113 | |
| 5114 | __ LoadClassId(temp, value); |
| 5115 | |
| 5116 | if (IsBitTest()) { |
| 5117 | intptr_t min = cids_.ComputeLowestCid(); |
| 5118 | intptr_t max = cids_.ComputeHighestCid(); |
| 5119 | EmitBitTest(compiler, min, max, ComputeCidMask(), deopt); |
| 5120 | } else { |
| 5121 | const intptr_t num_checks = cids_.length(); |
| 5122 | const bool use_near_jump = num_checks < 5; |
| 5123 | int bias = 0; |
| 5124 | for (intptr_t i = 0; i < num_checks; i++) { |
| 5125 | intptr_t cid_start = cids_[i].cid_start; |
| 5126 | intptr_t cid_end = cids_[i].cid_end; |
| 5127 | if (cid_start == kSmiCid && cid_end == kSmiCid) { |
| 5128 | continue; // We already handled Smi above. |
| 5129 | } |
| 5130 | if (cid_start == kSmiCid) cid_start++; |
| 5131 | if (cid_end == kSmiCid) cid_end--; |
| 5132 | const bool is_last = |
| 5133 | (i == num_checks - 1) || |
| 5134 | (i == num_checks - 2 && cids_[i + 1].cid_start == kSmiCid && |
| 5135 | cids_[i + 1].cid_end == kSmiCid); |
| 5136 | bias = EmitCheckCid(compiler, bias, cid_start, cid_end, is_last, &is_ok, |
| 5137 | deopt, use_near_jump); |
| 5138 | } |
| 5139 | } |
| 5140 | __ Bind(&is_ok); |
| 5141 | } |
| 5142 | |
| 5143 | LocationSummary* GenericCheckBoundInstr::MakeLocationSummary(Zone* zone, |
| 5144 | bool opt) const { |
| 5145 | const intptr_t kNumInputs = 2; |
| 5146 | const intptr_t kNumTemps = 0; |
| 5147 | LocationSummary* locs = new (zone) LocationSummary( |
| 5148 | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSharedSlowPath); |
| 5149 | locs->set_in(kLengthPos, |
| 5150 | Location::RegisterLocation(RangeErrorABI::kLengthReg)); |
| 5151 | locs->set_in(kIndexPos, Location::RegisterLocation(RangeErrorABI::kIndexReg)); |
| 5152 | return locs; |
| 5153 | } |
| 5154 | |
| 5155 | void GenericCheckBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5156 | ASSERT(representation() == RequiredInputRepresentation(kIndexPos)); |
| 5157 | ASSERT(representation() == RequiredInputRepresentation(kLengthPos)); |
| 5158 | |
| 5159 | RangeErrorSlowPath* slow_path = |
| 5160 | new RangeErrorSlowPath(this, compiler->CurrentTryIndex()); |
| 5161 | compiler->AddSlowPathCode(slow_path); |
| 5162 | Location length_loc = locs()->in(kLengthPos); |
| 5163 | Location index_loc = locs()->in(kIndexPos); |
| 5164 | Register length = length_loc.reg(); |
| 5165 | Register index = index_loc.reg(); |
| 5166 | const intptr_t index_cid = this->index()->Type()->ToCid(); |
| 5167 | |
| 5168 | // The length comes from one of our variable-sized heap objects (e.g. typed |
| 5169 | // data array) and is therefore guaranteed to be in the positive Smi range. |
| 5170 | if (representation() == kTagged) { |
| 5171 | if (index_cid != kSmiCid) { |
| 5172 | __ BranchIfNotSmi(index, slow_path->entry_label()); |
| 5173 | } |
| 5174 | } else { |
| 5175 | ASSERT(representation() == kUnboxedInt64); |
| 5176 | } |
| 5177 | __ CompareRegisters(index, length); |
| 5178 | __ BranchIf(UNSIGNED_GREATER_EQUAL, slow_path->entry_label()); |
| 5179 | } |
| 5180 | |
| 5181 | LocationSummary* CheckNullInstr::MakeLocationSummary(Zone* zone, |
| 5182 | bool opt) const { |
| 5183 | const intptr_t kNumInputs = 1; |
| 5184 | const intptr_t kNumTemps = 0; |
| 5185 | LocationSummary* locs = new (zone) LocationSummary( |
| 5186 | zone, kNumInputs, kNumTemps, |
| 5187 | UseSharedSlowPathStub(opt) ? LocationSummary::kCallOnSharedSlowPath |
| 5188 | : LocationSummary::kCallOnSlowPath); |
| 5189 | locs->set_in(0, Location::RequiresRegister()); |
| 5190 | return locs; |
| 5191 | } |
| 5192 | |
| 5193 | void CheckNullInstr::AddMetadataForRuntimeCall(CheckNullInstr* check_null, |
| 5194 | FlowGraphCompiler* compiler) { |
| 5195 | compiler->AddNullCheck(check_null->token_pos(), check_null->function_name()); |
| 5196 | } |
| 5197 | |
| 5198 | void RangeErrorSlowPath::EmitSharedStubCall(FlowGraphCompiler* compiler, |
| 5199 | bool save_fpu_registers) { |
| 5200 | #if defined(TARGET_ARCH_IA32) |
| 5201 | UNREACHABLE(); |
| 5202 | #else |
| 5203 | auto object_store = compiler->isolate()->object_store(); |
| 5204 | const auto& stub = Code::ZoneHandle( |
| 5205 | compiler->zone(), |
| 5206 | save_fpu_registers |
| 5207 | ? object_store->range_error_stub_with_fpu_regs_stub() |
| 5208 | : object_store->range_error_stub_without_fpu_regs_stub()); |
| 5209 | compiler->EmitCallToStub(stub); |
| 5210 | #endif |
| 5211 | } |
| 5212 | |
| 5213 | void UnboxInstr::EmitLoadFromBoxWithDeopt(FlowGraphCompiler* compiler) { |
| 5214 | const intptr_t box_cid = BoxCid(); |
| 5215 | const Register box = locs()->in(0).reg(); |
| 5216 | const Register temp = |
| 5217 | (locs()->temp_count() > 0) ? locs()->temp(0).reg() : kNoRegister; |
| 5218 | compiler::Label* deopt = |
| 5219 | compiler->AddDeoptStub(GetDeoptId(), ICData::kDeoptUnbox); |
| 5220 | compiler::Label is_smi; |
| 5221 | |
| 5222 | if ((value()->Type()->ToNullableCid() == box_cid) && |
| 5223 | value()->Type()->is_nullable()) { |
| 5224 | __ CompareObject(box, Object::null_object()); |
| 5225 | __ BranchIf(EQUAL, deopt); |
| 5226 | } else { |
| 5227 | __ BranchIfSmi(box, CanConvertSmi() ? &is_smi : deopt); |
| 5228 | __ CompareClassId(box, box_cid, temp); |
| 5229 | __ BranchIf(NOT_EQUAL, deopt); |
| 5230 | } |
| 5231 | |
| 5232 | EmitLoadFromBox(compiler); |
| 5233 | |
| 5234 | if (is_smi.IsLinked()) { |
| 5235 | compiler::Label done; |
| 5236 | __ Jump(&done); |
| 5237 | __ Bind(&is_smi); |
| 5238 | EmitSmiConversion(compiler); |
| 5239 | __ Bind(&done); |
| 5240 | } |
| 5241 | } |
| 5242 | |
| 5243 | void UnboxInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5244 | if (SpeculativeModeOfInputs() == kNotSpeculative) { |
| 5245 | switch (representation()) { |
| 5246 | case kUnboxedDouble: |
| 5247 | case kUnboxedFloat: |
| 5248 | case kUnboxedFloat32x4: |
| 5249 | case kUnboxedFloat64x2: |
| 5250 | case kUnboxedInt32x4: |
| 5251 | EmitLoadFromBox(compiler); |
| 5252 | break; |
| 5253 | |
| 5254 | case kUnboxedInt32: |
| 5255 | EmitLoadInt32FromBoxOrSmi(compiler); |
| 5256 | break; |
| 5257 | |
| 5258 | case kUnboxedInt64: { |
| 5259 | if (value()->Type()->ToCid() == kSmiCid) { |
| 5260 | // Smi -> int64 conversion is more efficient than |
