1 | // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/regexp.h" |
6 | |
7 | #include <memory> |
8 | |
9 | #include "platform/splay-tree-inl.h" |
10 | #include "platform/unicode.h" |
11 | |
12 | #include "unicode/uniset.h" |
13 | |
14 | #include "vm/dart_entry.h" |
15 | #include "vm/regexp_assembler.h" |
16 | #include "vm/regexp_assembler_bytecode.h" |
17 | #include "vm/regexp_ast.h" |
18 | #include "vm/symbols.h" |
19 | #include "vm/thread.h" |
20 | #include "vm/unibrow-inl.h" |
21 | |
22 | #if !defined(DART_PRECOMPILED_RUNTIME) |
23 | #include "vm/regexp_assembler_ir.h" |
24 | #endif // !defined(DART_PRECOMPILED_RUNTIME) |
25 | |
26 | #define Z (zone()) |
27 | |
28 | namespace dart { |
29 | |
30 | // Default to generating optimized regexp code. |
31 | static const bool kRegexpOptimization = true; |
32 | |
33 | // More makes code generation slower, less makes V8 benchmark score lower. |
34 | static const intptr_t kMaxLookaheadForBoyerMoore = 8; |
35 | |
36 | ContainedInLattice AddRange(ContainedInLattice containment, |
37 | const int32_t* ranges, |
38 | intptr_t ranges_length, |
39 | Interval new_range) { |
40 | ASSERT((ranges_length & 1) == 1); |
41 | ASSERT(ranges[ranges_length - 1] == Utf::kMaxCodePoint + 1); |
42 | if (containment == kLatticeUnknown) return containment; |
43 | bool inside = false; |
44 | int32_t last = 0; |
45 | for (intptr_t i = 0; i < ranges_length; |
46 | inside = !inside, last = ranges[i], i++) { |
47 | // Consider the range from last to ranges[i]. |
48 | // We haven't got to the new range yet. |
49 | if (ranges[i] <= new_range.from()) continue; |
50 | // New range is wholly inside last-ranges[i]. Note that new_range.to() is |
51 | // inclusive, but the values in ranges are not. |
52 | if (last <= new_range.from() && new_range.to() < ranges[i]) { |
53 | return Combine(containment, inside ? kLatticeIn : kLatticeOut); |
54 | } |
55 | return kLatticeUnknown; |
56 | } |
57 | return containment; |
58 | } |
59 | |
60 | // ------------------------------------------------------------------- |
61 | // Implementation of the Irregexp regular expression engine. |
62 | // |
63 | // The Irregexp regular expression engine is intended to be a complete |
64 | // implementation of ECMAScript regular expressions. It generates |
65 | // IR code that is subsequently compiled to native code. |
66 | |
67 | // The Irregexp regexp engine is structured in three steps. |
68 | // 1) The parser generates an abstract syntax tree. See regexp_ast.cc. |
69 | // 2) From the AST a node network is created. The nodes are all |
70 | // subclasses of RegExpNode. The nodes represent states when |
71 | // executing a regular expression. Several optimizations are |
72 | // performed on the node network. |
73 | // 3) From the nodes we generate IR instructions that can actually |
74 | // execute the regular expression (perform the search). The |
75 | // code generation step is described in more detail below. |
76 | |
77 | // Code generation. |
78 | // |
79 | // The nodes are divided into four main categories. |
80 | // * Choice nodes |
81 | // These represent places where the regular expression can |
82 | // match in more than one way. For example on entry to an |
83 | // alternation (foo|bar) or a repetition (*, +, ? or {}). |
84 | // * Action nodes |
85 | // These represent places where some action should be |
86 | // performed. Examples include recording the current position |
87 | // in the input string to a register (in order to implement |
88 | // captures) or other actions on register for example in order |
89 | // to implement the counters needed for {} repetitions. |
90 | // * Matching nodes |
91 | // These attempt to match some element part of the input string. |
92 | // Examples of elements include character classes, plain strings |
93 | // or back references. |
94 | // * End nodes |
95 | // These are used to implement the actions required on finding |
96 | // a successful match or failing to find a match. |
97 | // |
98 | // The code generated maintains some state as it runs. This consists of the |
99 | // following elements: |
100 | // |
101 | // * The capture registers. Used for string captures. |
102 | // * Other registers. Used for counters etc. |
103 | // * The current position. |
104 | // * The stack of backtracking information. Used when a matching node |
105 | // fails to find a match and needs to try an alternative. |
106 | // |
107 | // Conceptual regular expression execution model: |
108 | // |
109 | // There is a simple conceptual model of regular expression execution |
110 | // which will be presented first. The actual code generated is a more |
111 | // efficient simulation of the simple conceptual model: |
112 | // |
113 | // * Choice nodes are implemented as follows: |
114 | // For each choice except the last { |
115 | // push current position |
116 | // push backtrack code location |
117 | // <generate code to test for choice> |
118 | // backtrack code location: |
119 | // pop current position |
120 | // } |
121 | // <generate code to test for last choice> |
122 | // |
123 | // * Actions nodes are generated as follows |
124 | // <push affected registers on backtrack stack> |
125 | // <generate code to perform action> |
126 | // push backtrack code location |
127 | // <generate code to test for following nodes> |
128 | // backtrack code location: |
129 | // <pop affected registers to restore their state> |
130 | // <pop backtrack location from stack and go to it> |
131 | // |
132 | // * Matching nodes are generated as follows: |
133 | // if input string matches at current position |
134 | // update current position |
135 | // <generate code to test for following nodes> |
136 | // else |
137 | // <pop backtrack location from stack and go to it> |
138 | // |
139 | // Thus it can be seen that the current position is saved and restored |
140 | // by the choice nodes, whereas the registers are saved and restored by |
141 | // by the action nodes that manipulate them. |
142 | // |
143 | // The other interesting aspect of this model is that nodes are generated |
144 | // at the point where they are needed by a recursive call to Emit(). If |
145 | // the node has already been code generated then the Emit() call will |
146 | // generate a jump to the previously generated code instead. In order to |
147 | // limit recursion it is possible for the Emit() function to put the node |
148 | // on a work list for later generation and instead generate a jump. The |
149 | // destination of the jump is resolved later when the code is generated. |
150 | // |
151 | // Actual regular expression code generation. |
152 | // |
153 | // Code generation is actually more complicated than the above. In order |
154 | // to improve the efficiency of the generated code some optimizations are |
155 | // performed |
156 | // |
157 | // * Choice nodes have 1-character lookahead. |
158 | // A choice node looks at the following character and eliminates some of |
159 | // the choices immediately based on that character. This is not yet |
160 | // implemented. |
161 | // * Simple greedy loops store reduced backtracking information. |
162 | // A quantifier like /.*foo/m will greedily match the whole input. It will |
163 | // then need to backtrack to a point where it can match "foo". The naive |
164 | // implementation of this would push each character position onto the |
165 | // backtracking stack, then pop them off one by one. This would use space |
166 | // proportional to the length of the input string. However since the "." |
167 | // can only match in one way and always has a constant length (in this case |
168 | // of 1) it suffices to store the current position on the top of the stack |
169 | // once. Matching now becomes merely incrementing the current position and |
170 | // backtracking becomes decrementing the current position and checking the |
171 | // result against the stored current position. This is faster and saves |
172 | // space. |
173 | // * The current state is virtualized. |
174 | // This is used to defer expensive operations until it is clear that they |
175 | // are needed and to generate code for a node more than once, allowing |
176 | // specialized an efficient versions of the code to be created. This is |
177 | // explained in the section below. |
178 | // |
179 | // Execution state virtualization. |
180 | // |
181 | // Instead of emitting code, nodes that manipulate the state can record their |
182 | // manipulation in an object called the Trace. The Trace object can record a |
183 | // current position offset, an optional backtrack code location on the top of |
184 | // the virtualized backtrack stack and some register changes. When a node is |
185 | // to be emitted it can flush the Trace or update it. Flushing the Trace |
186 | // will emit code to bring the actual state into line with the virtual state. |
187 | // Avoiding flushing the state can postpone some work (e.g. updates of capture |
188 | // registers). Postponing work can save time when executing the regular |
189 | // expression since it may be found that the work never has to be done as a |
190 | // failure to match can occur. In addition it is much faster to jump to a |
191 | // known backtrack code location than it is to pop an unknown backtrack |
192 | // location from the stack and jump there. |
193 | // |
194 | // The virtual state found in the Trace affects code generation. For example |
195 | // the virtual state contains the difference between the actual current |
196 | // position and the virtual current position, and matching code needs to use |
197 | // this offset to attempt a match in the correct location of the input |
198 | // string. Therefore code generated for a non-trivial trace is specialized |
199 | // to that trace. The code generator therefore has the ability to generate |
200 | // code for each node several times. In order to limit the size of the |
201 | // generated code there is an arbitrary limit on how many specialized sets of |
202 | // code may be generated for a given node. If the limit is reached, the |
203 | // trace is flushed and a generic version of the code for a node is emitted. |
204 | // This is subsequently used for that node. The code emitted for non-generic |
205 | // trace is not recorded in the node and so it cannot currently be reused in |
206 | // the event that code generation is requested for an identical trace. |
207 | |
208 | void RegExpTree::AppendToText(RegExpText* text) { |
209 | UNREACHABLE(); |
210 | } |
211 | |
212 | void RegExpAtom::AppendToText(RegExpText* text) { |
213 | text->AddElement(TextElement::Atom(this)); |
214 | } |
215 | |
216 | void RegExpCharacterClass::AppendToText(RegExpText* text) { |
217 | text->AddElement(TextElement::CharClass(this)); |
218 | } |
219 | |
220 | void RegExpText::AppendToText(RegExpText* text) { |
221 | for (intptr_t i = 0; i < elements()->length(); i++) |
222 | text->AddElement((*elements())[i]); |
223 | } |
224 | |
225 | TextElement TextElement::Atom(RegExpAtom* atom) { |
226 | return TextElement(ATOM, atom); |
227 | } |
228 | |
229 | TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { |
230 | return TextElement(CHAR_CLASS, char_class); |
231 | } |
232 | |
233 | intptr_t TextElement::length() const { |
234 | switch (text_type()) { |
235 | case ATOM: |
236 | return atom()->length(); |
237 | |
238 | case CHAR_CLASS: |
239 | return 1; |
240 | } |
241 | UNREACHABLE(); |
242 | return 0; |
243 | } |
244 | |
245 | class FrequencyCollator : public ValueObject { |
246 | public: |
247 | FrequencyCollator() : total_samples_(0) { |
248 | for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
249 | frequencies_[i] = CharacterFrequency(i); |
250 | } |
251 | } |
252 | |
253 | void CountCharacter(intptr_t character) { |
254 | intptr_t index = (character & RegExpMacroAssembler::kTableMask); |
255 | frequencies_[index].Increment(); |
256 | total_samples_++; |
257 | } |
258 | |
259 | // Does not measure in percent, but rather per-128 (the table size from the |
260 | // regexp macro assembler). |
261 | intptr_t Frequency(intptr_t in_character) { |
262 | ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
263 | if (total_samples_ < 1) return 1; // Division by zero. |
264 | intptr_t freq_in_per128 = |
265 | (frequencies_[in_character].counter() * 128) / total_samples_; |
266 | return freq_in_per128; |
267 | } |
268 | |
269 | private: |
270 | class CharacterFrequency { |
271 | public: |
272 | CharacterFrequency() : counter_(0), character_(-1) {} |
273 | explicit CharacterFrequency(intptr_t character) |
274 | : counter_(0), character_(character) {} |
275 | |
276 | void Increment() { counter_++; } |
277 | intptr_t counter() { return counter_; } |
278 | intptr_t character() { return character_; } |
279 | |
280 | private: |
281 | intptr_t counter_; |
282 | intptr_t character_; |
283 | |
284 | DISALLOW_ALLOCATION(); |
285 | }; |
286 | |
287 | private: |
288 | CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; |
289 | intptr_t total_samples_; |
290 | }; |
291 | |
292 | class RegExpCompiler : public ValueObject { |
293 | public: |
294 | RegExpCompiler(intptr_t capture_count, bool is_one_byte); |
295 | |
296 | intptr_t AllocateRegister() { return next_register_++; } |
297 | |
298 | // Lookarounds to match lone surrogates for unicode character class matches |
299 | // are never nested. We can therefore reuse registers. |
300 | intptr_t UnicodeLookaroundStackRegister() { |
301 | if (unicode_lookaround_stack_register_ == kNoRegister) { |
302 | unicode_lookaround_stack_register_ = AllocateRegister(); |
303 | } |
304 | return unicode_lookaround_stack_register_; |
305 | } |
306 | |
307 | intptr_t UnicodeLookaroundPositionRegister() { |
308 | if (unicode_lookaround_position_register_ == kNoRegister) { |
309 | unicode_lookaround_position_register_ = AllocateRegister(); |
310 | } |
311 | return unicode_lookaround_position_register_; |
312 | } |
313 | |
314 | #if !defined(DART_PRECOMPILED_RUNTIME) |
315 | RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler, |
316 | RegExpNode* start, |
317 | intptr_t capture_count, |
318 | const String& pattern); |
319 | #endif |
320 | |
321 | RegExpEngine::CompilationResult Assemble( |
322 | BytecodeRegExpMacroAssembler* assembler, |
323 | RegExpNode* start, |
324 | intptr_t capture_count, |
325 | const String& pattern); |
326 | |
327 | inline void AddWork(RegExpNode* node) { work_list_->Add(node); } |
328 | |
329 | static const intptr_t kImplementationOffset = 0; |
330 | static const intptr_t kNumberOfRegistersOffset = 0; |
331 | static const intptr_t kCodeOffset = 1; |
332 | |
333 | RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } |
334 | EndNode* accept() { return accept_; } |
335 | |
336 | static const intptr_t kMaxRecursion = 100; |
337 | inline intptr_t recursion_depth() { return recursion_depth_; } |
338 | inline void IncrementRecursionDepth() { recursion_depth_++; } |
339 | inline void DecrementRecursionDepth() { recursion_depth_--; } |
340 | |
341 | void SetRegExpTooBig() { reg_exp_too_big_ = true; } |
342 | |
343 | inline bool one_byte() const { return is_one_byte_; } |
344 | bool read_backward() { return read_backward_; } |
345 | void set_read_backward(bool value) { read_backward_ = value; } |
346 | FrequencyCollator* frequency_collator() { return &frequency_collator_; } |