| 5261 | // handling arbitrary smi/mint. |
| 5262 | EmitSmiConversion(compiler); |
| 5263 | } else { |
| 5264 | EmitLoadInt64FromBoxOrSmi(compiler); |
| 5265 | } |
| 5266 | break; |
| 5267 | } |
| 5268 | default: |
| 5269 | UNREACHABLE(); |
| 5270 | break; |
| 5271 | } |
| 5272 | } else { |
| 5273 | ASSERT(SpeculativeModeOfInputs() == kGuardInputs); |
| 5274 | const intptr_t value_cid = value()->Type()->ToCid(); |
| 5275 | const intptr_t box_cid = BoxCid(); |
| 5276 | |
| 5277 | if (value_cid == box_cid) { |
| 5278 | EmitLoadFromBox(compiler); |
| 5279 | } else if (CanConvertSmi() && (value_cid == kSmiCid)) { |
| 5280 | EmitSmiConversion(compiler); |
| 5281 | } else if (representation() == kUnboxedInt32 && value()->Type()->IsInt()) { |
| 5282 | EmitLoadInt32FromBoxOrSmi(compiler); |
| 5283 | } else if (representation() == kUnboxedInt64 && value()->Type()->IsInt()) { |
| 5284 | EmitLoadInt64FromBoxOrSmi(compiler); |
| 5285 | } else { |
| 5286 | ASSERT(CanDeoptimize()); |
| 5287 | EmitLoadFromBoxWithDeopt(compiler); |
| 5288 | } |
| 5289 | } |
| 5290 | } |
| 5291 | |
| 5292 | Environment* Environment::From(Zone* zone, |
| 5293 | const GrowableArray<Definition*>& definitions, |
| 5294 | intptr_t fixed_parameter_count, |
| 5295 | const ParsedFunction& parsed_function) { |
| 5296 | Environment* env = new (zone) Environment( |
| 5297 | definitions.length(), fixed_parameter_count, parsed_function, NULL); |
| 5298 | for (intptr_t i = 0; i < definitions.length(); ++i) { |
| 5299 | env->values_.Add(new (zone) Value(definitions[i])); |
| 5300 | } |
| 5301 | return env; |
| 5302 | } |
| 5303 | |
| 5304 | void Environment::PushValue(Value* value) { |
| 5305 | values_.Add(value); |
| 5306 | } |
| 5307 | |
| 5308 | Environment* Environment::DeepCopy(Zone* zone, intptr_t length) const { |
| 5309 | ASSERT(length <= values_.length()); |
| 5310 | Environment* copy = |
| 5311 | new (zone) Environment(length, fixed_parameter_count_, parsed_function_, |
| 5312 | (outer_ == NULL) ? NULL : outer_->DeepCopy(zone)); |
| 5313 | copy->deopt_id_ = this->deopt_id_; |
| 5314 | if (locations_ != NULL) { |
| 5315 | Location* new_locations = zone->Alloc<Location>(length); |
| 5316 | copy->set_locations(new_locations); |
| 5317 | } |
| 5318 | for (intptr_t i = 0; i < length; ++i) { |
| 5319 | copy->values_.Add(values_[i]->CopyWithType(zone)); |
| 5320 | if (locations_ != NULL) { |
| 5321 | copy->locations_[i] = locations_[i].Copy(); |
| 5322 | } |
| 5323 | } |
| 5324 | return copy; |
| 5325 | } |
| 5326 | |
| 5327 | // Copies the environment and updates the environment use lists. |
| 5328 | void Environment::DeepCopyTo(Zone* zone, Instruction* instr) const { |
| 5329 | for (Environment::DeepIterator it(instr->env()); !it.Done(); it.Advance()) { |
| 5330 | it.CurrentValue()->RemoveFromUseList(); |
| 5331 | } |
| 5332 | |
| 5333 | Environment* copy = DeepCopy(zone); |
| 5334 | instr->SetEnvironment(copy); |
| 5335 | for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { |
| 5336 | Value* value = it.CurrentValue(); |
| 5337 | value->definition()->AddEnvUse(value); |
| 5338 | } |
| 5339 | } |
| 5340 | |
| 5341 | void Environment::DeepCopyAfterTo(Zone* zone, |
| 5342 | Instruction* instr, |
| 5343 | intptr_t argc, |
| 5344 | Definition* dead, |
| 5345 | Definition* result) const { |
| 5346 | for (Environment::DeepIterator it(instr->env()); !it.Done(); it.Advance()) { |
| 5347 | it.CurrentValue()->RemoveFromUseList(); |
| 5348 | } |
| 5349 | |
| 5350 | Environment* copy = DeepCopy(zone, values_.length() - argc); |
| 5351 | for (intptr_t i = 0; i < argc; i++) { |
| 5352 | copy->values_.Add(new (zone) Value(dead)); |
| 5353 | } |
| 5354 | copy->values_.Add(new (zone) Value(result)); |
| 5355 | |
| 5356 | instr->SetEnvironment(copy); |
| 5357 | for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { |
| 5358 | Value* value = it.CurrentValue(); |
| 5359 | value->definition()->AddEnvUse(value); |
| 5360 | } |
| 5361 | } |
| 5362 | |
| 5363 | // Copies the environment as outer on an inlined instruction and updates the |
| 5364 | // environment use lists. |
| 5365 | void Environment::DeepCopyToOuter(Zone* zone, |
| 5366 | Instruction* instr, |
| 5367 | intptr_t outer_deopt_id) const { |
| 5368 | // Create a deep copy removing caller arguments from the environment. |
| 5369 | ASSERT(this != NULL); |
| 5370 | ASSERT(instr->env()->outer() == NULL); |
| 5371 | intptr_t argument_count = instr->env()->fixed_parameter_count(); |
| 5372 | Environment* copy = DeepCopy(zone, values_.length() - argument_count); |
| 5373 | copy->deopt_id_ = outer_deopt_id; |
| 5374 | instr->env()->outer_ = copy; |
| 5375 | intptr_t use_index = instr->env()->Length(); // Start index after inner. |
| 5376 | for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { |
| 5377 | Value* value = it.CurrentValue(); |
| 5378 | value->set_instruction(instr); |
| 5379 | value->set_use_index(use_index++); |
| 5380 | value->definition()->AddEnvUse(value); |
| 5381 | } |
| 5382 | } |
| 5383 | |
| 5384 | ComparisonInstr* DoubleTestOpInstr::CopyWithNewOperands(Value* new_left, |
| 5385 | Value* new_right) { |
| 5386 | UNREACHABLE(); |
| 5387 | return NULL; |
| 5388 | } |
| 5389 | |
| 5390 | ComparisonInstr* EqualityCompareInstr::CopyWithNewOperands(Value* new_left, |
| 5391 | Value* new_right) { |
| 5392 | return new EqualityCompareInstr(token_pos(), kind(), new_left, new_right, |
| 5393 | operation_cid(), deopt_id()); |
| 5394 | } |
| 5395 | |
| 5396 | ComparisonInstr* RelationalOpInstr::CopyWithNewOperands(Value* new_left, |
| 5397 | Value* new_right) { |
| 5398 | return new RelationalOpInstr(token_pos(), kind(), new_left, new_right, |
| 5399 | operation_cid(), deopt_id(), |
| 5400 | SpeculativeModeOfInputs()); |
| 5401 | } |
| 5402 | |
| 5403 | ComparisonInstr* StrictCompareInstr::CopyWithNewOperands(Value* new_left, |
| 5404 | Value* new_right) { |
| 5405 | return new StrictCompareInstr(token_pos(), kind(), new_left, new_right, |
| 5406 | needs_number_check(), DeoptId::kNone); |
| 5407 | } |
| 5408 | |
| 5409 | ComparisonInstr* TestSmiInstr::CopyWithNewOperands(Value* new_left, |
| 5410 | Value* new_right) { |
| 5411 | return new TestSmiInstr(token_pos(), kind(), new_left, new_right); |