347 | |
348 | intptr_t current_expansion_factor() { return current_expansion_factor_; } |
349 | void set_current_expansion_factor(intptr_t value) { |
350 | current_expansion_factor_ = value; |
351 | } |
352 | |
353 | Zone* zone() const { return zone_; } |
354 | |
355 | static const intptr_t kNoRegister = -1; |
356 | |
357 | private: |
358 | EndNode* accept_; |
359 | intptr_t next_register_; |
360 | intptr_t unicode_lookaround_stack_register_; |
361 | intptr_t unicode_lookaround_position_register_; |
362 | ZoneGrowableArray<RegExpNode*>* work_list_; |
363 | intptr_t recursion_depth_; |
364 | RegExpMacroAssembler* macro_assembler_; |
365 | bool is_one_byte_; |
366 | bool reg_exp_too_big_; |
367 | bool read_backward_; |
368 | intptr_t current_expansion_factor_; |
369 | FrequencyCollator frequency_collator_; |
370 | Zone* zone_; |
371 | }; |
372 | |
373 | class RecursionCheck : public ValueObject { |
374 | public: |
375 | explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { |
376 | compiler->IncrementRecursionDepth(); |
377 | } |
378 | ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } |
379 | |
380 | private: |
381 | RegExpCompiler* compiler_; |
382 | }; |
383 | |
384 | static RegExpEngine::CompilationResult IrregexpRegExpTooBig() { |
385 | return RegExpEngine::CompilationResult("RegExp too big" ); |
386 | } |
387 | |
388 | // Attempts to compile the regexp using an Irregexp code generator. Returns |
389 | // a fixed array or a null handle depending on whether it succeeded. |
390 | RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool is_one_byte) |
391 | : next_register_(2 * (capture_count + 1)), |
392 | unicode_lookaround_stack_register_(kNoRegister), |
393 | unicode_lookaround_position_register_(kNoRegister), |
394 | work_list_(NULL), |
395 | recursion_depth_(0), |
396 | is_one_byte_(is_one_byte), |
397 | reg_exp_too_big_(false), |
398 | read_backward_(false), |
399 | current_expansion_factor_(1), |
400 | zone_(Thread::Current()->zone()) { |
401 | accept_ = new (Z) EndNode(EndNode::ACCEPT, Z); |
402 | } |
403 | |
404 | #if !defined(DART_PRECOMPILED_RUNTIME) |
405 | RegExpEngine::CompilationResult RegExpCompiler::Assemble( |
406 | IRRegExpMacroAssembler* macro_assembler, |
407 | RegExpNode* start, |
408 | intptr_t capture_count, |
409 | const String& pattern) { |
410 | macro_assembler->set_slow_safe(false /* use_slow_safe_regexp_compiler */); |
411 | macro_assembler_ = macro_assembler; |
412 | |
413 | ZoneGrowableArray<RegExpNode*> work_list(0); |
414 | work_list_ = &work_list; |
415 | BlockLabel fail; |
416 | macro_assembler_->PushBacktrack(&fail); |
417 | Trace new_trace; |
418 | start->Emit(this, &new_trace); |
419 | macro_assembler_->BindBlock(&fail); |
420 | macro_assembler_->Fail(); |
421 | while (!work_list.is_empty()) { |
422 | work_list.RemoveLast()->Emit(this, &new_trace); |
423 | } |
424 | if (reg_exp_too_big_) return IrregexpRegExpTooBig(); |
425 | |
426 | macro_assembler->GenerateBacktrackBlock(); |
427 | macro_assembler->FinalizeRegistersArray(); |
428 | |
429 | return RegExpEngine::CompilationResult( |
430 | macro_assembler->backtrack_goto(), macro_assembler->graph_entry(), |
431 | macro_assembler->num_blocks(), macro_assembler->num_stack_locals(), |
432 | next_register_); |
433 | } |
434 | #endif |
435 | |
436 | RegExpEngine::CompilationResult RegExpCompiler::Assemble( |
437 | BytecodeRegExpMacroAssembler* macro_assembler, |
438 | RegExpNode* start, |
439 | intptr_t capture_count, |
440 | const String& pattern) { |
441 | macro_assembler->set_slow_safe(false /* use_slow_safe_regexp_compiler */); |
442 | macro_assembler_ = macro_assembler; |
443 | |
444 | ZoneGrowableArray<RegExpNode*> work_list(0); |
445 | work_list_ = &work_list; |
446 | BlockLabel fail; |
447 | macro_assembler_->PushBacktrack(&fail); |
448 | Trace new_trace; |
449 | start->Emit(this, &new_trace); |
450 | macro_assembler_->BindBlock(&fail); |
451 | macro_assembler_->Fail(); |
452 | while (!work_list.is_empty()) { |
453 | work_list.RemoveLast()->Emit(this, &new_trace); |
454 | } |
455 | if (reg_exp_too_big_) return IrregexpRegExpTooBig(); |
456 | |
457 | TypedData& bytecode = TypedData::ZoneHandle(macro_assembler->GetBytecode()); |
458 | return RegExpEngine::CompilationResult(&bytecode, next_register_); |
459 | } |
460 | |
461 | bool Trace::DeferredAction::Mentions(intptr_t that) { |
462 | if (action_type() == ActionNode::CLEAR_CAPTURES) { |
463 | Interval range = static_cast<DeferredClearCaptures*>(this)->range(); |
464 | return range.Contains(that); |
465 | } else { |
466 | return reg() == that; |
467 | } |
468 | } |
469 | |
470 | bool Trace::mentions_reg(intptr_t reg) { |
471 | for (DeferredAction* action = actions_; action != NULL; |
472 | action = action->next()) { |
473 | if (action->Mentions(reg)) return true; |
474 | } |
475 | return false; |
476 | } |
477 | |
478 | bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) { |
479 | ASSERT(*cp_offset == 0); |
480 | for (DeferredAction* action = actions_; action != NULL; |
481 | action = action->next()) { |
482 | if (action->Mentions(reg)) { |
483 | if (action->action_type() == ActionNode::STORE_POSITION) { |
484 | *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); |
485 | return true; |
486 | } else { |
487 | return false; |
488 | } |
489 | } |
490 | } |
491 | return false; |
492 | } |
493 | |
494 | // This is called as we come into a loop choice node and some other tricky |
495 | // nodes. It normalizes the state of the code generator to ensure we can |
496 | // generate generic code. |
497 | intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers, Zone* zone) { |
498 | intptr_t max_register = RegExpCompiler::kNoRegister; |
499 | for (DeferredAction* action = actions_; action != NULL; |
500 | action = action->next()) { |
501 | if (action->action_type() == ActionNode::CLEAR_CAPTURES) { |
502 | Interval range = static_cast<DeferredClearCaptures*>(action)->range(); |
503 | for (intptr_t i = range.from(); i <= range.to(); i++) |
504 | affected_registers->Set(i, zone); |
505 | if (range.to() > max_register) max_register = range.to(); |
506 | } else { |
507 | affected_registers->Set(action->reg(), zone); |
508 | if (action->reg() > max_register) max_register = action->reg(); |
509 | } |
510 | } |
511 | return max_register; |
512 | } |
513 | |
514 | void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, |
515 | intptr_t max_register, |
516 | const OutSet& registers_to_pop, |
517 | const OutSet& registers_to_clear) { |
518 | for (intptr_t reg = max_register; reg >= 0; reg--) { |
519 | if (registers_to_pop.Get(reg)) { |
520 | assembler->PopRegister(reg); |
521 | } else if (registers_to_clear.Get(reg)) { |
522 | intptr_t clear_to = reg; |
523 | while (reg > 0 && registers_to_clear.Get(reg - 1)) { |
524 | reg--; |
525 | } |
526 | assembler->ClearRegisters(reg, clear_to); |
527 | } |
528 | } |
529 | } |
530 | |
531 | void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
532 | intptr_t max_register, |
533 | const OutSet& affected_registers, |
534 | OutSet* registers_to_pop, |
535 | OutSet* registers_to_clear, |
536 | Zone* zone) { |
537 | for (intptr_t reg = 0; reg <= max_register; reg++) { |
538 | if (!affected_registers.Get(reg)) { |
539 | continue; |
540 | } |
541 | |
542 | // The chronologically first deferred action in the trace |
543 | // is used to infer the action needed to restore a register |
544 | // to its previous state (or not, if it's safe to ignore it). |
545 | enum DeferredActionUndoType { ACTION_IGNORE, ACTION_RESTORE, ACTION_CLEAR }; |
546 | DeferredActionUndoType undo_action = ACTION_IGNORE; |
547 | |
548 | intptr_t value = 0; |
549 | bool absolute = false; |
550 | bool clear = false; |
551 | static const intptr_t kNoStore = kMinInt32; |
552 | intptr_t store_position = kNoStore; |
553 | // This is a little tricky because we are scanning the actions in reverse |
554 | // historical order (newest first). |
555 | for (DeferredAction* action = actions_; action != NULL; |
556 | action = action->next()) { |
557 | if (action->Mentions(reg)) { |
558 | switch (action->action_type()) { |
559 | case ActionNode::SET_REGISTER: { |
560 | Trace::DeferredSetRegister* psr = |
561 | static_cast<Trace::DeferredSetRegister*>(action); |
562 | if (!absolute) { |
563 | value += psr->value(); |
564 | absolute = true; |
565 | } |
566 | // SET_REGISTER is currently only used for newly introduced loop |
567 | // counters. They can have a significant previous value if they |
568 | // occour in a loop. TODO(lrn): Propagate this information, so we |
569 | // can set undo_action to ACTION_IGNORE if we know there is no |
570 | // value to restore. |
571 | undo_action = ACTION_RESTORE; |
572 | ASSERT(store_position == kNoStore); |
573 | ASSERT(!clear); |
574 | break; |
575 | } |
576 | case ActionNode::INCREMENT_REGISTER: |
577 | if (!absolute) { |
578 | value++; |
579 | } |
580 | ASSERT(store_position == kNoStore); |
581 | ASSERT(!clear); |
582 | undo_action = ACTION_RESTORE; |
583 | break; |
584 | case ActionNode::STORE_POSITION: { |
585 | Trace::DeferredCapture* pc = |
586 | static_cast<Trace::DeferredCapture*>(action); |
587 | if (!clear && store_position == kNoStore) { |
588 | store_position = pc->cp_offset(); |
589 | } |
590 | |
591 | // For captures we know that stores and clears alternate. |
592 | // Other register, are never cleared, and if the occur |
593 | // inside a loop, they might be assigned more than once. |
594 | if (reg <= 1) { |
595 | // Registers zero and one, aka "capture zero", is |
596 | // always set correctly if we succeed. There is no |
597 | // need to undo a setting on backtrack, because we |
598 | // will set it again or fail. |
599 | undo_action = ACTION_IGNORE; |
600 | } else { |
601 | undo_action = pc->is_capture() ? ACTION_CLEAR : ACTION_RESTORE; |
602 | } |
603 | ASSERT(!absolute); |
604 | ASSERT(value == 0); |
605 | break; |
606 | } |
607 | case ActionNode::CLEAR_CAPTURES: { |
608 | // Since we're scanning in reverse order, if we've already |
609 | // set the position we have to ignore historically earlier |
610 | // clearing operations. |
611 | if (store_position == kNoStore) { |
612 | clear = true; |
613 | } |
614 | undo_action = ACTION_RESTORE; |
615 | ASSERT(!absolute); |
616 | ASSERT(value == 0); |
617 | break; |
618 | } |
619 | default: |
620 | UNREACHABLE(); |
621 | break; |
622 | } |
623 | } |
624 | } |
625 | // Prepare for the undo-action (e.g., push if it's going to be popped). |
626 | if (undo_action == ACTION_RESTORE) { |
627 | assembler->PushRegister(reg); |
628 | registers_to_pop->Set(reg, zone); |
629 | } else if (undo_action == ACTION_CLEAR) { |
630 | registers_to_clear->Set(reg, zone); |
631 | } |
632 | // Perform the chronologically last action (or accumulated increment) |
633 | // for the register. |
634 | if (store_position != kNoStore) { |
635 | assembler->WriteCurrentPositionToRegister(reg, store_position); |
636 | } else if (clear) { |
637 | assembler->ClearRegisters(reg, reg); |
638 | } else if (absolute) { |
639 | assembler->SetRegister(reg, value); |
640 | } else if (value != 0) { |
641 | assembler->AdvanceRegister(reg, value); |
642 | } |
643 | } |
644 | } |
645 | |
646 | // This is called as we come into a loop choice node and some other tricky |
647 | // nodes. It normalizes the state of the code generator to ensure we can |
648 | // generate generic code. |
649 | void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
650 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
651 | |
652 | ASSERT(!is_trivial()); |
653 | |
654 | if (actions_ == NULL && backtrack() == NULL) { |
655 | // Here we just have some deferred cp advances to fix and we are back to |
656 | // a normal situation. We may also have to forget some information gained |
657 | // through a quick check that was already performed. |
658 | if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); |
659 | // Create a new trivial state and generate the node with that. |
660 | Trace new_state; |
661 | successor->Emit(compiler, &new_state); |
662 | return; |
663 | } |
664 | |
665 | // Generate deferred actions here along with code to undo them again. |
666 | OutSet affected_registers; |
667 | |
668 | if (backtrack() != NULL) { |
669 | // Here we have a concrete backtrack location. These are set up by choice |
670 | // nodes and so they indicate that we have a deferred save of the current |
671 | // position which we may need to emit here. |
672 | assembler->PushCurrentPosition(); |
673 | } |
674 | Zone* zone = successor->zone(); |
675 | intptr_t max_register = FindAffectedRegisters(&affected_registers, zone); |
676 | OutSet registers_to_pop; |
677 | OutSet registers_to_clear; |
678 | PerformDeferredActions(assembler, max_register, affected_registers, |
679 | ®isters_to_pop, ®isters_to_clear, zone); |
680 | if (cp_offset_ != 0) { |
681 | assembler->AdvanceCurrentPosition(cp_offset_); |
682 | } |
683 | |
684 | // Create a new trivial state and generate the node with that. |
685 | BlockLabel undo; |
686 | assembler->PushBacktrack(&undo); |
687 | Trace new_state; |
688 | successor->Emit(compiler, &new_state); |
689 | |
690 | // On backtrack we need to restore state. |
691 | assembler->BindBlock(&undo); |
692 | RestoreAffectedRegisters(assembler, max_register, registers_to_pop, |
693 | registers_to_clear); |
694 | if (backtrack() == NULL) { |
695 | assembler->Backtrack(); |
696 | } else { |
697 | assembler->PopCurrentPosition(); |
698 | assembler->GoTo(backtrack()); |
699 | } |
700 | } |
701 | |
702 | void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { |
703 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
704 | |
705 | // Omit flushing the trace. We discard the entire stack frame anyway. |
706 | |
707 | if (!label()->is_bound()) { |
708 | // We are completely independent of the trace, since we ignore it, |
709 | // so this code can be used as the generic version. |
710 | assembler->BindBlock(label()); |
711 | } |
712 | |
713 | // Throw away everything on the backtrack stack since the start |
714 | // of the negative submatch and restore the character position. |
715 | assembler->ReadCurrentPositionFromRegister(current_position_register_); |
716 | assembler->ReadStackPointerFromRegister(stack_pointer_register_); |
717 | if (clear_capture_count_ > 0) { |
718 | // Clear any captures that might have been performed during the success |
719 | // of the body of the negative look-ahead. |
720 | int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; |
721 | assembler->ClearRegisters(clear_capture_start_, clear_capture_end); |
722 | } |
723 | // Now that we have unwound the stack we find at the top of the stack the |
724 | // backtrack that the BeginSubmatch node got. |
725 | assembler->Backtrack(); |
726 | } |
727 | |
728 | void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
729 | if (!trace->is_trivial()) { |
730 | trace->Flush(compiler, this); |
731 | return; |
732 | } |
733 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
734 | if (!label()->is_bound()) { |
735 | assembler->BindBlock(label()); |
736 | } |
737 | switch (action_) { |
738 | case ACCEPT: |
739 | assembler->Succeed(); |
740 | return; |
741 | case BACKTRACK: |
742 | assembler->GoTo(trace->backtrack()); |
743 | return; |
744 | case NEGATIVE_SUBMATCH_SUCCESS: |
745 | // This case is handled in a different virtual method. |