| 5412 | } |
| 5413 | |
| 5414 | ComparisonInstr* TestCidsInstr::CopyWithNewOperands(Value* new_left, |
| 5415 | Value* new_right) { |
| 5416 | return new TestCidsInstr(token_pos(), kind(), new_left, cid_results(), |
| 5417 | deopt_id()); |
| 5418 | } |
| 5419 | |
| 5420 | bool TestCidsInstr::AttributesEqual(Instruction* other) const { |
| 5421 | TestCidsInstr* other_instr = other->AsTestCids(); |
| 5422 | if (!ComparisonInstr::AttributesEqual(other)) { |
| 5423 | return false; |
| 5424 | } |
| 5425 | if (cid_results().length() != other_instr->cid_results().length()) { |
| 5426 | return false; |
| 5427 | } |
| 5428 | for (intptr_t i = 0; i < cid_results().length(); i++) { |
| 5429 | if (cid_results()[i] != other_instr->cid_results()[i]) { |
| 5430 | return false; |
| 5431 | } |
| 5432 | } |
| 5433 | return true; |
| 5434 | } |
| 5435 | |
| 5436 | static bool BindsToSmiConstant(Value* value) { |
| 5437 | return value->BindsToConstant() && value->BoundConstant().IsSmi(); |
| 5438 | } |
| 5439 | |
| 5440 | bool IfThenElseInstr::Supports(ComparisonInstr* comparison, |
| 5441 | Value* v1, |
| 5442 | Value* v2) { |
| 5443 | bool is_smi_result = BindsToSmiConstant(v1) && BindsToSmiConstant(v2); |
| 5444 | if (comparison->IsStrictCompare()) { |
| 5445 | // Strict comparison with number checks calls a stub and is not supported |
| 5446 | // by if-conversion. |
| 5447 | return is_smi_result && |
| 5448 | !comparison->AsStrictCompare()->needs_number_check(); |
| 5449 | } |
| 5450 | if (comparison->operation_cid() != kSmiCid) { |
| 5451 | // Non-smi comparisons are not supported by if-conversion. |
| 5452 | return false; |
| 5453 | } |
| 5454 | return is_smi_result; |
| 5455 | } |
| 5456 | |
| 5457 | bool PhiInstr::IsRedundant() const { |
| 5458 | ASSERT(InputCount() > 1); |
| 5459 | Definition* first = InputAt(0)->definition(); |
| 5460 | for (intptr_t i = 1; i < InputCount(); ++i) { |
| 5461 | Definition* def = InputAt(i)->definition(); |
| 5462 | if (def != first) return false; |
| 5463 | } |
| 5464 | return true; |
| 5465 | } |
| 5466 | |
| 5467 | Definition* PhiInstr::GetReplacementForRedundantPhi() const { |
| 5468 | Definition* first = InputAt(0)->definition(); |
| 5469 | if (InputCount() == 1) { |
| 5470 | return first; |
| 5471 | } |
| 5472 | ASSERT(InputCount() > 1); |
| 5473 | Definition* first_origin = first->OriginalDefinition(); |
| 5474 | bool look_for_redefinition = false; |
| 5475 | for (intptr_t i = 1; i < InputCount(); ++i) { |
| 5476 | Definition* def = InputAt(i)->definition(); |
| 5477 | if (def != first) { |
| 5478 | if (def->OriginalDefinition() != first_origin) return nullptr; |
| 5479 | look_for_redefinition = true; |
| 5480 | } |
| 5481 | } |
| 5482 | if (look_for_redefinition) { |
| 5483 | // Find the most specific redefinition which is common for all inputs |
| 5484 | // (the longest common chain). |
| 5485 | Definition* redef = first; |
| 5486 | for (intptr_t i = 1, n = InputCount(); redef != first_origin && i < n;) { |
| 5487 | Value* value = InputAt(i); |
| 5488 | bool found = false; |
| 5489 | do { |
| 5490 | Definition* def = value->definition(); |
| 5491 | if (def == redef) { |
| 5492 | found = true; |
| 5493 | break; |
| 5494 | } |
| 5495 | value = def->RedefinedValue(); |
| 5496 | } while (value != nullptr); |
| 5497 | if (found) { |
| 5498 | ++i; |
| 5499 | } else { |
| 5500 | ASSERT(redef != first_origin); |
| 5501 | redef = redef->RedefinedValue()->definition(); |
| 5502 | } |
| 5503 | } |
| 5504 | return redef; |
| 5505 | } else { |
| 5506 | return first; |
| 5507 | } |
| 5508 | } |
| 5509 | |
| 5510 | Definition* PhiInstr::Canonicalize(FlowGraph* flow_graph) { |
| 5511 | Definition* replacement = GetReplacementForRedundantPhi(); |
| 5512 | return (replacement != nullptr) ? replacement : this; |
| 5513 | } |
| 5514 | |
| 5515 | // Removes current phi from graph and sets current to previous phi. |
| 5516 | void PhiIterator::RemoveCurrentFromGraph() { |
| 5517 | Current()->UnuseAllInputs(); |
| 5518 | (*phis_)[index_] = phis_->Last(); |
| 5519 | phis_->RemoveLast(); |
| 5520 | --index_; |
| 5521 | } |
| 5522 | |
| 5523 | Instruction* CheckConditionInstr::Canonicalize(FlowGraph* graph) { |
| 5524 | if (StrictCompareInstr* strict_compare = comparison()->AsStrictCompare()) { |
| 5525 | if ((InputAt(0)->definition()->OriginalDefinition() == |
| 5526 | InputAt(1)->definition()->OriginalDefinition()) && |
| 5527 | strict_compare->kind() == Token::kEQ_STRICT) { |
| 5528 | return nullptr; |
| 5529 | } |
| 5530 | } |
| 5531 | return this; |
| 5532 | } |
| 5533 | |
| 5534 | bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { |
| 5535 | return LoadFieldInstr::IsFixedLengthArrayCid(cid); |
| 5536 | } |
| 5537 | |
| 5538 | Definition* CheckBoundBase::Canonicalize(FlowGraph* flow_graph) { |
| 5539 | return IsRedundant() ? index()->definition() : this; |
| 5540 | } |
| 5541 | |
| 5542 | intptr_t CheckArrayBoundInstr::LengthOffsetFor(intptr_t class_id) { |
| 5543 | if (IsTypedDataClassId(class_id) || IsTypedDataViewClassId(class_id) || |
| 5544 | IsExternalTypedDataClassId(class_id)) { |
| 5545 | return compiler::target::TypedDataBase::length_offset(); |
| 5546 | } |
| 5547 | |
| 5548 | switch (class_id) { |
| 5549 | case kGrowableObjectArrayCid: |
| 5550 | return compiler::target::GrowableObjectArray::length_offset(); |
| 5551 | case kOneByteStringCid: |
| 5552 | case kTwoByteStringCid: |
| 5553 | return compiler::target::String::length_offset(); |
| 5554 | case kArrayCid: |
| 5555 | case kImmutableArrayCid: |
| 5556 | return compiler::target::Array::length_offset(); |
| 5557 | default: |
| 5558 | UNREACHABLE(); |
| 5559 | return -1; |
| 5560 | } |
| 5561 | } |
| 5562 | |
| 5563 | const Function& StringInterpolateInstr::CallFunction() const { |
| 5564 | if (function_.IsNull()) { |
| 5565 | const int kTypeArgsLen = 0; |
| 5566 | const int kNumberOfArguments = 1; |
| 5567 | const Array& kNoArgumentNames = Object::null_array(); |
| 5568 | const Class& cls = |
| 5569 | Class::Handle(Library::LookupCoreClass(Symbols::StringBase())); |
| 5570 | ASSERT(!cls.IsNull()); |
| 5571 | function_ = Resolver::ResolveStatic( |