746 | UNREACHABLE(); |
747 | } |
748 | UNIMPLEMENTED(); |
749 | } |
750 | |
751 | void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { |
752 | if (guards_ == NULL) guards_ = new (zone) ZoneGrowableArray<Guard*>(1); |
753 | guards_->Add(guard); |
754 | } |
755 | |
756 | ActionNode* ActionNode::SetRegister(intptr_t reg, |
757 | intptr_t val, |
758 | RegExpNode* on_success) { |
759 | ActionNode* result = |
760 | new (on_success->zone()) ActionNode(SET_REGISTER, on_success); |
761 | result->data_.u_store_register.reg = reg; |
762 | result->data_.u_store_register.value = val; |
763 | return result; |
764 | } |
765 | |
766 | ActionNode* ActionNode::IncrementRegister(intptr_t reg, |
767 | RegExpNode* on_success) { |
768 | ActionNode* result = |
769 | new (on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); |
770 | result->data_.u_increment_register.reg = reg; |
771 | return result; |
772 | } |
773 | |
774 | ActionNode* ActionNode::StorePosition(intptr_t reg, |
775 | bool is_capture, |
776 | RegExpNode* on_success) { |
777 | ActionNode* result = |
778 | new (on_success->zone()) ActionNode(STORE_POSITION, on_success); |
779 | result->data_.u_position_register.reg = reg; |
780 | result->data_.u_position_register.is_capture = is_capture; |
781 | return result; |
782 | } |
783 | |
784 | ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) { |
785 | ActionNode* result = |
786 | new (on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); |
787 | result->data_.u_clear_captures.range_from = range.from(); |
788 | result->data_.u_clear_captures.range_to = range.to(); |
789 | return result; |
790 | } |
791 | |
792 | ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg, |
793 | intptr_t position_reg, |
794 | RegExpNode* on_success) { |
795 | ActionNode* result = |
796 | new (on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); |
797 | result->data_.u_submatch.stack_pointer_register = stack_reg; |
798 | result->data_.u_submatch.current_position_register = position_reg; |
799 | return result; |
800 | } |
801 | |
802 | ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg, |
803 | intptr_t position_reg, |
804 | intptr_t clear_register_count, |
805 | intptr_t clear_register_from, |
806 | RegExpNode* on_success) { |
807 | ActionNode* result = new (on_success->zone()) |
808 | ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); |
809 | result->data_.u_submatch.stack_pointer_register = stack_reg; |
810 | result->data_.u_submatch.current_position_register = position_reg; |
811 | result->data_.u_submatch.clear_register_count = clear_register_count; |
812 | result->data_.u_submatch.clear_register_from = clear_register_from; |
813 | return result; |
814 | } |
815 | |
816 | ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register, |
817 | intptr_t repetition_register, |
818 | intptr_t repetition_limit, |
819 | RegExpNode* on_success) { |
820 | ActionNode* result = |
821 | new (on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); |
822 | result->data_.u_empty_match_check.start_register = start_register; |
823 | result->data_.u_empty_match_check.repetition_register = repetition_register; |
824 | result->data_.u_empty_match_check.repetition_limit = repetition_limit; |
825 | return result; |
826 | } |
827 | |
828 | #define DEFINE_ACCEPT(Type) \ |
829 | void Type##Node::Accept(NodeVisitor* visitor) { visitor->Visit##Type(this); } |
830 | FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) |
831 | #undef DEFINE_ACCEPT |
832 | |
833 | void LoopChoiceNode::Accept(NodeVisitor* visitor) { |
834 | visitor->VisitLoopChoice(this); |
835 | } |
836 | |
837 | // ------------------------------------------------------------------- |
838 | // Emit code. |
839 | |
840 | void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, |
841 | Guard* guard, |
842 | Trace* trace) { |
843 | switch (guard->op()) { |
844 | case Guard::LT: |
845 | ASSERT(!trace->mentions_reg(guard->reg())); |
846 | macro_assembler->IfRegisterGE(guard->reg(), guard->value(), |
847 | trace->backtrack()); |
848 | break; |
849 | case Guard::GEQ: |
850 | ASSERT(!trace->mentions_reg(guard->reg())); |
851 | macro_assembler->IfRegisterLT(guard->reg(), guard->value(), |
852 | trace->backtrack()); |
853 | break; |
854 | } |
855 | } |
856 | |
857 | // Returns the number of characters in the equivalence class, omitting those |
858 | // that cannot occur in the source string because it is ASCII. |
859 | static intptr_t GetCaseIndependentLetters(uint16_t character, |
860 | bool one_byte_subject, |
861 | int32_t* letters) { |
862 | unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
863 | intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters); |
864 | // Unibrow returns 0 or 1 for characters where case independence is |
865 | // trivial. |
866 | if (length == 0) { |
867 | letters[0] = character; |
868 | length = 1; |
869 | } |
870 | if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) { |
871 | return length; |
872 | } |
873 | |
874 | // The standard requires that non-ASCII characters cannot have ASCII |
875 | // character codes in their equivalence class. |
876 | // TODO(dcarney): issue 3550 this is not actually true for Latin1 anymore, |
877 | // is it? For example, \u00C5 is equivalent to \u212B. |
878 | return 0; |
879 | } |
880 | |
881 | static inline bool EmitSimpleCharacter(Zone* zone, |
882 | RegExpCompiler* compiler, |
883 | uint16_t c, |
884 | BlockLabel* on_failure, |
885 | intptr_t cp_offset, |
886 | bool check, |
887 | bool preloaded) { |
888 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
889 | bool bound_checked = false; |
890 | if (!preloaded) { |
891 | assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
892 | bound_checked = true; |
893 | } |
894 | assembler->CheckNotCharacter(c, on_failure); |
895 | return bound_checked; |
896 | } |
897 | |
898 | // Only emits non-letters (things that don't have case). Only used for case |
899 | // independent matches. |
900 | static inline bool EmitAtomNonLetter(Zone* zone, |
901 | RegExpCompiler* compiler, |
902 | uint16_t c, |
903 | BlockLabel* on_failure, |
904 | intptr_t cp_offset, |
905 | bool check, |
906 | bool preloaded) { |
907 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
908 | bool one_byte = compiler->one_byte(); |
909 | int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
910 | intptr_t length = GetCaseIndependentLetters(c, one_byte, chars); |
911 | if (length < 1) { |
912 | // This can't match. Must be an one-byte subject and a non-one-byte |
913 | // character. We do not need to do anything since the one-byte pass |
914 | // already handled this. |
915 | return false; // Bounds not checked. |
916 | } |
917 | bool checked = false; |
918 | // We handle the length > 1 case in a later pass. |
919 | if (length == 1) { |
920 | if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) { |
921 | // Can't match - see above. |
922 | return false; // Bounds not checked. |
923 | } |
924 | if (!preloaded) { |
925 | macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
926 | checked = check; |
927 | } |
928 | macro_assembler->CheckNotCharacter(c, on_failure); |
929 | } |
930 | return checked; |
931 | } |
932 | |
933 | static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, |
934 | bool one_byte, |
935 | uint16_t c1, |
936 | uint16_t c2, |
937 | BlockLabel* on_failure) { |
938 | uint16_t char_mask; |
939 | if (one_byte) { |
940 | char_mask = Symbols::kMaxOneCharCodeSymbol; |
941 | } else { |
942 | char_mask = Utf16::kMaxCodeUnit; |
943 | } |
944 | uint16_t exor = c1 ^ c2; |
945 | // Check whether exor has only one bit set. |
946 | if (((exor - 1) & exor) == 0) { |
947 | // If c1 and c2 differ only by one bit. |
948 | // Ecma262UnCanonicalize always gives the highest number last. |
949 | ASSERT(c2 > c1); |
950 | uint16_t mask = char_mask ^ exor; |
951 | macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); |
952 | return true; |
953 | } |
954 | ASSERT(c2 > c1); |
955 | uint16_t diff = c2 - c1; |
956 | if (((diff - 1) & diff) == 0 && c1 >= diff) { |
957 | // If the characters differ by 2^n but don't differ by one bit then |
958 | // subtract the difference from the found character, then do the or |
959 | // trick. We avoid the theoretical case where negative numbers are |
960 | // involved in order to simplify code generation. |
961 | uint16_t mask = char_mask ^ diff; |
962 | macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask, |
963 | on_failure); |
964 | return true; |
965 | } |
966 | return false; |
967 | } |
968 | |
969 | typedef bool EmitCharacterFunction(Zone* zone, |
970 | RegExpCompiler* compiler, |
971 | uint16_t c, |
972 | BlockLabel* on_failure, |
973 | intptr_t cp_offset, |
974 | bool check, |
975 | bool preloaded); |
976 | |
977 | // Only emits letters (things that have case). Only used for case independent |
978 | // matches. |
979 | static inline bool EmitAtomLetter(Zone* zone, |
980 | RegExpCompiler* compiler, |
981 | uint16_t c, |
982 | BlockLabel* on_failure, |
983 | intptr_t cp_offset, |
984 | bool check, |
985 | bool preloaded) { |
986 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
987 | bool one_byte = compiler->one_byte(); |
988 | int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
989 | intptr_t length = GetCaseIndependentLetters(c, one_byte, chars); |
990 | if (length <= 1) return false; |
991 | // We may not need to check against the end of the input string |
992 | // if this character lies before a character that matched. |
993 | if (!preloaded) { |
994 | macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
995 | } |
996 | BlockLabel ok; |
997 | ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); |
998 | switch (length) { |
999 | case 2: { |
1000 | if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], |
1001 | chars[1], on_failure)) { |
1002 | } else { |
1003 | macro_assembler->CheckCharacter(chars[0], &ok); |
1004 | macro_assembler->CheckNotCharacter(chars[1], on_failure); |
1005 | macro_assembler->BindBlock(&ok); |
1006 | } |
1007 | break; |
1008 | } |
1009 | case 4: |
1010 | macro_assembler->CheckCharacter(chars[3], &ok); |
1011 | FALL_THROUGH; |
1012 | case 3: |
1013 | macro_assembler->CheckCharacter(chars[0], &ok); |
1014 | macro_assembler->CheckCharacter(chars[1], &ok); |
1015 | macro_assembler->CheckNotCharacter(chars[2], on_failure); |
1016 | macro_assembler->BindBlock(&ok); |
1017 | break; |
1018 | default: |
1019 | UNREACHABLE(); |
1020 | break; |
1021 | } |
1022 | return true; |
1023 | } |
1024 | |
1025 | static void EmitBoundaryTest(RegExpMacroAssembler* masm, |
1026 | uint16_t border, |
1027 | BlockLabel* fall_through, |
1028 | BlockLabel* above_or_equal, |
1029 | BlockLabel* below) { |
1030 | if (below != fall_through) { |
1031 | masm->CheckCharacterLT(border, below); |
1032 | if (above_or_equal != fall_through) masm->GoTo(above_or_equal); |
1033 | } else { |
1034 | masm->CheckCharacterGT(border - 1, above_or_equal); |
1035 | } |
1036 | } |
1037 | |
1038 | static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, |
1039 | uint16_t first, |
1040 | uint16_t last, |
1041 | BlockLabel* fall_through, |
1042 | BlockLabel* in_range, |
1043 | BlockLabel* out_of_range) { |
1044 | if (in_range == fall_through) { |
1045 | if (first == last) { |
1046 | masm->CheckNotCharacter(first, out_of_range); |
1047 | } else { |
1048 | masm->CheckCharacterNotInRange(first, last, out_of_range); |
1049 | } |
1050 | } else { |
1051 | if (first == last) { |
1052 | masm->CheckCharacter(first, in_range); |
1053 | } else { |
1054 | masm->CheckCharacterInRange(first, last, in_range); |
1055 | } |
1056 | if (out_of_range != fall_through) masm->GoTo(out_of_range); |
1057 | } |
1058 | } |
1059 | |
1060 | // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. |
1061 | // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. |
1062 | static void EmitUseLookupTable(RegExpMacroAssembler* masm, |
1063 | ZoneGrowableArray<uint16_t>* ranges, |
1064 | intptr_t start_index, |
1065 | intptr_t end_index, |
1066 | uint16_t min_char, |
1067 | BlockLabel* fall_through, |
1068 | BlockLabel* even_label, |
1069 | BlockLabel* odd_label) { |
1070 | static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
1071 | static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
1072 | |
1073 | intptr_t base = (min_char & ~kMask); |
1074 | |
1075 | // Assert that everything is on one kTableSize page. |
1076 | for (intptr_t i = start_index; i <= end_index; i++) { |
1077 | ASSERT((ranges->At(i) & ~kMask) == base); |
1078 | } |
1079 | ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base); |
1080 | |
1081 | char templ[kSize]; |
1082 | BlockLabel* on_bit_set; |
1083 | BlockLabel* on_bit_clear; |
1084 | intptr_t bit; |
1085 | if (even_label == fall_through) { |
1086 | on_bit_set = odd_label; |
1087 | on_bit_clear = even_label; |
1088 | bit = 1; |
1089 | } else { |
1090 | on_bit_set = even_label; |
1091 | on_bit_clear = odd_label; |
1092 | bit = 0; |
1093 | } |
1094 | for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize; |
1095 | i++) { |
1096 | templ[i] = bit; |
1097 | } |
1098 | intptr_t j = 0; |
1099 | bit ^= 1; |
1100 | for (intptr_t i = start_index; i < end_index; i++) { |
1101 | for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) { |
1102 | templ[j] = bit; |
1103 | } |
1104 | bit ^= 1; |
1105 | } |
1106 | for (intptr_t i = j; i < kSize; i++) { |
1107 | templ[i] = bit; |
1108 | } |
1109 | // TODO(erikcorry): Cache these. |
1110 | const TypedData& ba = TypedData::ZoneHandle( |
1111 | masm->zone(), TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
1112 | for (intptr_t i = 0; i < kSize; i++) { |
1113 | ba.SetUint8(i, templ[i]); |
1114 | } |
1115 | masm->CheckBitInTable(ba, on_bit_set); |
1116 | if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); |
1117 | } |
1118 | |
1119 | static void CutOutRange(RegExpMacroAssembler* masm, |
1120 | ZoneGrowableArray<uint16_t>* ranges, |
1121 | intptr_t start_index, |
1122 | intptr_t end_index, |
1123 | intptr_t cut_index, |
1124 | BlockLabel* even_label, |
1125 | BlockLabel* odd_label) { |
1126 | bool odd = (((cut_index - start_index) & 1) == 1); |
1127 | BlockLabel* in_range_label = odd ? odd_label : even_label; |
1128 | BlockLabel dummy; |
1129 | EmitDoubleBoundaryTest(masm, ranges->At(cut_index), |
1130 | ranges->At(cut_index + 1) - 1, &dummy, in_range_label, |
1131 | &dummy); |
1132 | ASSERT(!dummy.is_linked()); |
1133 | // Cut out the single range by rewriting the array. This creates a new |
1134 | // range that is a merger of the two ranges on either side of the one we |
1135 | // are cutting out. The oddity of the labels is preserved. |
1136 | for (intptr_t j = cut_index; j > start_index; j--) { |
1137 | (*ranges)[j] = ranges->At(j - 1); |
1138 | } |
1139 | for (intptr_t j = cut_index + 1; j < end_index; j++) { |
1140 | (*ranges)[j] = ranges->At(j + 1); |
1141 | } |
1142 | } |
1143 | |
1144 | // Unicode case. Split the search space into kSize spaces that are handled |
1145 | // with recursion. |
1146 | static void SplitSearchSpace(ZoneGrowableArray<uint16_t>* ranges, |
1147 | intptr_t start_index, |
1148 | intptr_t end_index, |
1149 | intptr_t* new_start_index, |
1150 | intptr_t* new_end_index, |
1151 | uint16_t* border) { |
1152 | static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
1153 | static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
1154 | |
1155 | uint16_t first = ranges->At(start_index); |
1156 | uint16_t last = ranges->At(end_index) - 1; |
1157 | |
1158 | *new_start_index = start_index; |
1159 | *border = (ranges->At(start_index) & ~kMask) + kSize; |
1160 | while (*new_start_index < end_index) { |
1161 | if (ranges->At(*new_start_index) > *border) break; |
1162 | (*new_start_index)++; |
1163 | } |
1164 | // new_start_index is the index of the first edge that is beyond the |
1165 | // current kSize space. |
1166 | |
1167 | // For very large search spaces we do a binary chop search of the non-Latin1 |
1168 | // space instead of just going to the end of the current kSize space. The |
1169 | // heuristics are complicated a little by the fact that any 128-character |
1170 | // encoding space can be quickly tested with a table lookup, so we don't |
1171 | // wish to do binary chop search at a smaller granularity than that. A |
1172 | // 128-character space can take up a lot of space in the ranges array if, |
1173 | // for example, we only want to match every second character (eg. the lower |
1174 | // case characters on some Unicode pages). |
1175 | intptr_t binary_chop_index = (end_index + start_index) / 2; |
1176 | // The first test ensures that we get to the code that handles the Latin1 |
1177 | // range with a single not-taken branch, speeding up this important |
1178 | // character range (even non-Latin1 charset-based text has spaces and |
1179 | // punctuation). |
1180 | if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case. |
1181 | end_index - start_index > (*new_start_index - start_index) * 2 && |
1182 | last - first > kSize * 2 && binary_chop_index > *new_start_index && |
1183 | ranges->At(binary_chop_index) >= first + 2 * kSize) { |
1184 | intptr_t scan_forward_for_section_border = binary_chop_index; |
1185 | intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1; |
1186 | |
1187 | while (scan_forward_for_section_border < end_index) { |
1188 | if (ranges->At(scan_forward_for_section_border) > new_border) { |
1189 | *new_start_index = scan_forward_for_section_border; |
1190 | *border = new_border; |
1191 | break; |
1192 | } |
1193 | scan_forward_for_section_border++; |
1194 | } |
1195 | } |
1196 | |
1197 | ASSERT(*new_start_index > start_index); |
1198 | *new_end_index = *new_start_index - 1; |
1199 | if (ranges->At(*new_end_index) == *border) { |
1200 | (*new_end_index)--; |
1201 | } |
1202 | if (*border >= ranges->At(end_index)) { |
1203 | *border = ranges->At(end_index); |
1204 | *new_start_index = end_index; // Won't be used. |
1205 | *new_end_index = end_index - 1; |
1206 | } |
1207 | } |
1208 | |
1209 | // Gets a series of segment boundaries representing a character class. If the |
1210 | // character is in the range between an even and an odd boundary (counting from |
1211 | // start_index) then go to even_label, otherwise go to odd_label. We already |
1212 | // know that the character is in the range of min_char to max_char inclusive. |
1213 | // Either label can be NULL indicating backtracking. Either label can also be |
1214 | // equal to the fall_through label. |
1215 | static void GenerateBranches(RegExpMacroAssembler* masm, |
1216 | ZoneGrowableArray<uint16_t>* ranges, |
1217 | intptr_t start_index, |
1218 | intptr_t end_index, |
1219 | uint16_t min_char, |
1220 | uint16_t max_char, |
1221 | BlockLabel* fall_through, |
1222 | BlockLabel* even_label, |
1223 | BlockLabel* odd_label) { |
1224 | uint16_t first = ranges->At(start_index); |
1225 | uint16_t last = ranges->At(end_index) - 1; |
1226 | |
1227 | ASSERT(min_char < first); |
1228 | |
1229 | // Just need to test if the character is before or on-or-after |
1230 | // a particular character. |
1231 | if (start_index == end_index) { |
1232 | EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); |
1233 | return; |
1234 | } |
1235 | |
1236 | // Another almost trivial case: There is one interval in the middle that is |
1237 | // different from the end intervals. |
1238 | if (start_index + 1 == end_index) { |
1239 | EmitDoubleBoundaryTest(masm, first, last, fall_through, even_label, |
1240 | odd_label); |
1241 | return; |
1242 | } |
1243 | |
1244 | // It's not worth using table lookup if there are very few intervals in the |
1245 | // character class. |
1246 | if (end_index - start_index <= 6) { |
1247 | // It is faster to test for individual characters, so we look for those |
1248 | // first, then try arbitrary ranges in the second round. |
1249 | static intptr_t kNoCutIndex = -1; |
1250 | intptr_t cut = kNoCutIndex; |
1251 | for (intptr_t i = start_index; i < end_index; i++) { |
1252 | if (ranges->At(i) == ranges->At(i + 1) - 1) { |
1253 | cut = i; |
1254 | break; |
1255 | } |
1256 | } |
1257 | if (cut == kNoCutIndex) cut = start_index; |
1258 | CutOutRange(masm, ranges, start_index, end_index, cut, even_label, |
1259 | odd_label); |
1260 | ASSERT(end_index - start_index >= 2); |
1261 | GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char, |
1262 | max_char, fall_through, even_label, odd_label); |
1263 | return; |
1264 | } |
1265 | |
1266 | // If there are a lot of intervals in the regexp, then we will use tables to |
1267 | // determine whether the character is inside or outside the character class. |
1268 | static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits; |
1269 | |
1270 | if ((max_char >> kBits) == (min_char >> kBits)) { |
1271 | EmitUseLookupTable(masm, ranges, start_index, end_index, min_char, |
1272 | fall_through, even_label, odd_label); |
1273 | return; |
1274 | } |
1275 | |
1276 | if ((min_char >> kBits) != (first >> kBits)) { |
1277 | masm->CheckCharacterLT(first, odd_label); |
1278 | GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char, |
1279 | fall_through, odd_label, even_label); |
1280 | return; |
1281 | } |
1282 | |
1283 | intptr_t new_start_index = 0; |
1284 | intptr_t new_end_index = 0; |
1285 | uint16_t border = 0; |
1286 | |
1287 | SplitSearchSpace(ranges, start_index, end_index, &new_start_index, |
1288 | &new_end_index, &border); |
1289 | |
1290 | BlockLabel handle_rest; |
1291 | BlockLabel* above = &handle_rest; |
1292 | if (border == last + 1) { |
1293 | // We didn't find any section that started after the limit, so everything |
1294 | // above the border is one of the terminal labels. |
1295 | above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; |
1296 | ASSERT(new_end_index == end_index - 1); |
1297 | } |
1298 | |
1299 | ASSERT(start_index <= new_end_index); |
1300 | ASSERT(new_start_index <= end_index); |
1301 | ASSERT(start_index < new_start_index); |
1302 | ASSERT(new_end_index < end_index); |
1303 | ASSERT(new_end_index + 1 == new_start_index || |
1304 | (new_end_index + 2 == new_start_index && |
1305 | border == ranges->At(new_end_index + 1))); |
1306 | ASSERT(min_char < border - 1); |
1307 | ASSERT(border < max_char); |
1308 | ASSERT(ranges->At(new_end_index) < border); |
1309 | ASSERT(border < ranges->At(new_start_index) || |
1310 | (border == ranges->At(new_start_index) && |
1311 | new_start_index == end_index && new_end_index == end_index - 1 && |
1312 | border == last + 1)); |
1313 | ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1)); |
1314 | |
1315 | masm->CheckCharacterGT(border - 1, above); |
1316 | BlockLabel dummy; |
1317 | GenerateBranches(masm, ranges, start_index, new_end_index, min_char, |
1318 | border - 1, &dummy, even_label, odd_label); |
1319 | |
1320 | if (handle_rest.is_linked()) { |
1321 | masm->BindBlock(&handle_rest); |
1322 | bool flip = (new_start_index & 1) != (start_index & 1); |
1323 | GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char, |
1324 | &dummy, flip ? odd_label : even_label, |
1325 | flip ? even_label : odd_label); |
1326 | } |
1327 | } |
1328 | |
1329 | static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
1330 | RegExpCharacterClass* cc, |
1331 | bool one_byte, |
1332 | BlockLabel* on_failure, |
1333 | intptr_t cp_offset, |
1334 | bool check_offset, |
1335 | bool preloaded, |
1336 | Zone* zone) { |
1337 | ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
1338 | if (!CharacterRange::IsCanonical(ranges)) { |
1339 | CharacterRange::Canonicalize(ranges); |
1340 | } |
1341 | |
1342 | uint16_t max_char; |
1343 | if (one_byte) { |
1344 | max_char = Symbols::kMaxOneCharCodeSymbol; |
1345 | } else { |
1346 | max_char = Utf16::kMaxCodeUnit; |
1347 | } |
1348 | |
1349 | intptr_t range_count = ranges->length(); |
1350 | |
1351 | intptr_t last_valid_range = range_count - 1; |
1352 | while (last_valid_range >= 0) { |
1353 | const CharacterRange& range = ranges->At(last_valid_range); |
1354 | if (range.from() <= max_char) { |
1355 | break; |
1356 | } |
1357 | last_valid_range--; |
1358 | } |
1359 | |
1360 | if (last_valid_range < 0) { |
1361 | if (!cc->is_negated()) { |
1362 | macro_assembler->GoTo(on_failure); |
1363 | } |
1364 | if (check_offset) { |
1365 | macro_assembler->CheckPosition(cp_offset, on_failure); |
1366 | } |
1367 | return; |
1368 | } |
1369 | |
1370 | if (last_valid_range == 0 && ranges->At(0).IsEverything(max_char)) { |
1371 | if (cc->is_negated()) { |
1372 | macro_assembler->GoTo(on_failure); |
1373 | } else { |
1374 | // This is a common case hit by non-anchored expressions. |
1375 | if (check_offset) { |
1376 | macro_assembler->CheckPosition(cp_offset, on_failure); |
1377 | } |
1378 | } |
1379 | return; |
1380 | } |
1381 | |
1382 | if (!preloaded) { |
1383 | macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); |
1384 | } |
1385 | |
1386 | if (cc->is_standard() && macro_assembler->CheckSpecialCharacterClass( |
1387 | cc->standard_type(), on_failure)) { |
1388 | return; |
1389 | } |
1390 | |
1391 | // A new list with ascending entries. Each entry is a code unit |
1392 | // where there is a boundary between code units that are part of |
1393 | // the class and code units that are not. Normally we insert an |
1394 | // entry at zero which goes to the failure label, but if there |
1395 | // was already one there we fall through for success on that entry. |
1396 | // Subsequent entries have alternating meaning (success/failure). |
1397 | ZoneGrowableArray<uint16_t>* range_boundaries = |
1398 | new (zone) ZoneGrowableArray<uint16_t>(last_valid_range); |
1399 | |
1400 | bool zeroth_entry_is_failure = !cc->is_negated(); |
1401 | |
1402 | for (intptr_t i = 0; i <= last_valid_range; i++) { |
1403 | const CharacterRange& range = ranges->At(i); |
1404 | if (range.from() == 0) { |
1405 | ASSERT(i == 0); |
1406 | zeroth_entry_is_failure = !zeroth_entry_is_failure; |
1407 | } else { |
1408 | range_boundaries->Add(range.from()); |
1409 | } |
1410 | if (range.to() + 1 <= max_char) { |
1411 | range_boundaries->Add(range.to() + 1); |
1412 | } |
1413 | } |
1414 | intptr_t end_index = range_boundaries->length() - 1; |
1415 | |
1416 | BlockLabel fall_through; |
1417 | GenerateBranches(macro_assembler, range_boundaries, |
1418 | 0, // start_index. |
1419 | end_index, |
1420 | 0, // min_char. |
1421 | max_char, &fall_through, |
1422 | zeroth_entry_is_failure ? &fall_through : on_failure, |
1423 | zeroth_entry_is_failure ? on_failure : &fall_through); |
1424 | macro_assembler->BindBlock(&fall_through); |
1425 | } |
1426 | |
1427 | RegExpNode::~RegExpNode() {} |
1428 | |
1429 | RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
1430 | Trace* trace) { |
1431 | // If we are generating a greedy loop then don't stop and don't reuse code. |
1432 | if (trace->stop_node() != NULL) { |
1433 | return CONTINUE; |
1434 | } |
1435 | |
1436 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
1437 | if (trace->is_trivial()) { |
1438 | if (label_.is_bound()) { |
1439 | // We are being asked to generate a generic version, but that's already |
1440 | // been done so just go to it. |
1441 | macro_assembler->GoTo(&label_); |
1442 | return DONE; |
1443 | } |
1444 | if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) { |
1445 | // To avoid too deep recursion we push the node to the work queue and just |
1446 | // generate a goto here. |
1447 | compiler->AddWork(this); |
1448 | macro_assembler->GoTo(&label_); |
1449 | return DONE; |
1450 | } |
1451 | // Generate generic version of the node and bind the label for later use. |
1452 | macro_assembler->BindBlock(&label_); |
1453 | return CONTINUE; |
1454 | } |
1455 | |
1456 | // We are being asked to make a non-generic version. Keep track of how many |
1457 | // non-generic versions we generate so as not to overdo it. |
1458 | trace_count_++; |
1459 | if (kRegexpOptimization && trace_count_ < kMaxCopiesCodeGenerated && |
1460 | compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { |
1461 | return CONTINUE; |
1462 | } |
1463 | |
1464 | // If we get here code has been generated for this node too many times or |
1465 | // recursion is too deep. Time to switch to a generic version. The code for |
1466 | // generic versions above can handle deep recursion properly. |
1467 | trace->Flush(compiler, this); |
1468 | return DONE; |
1469 | } |
1470 | |
1471 | intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find, |
1472 | intptr_t budget, |
1473 | bool not_at_start) { |
1474 | if (budget <= 0) return 0; |
1475 | if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! |
1476 | return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
1477 | } |
1478 | |
1479 | void ActionNode::FillInBMInfo(intptr_t offset, |
1480 | intptr_t budget, |
1481 | BoyerMooreLookahead* bm, |
1482 | bool not_at_start) { |
1483 | if (action_type_ == BEGIN_SUBMATCH) { |
1484 | bm->SetRest(offset); |
1485 | } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) { |
1486 | on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
1487 | } |
1488 | SaveBMInfo(bm, not_at_start, offset); |
1489 | } |
1490 | |
1491 | intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find, |
1492 | intptr_t budget, |
1493 | bool not_at_start) { |
1494 | if (budget <= 0) return 0; |
1495 | // If we know we are not at the start and we are asked "how many characters |
1496 | // will you match if you succeed?" then we can answer anything since false |
1497 | // implies false. So lets just return the max answer (still_to_find) since |
1498 | // that won't prevent us from preloading a lot of characters for the other |
1499 | // branches in the node graph. |
1500 | if (assertion_type() == AT_START && not_at_start) return still_to_find; |
1501 | return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
1502 | } |
1503 | |
1504 | void AssertionNode::FillInBMInfo(intptr_t offset, |
1505 | intptr_t budget, |
1506 | BoyerMooreLookahead* bm, |
1507 | bool not_at_start) { |
1508 | // Match the behaviour of EatsAtLeast on this node. |
1509 | if (assertion_type() == AT_START && not_at_start) return; |
1510 | on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
1511 | SaveBMInfo(bm, not_at_start, offset); |
1512 | } |
1513 | |
1514 | intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find, |
1515 | intptr_t budget, |
1516 | bool not_at_start) { |
1517 | if (read_backward()) return 0; |
1518 | if (budget <= 0) return 0; |
1519 | return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
1520 | } |
1521 | |
1522 | intptr_t TextNode::EatsAtLeast(intptr_t still_to_find, |
1523 | intptr_t budget, |
1524 | bool not_at_start) { |
1525 | if (read_backward()) return 0; |