| 5572 | cls, Library::PrivateCoreLibName(Symbols::Interpolate()), kTypeArgsLen, |
| 5573 | kNumberOfArguments, kNoArgumentNames); |
| 5574 | } |
| 5575 | ASSERT(!function_.IsNull()); |
| 5576 | return function_; |
| 5577 | } |
| 5578 | |
| 5579 | // Replace StringInterpolateInstr with a constant string if all inputs are |
| 5580 | // constant of [string, number, boolean, null]. |
| 5581 | // Leave the CreateArrayInstr and StoreIndexedInstr in the stream in case |
| 5582 | // deoptimization occurs. |
| 5583 | Definition* StringInterpolateInstr::Canonicalize(FlowGraph* flow_graph) { |
| 5584 | // The following graph structure is generated by the graph builder: |
| 5585 | // v2 <- CreateArray(v0) |
| 5586 | // StoreIndexed(v2, v3, v4) -- v3:constant index, v4: value. |
| 5587 | // .. |
| 5588 | // v8 <- StringInterpolate(v2) |
| 5589 | |
| 5590 | // Don't compile-time fold when optimizing the interpolation function itself. |
| 5591 | if (flow_graph->function().raw() == CallFunction().raw()) { |
| 5592 | return this; |
| 5593 | } |
| 5594 | |
| 5595 | CreateArrayInstr* create_array = value()->definition()->AsCreateArray(); |
| 5596 | if (create_array == nullptr) { |
| 5597 | // Do not try to fold interpolate if array is an OSR argument. |
| 5598 | ASSERT(flow_graph->IsCompiledForOsr()); |
| 5599 | ASSERT(value()->definition()->IsPhi()); |
| 5600 | return this; |
| 5601 | } |
| 5602 | // Check if the string interpolation has only constant inputs. |
| 5603 | Value* num_elements = create_array->num_elements(); |
| 5604 | if (!num_elements->BindsToConstant() || |
| 5605 | !num_elements->BoundConstant().IsSmi()) { |
| 5606 | return this; |
| 5607 | } |
| 5608 | const intptr_t length = Smi::Cast(num_elements->BoundConstant()).Value(); |
| 5609 | Thread* thread = Thread::Current(); |
| 5610 | Zone* zone = thread->zone(); |
| 5611 | GrowableHandlePtrArray<const String> pieces(zone, length); |
| 5612 | for (intptr_t i = 0; i < length; i++) { |
| 5613 | pieces.Add(Object::null_string()); |
| 5614 | } |
| 5615 | |
| 5616 | for (Value::Iterator it(create_array->input_use_list()); !it.Done(); |
| 5617 | it.Advance()) { |
| 5618 | Instruction* curr = it.Current()->instruction(); |
| 5619 | if (curr == this) continue; |
| 5620 | |
| 5621 | StoreIndexedInstr* store = curr->AsStoreIndexed(); |
| 5622 | if (store == nullptr || !store->index()->BindsToConstant() || |
| 5623 | !store->index()->BoundConstant().IsSmi()) { |
| 5624 | return this; |
| 5625 | } |
| 5626 | intptr_t store_index = Smi::Cast(store->index()->BoundConstant()).Value(); |
| 5627 | ASSERT(store_index < length); |
| 5628 | ASSERT(store != NULL); |
| 5629 | if (store->value()->definition()->IsConstant()) { |
| 5630 | ASSERT(store->index()->BindsToConstant()); |
| 5631 | const Object& obj = store->value()->definition()->AsConstant()->value(); |
| 5632 | // TODO(srdjan): Verify if any other types should be converted as well. |
| 5633 | if (obj.IsString()) { |
| 5634 | pieces.SetAt(store_index, String::Cast(obj)); |
| 5635 | } else if (obj.IsSmi()) { |
| 5636 | const char* cstr = obj.ToCString(); |
| 5637 | pieces.SetAt(store_index, |
| 5638 | String::Handle(zone, String::New(cstr, Heap::kOld))); |
| 5639 | } else if (obj.IsBool()) { |
| 5640 | pieces.SetAt(store_index, Bool::Cast(obj).value() ? Symbols::True() |
| 5641 | : Symbols::False()); |
| 5642 | } else if (obj.IsNull()) { |
| 5643 | pieces.SetAt(store_index, Symbols::null()); |
| 5644 | } else { |
| 5645 | return this; |
| 5646 | } |
| 5647 | } else { |
| 5648 | return this; |
| 5649 | } |
| 5650 | } |
| 5651 | |
| 5652 | const String& concatenated = |
| 5653 | String::ZoneHandle(zone, Symbols::FromConcatAll(thread, pieces)); |
| 5654 | return flow_graph->GetConstant(concatenated); |
| 5655 | } |
| 5656 | |
| 5657 | static AlignmentType StrengthenAlignment(intptr_t cid, |
| 5658 | AlignmentType alignment) { |
| 5659 | switch (cid) { |
| 5660 | case kTypedDataInt8ArrayCid: |
| 5661 | case kTypedDataUint8ArrayCid: |
| 5662 | case kTypedDataUint8ClampedArrayCid: |
| 5663 | case kExternalTypedDataUint8ArrayCid: |
| 5664 | case kExternalTypedDataUint8ClampedArrayCid: |
| 5665 | case kOneByteStringCid: |
| 5666 | case kExternalOneByteStringCid: |
| 5667 | // Don't need to worry about alignment for accessing bytes. |
| 5668 | return kAlignedAccess; |
| 5669 | case kTypedDataFloat64x2ArrayCid: |
| 5670 | case kTypedDataInt32x4ArrayCid: |
| 5671 | case kTypedDataFloat32x4ArrayCid: |
| 5672 | // TODO(rmacnak): Investigate alignment requirements of floating point |
| 5673 | // loads. |
| 5674 | return kAlignedAccess; |
| 5675 | } |
| 5676 | |
| 5677 | return alignment; |
| 5678 | } |
| 5679 | |
| 5680 | LoadIndexedInstr::LoadIndexedInstr(Value* array, |
| 5681 | Value* index, |
| 5682 | bool index_unboxed, |
| 5683 | intptr_t index_scale, |
| 5684 | intptr_t class_id, |
| 5685 | AlignmentType alignment, |
| 5686 | intptr_t deopt_id, |
| 5687 | TokenPosition token_pos, |
| 5688 | CompileType* result_type) |
| 5689 | : TemplateDefinition(deopt_id), |
| 5690 | index_unboxed_(index_unboxed), |
| 5691 | index_scale_(index_scale), |
| 5692 | class_id_(class_id), |
| 5693 | alignment_(StrengthenAlignment(class_id, alignment)), |
| 5694 | token_pos_(token_pos), |
| 5695 | result_type_(result_type) { |
| 5696 | SetInputAt(0, array); |
| 5697 | SetInputAt(1, index); |
| 5698 | } |
| 5699 | |
| 5700 | Definition* LoadIndexedInstr::Canonicalize(FlowGraph* flow_graph) { |
| 5701 | auto Z = flow_graph->zone(); |
| 5702 | if (auto box = index()->definition()->AsBoxInt64()) { |
| 5703 | // TODO(dartbug.com/39432): Make LoadIndexed fully suport unboxed indices. |
| 5704 | if (!box->ComputeCanDeoptimize() && compiler::target::kWordSize == 8) { |
| 5705 | auto load = new (Z) LoadIndexedInstr( |
| 5706 | array()->CopyWithType(Z), box->value()->CopyWithType(Z), |
| 5707 | /*index_unboxed=*/true, index_scale(), class_id(), alignment_, |
| 5708 | GetDeoptId(), token_pos(), result_type_); |
| 5709 | flow_graph->InsertBefore(this, load, env(), FlowGraph::kValue); |
| 5710 | return load; |
| 5711 | } |
| 5712 | } |
| 5713 | return this; |
| 5714 | } |
| 5715 | |
| 5716 | StoreIndexedInstr::StoreIndexedInstr(Value* array, |
| 5717 | Value* index, |
| 5718 | Value* value, |
| 5719 | StoreBarrierType emit_store_barrier, |
| 5720 | bool index_unboxed, |
| 5721 | intptr_t index_scale, |
| 5722 | intptr_t class_id, |
| 5723 | AlignmentType alignment, |
| 5724 | intptr_t deopt_id, |
| 5725 | TokenPosition token_pos, |
| 5726 | SpeculativeMode speculative_mode) |
| 5727 | : TemplateInstruction(deopt_id), |
| 5728 | emit_store_barrier_(emit_store_barrier), |
| 5729 | index_unboxed_(index_unboxed), |
| 5730 | index_scale_(index_scale), |
| 5731 | class_id_(class_id), |
| 5732 | alignment_(StrengthenAlignment(class_id, alignment)), |
| 5733 | token_pos_(token_pos), |
| 5734 | speculative_mode_(speculative_mode) { |
| 5735 | SetInputAt(kArrayPos, array); |
| 5736 | SetInputAt(kIndexPos, index); |
| 5737 | SetInputAt(kValuePos, value); |
| 5738 | } |
| 5739 | |
| 5740 | Instruction* StoreIndexedInstr::Canonicalize(FlowGraph* flow_graph) { |
| 5741 | auto Z = flow_graph->zone(); |
| 5742 | if (auto box = index()->definition()->AsBoxInt64()) { |
| 5743 | // TODO(dartbug.com/39432): Make StoreIndexed fully suport unboxed indices. |
| 5744 | if (!box->ComputeCanDeoptimize() && compiler::target::kWordSize == 8) { |
| 5745 | auto store = new (Z) StoreIndexedInstr( |
| 5746 | array()->CopyWithType(Z), box->value()->CopyWithType(Z), |
| 5747 | value()->CopyWithType(Z), emit_store_barrier_, |
| 5748 | /*index_unboxed=*/true, index_scale(), class_id(), alignment_, |
| 5749 | GetDeoptId(), token_pos(), speculative_mode_); |
| 5750 | flow_graph->InsertBefore(this, store, env(), FlowGraph::kEffect); |
| 5751 | return nullptr; |
| 5752 | } |
| 5753 | } |
| 5754 | return this; |
| 5755 | } |
| 5756 | |
| 5757 | bool Utf8ScanInstr::IsScanFlagsUnboxed() const { |
| 5758 | return FlowGraphCompiler::IsUnboxedField(scan_flags_field_.field()); |
| 5759 | } |
| 5760 | |
| 5761 | InvokeMathCFunctionInstr::InvokeMathCFunctionInstr( |
| 5762 | ZoneGrowableArray<Value*>* inputs, |
| 5763 | intptr_t deopt_id, |
| 5764 | MethodRecognizer::Kind recognized_kind, |
| 5765 | TokenPosition token_pos) |
| 5766 | : PureDefinition(deopt_id), |
| 5767 | inputs_(inputs), |
| 5768 | recognized_kind_(recognized_kind), |
| 5769 | token_pos_(token_pos) { |
| 5770 | ASSERT(inputs_->length() == ArgumentCountFor(recognized_kind_)); |
| 5771 | for (intptr_t i = 0; i < inputs_->length(); ++i) { |
| 5772 | ASSERT((*inputs)[i] != NULL); |
| 5773 | (*inputs)[i]->set_instruction(this); |
| 5774 | (*inputs)[i]->set_use_index(i); |
| 5775 | } |
| 5776 | } |
| 5777 | |
| 5778 | intptr_t InvokeMathCFunctionInstr::ArgumentCountFor( |
| 5779 | MethodRecognizer::Kind kind) { |
| 5780 | switch (kind) { |
| 5781 | case MethodRecognizer::kDoubleTruncate: |
| 5782 | case MethodRecognizer::kDoubleFloor: |
| 5783 | case MethodRecognizer::kDoubleCeil: { |
| 5784 | ASSERT(!TargetCPUFeatures::double_truncate_round_supported()); |
| 5785 | return 1; |
| 5786 | } |
| 5787 | case MethodRecognizer::kDoubleRound: |
| 5788 | case MethodRecognizer::kMathAtan: |
| 5789 | case MethodRecognizer::kMathTan: |
| 5790 | case MethodRecognizer::kMathAcos: |
| 5791 | case MethodRecognizer::kMathAsin: |
| 5792 | case MethodRecognizer::kMathSin: |
| 5793 | case MethodRecognizer::kMathCos: |
| 5794 | return 1; |
| 5795 | case MethodRecognizer::kDoubleMod: |
| 5796 | case MethodRecognizer::kMathDoublePow: |
| 5797 | case MethodRecognizer::kMathAtan2: |
| 5798 | return 2; |
| 5799 | default: |
| 5800 | UNREACHABLE(); |
| 5801 | } |
| 5802 | return 0; |
| 5803 | } |
| 5804 | |
| 5805 | const RuntimeEntry& InvokeMathCFunctionInstr::TargetFunction() const { |
| 5806 | switch (recognized_kind_) { |
| 5807 | case MethodRecognizer::kDoubleTruncate: |
| 5808 | return kLibcTruncRuntimeEntry; |
| 5809 | case MethodRecognizer::kDoubleRound: |
| 5810 | return kLibcRoundRuntimeEntry; |
| 5811 | case MethodRecognizer::kDoubleFloor: |
| 5812 | return kLibcFloorRuntimeEntry; |
| 5813 | case MethodRecognizer::kDoubleCeil: |
| 5814 | return kLibcCeilRuntimeEntry; |
| 5815 | case MethodRecognizer::kMathDoublePow: |
| 5816 | return kLibcPowRuntimeEntry; |
| 5817 | case MethodRecognizer::kDoubleMod: |
| 5818 | return kDartModuloRuntimeEntry; |
| 5819 | case MethodRecognizer::kMathTan: |
| 5820 | return kLibcTanRuntimeEntry; |
| 5821 | case MethodRecognizer::kMathAsin: |
| 5822 | return kLibcAsinRuntimeEntry; |
| 5823 | case MethodRecognizer::kMathSin: |
| 5824 | return kLibcSinRuntimeEntry; |
| 5825 | case MethodRecognizer::kMathCos: |
| 5826 | return kLibcCosRuntimeEntry; |
| 5827 | case MethodRecognizer::kMathAcos: |
| 5828 | return kLibcAcosRuntimeEntry; |
| 5829 | case MethodRecognizer::kMathAtan: |
| 5830 | return kLibcAtanRuntimeEntry; |
| 5831 | case MethodRecognizer::kMathAtan2: |
| 5832 | return kLibcAtan2RuntimeEntry; |
| 5833 | default: |
| 5834 | UNREACHABLE(); |
| 5835 | } |
| 5836 | return kLibcPowRuntimeEntry; |
| 5837 | } |
| 5838 | |
| 5839 | const char* MathUnaryInstr::KindToCString(MathUnaryKind kind) { |
| 5840 | switch (kind) { |
| 5841 | case kIllegal: |
| 5842 | return "illegal" ; |
| 5843 | case kSqrt: |
| 5844 | return "sqrt" ; |
| 5845 | case kDoubleSquare: |
| 5846 | return "double-square" ; |
| 5847 | } |
| 5848 | UNREACHABLE(); |
| 5849 | return "" ; |
| 5850 | } |
| 5851 | |
| 5852 | TruncDivModInstr::TruncDivModInstr(Value* lhs, Value* rhs, intptr_t deopt_id) |
| 5853 | : TemplateDefinition(deopt_id) { |
| 5854 | SetInputAt(0, lhs); |
| 5855 | SetInputAt(1, rhs); |
| 5856 | } |
| 5857 | |
| 5858 | intptr_t TruncDivModInstr::OutputIndexOf(Token::Kind token) { |
| 5859 | switch (token) { |
| 5860 | case Token::kTRUNCDIV: |
| 5861 | return 0; |
| 5862 | case Token::kMOD: |
| 5863 | return 1; |
| 5864 | default: |
| 5865 | UNIMPLEMENTED(); |
| 5866 | return -1; |
| 5867 | } |
| 5868 | } |
| 5869 | |
| 5870 | LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone, |
| 5871 | bool optimizing) const { |
| 5872 | return MakeCallSummary(zone, this); |
| 5873 | } |
| 5874 | |
| 5875 | void NativeCallInstr::SetupNative() { |
| 5876 | if (link_lazily()) { |
| 5877 | // Resolution will happen during NativeEntry::LinkNativeCall. |
| 5878 | return; |
| 5879 | } |
| 5880 | |
| 5881 | Zone* zone = Thread::Current()->zone(); |