1526 | intptr_t answer = Length(); |
1527 | if (answer >= still_to_find) return answer; |
1528 | if (budget <= 0) return answer; |
1529 | // We are not at start after this node so we set the last argument to 'true'. |
1530 | return answer + |
1531 | on_success()->EatsAtLeast(still_to_find - answer, budget - 1, true); |
1532 | } |
1533 | |
1534 | intptr_t NegativeLookaroundChoiceNode::EatsAtLeast(intptr_t still_to_find, |
1535 | intptr_t budget, |
1536 | bool not_at_start) { |
1537 | if (budget <= 0) return 0; |
1538 | // Alternative 0 is the negative lookahead, alternative 1 is what comes |
1539 | // afterwards. |
1540 | RegExpNode* node = (*alternatives_)[1].node(); |
1541 | return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
1542 | } |
1543 | |
1544 | void NegativeLookaroundChoiceNode::GetQuickCheckDetails( |
1545 | QuickCheckDetails* details, |
1546 | RegExpCompiler* compiler, |
1547 | intptr_t filled_in, |
1548 | bool not_at_start) { |
1549 | // Alternative 0 is the negative lookahead, alternative 1 is what comes |
1550 | // afterwards. |
1551 | RegExpNode* node = (*alternatives_)[1].node(); |
1552 | return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); |
1553 | } |
1554 | |
1555 | intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find, |
1556 | intptr_t budget, |
1557 | RegExpNode* ignore_this_node, |
1558 | bool not_at_start) { |
1559 | if (budget <= 0) return 0; |
1560 | intptr_t min = 100; |
1561 | intptr_t choice_count = alternatives_->length(); |
1562 | budget = (budget - 1) / choice_count; |
1563 | for (intptr_t i = 0; i < choice_count; i++) { |
1564 | RegExpNode* node = (*alternatives_)[i].node(); |
1565 | if (node == ignore_this_node) continue; |
1566 | intptr_t node_eats_at_least = |
1567 | node->EatsAtLeast(still_to_find, budget, not_at_start); |
1568 | if (node_eats_at_least < min) min = node_eats_at_least; |
1569 | if (min == 0) return 0; |
1570 | } |
1571 | return min; |
1572 | } |
1573 | |
1574 | intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find, |
1575 | intptr_t budget, |
1576 | bool not_at_start) { |
1577 | return EatsAtLeastHelper(still_to_find, budget - 1, loop_node_, not_at_start); |
1578 | } |
1579 | |
1580 | intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find, |
1581 | intptr_t budget, |
1582 | bool not_at_start) { |
1583 | return EatsAtLeastHelper(still_to_find, budget, NULL, not_at_start); |
1584 | } |
1585 | |
1586 | // Takes the left-most 1-bit and smears it out, setting all bits to its right. |
1587 | static inline uint32_t SmearBitsRight(uint32_t v) { |
1588 | v |= v >> 1; |
1589 | v |= v >> 2; |
1590 | v |= v >> 4; |
1591 | v |= v >> 8; |
1592 | v |= v >> 16; |
1593 | return v; |
1594 | } |
1595 | |
1596 | bool QuickCheckDetails::Rationalize(bool asc) { |
1597 | bool found_useful_op = false; |
1598 | uint32_t char_mask; |
1599 | if (asc) { |
1600 | char_mask = Symbols::kMaxOneCharCodeSymbol; |
1601 | } else { |
1602 | char_mask = Utf16::kMaxCodeUnit; |
1603 | } |
1604 | mask_ = 0; |
1605 | value_ = 0; |
1606 | intptr_t char_shift = 0; |
1607 | for (intptr_t i = 0; i < characters_; i++) { |
1608 | Position* pos = &positions_[i]; |
1609 | if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) { |
1610 | found_useful_op = true; |
1611 | } |
1612 | mask_ |= (pos->mask & char_mask) << char_shift; |
1613 | value_ |= (pos->value & char_mask) << char_shift; |
1614 | char_shift += asc ? 8 : 16; |
1615 | } |
1616 | return found_useful_op; |
1617 | } |
1618 | |
1619 | bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
1620 | Trace* bounds_check_trace, |
1621 | Trace* trace, |
1622 | bool preload_has_checked_bounds, |
1623 | BlockLabel* on_possible_success, |
1624 | QuickCheckDetails* details, |
1625 | bool fall_through_on_failure) { |
1626 | if (details->characters() == 0) return false; |
1627 | GetQuickCheckDetails(details, compiler, 0, |
1628 | trace->at_start() == Trace::FALSE_VALUE); |
1629 | if (details->cannot_match()) return false; |
1630 | if (!details->Rationalize(compiler->one_byte())) return false; |
1631 | ASSERT(details->characters() == 1 || |
1632 | compiler->macro_assembler()->CanReadUnaligned()); |
1633 | uint32_t mask = details->mask(); |
1634 | uint32_t value = details->value(); |
1635 | |
1636 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
1637 | |
1638 | if (trace->characters_preloaded() != details->characters()) { |
1639 | ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset()); |
1640 | // We are attempting to preload the minimum number of characters |
1641 | // any choice would eat, so if the bounds check fails, then none of the |
1642 | // choices can succeed, so we can just immediately backtrack, rather |
1643 | // than go to the next choice. |
1644 | assembler->LoadCurrentCharacter( |
1645 | trace->cp_offset(), bounds_check_trace->backtrack(), |
1646 | !preload_has_checked_bounds, details->characters()); |
1647 | } |
1648 | |
1649 | bool need_mask = true; |
1650 | |
1651 | if (details->characters() == 1) { |
1652 | // If number of characters preloaded is 1 then we used a byte or 16 bit |
1653 | // load so the value is already masked down. |
1654 | uint32_t char_mask; |
1655 | if (compiler->one_byte()) { |
1656 | char_mask = Symbols::kMaxOneCharCodeSymbol; |
1657 | } else { |
1658 | char_mask = Utf16::kMaxCodeUnit; |
1659 | } |
1660 | if ((mask & char_mask) == char_mask) need_mask = false; |
1661 | mask &= char_mask; |
1662 | } else { |
1663 | // For 2-character preloads in one-byte mode or 1-character preloads in |
1664 | // two-byte mode we also use a 16 bit load with zero extend. |
1665 | if (details->characters() == 2 && compiler->one_byte()) { |
1666 | if ((mask & 0xffff) == 0xffff) need_mask = false; |
1667 | } else if (details->characters() == 1 && !compiler->one_byte()) { |
1668 | if ((mask & 0xffff) == 0xffff) need_mask = false; |
1669 | } else { |
1670 | if (mask == 0xffffffff) need_mask = false; |
1671 | } |
1672 | } |
1673 | |
1674 | if (fall_through_on_failure) { |
1675 | if (need_mask) { |
1676 | assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); |
1677 | } else { |
1678 | assembler->CheckCharacter(value, on_possible_success); |
1679 | } |
1680 | } else { |
1681 | if (need_mask) { |
1682 | assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); |
1683 | } else { |
1684 | assembler->CheckNotCharacter(value, trace->backtrack()); |
1685 | } |
1686 | } |
1687 | return true; |
1688 | } |
1689 | |
1690 | // Here is the meat of GetQuickCheckDetails (see also the comment on the |
1691 | // super-class in the .h file). |
1692 | // |
1693 | // We iterate along the text object, building up for each character a |
1694 | // mask and value that can be used to test for a quick failure to match. |
1695 | // The masks and values for the positions will be combined into a single |
1696 | // machine word for the current character width in order to be used in |
1697 | // generating a quick check. |
1698 | void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
1699 | RegExpCompiler* compiler, |
1700 | intptr_t characters_filled_in, |
1701 | bool not_at_start) { |
1702 | #if defined(__GNUC__) && defined(__BYTE_ORDER__) |
1703 | // TODO(zerny): Make the combination code byte-order independent. |
1704 | ASSERT(details->characters() == 1 || |
1705 | (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)); |
1706 | #endif |
1707 | // Do not collect any quick check details if the text node reads backward, |
1708 | // since it reads in the opposite direction than we use for quick checks. |
1709 | if (read_backward()) return; |
1710 | ASSERT(characters_filled_in < details->characters()); |
1711 | intptr_t characters = details->characters(); |
1712 | int32_t char_mask; |
1713 | if (compiler->one_byte()) { |
1714 | char_mask = Symbols::kMaxOneCharCodeSymbol; |
1715 | } else { |
1716 | char_mask = Utf16::kMaxCodeUnit; |
1717 | } |
1718 | for (intptr_t k = 0; k < elms_->length(); k++) { |
1719 | TextElement elm = elms_->At(k); |
1720 | if (elm.text_type() == TextElement::ATOM) { |
1721 | ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
1722 | for (intptr_t i = 0; i < characters && i < quarks->length(); i++) { |
1723 | QuickCheckDetails::Position* pos = |
1724 | details->positions(characters_filled_in); |
1725 | uint16_t c = quarks->At(i); |
1726 | if (c > char_mask) { |
1727 | // If we expect a non-Latin1 character from an one-byte string, |
1728 | // there is no way we can match. Not even case independent |
1729 | // matching can turn an Latin1 character into non-Latin1 or |
1730 | // vice versa. |
1731 | // TODO(dcarney): issue 3550. Verify that this works as expected. |
1732 | // For example, \u0178 is uppercase of \u00ff (y-umlaut). |
1733 | details->set_cannot_match(); |
1734 | pos->determines_perfectly = false; |
1735 | return; |
1736 | } |
1737 | if (elm.atom()->ignore_case()) { |
1738 | int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
1739 | intptr_t length = |
1740 | GetCaseIndependentLetters(c, compiler->one_byte(), chars); |
1741 | ASSERT(length != 0); // Can only happen if c > char_mask (see above). |
1742 | if (length == 1) { |
1743 | // This letter has no case equivalents, so it's nice and simple |
1744 | // and the mask-compare will determine definitely whether we have |
1745 | // a match at this character position. |
1746 | pos->mask = char_mask; |
1747 | pos->value = c; |
1748 | pos->determines_perfectly = true; |
1749 | } else { |
1750 | uint32_t common_bits = char_mask; |
1751 | uint32_t bits = chars[0]; |
1752 | for (intptr_t j = 1; j < length; j++) { |
1753 | uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); |
1754 | common_bits ^= differing_bits; |
1755 | bits &= common_bits; |
1756 | } |
1757 | // If length is 2 and common bits has only one zero in it then |
1758 | // our mask and compare instruction will determine definitely |
1759 | // whether we have a match at this character position. Otherwise |
1760 | // it can only be an approximate check. |
1761 | uint32_t one_zero = (common_bits | ~char_mask); |
1762 | if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { |
1763 | pos->determines_perfectly = true; |
1764 | } |
1765 | pos->mask = common_bits; |
1766 | pos->value = bits; |
1767 | } |
1768 | } else { |
1769 | // Don't ignore case. Nice simple case where the mask-compare will |
1770 | // determine definitely whether we have a match at this character |
1771 | // position. |
1772 | pos->mask = char_mask; |
1773 | pos->value = c; |
1774 | pos->determines_perfectly = true; |
1775 | } |
1776 | characters_filled_in++; |
1777 | ASSERT(characters_filled_in <= details->characters()); |
1778 | if (characters_filled_in == details->characters()) { |
1779 | return; |
1780 | } |
1781 | } |
1782 | } else { |
1783 | QuickCheckDetails::Position* pos = |
1784 | details->positions(characters_filled_in); |
1785 | RegExpCharacterClass* tree = elm.char_class(); |
1786 | ZoneGrowableArray<CharacterRange>* ranges = tree->ranges(); |
1787 | ASSERT(!ranges->is_empty()); |
1788 | if (tree->is_negated()) { |
1789 | // A quick check uses multi-character mask and compare. There is no |
1790 | // useful way to incorporate a negative char class into this scheme |
1791 | // so we just conservatively create a mask and value that will always |
1792 | // succeed. |
1793 | pos->mask = 0; |
1794 | pos->value = 0; |
1795 | } else { |
1796 | intptr_t first_range = 0; |
1797 | while (ranges->At(first_range).from() > char_mask) { |
1798 | first_range++; |
1799 | if (first_range == ranges->length()) { |
1800 | details->set_cannot_match(); |
1801 | pos->determines_perfectly = false; |
1802 | return; |
1803 | } |
1804 | } |
1805 | CharacterRange range = ranges->At(first_range); |
1806 | uint16_t from = range.from(); |
1807 | uint16_t to = range.to(); |
1808 | if (to > char_mask) { |
1809 | to = char_mask; |
1810 | } |
1811 | uint32_t differing_bits = (from ^ to); |
1812 | // A mask and compare is only perfect if the differing bits form a |
1813 | // number like 00011111 with one single block of trailing 1s. |
1814 | if ((differing_bits & (differing_bits + 1)) == 0 && |
1815 | from + differing_bits == to) { |
1816 | pos->determines_perfectly = true; |
1817 | } |
1818 | uint32_t common_bits = ~SmearBitsRight(differing_bits); |
1819 | uint32_t bits = (from & common_bits); |
1820 | for (intptr_t i = first_range + 1; i < ranges->length(); i++) { |
1821 | CharacterRange range = ranges->At(i); |
1822 | uint16_t from = range.from(); |
1823 | uint16_t to = range.to(); |
1824 | if (from > char_mask) continue; |
1825 | if (to > char_mask) to = char_mask; |
1826 | // Here we are combining more ranges into the mask and compare |
1827 | // value. With each new range the mask becomes more sparse and |
1828 | // so the chances of a false positive rise. A character class |
1829 | // with multiple ranges is assumed never to be equivalent to a |
1830 | // mask and compare operation. |
1831 | pos->determines_perfectly = false; |
1832 | uint32_t new_common_bits = (from ^ to); |
1833 | new_common_bits = ~SmearBitsRight(new_common_bits); |
1834 | common_bits &= new_common_bits; |
1835 | bits &= new_common_bits; |
1836 | uint32_t differing_bits = (from & common_bits) ^ bits; |
1837 | common_bits ^= differing_bits; |
1838 | bits &= common_bits; |
1839 | } |
1840 | pos->mask = common_bits; |
1841 | pos->value = bits; |
1842 | } |
1843 | characters_filled_in++; |
1844 | ASSERT(characters_filled_in <= details->characters()); |
1845 | if (characters_filled_in == details->characters()) { |
1846 | return; |
1847 | } |
1848 | } |
1849 | } |
1850 | ASSERT(characters_filled_in != details->characters()); |
1851 | if (!details->cannot_match()) { |
1852 | on_success()->GetQuickCheckDetails(details, compiler, characters_filled_in, |
1853 | true); |
1854 | } |
1855 | } |
1856 | |
1857 | void QuickCheckDetails::Clear() { |
1858 | for (int i = 0; i < characters_; i++) { |
1859 | positions_[i].mask = 0; |
1860 | positions_[i].value = 0; |
1861 | positions_[i].determines_perfectly = false; |
1862 | } |
1863 | characters_ = 0; |
1864 | } |
1865 | |
1866 | void QuickCheckDetails::Advance(intptr_t by, bool one_byte) { |
1867 | if (by >= characters_ || by < 0) { |
1868 | // check that by < 0 => characters_ == 0 |
1869 | ASSERT(by >= 0 || characters_ == 0); |
1870 | Clear(); |
1871 | return; |
1872 | } |
1873 | for (intptr_t i = 0; i < characters_ - by; i++) { |
1874 | positions_[i] = positions_[by + i]; |
1875 | } |
1876 | for (intptr_t i = characters_ - by; i < characters_; i++) { |
1877 | positions_[i].mask = 0; |
1878 | positions_[i].value = 0; |
1879 | positions_[i].determines_perfectly = false; |
1880 | } |
1881 | characters_ -= by; |
1882 | // We could change mask_ and value_ here but we would never advance unless |
1883 | // they had already been used in a check and they won't be used again because |
1884 | // it would gain us nothing. So there's no point. |
1885 | } |
1886 | |
1887 | void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) { |
1888 | ASSERT(characters_ == other->characters_); |
1889 | if (other->cannot_match_) { |
1890 | return; |
1891 | } |
1892 | if (cannot_match_) { |
1893 | *this = *other; |
1894 | return; |
1895 | } |
1896 | for (intptr_t i = from_index; i < characters_; i++) { |
1897 | QuickCheckDetails::Position* pos = positions(i); |
1898 | QuickCheckDetails::Position* other_pos = other->positions(i); |
1899 | if (pos->mask != other_pos->mask || pos->value != other_pos->value || |
1900 | !other_pos->determines_perfectly) { |
1901 | // Our mask-compare operation will be approximate unless we have the |
1902 | // exact same operation on both sides of the alternation. |
1903 | pos->determines_perfectly = false; |
1904 | } |
1905 | pos->mask &= other_pos->mask; |
1906 | pos->value &= pos->mask; |
1907 | other_pos->value &= pos->mask; |
1908 | uint16_t differing_bits = (pos->value ^ other_pos->value); |
1909 | pos->mask &= ~differing_bits; |
1910 | pos->value &= pos->mask; |
1911 | } |
1912 | } |
1913 | |
1914 | class VisitMarker : public ValueObject { |
1915 | public: |
1916 | explicit VisitMarker(NodeInfo* info) : info_(info) { |
1917 | ASSERT(!info->visited); |
1918 | info->visited = true; |
1919 | } |
1920 | ~VisitMarker() { info_->visited = false; } |
1921 | |
1922 | private: |
1923 | NodeInfo* info_; |
1924 | }; |
1925 | |
1926 | RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth) { |
1927 | if (info()->replacement_calculated) return replacement(); |
1928 | if (depth < 0) return this; |
1929 | ASSERT(!info()->visited); |
1930 | VisitMarker marker(info()); |
1931 | return FilterSuccessor(depth - 1); |
1932 | } |
1933 | |
1934 | RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth) { |
1935 | RegExpNode* next = on_success_->FilterOneByte(depth - 1); |
1936 | if (next == NULL) return set_replacement(NULL); |
1937 | on_success_ = next; |
1938 | return set_replacement(this); |
1939 | } |
1940 | |
1941 | // We need to check for the following characters: 0x39c 0x3bc 0x178. |
1942 | static inline bool RangeContainsLatin1Equivalents(CharacterRange range) { |
1943 | // TODO(dcarney): this could be a lot more efficient. |
1944 | return range.Contains(0x39c) || range.Contains(0x3bc) || |
1945 | range.Contains(0x178); |
1946 | } |
1947 | |
1948 | static bool RangesContainLatin1Equivalents( |
1949 | ZoneGrowableArray<CharacterRange>* ranges) { |
1950 | for (intptr_t i = 0; i < ranges->length(); i++) { |
1951 | // TODO(dcarney): this could be a lot more efficient. |
1952 | if (RangeContainsLatin1Equivalents(ranges->At(i))) return true; |
1953 | } |
1954 | return false; |
1955 | } |
1956 | |
1957 | static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) { |
1958 | ASSERT(c > Symbols::kMaxOneCharCodeSymbol); |
1959 | switch (c) { |
1960 | // This are equivalent characters in unicode. |
1961 | case 0x39c: |
1962 | case 0x3bc: |
1963 | return 0xb5; |
1964 | // This is an uppercase of a Latin-1 character |
1965 | // outside of Latin-1. |
1966 | case 0x178: |
1967 | return 0xff; |
1968 | } |
1969 | return 0; |
1970 | } |
1971 | |
1972 | RegExpNode* TextNode::FilterOneByte(intptr_t depth) { |
1973 | if (info()->replacement_calculated) return replacement(); |
1974 | if (depth < 0) return this; |
1975 | ASSERT(!info()->visited); |
1976 | VisitMarker marker(info()); |
1977 | intptr_t element_count = elms_->length(); |
1978 | for (intptr_t i = 0; i < element_count; i++) { |
1979 | TextElement elm = elms_->At(i); |
1980 | if (elm.text_type() == TextElement::ATOM) { |
1981 | ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
1982 | for (intptr_t j = 0; j < quarks->length(); j++) { |
1983 | uint16_t c = quarks->At(j); |
1984 | if (c <= Symbols::kMaxOneCharCodeSymbol) continue; |
1985 | if (!elm.atom()->ignore_case()) return set_replacement(NULL); |
1986 | // Here, we need to check for characters whose upper and lower cases |
1987 | // are outside the Latin-1 range. |
1988 | uint16_t converted = ConvertNonLatin1ToLatin1(c); |
1989 | // Character is outside Latin-1 completely |
1990 | if (converted == 0) return set_replacement(NULL); |
1991 | // Convert quark to Latin-1 in place. |
1992 | (*quarks)[0] = converted; |
1993 | } |
1994 | } else { |
1995 | ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
1996 | RegExpCharacterClass* cc = elm.char_class(); |
1997 | ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
1998 | if (!CharacterRange::IsCanonical(ranges)) { |
1999 | CharacterRange::Canonicalize(ranges); |
2000 | } |
2001 | // Now they are in order so we only need to look at the first. |
2002 | intptr_t range_count = ranges->length(); |
2003 | if (cc->is_negated()) { |
2004 | if (range_count != 0 && ranges->At(0).from() == 0 && |
2005 | ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) { |
2006 | // This will be handled in a later filter. |
2007 | if (cc->flags().IgnoreCase() && |
2008 | RangesContainLatin1Equivalents(ranges)) { |
2009 | continue; |
2010 | } |
2011 | return set_replacement(NULL); |
2012 | } |
2013 | } else { |
2014 | if (range_count == 0 || |
2015 | ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) { |
2016 | // This will be handled in a later filter. |
2017 | if (cc->flags().IgnoreCase() && |
2018 | RangesContainLatin1Equivalents(ranges)) |
2019 | continue; |
2020 | return set_replacement(NULL); |
2021 | } |
2022 | } |
2023 | } |
2024 | } |
2025 | return FilterSuccessor(depth - 1); |
2026 | } |
2027 | |
2028 | RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth) { |
2029 | if (info()->replacement_calculated) return replacement(); |
2030 | if (depth < 0) return this; |
2031 | if (info()->visited) return this; |
2032 | { |
2033 | VisitMarker marker(info()); |
2034 | |
2035 | RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1); |
2036 | // If we can't continue after the loop then there is no sense in doing the |
2037 | // loop. |
2038 | if (continue_replacement == NULL) return set_replacement(NULL); |
2039 | } |
2040 | |
2041 | return ChoiceNode::FilterOneByte(depth - 1); |
2042 | } |
2043 | |
2044 | RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth) { |
2045 | if (info()->replacement_calculated) return replacement(); |
2046 | if (depth < 0) return this; |
2047 | if (info()->visited) return this; |
2048 | VisitMarker marker(info()); |
2049 | intptr_t choice_count = alternatives_->length(); |
2050 | |
2051 | for (intptr_t i = 0; i < choice_count; i++) { |
2052 | GuardedAlternative alternative = alternatives_->At(i); |
2053 | if (alternative.guards() != NULL && alternative.guards()->length() != 0) { |
2054 | set_replacement(this); |
2055 | return this; |
2056 | } |
2057 | } |
2058 | |
2059 | intptr_t surviving = 0; |
2060 | RegExpNode* survivor = NULL; |
2061 | for (intptr_t i = 0; i < choice_count; i++) { |
2062 | GuardedAlternative alternative = alternatives_->At(i); |
2063 | RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1); |
2064 | ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK. |
2065 | if (replacement != NULL) { |
2066 | (*alternatives_)[i].set_node(replacement); |
2067 | surviving++; |
2068 | survivor = replacement; |
2069 | } |
2070 | } |
2071 | if (surviving < 2) return set_replacement(survivor); |
2072 | |
2073 | set_replacement(this); |
2074 | if (surviving == choice_count) { |
2075 | return this; |
2076 | } |
2077 | // Only some of the nodes survived the filtering. We need to rebuild the |
2078 | // alternatives list. |
2079 | ZoneGrowableArray<GuardedAlternative>* new_alternatives = |
2080 | new (Z) ZoneGrowableArray<GuardedAlternative>(surviving); |
2081 | for (intptr_t i = 0; i < choice_count; i++) { |
2082 | RegExpNode* replacement = |
2083 | (*alternatives_)[i].node()->FilterOneByte(depth - 1); |
2084 | if (replacement != NULL) { |
2085 | (*alternatives_)[i].set_node(replacement); |
2086 | new_alternatives->Add((*alternatives_)[i]); |
2087 | } |
2088 | } |
2089 | alternatives_ = new_alternatives; |
2090 | return this; |
2091 | } |
2092 | |
2093 | RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(intptr_t depth) { |
2094 | if (info()->replacement_calculated) return replacement(); |
2095 | if (depth < 0) return this; |
2096 | if (info()->visited) return this; |
2097 | VisitMarker marker(info()); |
2098 | // Alternative 0 is the negative lookahead, alternative 1 is what comes |
2099 | // afterwards. |
2100 | RegExpNode* node = (*alternatives_)[1].node(); |
2101 | RegExpNode* replacement = node->FilterOneByte(depth - 1); |
2102 | if (replacement == NULL) return set_replacement(NULL); |
2103 | (*alternatives_)[1].set_node(replacement); |
2104 | |
2105 | RegExpNode* neg_node = (*alternatives_)[0].node(); |
2106 | RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1); |
2107 | // If the negative lookahead is always going to fail then |
2108 | // we don't need to check it. |
2109 | if (neg_replacement == NULL) return set_replacement(replacement); |
2110 | (*alternatives_)[0].set_node(neg_replacement); |
2111 | return set_replacement(this); |
2112 | } |
2113 | |
2114 | void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
2115 | RegExpCompiler* compiler, |
2116 | intptr_t characters_filled_in, |
2117 | bool not_at_start) { |
2118 | if (body_can_be_zero_length_ || info()->visited) return; |
2119 | VisitMarker marker(info()); |
2120 | return ChoiceNode::GetQuickCheckDetails(details, compiler, |
2121 | characters_filled_in, not_at_start); |
2122 | } |
2123 | |
2124 | void LoopChoiceNode::FillInBMInfo(intptr_t offset, |
2125 | intptr_t budget, |
2126 | BoyerMooreLookahead* bm, |
2127 | bool not_at_start) { |
2128 | if (body_can_be_zero_length_ || budget <= 0) { |
2129 | bm->SetRest(offset); |
2130 | SaveBMInfo(bm, not_at_start, offset); |
2131 | return; |
2132 | } |
2133 | ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start); |
2134 | SaveBMInfo(bm, not_at_start, offset); |
2135 | } |
2136 | |
2137 | void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
2138 | RegExpCompiler* compiler, |
2139 | intptr_t characters_filled_in, |
2140 | bool not_at_start) { |
2141 | not_at_start = (not_at_start || not_at_start_); |
2142 | intptr_t choice_count = alternatives_->length(); |
2143 | ASSERT(choice_count > 0); |
2144 | (*alternatives_)[0].node()->GetQuickCheckDetails( |
2145 | details, compiler, characters_filled_in, not_at_start); |
2146 | for (intptr_t i = 1; i < choice_count; i++) { |
2147 | QuickCheckDetails new_details(details->characters()); |
2148 | RegExpNode* node = (*alternatives_)[i].node(); |
2149 | node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in, |
2150 | not_at_start); |
2151 | // Here we merge the quick match details of the two branches. |
2152 | details->Merge(&new_details, characters_filled_in); |
2153 | } |
2154 | } |
2155 | |
2156 | // Check for [0-9A-Z_a-z]. |
2157 | static void EmitWordCheck(RegExpMacroAssembler* assembler, |
2158 | BlockLabel* word, |
2159 | BlockLabel* non_word, |
2160 | bool fall_through_on_word) { |
2161 | if (assembler->CheckSpecialCharacterClass( |
2162 | fall_through_on_word ? 'w' : 'W', |
2163 | fall_through_on_word ? non_word : word)) { |
2164 | // Optimized implementation available. |
2165 | return; |
2166 | } |
2167 | assembler->CheckCharacterGT('z', non_word); |
2168 | assembler->CheckCharacterLT('0', non_word); |
2169 | assembler->CheckCharacterGT('a' - 1, word); |
2170 | assembler->CheckCharacterLT('9' + 1, word); |
2171 | assembler->CheckCharacterLT('A', non_word); |
2172 | assembler->CheckCharacterLT('Z' + 1, word); |
2173 | if (fall_through_on_word) { |
2174 | assembler->CheckNotCharacter('_', non_word); |
2175 | } else { |
2176 | assembler->CheckCharacter('_', word); |
2177 | } |
2178 | } |
2179 | |
2180 | // Emit the code to check for a ^ in multiline mode (1-character lookbehind |
2181 | // that matches newline or the start of input). |
2182 | static void EmitHat(RegExpCompiler* compiler, |
2183 | RegExpNode* on_success, |
2184 | Trace* trace) { |
2185 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
2186 | // We will be loading the previous character into the current character |
2187 | // register. |
2188 | Trace new_trace(*trace); |
2189 | new_trace.InvalidateCurrentCharacter(); |
2190 | |
2191 | BlockLabel ok; |
2192 | if (new_trace.cp_offset() == 0) { |
2193 | // The start of input counts as a newline in this context, so skip to |
2194 | // ok if we are at the start. |
2195 | assembler->CheckAtStart(&ok); |
2196 | } |
2197 | // We already checked that we are not at the start of input so it must be |
2198 | // OK to load the previous character. |
2199 | assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, |
2200 | new_trace.backtrack(), false); |
2201 | if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) { |
2202 | // Newline means \n, \r, 0x2028 or 0x2029. |
2203 | if (!compiler->one_byte()) { |
2204 | assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); |
2205 | } |
2206 | assembler->CheckCharacter('\n', &ok); |
2207 | assembler->CheckNotCharacter('\r', new_trace.backtrack()); |
2208 | } |
2209 | assembler->BindBlock(&ok); |
2210 | on_success->Emit(compiler, &new_trace); |
2211 | } |
2212 | |
2213 | // Emit the code to handle \b and \B (word-boundary or non-word-boundary). |
2214 | void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { |
2215 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
2216 | Trace::TriBool next_is_word_character = Trace::UNKNOWN; |
2217 | bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); |
2218 | BoyerMooreLookahead* lookahead = bm_info(not_at_start); |
2219 | if (lookahead == NULL) { |
2220 | intptr_t eats_at_least = |
2221 | Utils::Minimum(kMaxLookaheadForBoyerMoore, |
2222 | EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, |
2223 | not_at_start)); |
2224 | if (eats_at_least >= 1) { |
2225 | BoyerMooreLookahead* bm = |
2226 | new (Z) BoyerMooreLookahead(eats_at_least, compiler, Z); |
2227 | FillInBMInfo(0, kRecursionBudget, bm, not_at_start); |
2228 | if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; |
2229 | if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; |
2230 | } |
2231 | } else { |
2232 | if (lookahead->at(0)->is_non_word()) |
2233 | next_is_word_character = Trace::FALSE_VALUE; |
2234 | if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; |
2235 | } |
2236 | bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); |
2237 | if (next_is_word_character == Trace::UNKNOWN) { |
2238 | BlockLabel before_non_word; |
2239 | BlockLabel before_word; |
2240 | if (trace->characters_preloaded() != 1) { |
2241 | assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); |
2242 | } |
2243 | // Fall through on non-word. |
2244 | EmitWordCheck(assembler, &before_word, &before_non_word, false); |
2245 | // Next character is not a word character. |
2246 | assembler->BindBlock(&before_non_word); |
2247 | BlockLabel ok; |
2248 | // Backtrack on \B (non-boundary check) if previous is a word, |
2249 | // since we know next *is not* a word and this would be a boundary. |
2250 | BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
2251 | |
2252 | if (!assembler->IsClosed()) { |
2253 | assembler->GoTo(&ok); |
2254 | } |
2255 | |
2256 | assembler->BindBlock(&before_word); |
2257 | BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
2258 | assembler->BindBlock(&ok); |
2259 | } else if (next_is_word_character == Trace::TRUE_VALUE) { |
2260 | BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
2261 | } else { |
2262 | ASSERT(next_is_word_character == Trace::FALSE_VALUE); |
2263 | BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
2264 | } |
2265 | } |
2266 | |
2267 | void AssertionNode::BacktrackIfPrevious( |
2268 | RegExpCompiler* compiler, |
2269 | Trace* trace, |
2270 | AssertionNode::IfPrevious backtrack_if_previous) { |