| 5882 | const Class& cls = Class::Handle(zone, function().Owner()); |
| 5883 | const Library& library = Library::Handle(zone, cls.library()); |
| 5884 | |
| 5885 | Dart_NativeEntryResolver resolver = library.native_entry_resolver(); |
| 5886 | bool is_bootstrap_native = Bootstrap::IsBootstrapResolver(resolver); |
| 5887 | set_is_bootstrap_native(is_bootstrap_native); |
| 5888 | |
| 5889 | const int num_params = |
| 5890 | NativeArguments::ParameterCountForResolution(function()); |
| 5891 | bool auto_setup_scope = true; |
| 5892 | NativeFunction native_function = NativeEntry::ResolveNative( |
| 5893 | library, native_name(), num_params, &auto_setup_scope); |
| 5894 | if (native_function == NULL) { |
| 5895 | Report::MessageF(Report::kError, Script::Handle(function().script()), |
| 5896 | function().token_pos(), Report::AtLocation, |
| 5897 | "native function '%s' (%" Pd " arguments) cannot be found" , |
| 5898 | native_name().ToCString(), function().NumParameters()); |
| 5899 | } |
| 5900 | set_is_auto_scope(auto_setup_scope); |
| 5901 | set_native_c_function(native_function); |
| 5902 | } |
| 5903 | |
| 5904 | #if !defined(TARGET_ARCH_ARM) |
| 5905 | |
| 5906 | LocationSummary* BitCastInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| 5907 | UNREACHABLE(); |
| 5908 | } |
| 5909 | |
| 5910 | void BitCastInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 5911 | UNREACHABLE(); |
| 5912 | } |
| 5913 | |
| 5914 | #endif // defined(TARGET_ARCH_ARM) |
| 5915 | |
| 5916 | Representation FfiCallInstr::RequiredInputRepresentation(intptr_t idx) const { |
| 5917 | if (idx == TargetAddressIndex()) { |
| 5918 | return kUnboxedFfiIntPtr; |
| 5919 | } else { |
| 5920 | return marshaller_.RepInFfiCall(idx); |
| 5921 | } |
| 5922 | } |
| 5923 | |
| 5924 | #define Z zone_ |
| 5925 | |
| 5926 | LocationSummary* FfiCallInstr::MakeLocationSummary(Zone* zone, |
| 5927 | bool is_optimizing) const { |
| 5928 | // The temporary register needs to be callee-saved and not an argument |
| 5929 | // register. |
| 5930 | ASSERT(((1 << CallingConventions::kFirstCalleeSavedCpuReg) & |
| 5931 | CallingConventions::kArgumentRegisters) == 0); |
| 5932 | |
| 5933 | constexpr intptr_t kNumTemps = 2; |
| 5934 | |
| 5935 | LocationSummary* summary = new (zone) |
| 5936 | LocationSummary(zone, /*num_inputs=*/InputCount(), |
| 5937 | /*num_temps=*/kNumTemps, LocationSummary::kCall); |
| 5938 | |
| 5939 | summary->set_in(TargetAddressIndex(), |
| 5940 | Location::RegisterLocation( |
| 5941 | CallingConventions::kFirstNonArgumentRegister)); |
| 5942 | summary->set_temp(0, Location::RegisterLocation( |
| 5943 | CallingConventions::kSecondNonArgumentRegister)); |
| 5944 | summary->set_temp(1, Location::RegisterLocation( |
| 5945 | CallingConventions::kFirstCalleeSavedCpuReg)); |
| 5946 | summary->set_out(0, marshaller_.LocInFfiCall(compiler::ffi::kResultIndex)); |
| 5947 | |
| 5948 | for (intptr_t i = 0, n = marshaller_.num_args(); i < n; ++i) { |
| 5949 | summary->set_in(i, marshaller_.LocInFfiCall(i)); |
| 5950 | } |
| 5951 | |
| 5952 | return summary; |
| 5953 | } |
| 5954 | |
| 5955 | void FfiCallInstr::EmitParamMoves(FlowGraphCompiler* compiler) { |
| 5956 | const Register saved_fp = locs()->temp(0).reg(); |
| 5957 | const Register temp = locs()->temp(1).reg(); |
| 5958 | |
| 5959 | compiler::ffi::FrameRebase rebase(/*old_base=*/FPREG, /*new_base=*/saved_fp, |
| 5960 | /*stack_delta=*/0, zone_); |
| 5961 | for (intptr_t i = 0, n = NativeArgCount(); i < n; ++i) { |
| 5962 | const Location origin = rebase.Rebase(locs()->in(i)); |
| 5963 | const Representation origin_rep = RequiredInputRepresentation(i); |
| 5964 | const auto& target = marshaller_.Location(i); |
| 5965 | ConstantTemporaryAllocator temp_alloc(temp); |
| 5966 | if (origin.IsConstant()) { |
| 5967 | compiler->EmitMoveConst(target, origin, origin_rep, &temp_alloc); |
| 5968 | } else { |
| 5969 | compiler->EmitMoveToNative(target, origin, origin_rep, &temp_alloc); |
| 5970 | } |
| 5971 | } |
| 5972 | } |
| 5973 | |
| 5974 | void FfiCallInstr::EmitReturnMoves(FlowGraphCompiler* compiler) { |
| 5975 | const auto& src = marshaller_.Location(compiler::ffi::kResultIndex); |
| 5976 | if (src.payload_type().IsVoid()) { |
| 5977 | return; |
| 5978 | } |
| 5979 | const Location dst_loc = locs()->out(0); |
| 5980 | const Representation dst_type = representation(); |
| 5981 | NoTemporaryAllocator no_temp; |
| 5982 | compiler->EmitMoveFromNative(dst_loc, dst_type, src, &no_temp); |
| 5983 | } |
| 5984 | |
| 5985 | static Location FirstArgumentLocation() { |
| 5986 | #ifdef TARGET_ARCH_IA32 |
| 5987 | return Location::StackSlot(0, SPREG); |
| 5988 | #else |
| 5989 | return Location::RegisterLocation(CallingConventions::ArgumentRegisters[0]); |
| 5990 | #endif |
| 5991 | } |
| 5992 | |
| 5993 | LocationSummary* EnterHandleScopeInstr::MakeLocationSummary( |
| 5994 | Zone* zone, |
| 5995 | bool is_optimizing) const { |
| 5996 | LocationSummary* summary = |
| 5997 | new (zone) LocationSummary(zone, /*num_inputs=*/0, |
| 5998 | /*num_temps=*/0, LocationSummary::kCall); |
| 5999 | summary->set_out(0, |
| 6000 | Location::RegisterLocation(CallingConventions::kReturnReg)); |
| 6001 | return summary; |
| 6002 | } |
| 6003 | |
| 6004 | void EnterHandleScopeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6005 | if (kind_ == Kind::kGetTopHandleScope) { |
| 6006 | __ LoadMemoryValue(CallingConventions::kReturnReg, THR, |
| 6007 | compiler::target::Thread::api_top_scope_offset()); |
| 6008 | return; |
| 6009 | } |
| 6010 | |
| 6011 | Location arg_loc = FirstArgumentLocation(); |
| 6012 | __ EnterCFrame(arg_loc.IsRegister() ? 0 : compiler::target::kWordSize); |
| 6013 | NoTemporaryAllocator no_temp; |
| 6014 | compiler->EmitMove(arg_loc, Location::RegisterLocation(THR), &no_temp); |
| 6015 | __ CallCFunction( |
| 6016 | compiler::Address(THR, compiler::target::Thread::OffsetFromThread( |
| 6017 | &kEnterHandleScopeRuntimeEntry))); |
| 6018 | __ LeaveCFrame(); |
| 6019 | } |
| 6020 | |
| 6021 | LocationSummary* ExitHandleScopeInstr::MakeLocationSummary( |
| 6022 | Zone* zone, |
| 6023 | bool is_optimizing) const { |
| 6024 | LocationSummary* summary = |