2271 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
2272 | Trace new_trace(*trace); |
2273 | new_trace.InvalidateCurrentCharacter(); |
2274 | |
2275 | BlockLabel fall_through, dummy; |
2276 | |
2277 | BlockLabel* non_word = backtrack_if_previous == kIsNonWord |
2278 | ? new_trace.backtrack() |
2279 | : &fall_through; |
2280 | BlockLabel* word = backtrack_if_previous == kIsNonWord |
2281 | ? &fall_through |
2282 | : new_trace.backtrack(); |
2283 | |
2284 | if (new_trace.cp_offset() == 0) { |
2285 | // The start of input counts as a non-word character, so the question is |
2286 | // decided if we are at the start. |
2287 | assembler->CheckAtStart(non_word); |
2288 | } |
2289 | // We already checked that we are not at the start of input so it must be |
2290 | // OK to load the previous character. |
2291 | assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); |
2292 | EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); |
2293 | |
2294 | assembler->BindBlock(&fall_through); |
2295 | on_success()->Emit(compiler, &new_trace); |
2296 | } |
2297 | |
2298 | void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, |
2299 | RegExpCompiler* compiler, |
2300 | intptr_t filled_in, |
2301 | bool not_at_start) { |
2302 | if (assertion_type_ == AT_START && not_at_start) { |
2303 | details->set_cannot_match(); |
2304 | return; |
2305 | } |
2306 | return on_success()->GetQuickCheckDetails(details, compiler, filled_in, |
2307 | not_at_start); |
2308 | } |
2309 | |
2310 | void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
2311 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
2312 | switch (assertion_type_) { |
2313 | case AT_END: { |
2314 | BlockLabel ok; |
2315 | assembler->CheckPosition(trace->cp_offset(), &ok); |
2316 | assembler->GoTo(trace->backtrack()); |
2317 | assembler->BindBlock(&ok); |
2318 | break; |
2319 | } |
2320 | case AT_START: { |
2321 | if (trace->at_start() == Trace::FALSE_VALUE) { |
2322 | assembler->GoTo(trace->backtrack()); |
2323 | return; |
2324 | } |
2325 | if (trace->at_start() == Trace::UNKNOWN) { |
2326 | assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack()); |
2327 | Trace at_start_trace = *trace; |
2328 | at_start_trace.set_at_start(Trace::TRUE_VALUE); |
2329 | on_success()->Emit(compiler, &at_start_trace); |
2330 | return; |
2331 | } |
2332 | } break; |
2333 | case AFTER_NEWLINE: |
2334 | EmitHat(compiler, on_success(), trace); |
2335 | return; |
2336 | case AT_BOUNDARY: |
2337 | case AT_NON_BOUNDARY: { |
2338 | EmitBoundaryCheck(compiler, trace); |
2339 | return; |
2340 | } |
2341 | } |
2342 | on_success()->Emit(compiler, trace); |
2343 | } |
2344 | |
2345 | static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) { |
2346 | if (quick_check == NULL) return false; |
2347 | if (offset >= quick_check->characters()) return false; |
2348 | return quick_check->positions(offset)->determines_perfectly; |
2349 | } |
2350 | |
2351 | static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) { |
2352 | if (index > *checked_up_to) { |
2353 | *checked_up_to = index; |
2354 | } |
2355 | } |
2356 | |
2357 | // We call this repeatedly to generate code for each pass over the text node. |
2358 | // The passes are in increasing order of difficulty because we hope one |
2359 | // of the first passes will fail in which case we are saved the work of the |
2360 | // later passes. for example for the case independent regexp /%[asdfghjkl]a/ |
2361 | // we will check the '%' in the first pass, the case independent 'a' in the |
2362 | // second pass and the character class in the last pass. |
2363 | // |
2364 | // The passes are done from right to left, so for example to test for /bar/ |
2365 | // we will first test for an 'r' with offset 2, then an 'a' with offset 1 |
2366 | // and then a 'b' with offset 0. This means we can avoid the end-of-input |
2367 | // bounds check most of the time. In the example we only need to check for |
2368 | // end-of-input when loading the putative 'r'. |
2369 | // |
2370 | // A slight complication involves the fact that the first character may already |
2371 | // be fetched into a register by the previous node. In this case we want to |
2372 | // do the test for that character first. We do this in separate passes. The |
2373 | // 'preloaded' argument indicates that we are doing such a 'pass'. If such a |
2374 | // pass has been performed then subsequent passes will have true in |
2375 | // first_element_checked to indicate that that character does not need to be |
2376 | // checked again. |
2377 | // |
2378 | // In addition to all this we are passed a Trace, which can |
2379 | // contain an AlternativeGeneration object. In this AlternativeGeneration |
2380 | // object we can see details of any quick check that was already passed in |
2381 | // order to get to the code we are now generating. The quick check can involve |
2382 | // loading characters, which means we do not need to recheck the bounds |
2383 | // up to the limit the quick check already checked. In addition the quick |
2384 | // check can have involved a mask and compare operation which may simplify |
2385 | // or obviate the need for further checks at some character positions. |
2386 | void TextNode::TextEmitPass(RegExpCompiler* compiler, |
2387 | TextEmitPassType pass, |
2388 | bool preloaded, |
2389 | Trace* trace, |
2390 | bool first_element_checked, |
2391 | intptr_t* checked_up_to) { |
2392 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
2393 | bool one_byte = compiler->one_byte(); |
2394 | BlockLabel* backtrack = trace->backtrack(); |
2395 | QuickCheckDetails* quick_check = trace->quick_check_performed(); |
2396 | intptr_t element_count = elms_->length(); |
2397 | intptr_t backward_offset = read_backward() ? -Length() : 0; |
2398 | for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) { |
2399 | TextElement elm = elms_->At(i); |
2400 | intptr_t cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset; |
2401 | if (elm.text_type() == TextElement::ATOM) { |
2402 | ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
2403 | for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) { |
2404 | if (SkipPass(pass, elm.atom()->ignore_case())) continue; |
2405 | if (first_element_checked && i == 0 && j == 0) continue; |
2406 | if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; |
2407 | EmitCharacterFunction* emit_function = NULL; |
2408 | uint16_t quark = quarks->At(j); |
2409 | if (elm.atom()->ignore_case()) { |
2410 | // Everywhere else we assume that a non-Latin-1 character cannot match |
2411 | // a Latin-1 character. Avoid the cases where this is assumption is |
2412 | // invalid by using the Latin1 equivalent instead. |
2413 | quark = Latin1::TryConvertToLatin1(quark); |
2414 | } |
2415 | switch (pass) { |
2416 | case NON_LATIN1_MATCH: |
2417 | ASSERT(one_byte); |
2418 | if (quark > Symbols::kMaxOneCharCodeSymbol) { |
2419 | assembler->GoTo(backtrack); |
2420 | return; |
2421 | } |
2422 | break; |
2423 | case NON_LETTER_CHARACTER_MATCH: |
2424 | emit_function = &EmitAtomNonLetter; |
2425 | break; |
2426 | case SIMPLE_CHARACTER_MATCH: |
2427 | emit_function = &EmitSimpleCharacter; |
2428 | break; |
2429 | case CASE_CHARACTER_MATCH: |
2430 | emit_function = &EmitAtomLetter; |
2431 | break; |
2432 | default: |
2433 | break; |
2434 | } |
2435 | if (emit_function != NULL) { |
2436 | const bool bounds_check = |
2437 | *checked_up_to < (cp_offset + j) || read_backward(); |
2438 | bool bound_checked = |
2439 | emit_function(Z, compiler, quarks->At(j), backtrack, |
2440 | cp_offset + j, bounds_check, preloaded); |
2441 | if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); |
2442 | } |
2443 | } |
2444 | } else { |
2445 | ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
2446 | if (pass == CHARACTER_CLASS_MATCH) { |
2447 | if (first_element_checked && i == 0) continue; |
2448 | if (DeterminedAlready(quick_check, elm.cp_offset())) continue; |
2449 | RegExpCharacterClass* cc = elm.char_class(); |
2450 | bool bounds_check = *checked_up_to < cp_offset || read_backward(); |
2451 | EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, |
2452 | bounds_check, preloaded, Z); |
2453 | UpdateBoundsCheck(cp_offset, checked_up_to); |
2454 | } |
2455 | } |
2456 | } |
2457 | } |
2458 | |
2459 | intptr_t TextNode::Length() { |
2460 | TextElement elm = elms_->Last(); |
2461 | ASSERT(elm.cp_offset() >= 0); |
2462 | return elm.cp_offset() + elm.length(); |
2463 | } |
2464 | |
2465 | bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) { |
2466 | TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass); |
2467 | if (ignore_case) { |
2468 | return pass == SIMPLE_CHARACTER_MATCH; |
2469 | } else { |
2470 | return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; |
2471 | } |
2472 | } |
2473 | |
2474 | TextNode* TextNode::CreateForCharacterRanges( |
2475 | ZoneGrowableArray<CharacterRange>* ranges, |
2476 | bool read_backward, |
2477 | RegExpNode* on_success, |
2478 | RegExpFlags flags) { |
2479 | ASSERT(ranges != nullptr); |
2480 | ZoneGrowableArray<TextElement>* elms = new ZoneGrowableArray<TextElement>(1); |
2481 | elms->Add(TextElement::CharClass(new RegExpCharacterClass(ranges, flags))); |
2482 | return new TextNode(elms, read_backward, on_success); |
2483 | } |
2484 | |
2485 | TextNode* TextNode::CreateForSurrogatePair(CharacterRange lead, |
2486 | CharacterRange trail, |
2487 | bool read_backward, |
2488 | RegExpNode* on_success, |
2489 | RegExpFlags flags) { |
2490 | auto lead_ranges = CharacterRange::List(on_success->zone(), lead); |
2491 | auto trail_ranges = CharacterRange::List(on_success->zone(), trail); |
2492 | auto elms = new ZoneGrowableArray<TextElement>(2); |
2493 | |
2494 | elms->Add( |
2495 | TextElement::CharClass(new RegExpCharacterClass(lead_ranges, flags))); |
2496 | elms->Add( |
2497 | TextElement::CharClass(new RegExpCharacterClass(trail_ranges, flags))); |
2498 | |
2499 | return new TextNode(elms, read_backward, on_success); |
2500 | } |
2501 | |
2502 | // This generates the code to match a text node. A text node can contain |
2503 | // straight character sequences (possibly to be matched in a case-independent |
2504 | // way) and character classes. For efficiency we do not do this in a single |
2505 | // pass from left to right. Instead we pass over the text node several times, |
2506 | // emitting code for some character positions every time. See the comment on |
2507 | // TextEmitPass for details. |
2508 | void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
2509 | LimitResult limit_result = LimitVersions(compiler, trace); |
2510 | if (limit_result == DONE) return; |
2511 | ASSERT(limit_result == CONTINUE); |
2512 | |
2513 | if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { |
2514 | compiler->SetRegExpTooBig(); |
2515 | return; |
2516 | } |
2517 | |
2518 | if (compiler->one_byte()) { |
2519 | intptr_t dummy = 0; |
2520 | TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); |
2521 | } |
2522 | |
2523 | bool first_elt_done = false; |
2524 | intptr_t bound_checked_to = trace->cp_offset() - 1; |
2525 | bound_checked_to += trace->bound_checked_up_to(); |
2526 | |
2527 | // If a character is preloaded into the current character register then |
2528 | // check that now. |
2529 | if (trace->characters_preloaded() == 1) { |
2530 | for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
2531 | TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), true, trace, |
2532 | false, &bound_checked_to); |
2533 | } |
2534 | first_elt_done = true; |
2535 | } |
2536 | |
2537 | for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
2538 | TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), false, trace, |
2539 | first_elt_done, &bound_checked_to); |
2540 | } |
2541 | |
2542 | Trace successor_trace(*trace); |
2543 | // If we advance backward, we may end up at the start. |
2544 | successor_trace.AdvanceCurrentPositionInTrace( |
2545 | read_backward() ? -Length() : Length(), compiler); |
2546 | successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN |
2547 | : Trace::FALSE_VALUE); |
2548 | RecursionCheck rc(compiler); |
2549 | on_success()->Emit(compiler, &successor_trace); |
2550 | } |
2551 | |
2552 | void Trace::InvalidateCurrentCharacter() { |
2553 | characters_preloaded_ = 0; |
2554 | } |
2555 | |
2556 | void Trace::AdvanceCurrentPositionInTrace(intptr_t by, |
2557 | RegExpCompiler* compiler) { |
2558 | // We don't have an instruction for shifting the current character register |
2559 | // down or for using a shifted value for anything so lets just forget that |
2560 | // we preloaded any characters into it. |
2561 | characters_preloaded_ = 0; |
2562 | // Adjust the offsets of the quick check performed information. This |
2563 | // information is used to find out what we already determined about the |
2564 | // characters by means of mask and compare. |
2565 | quick_check_performed_.Advance(by, compiler->one_byte()); |
2566 | cp_offset_ += by; |
2567 | if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { |
2568 | compiler->SetRegExpTooBig(); |
2569 | cp_offset_ = 0; |
2570 | } |
2571 | bound_checked_up_to_ = |
2572 | Utils::Maximum(static_cast<intptr_t>(0), bound_checked_up_to_ - by); |
2573 | } |
2574 | |
2575 | void TextNode::MakeCaseIndependent(bool is_one_byte) { |
2576 | intptr_t element_count = elms_->length(); |
2577 | for (intptr_t i = 0; i < element_count; i++) { |
2578 | TextElement elm = elms_->At(i); |
2579 | if (elm.text_type() == TextElement::CHAR_CLASS) { |
2580 | RegExpCharacterClass* cc = elm.char_class(); |
2581 | bool case_equivalents_already_added = |
2582 | cc->flags().NeedsUnicodeCaseEquivalents(); |
2583 | if (cc->flags().IgnoreCase() && !case_equivalents_already_added) { |
2584 | // None of the standard character classes is different in the case |
2585 | // independent case and it slows us down if we don't know that. |
2586 | if (cc->is_standard()) continue; |
2587 | CharacterRange::AddCaseEquivalents(cc->ranges(), is_one_byte, Z); |
2588 | } |
2589 | } |
2590 | } |
2591 | } |
2592 | |
2593 | intptr_t TextNode::GreedyLoopTextLength() { |
2594 | TextElement elm = elms_->At(elms_->length() - 1); |
2595 | return elm.cp_offset() + elm.length(); |
2596 | } |
2597 | |
2598 | RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
2599 | RegExpCompiler* compiler) { |
2600 | if (read_backward()) return nullptr; |
2601 | if (elms_->length() != 1) return NULL; |
2602 | TextElement elm = elms_->At(0); |
2603 | if (elm.text_type() != TextElement::CHAR_CLASS) return NULL; |
2604 | RegExpCharacterClass* node = elm.char_class(); |
2605 | ZoneGrowableArray<CharacterRange>* ranges = node->ranges(); |
2606 | if (!CharacterRange::IsCanonical(ranges)) { |
2607 | CharacterRange::Canonicalize(ranges); |
2608 | } |
2609 | if (node->is_negated()) { |
2610 | return ranges->length() == 0 ? on_success() : NULL; |
2611 | } |
2612 | if (ranges->length() != 1) return NULL; |
2613 | uint32_t max_char; |
2614 | if (compiler->one_byte()) { |
2615 | max_char = Symbols::kMaxOneCharCodeSymbol; |
2616 | } else { |
2617 | max_char = Utf16::kMaxCodeUnit; |
2618 | } |
2619 | return ranges->At(0).IsEverything(max_char) ? on_success() : NULL; |
2620 | } |
2621 | |
2622 | // Finds the fixed match length of a sequence of nodes that goes from |