| 6025 | new (zone) LocationSummary(zone, /*num_inputs=*/0, |
| 6026 | /*num_temps=*/0, LocationSummary::kCall); |
| 6027 | return summary; |
| 6028 | } |
| 6029 | |
| 6030 | void ExitHandleScopeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6031 | Location arg_loc = FirstArgumentLocation(); |
| 6032 | __ EnterCFrame(arg_loc.IsRegister() ? 0 : compiler::target::kWordSize); |
| 6033 | NoTemporaryAllocator no_temp; |
| 6034 | compiler->EmitMove(arg_loc, Location::RegisterLocation(THR), &no_temp); |
| 6035 | __ CallCFunction( |
| 6036 | compiler::Address(THR, compiler::target::Thread::OffsetFromThread( |
| 6037 | &kExitHandleScopeRuntimeEntry))); |
| 6038 | __ LeaveCFrame(); |
| 6039 | } |
| 6040 | |
| 6041 | LocationSummary* AllocateHandleInstr::MakeLocationSummary( |
| 6042 | Zone* zone, |
| 6043 | bool is_optimizing) const { |
| 6044 | LocationSummary* summary = |
| 6045 | new (zone) LocationSummary(zone, /*num_inputs=*/1, |
| 6046 | /*num_temps=*/0, LocationSummary::kCall); |
| 6047 | |
| 6048 | Location arg_loc = FirstArgumentLocation(); |
| 6049 | // Assign input to a register that does not conflict with anything if |
| 6050 | // argument is passed on the stack. |
| 6051 | const Register scope_reg = |
| 6052 | arg_loc.IsStackSlot() ? CallingConventions::kSecondNonArgumentRegister |
| 6053 | : arg_loc.reg(); |
| 6054 | |
| 6055 | summary->set_in(kScope, Location::RegisterLocation(scope_reg)); |
| 6056 | summary->set_out(0, |
| 6057 | Location::RegisterLocation(CallingConventions::kReturnReg)); |
| 6058 | return summary; |
| 6059 | } |
| 6060 | |
| 6061 | Representation AllocateHandleInstr::RequiredInputRepresentation( |
| 6062 | intptr_t idx) const { |
| 6063 | ASSERT(idx == kScope); |
| 6064 | return kUnboxedIntPtr; |
| 6065 | } |
| 6066 | |
| 6067 | void AllocateHandleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6068 | Location arg_loc = FirstArgumentLocation(); |
| 6069 | __ EnterCFrame(arg_loc.IsRegister() ? 0 : compiler::target::kWordSize); |
| 6070 | if (arg_loc.IsStackSlot()) { |
| 6071 | NoTemporaryAllocator no_temp; |
| 6072 | compiler->EmitMove(arg_loc, locs()->in(kScope), &no_temp); |
| 6073 | } |
| 6074 | __ CallCFunction( |
| 6075 | compiler::Address(THR, compiler::target::Thread::OffsetFromThread( |
| 6076 | &kAllocateHandleRuntimeEntry))); |
| 6077 | __ LeaveCFrame(); |
| 6078 | } |
| 6079 | |
| 6080 | LocationSummary* RawStoreFieldInstr::MakeLocationSummary( |
| 6081 | Zone* zone, |
| 6082 | bool is_optimizing) const { |
| 6083 | LocationSummary* summary = |
| 6084 | new (zone) LocationSummary(zone, /*num_inputs=*/2, |
| 6085 | /*num_temps=*/0, LocationSummary::kNoCall); |
| 6086 | |
| 6087 | summary->set_in(kBase, Location::RequiresRegister()); |
| 6088 | summary->set_in(kValue, Location::RequiresRegister()); |
| 6089 | |
| 6090 | return summary; |
| 6091 | } |
| 6092 | |
| 6093 | Representation RawStoreFieldInstr::RequiredInputRepresentation( |
| 6094 | intptr_t idx) const { |
| 6095 | switch (idx) { |
| 6096 | case kBase: |
| 6097 | return kUntagged; |
| 6098 | case kValue: |
| 6099 | return kTagged; |
| 6100 | default: |
| 6101 | break; |
| 6102 | } |
| 6103 | UNREACHABLE(); |
| 6104 | } |
| 6105 | |
| 6106 | void RawStoreFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| 6107 | const Register base_reg = locs()->in(kBase).reg(); |
| 6108 | const Register value_reg = locs()->in(kValue).reg(); |
| 6109 | compiler->assembler()->StoreMemoryValue(value_reg, base_reg, offset_); |
| 6110 | } |
| 6111 | |
| 6112 | void NativeReturnInstr::EmitReturnMoves(FlowGraphCompiler* compiler) { |
| 6113 | const auto& dst = marshaller_.Location(compiler::ffi::kResultIndex); |
| 6114 | if (dst.payload_type().IsVoid()) { |
| 6115 | return; |
| 6116 | } |
| 6117 | const Location src_loc = locs()->in(0); |
| 6118 | const Representation src_type = RequiredInputRepresentation(0); |
| 6119 | NoTemporaryAllocator no_temp; |
| 6120 | compiler->EmitMoveToNative(dst, src_loc, src_type, &no_temp); |
| 6121 | } |
| 6122 | |
| 6123 | LocationSummary* NativeReturnInstr::MakeLocationSummary(Zone* zone, |
| 6124 | bool opt) const { |
| 6125 | const intptr_t kNumInputs = 1; |
| 6126 | const intptr_t kNumTemps = 0; |
| 6127 | LocationSummary* locs = new (zone) |
| 6128 | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| 6129 | locs->set_in( |
| 6130 | 0, marshaller_.LocationOfNativeParameter(compiler::ffi::kResultIndex)); |
| 6131 | return locs; |
| 6132 | } |
| 6133 | |
| 6134 | #undef Z |
| 6135 | |
| 6136 | Representation FfiCallInstr::representation() const { |
| 6137 | return marshaller_.RepInFfiCall(compiler::ffi::kResultIndex); |
| 6138 | } |
| 6139 | |
| 6140 | // SIMD |
| 6141 | |
| 6142 | SimdOpInstr::Kind SimdOpInstr::KindForOperator(MethodRecognizer::Kind kind) { |
| 6143 | switch (kind) { |
| 6144 | case MethodRecognizer::kFloat32x4Mul: |
| 6145 | return SimdOpInstr::kFloat32x4Mul; |
| 6146 | case MethodRecognizer::kFloat32x4Div: |
| 6147 | return SimdOpInstr::kFloat32x4Div; |
| 6148 | case MethodRecognizer::kFloat32x4Add: |
| 6149 | return SimdOpInstr::kFloat32x4Add; |
| 6150 | case MethodRecognizer::kFloat32x4Sub: |
| 6151 | return SimdOpInstr::kFloat32x4Sub; |
| 6152 | case MethodRecognizer::kFloat64x2Mul: |
| 6153 | return SimdOpInstr::kFloat64x2Mul; |
| 6154 | case MethodRecognizer::kFloat64x2Div: |
| 6155 | return SimdOpInstr::kFloat64x2Div; |
| 6156 | case MethodRecognizer::kFloat64x2Add: |
| 6157 | return SimdOpInstr::kFloat64x2Add; |
| 6158 | case MethodRecognizer::kFloat64x2Sub: |
| 6159 | return SimdOpInstr::kFloat64x2Sub; |
| 6160 | default: |
| 6161 | break; |
| 6162 | } |
| 6163 | UNREACHABLE(); |
| 6164 | return SimdOpInstr::kIllegalSimdOp; |
| 6165 | } |
| 6166 | |
| 6167 | SimdOpInstr* SimdOpInstr::CreateFromCall(Zone* zone, |
| 6168 | MethodRecognizer::Kind kind, |
| 6169 | Definition* receiver, |
| 6170 | Instruction* call, |
| 6171 | intptr_t mask /* = 0 */) { |
| 6172 | SimdOpInstr* op; |
| 6173 | switch (kind) { |
| 6174 | case MethodRecognizer::kFloat32x4Mul: |
| 6175 | case MethodRecognizer::kFloat32x4Div: |
| 6176 | case MethodRecognizer::kFloat32x4Add: |
| 6177 | case MethodRecognizer::kFloat32x4Sub: |
| 6178 | case MethodRecognizer::kFloat64x2Mul: |
| 6179 | case MethodRecognizer::kFloat64x2Div: |
| 6180 | case MethodRecognizer::kFloat64x2Add: |
| 6181 | case MethodRecognizer::kFloat64x2Sub: |
| 6182 | op = new (zone) SimdOpInstr(KindForOperator(kind), call->deopt_id()); |
| 6183 | break; |
| 6184 | default: |
| 6185 | op = new (zone) SimdOpInstr(KindForMethod(kind), call->deopt_id()); |
| 6186 | break; |
| 6187 | } |
| 6188 | |
| 6189 | if (receiver != nullptr) { |
| 6190 | op->SetInputAt(0, new (zone) Value(receiver)); |
| 6191 | } |
| 6192 | for (intptr_t i = (receiver != nullptr ? 1 : 0); i < op->InputCount(); i++) { |
| 6193 | op->SetInputAt(i, call->ArgumentValueAt(i)->CopyWithType(zone)); |
| 6194 | } |
| 6195 | if (op->HasMask()) { |
| 6196 | op->set_mask(mask); |
| 6197 | } |
| 6198 | ASSERT(call->ArgumentCount() == (op->InputCount() + (op->HasMask() ? 1 : 0))); |
| 6199 | return op; |
| 6200 | } |
| 6201 | |
| 6202 | SimdOpInstr* SimdOpInstr::CreateFromFactoryCall(Zone* zone, |
| 6203 | MethodRecognizer::Kind kind, |
| 6204 | Instruction* call) { |
| 6205 | SimdOpInstr* op = |
| 6206 | new (zone) SimdOpInstr(KindForMethod(kind), call->deopt_id()); |
| 6207 | for (intptr_t i = 0; i < op->InputCount(); i++) { |
| 6208 | // Note: ArgumentAt(0) is type arguments which we don't need. |
| 6209 | op->SetInputAt(i, call->ArgumentValueAt(i + 1)->CopyWithType(zone)); |
| 6210 | } |
| 6211 | ASSERT(call->ArgumentCount() == (op->InputCount() + 1)); |
| 6212 | return op; |
| 6213 | } |
| 6214 | |
| 6215 | SimdOpInstr::Kind SimdOpInstr::KindForOperator(intptr_t cid, Token::Kind op) { |
| 6216 | switch (cid) { |
| 6217 | case kFloat32x4Cid: |
| 6218 | switch (op) { |
| 6219 | case Token::kADD: |
| 6220 | return kFloat32x4Add; |
| 6221 | case Token::kSUB: |
| 6222 | return kFloat32x4Sub; |
| 6223 | case Token::kMUL: |
| 6224 | return kFloat32x4Mul; |
| 6225 | case Token::kDIV: |
| 6226 | return kFloat32x4Div; |
| 6227 | default: |
| 6228 | break; |
| 6229 | } |
| 6230 | break; |
| 6231 | |
| 6232 | case kFloat64x2Cid: |
| 6233 | switch (op) { |
| 6234 | case Token::kADD: |
| 6235 | return kFloat64x2Add; |
| 6236 | case Token::kSUB: |
| 6237 | return kFloat64x2Sub; |
| 6238 | case Token::kMUL: |
| 6239 | return kFloat64x2Mul; |
| 6240 | case Token::kDIV: |
| 6241 | return kFloat64x2Div; |
| 6242 | default: |
| 6243 | break; |
| 6244 | } |
| 6245 | break; |
| 6246 | |
| 6247 | case kInt32x4Cid: |
| 6248 | switch (op) { |
| 6249 | case Token::kADD: |
| 6250 | return kInt32x4Add; |
| 6251 | case Token::kSUB: |
| 6252 | return kInt32x4Sub; |
| 6253 | case Token::kBIT_AND: |
| 6254 | return kInt32x4BitAnd; |
| 6255 | case Token::kBIT_OR: |
| 6256 | return kInt32x4BitOr; |
| 6257 | case Token::kBIT_XOR: |
| 6258 | return kInt32x4BitXor; |
| 6259 | default: |
| 6260 | break; |
| 6261 | } |
| 6262 | break; |
| 6263 | } |
| 6264 | |
| 6265 | UNREACHABLE(); |
| 6266 | return kIllegalSimdOp; |
| 6267 | } |
| 6268 | |
| 6269 | SimdOpInstr::Kind SimdOpInstr::KindForMethod(MethodRecognizer::Kind kind) { |
| 6270 | switch (kind) { |
| 6271 | #define CASE_METHOD(Arity, Mask, Name, ...) \ |
| 6272 | case MethodRecognizer::k##Name: \ |
| 6273 | return k##Name; |
| 6274 | #define CASE_BINARY_OP(Arity, Mask, Name, Args, Result) |
| 6275 | SIMD_OP_LIST(CASE_METHOD, CASE_BINARY_OP) |
| 6276 | #undef CASE_METHOD |
| 6277 | #undef CASE_BINARY_OP |
| 6278 | default: |
| 6279 | break; |
| 6280 | } |
| 6281 | |
| 6282 | FATAL1("Not a SIMD method: %s" , MethodRecognizer::KindToCString(kind)); |
| 6283 | return kIllegalSimdOp; |
| 6284 | } |
| 6285 | |
| 6286 | // Methods InputCount(), representation(), RequiredInputRepresentation() and |
| 6287 | // HasMask() are using an array of SimdOpInfo structures representing all |
| 6288 | // necessary information about the instruction. |
| 6289 | |
| 6290 | struct SimdOpInfo { |
| 6291 | uint8_t arity; |
| 6292 | bool has_mask; |
| 6293 | Representation output; |
| 6294 | Representation inputs[4]; |
| 6295 | }; |
| 6296 | |
| 6297 | // Make representaion from type name used by SIMD_OP_LIST. |
| 6298 | #define REP(T) (kUnboxed##T) |
| 6299 | static const Representation kUnboxedBool = kTagged; |
| 6300 | static const Representation kUnboxedInt8 = kUnboxedInt32; |
| 6301 | |
| 6302 | #define ENCODE_INPUTS_0() |
| 6303 | #define ENCODE_INPUTS_1(In0) REP(In0) |
| 6304 | #define ENCODE_INPUTS_2(In0, In1) REP(In0), REP(In1) |
| 6305 | #define ENCODE_INPUTS_3(In0, In1, In2) REP(In0), REP(In1), REP(In2) |
| 6306 | #define ENCODE_INPUTS_4(In0, In1, In2, In3) \ |
| 6307 | REP(In0), REP(In1), REP(In2), REP(In3) |
| 6308 | |
| 6309 | // Helpers for correct interpretation of the Mask field in the SIMD_OP_LIST. |
| 6310 | #define HAS_MASK true |
| 6311 | #define HAS__ false |
| 6312 | |
| 6313 | // Define the metadata array. |
| 6314 | static const SimdOpInfo simd_op_information[] = { |
| 6315 | #define PP_APPLY(M, Args) M Args |
| 6316 | #define CASE(Arity, Mask, Name, Args, Result) \ |
| 6317 | {Arity, HAS_##Mask, REP(Result), {PP_APPLY(ENCODE_INPUTS_##Arity, Args)}}, |
| 6318 | SIMD_OP_LIST(CASE, CASE) |
| 6319 | #undef CASE |
| 6320 | #undef PP_APPLY |
| 6321 | }; |
| 6322 | |
| 6323 | // Undef all auxiliary macros. |
| 6324 | #undef ENCODE_INFORMATION |
| 6325 | #undef HAS__ |
| 6326 | #undef HAS_MASK |
| 6327 | #undef ENCODE_INPUTS_0 |
| 6328 | #undef ENCODE_INPUTS_1 |
| 6329 | #undef ENCODE_INPUTS_2 |
| 6330 | #undef ENCODE_INPUTS_3 |
| 6331 | #undef ENCODE_INPUTS_4 |
| 6332 | #undef REP |
| 6333 | |
| 6334 | intptr_t SimdOpInstr::InputCount() const { |
| 6335 | return simd_op_information[kind()].arity; |
| 6336 | } |
| 6337 | |
| 6338 | Representation SimdOpInstr::representation() const { |
| 6339 | return simd_op_information[kind()].output; |
| 6340 | } |
| 6341 | |
| 6342 | Representation SimdOpInstr::RequiredInputRepresentation(intptr_t idx) const { |
| 6343 | ASSERT(0 <= idx && idx < InputCount()); |
| 6344 | return simd_op_information[kind()].inputs[idx]; |
| 6345 | } |
| 6346 | |
| 6347 | bool SimdOpInstr::HasMask() const { |
| 6348 | return simd_op_information[kind()].has_mask; |
| 6349 | } |
| 6350 | |
| 6351 | #undef __ |
| 6352 | |
| 6353 | } // namespace dart |
| 6354 | |