2623 | // this alternative and back to this choice node. If there are variable |
2624 | // length nodes or other complications in the way then return a sentinel |
2625 | // value indicating that a greedy loop cannot be constructed. |
2626 | intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative( |
2627 | const GuardedAlternative* alternative) { |
2628 | intptr_t length = 0; |
2629 | RegExpNode* node = alternative->node(); |
2630 | // Later we will generate code for all these text nodes using recursion |
2631 | // so we have to limit the max number. |
2632 | intptr_t recursion_depth = 0; |
2633 | while (node != this) { |
2634 | if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { |
2635 | return kNodeIsTooComplexForGreedyLoops; |
2636 | } |
2637 | intptr_t node_length = node->GreedyLoopTextLength(); |
2638 | if (node_length == kNodeIsTooComplexForGreedyLoops) { |
2639 | return kNodeIsTooComplexForGreedyLoops; |
2640 | } |
2641 | length += node_length; |
2642 | SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node); |
2643 | node = seq_node->on_success(); |
2644 | } |
2645 | return read_backward() ? -length : length; |
2646 | } |
2647 | |
2648 | void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { |
2649 | ASSERT(loop_node_ == NULL); |
2650 | AddAlternative(alt); |
2651 | loop_node_ = alt.node(); |
2652 | } |
2653 | |
2654 | void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { |
2655 | ASSERT(continue_node_ == NULL); |
2656 | AddAlternative(alt); |
2657 | continue_node_ = alt.node(); |
2658 | } |
2659 | |
2660 | void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
2661 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
2662 | if (trace->stop_node() == this) { |
2663 | // Back edge of greedy optimized loop node graph. |
2664 | intptr_t text_length = |
2665 | GreedyLoopTextLengthForAlternative(&alternatives_->At(0)); |
2666 | ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); |
2667 | // Update the counter-based backtracking info on the stack. This is an |
2668 | // optimization for greedy loops (see below). |
2669 | ASSERT(trace->cp_offset() == text_length); |
2670 | macro_assembler->AdvanceCurrentPosition(text_length); |
2671 | macro_assembler->GoTo(trace->loop_label()); |
2672 | return; |
2673 | } |
2674 | ASSERT(trace->stop_node() == NULL); |
2675 | if (!trace->is_trivial()) { |
2676 | trace->Flush(compiler, this); |
2677 | return; |
2678 | } |
2679 | ChoiceNode::Emit(compiler, trace); |
2680 | } |
2681 | |
2682 | intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
2683 | intptr_t eats_at_least) { |
2684 | intptr_t preload_characters = |
2685 | Utils::Minimum(static_cast<intptr_t>(4), eats_at_least); |
2686 | if (compiler->macro_assembler()->CanReadUnaligned()) { |
2687 | bool one_byte = compiler->one_byte(); |
2688 | if (one_byte) { |
2689 | if (preload_characters > 4) preload_characters = 4; |
2690 | // We can't preload 3 characters because there is no machine instruction |
2691 | // to do that. We can't just load 4 because we could be reading |
2692 | // beyond the end of the string, which could cause a memory fault. |
2693 | if (preload_characters == 3) preload_characters = 2; |
2694 | } else { |
2695 | if (preload_characters > 2) preload_characters = 2; |
2696 | } |
2697 | } else { |
2698 | if (preload_characters > 1) preload_characters = 1; |
2699 | } |
2700 | return preload_characters; |
2701 | } |
2702 | |
2703 | // This structure is used when generating the alternatives in a choice node. It |
2704 | // records the way the alternative is being code generated. |
2705 | struct AlternativeGeneration { |
2706 | AlternativeGeneration() |
2707 | : possible_success(), |
2708 | expects_preload(false), |
2709 | after(), |
2710 | quick_check_details() {} |
2711 | BlockLabel possible_success; |
2712 | bool expects_preload; |
2713 | BlockLabel after; |
2714 | QuickCheckDetails quick_check_details; |
2715 | }; |
2716 | |
2717 | // Creates a list of AlternativeGenerations. If the list has a reasonable |
2718 | // size then it is on the stack, otherwise the excess is on the heap. |
2719 | class AlternativeGenerationList { |
2720 | public: |
2721 | explicit AlternativeGenerationList(intptr_t count) : count_(count) { |
2722 | ASSERT(count >= 0); |
2723 | if (count > kAFew) { |
2724 | excess_alt_gens_.reset(new AlternativeGeneration[count - kAFew]); |
2725 | } |
2726 | } |
2727 | |
2728 | AlternativeGeneration* at(intptr_t i) { |
2729 | ASSERT(0 <= i); |
2730 | ASSERT(i < count_); |
2731 | if (i < kAFew) { |
2732 | return &a_few_alt_gens_[i]; |
2733 | } |
2734 | return &excess_alt_gens_[i - kAFew]; |
2735 | } |
2736 | |
2737 | private: |
2738 | static const intptr_t kAFew = 10; |
2739 | |
2740 | intptr_t count_; |
2741 | AlternativeGeneration a_few_alt_gens_[kAFew]; |
2742 | std::unique_ptr<AlternativeGeneration[]> excess_alt_gens_; |
2743 | |
2744 | DISALLOW_ALLOCATION(); |
2745 | DISALLOW_COPY_AND_ASSIGN(AlternativeGenerationList); |
2746 | }; |
2747 | |
2748 | static const int32_t kRangeEndMarker = Utf::kMaxCodePoint + 1; |
2749 | |
2750 | // The '2' variant is inclusive from and exclusive to. |
2751 | // This covers \s as defined in ECMA-262 5.1, 15.10.2.12, |
2752 | // which include WhiteSpace (7.2) or LineTerminator (7.3) values. |
2753 | // 0x180E has been removed from Unicode's Zs category and thus |
2754 | // from ECMAScript's WhiteSpace category as of Unicode 6.3. |
2755 | static const int32_t kSpaceRanges[] = { |
2756 | '\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680, |
2757 | 0x1681, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030, |
2758 | 0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, kRangeEndMarker}; |
2759 | static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges); |
2760 | static const int32_t kWordRanges[] = { |
2761 | '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker}; |
2762 | static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges); |
2763 | static const int32_t kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker}; |
2764 | static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges); |
2765 | static const int32_t kSurrogateRanges[] = {0xd800, 0xe000, kRangeEndMarker}; |
2766 | static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges); |
2767 | static const int32_t kLineTerminatorRanges[] = { |
2768 | 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker}; |
2769 | static const intptr_t kLineTerminatorRangeCount = |
2770 | ARRAY_SIZE(kLineTerminatorRanges); |
2771 | |
2772 | void BoyerMoorePositionInfo::Set(intptr_t character) { |
2773 | SetInterval(Interval(character, character)); |
2774 | } |
2775 | |
2776 | void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { |
2777 | s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval); |
2778 | w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); |
2779 | d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval); |
2780 | surrogate_ = |
2781 | AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval); |
2782 | if (interval.to() - interval.from() >= kMapSize - 1) { |
2783 | if (map_count_ != kMapSize) { |
2784 | map_count_ = kMapSize; |
2785 | for (intptr_t i = 0; i < kMapSize; i++) |
2786 | (*map_)[i] = true; |
2787 | } |
2788 | return; |
2789 | } |
2790 | for (intptr_t i = interval.from(); i <= interval.to(); i++) { |
2791 | intptr_t mod_character = (i & kMask); |
2792 | if (!map_->At(mod_character)) { |
2793 | map_count_++; |
2794 | (*map_)[mod_character] = true; |
2795 | } |
2796 | if (map_count_ == kMapSize) return; |
2797 | } |
2798 | } |
2799 | |
2800 | void BoyerMoorePositionInfo::SetAll() { |
2801 | s_ = w_ = d_ = kLatticeUnknown; |
2802 | if (map_count_ != kMapSize) { |
2803 | map_count_ = kMapSize; |
2804 | for (intptr_t i = 0; i < kMapSize; i++) |
2805 | (*map_)[i] = true; |
2806 | } |
2807 | } |
2808 | |
2809 | BoyerMooreLookahead::BoyerMooreLookahead(intptr_t length, |
2810 | RegExpCompiler* compiler, |
2811 | Zone* zone) |
2812 | : length_(length), compiler_(compiler) { |
2813 | if (compiler->one_byte()) { |
2814 | max_char_ = Symbols::kMaxOneCharCodeSymbol; |
2815 | } else { |
2816 | max_char_ = Utf16::kMaxCodeUnit; |
2817 | } |
2818 | bitmaps_ = new (zone) ZoneGrowableArray<BoyerMoorePositionInfo*>(length); |
2819 | for (intptr_t i = 0; i < length; i++) { |
2820 | bitmaps_->Add(new (zone) BoyerMoorePositionInfo(zone)); |
2821 | } |
2822 | } |
2823 | |
2824 | // Find the longest range of lookahead that has the fewest number of different |
2825 | // characters that can occur at a given position. Since we are optimizing two |
2826 | // different parameters at once this is a tradeoff. |
2827 | bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) { |
2828 | intptr_t biggest_points = 0; |
2829 | // If more than 32 characters out of 128 can occur it is unlikely that we can |
2830 | // be lucky enough to step forwards much of the time. |
2831 | const intptr_t kMaxMax = 32; |
2832 | for (intptr_t max_number_of_chars = 4; max_number_of_chars < kMaxMax; |
2833 | max_number_of_chars *= 2) { |
2834 | biggest_points = |
2835 | FindBestInterval(max_number_of_chars, biggest_points, from, to); |
2836 | } |
2837 | if (biggest_points == 0) return false; |
2838 | return true; |
2839 | } |
2840 | |
2841 | // Find the highest-points range between 0 and length_ where the character |
2842 | // information is not too vague. 'Too vague' means that there are more than |
2843 | // max_number_of_chars that can occur at this position. Calculates the number |
2844 | // of points as the product of width-of-the-range and |
2845 | // probability-of-finding-one-of-the-characters, where the probability is |
2846 | // calculated using the frequency distribution of the sample subject string. |
2847 | intptr_t BoyerMooreLookahead::FindBestInterval(intptr_t max_number_of_chars, |
2848 | intptr_t old_biggest_points, |
2849 | intptr_t* from, |
2850 | intptr_t* to) { |
2851 | intptr_t biggest_points = old_biggest_points; |
2852 | static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
2853 | for (intptr_t i = 0; i < length_;) { |
2854 | while (i < length_ && Count(i) > max_number_of_chars) |
2855 | i++; |
2856 | if (i == length_) break; |
2857 | intptr_t remembered_from = i; |
2858 | bool union_map[kSize]; |
2859 | for (intptr_t j = 0; j < kSize; j++) |
2860 | union_map[j] = false; |
2861 | while (i < length_ && Count(i) <= max_number_of_chars) { |
2862 | BoyerMoorePositionInfo* map = bitmaps_->At(i); |
2863 | for (intptr_t j = 0; j < kSize; j++) |
2864 | union_map[j] |= map->at(j); |
2865 | i++; |
2866 | } |
2867 | intptr_t frequency = 0; |
2868 | for (intptr_t j = 0; j < kSize; j++) { |
2869 | if (union_map[j]) { |
2870 | // Add 1 to the frequency to give a small per-character boost for |
2871 | // the cases where our sampling is not good enough and many |
2872 | // characters have a frequency of zero. This means the frequency |
2873 | // can theoretically be up to 2*kSize though we treat it mostly as |
2874 | // a fraction of kSize. |
2875 | frequency += compiler_->frequency_collator()->Frequency(j) + 1; |
2876 | } |
2877 | } |
2878 | // We use the probability of skipping times the distance we are skipping to |
2879 | // judge the effectiveness of this. Actually we have a cut-off: By |
2880 | // dividing by 2 we switch off the skipping if the probability of skipping |
2881 | // is less than 50%. This is because the multibyte mask-and-compare |
2882 | // skipping in quickcheck is more likely to do well on this case. |
2883 | bool in_quickcheck_range = |
2884 | ((i - remembered_from < 4) || |
2885 | (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); |
2886 | // Called 'probability' but it is only a rough estimate and can actually |
2887 | // be outside the 0-kSize range. |
2888 | intptr_t probability = |
2889 | (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
2890 | intptr_t points = (i - remembered_from) * probability; |
2891 | if (points > biggest_points) { |
2892 | *from = remembered_from; |
2893 | *to = i - 1; |
2894 | biggest_points = points; |
2895 | } |
2896 | } |
2897 | return biggest_points; |
2898 | } |
2899 | |
2900 | // Take all the characters that will not prevent a successful match if they |
2901 | // occur in the subject string in the range between min_lookahead and |
2902 | // max_lookahead (inclusive) measured from the current position. If the |
2903 | // character at max_lookahead offset is not one of these characters, then we |
2904 | // can safely skip forwards by the number of characters in the range. |
2905 | intptr_t BoyerMooreLookahead::GetSkipTable( |
2906 | intptr_t min_lookahead, |
2907 | intptr_t max_lookahead, |
2908 | const TypedData& boolean_skip_table) { |
2909 | const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
2910 | |
2911 | const intptr_t kSkipArrayEntry = 0; |
2912 | const intptr_t kDontSkipArrayEntry = 1; |
2913 | |
2914 | for (intptr_t i = 0; i < kSize; i++) { |
2915 | boolean_skip_table.SetUint8(i, kSkipArrayEntry); |
2916 | } |
2917 | intptr_t skip = max_lookahead + 1 - min_lookahead; |
2918 | |
2919 | for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
2920 | BoyerMoorePositionInfo* map = bitmaps_->At(i); |
2921 | for (intptr_t j = 0; j < kSize; j++) { |
2922 | if (map->at(j)) { |
2923 | boolean_skip_table.SetUint8(j, kDontSkipArrayEntry); |
2924 | } |
2925 | } |
2926 | } |
2927 | |
2928 | return skip; |
2929 | } |
2930 | |
2931 | // See comment above on the implementation of GetSkipTable. |
2932 | void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
2933 | const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
2934 | |
2935 | intptr_t min_lookahead = 0; |
2936 | intptr_t max_lookahead = 0; |
2937 | |
2938 | if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; |
2939 | |
2940 | bool found_single_character = false; |
2941 | intptr_t single_character = 0; |
2942 | for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
2943 | BoyerMoorePositionInfo* map = bitmaps_->At(i); |
2944 | if (map->map_count() > 1 || |
2945 | (found_single_character && map->map_count() != 0)) { |
2946 | found_single_character = false; |
2947 | break; |
2948 | } |
2949 | for (intptr_t j = 0; j < kSize; j++) { |
2950 | if (map->at(j)) { |
2951 | found_single_character = true; |
2952 | single_character = j; |
2953 | break; |
2954 | } |
2955 | } |
2956 | } |
2957 | |
2958 | intptr_t lookahead_width = max_lookahead + 1 - min_lookahead; |
2959 | |
2960 | if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { |
2961 | // The mask-compare can probably handle this better. |
2962 | return; |
2963 | } |
2964 | |
2965 | if (found_single_character) { |
2966 | BlockLabel cont, again; |
2967 | masm->BindBlock(&again); |
2968 | masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
2969 | if (max_char_ > kSize) { |
2970 | masm->CheckCharacterAfterAnd(single_character, |
2971 | RegExpMacroAssembler::kTableMask, &cont); |
2972 | } else { |
2973 | masm->CheckCharacter(single_character, &cont); |
2974 | } |
2975 | masm->AdvanceCurrentPosition(lookahead_width); |
2976 | masm->GoTo(&again); |
2977 | masm->BindBlock(&cont); |
2978 | return; |
2979 | } |
2980 | |
2981 | const TypedData& boolean_skip_table = TypedData::ZoneHandle( |
2982 | compiler_->zone(), |
2983 | TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
2984 | intptr_t skip_distance = |
2985 | GetSkipTable(min_lookahead, max_lookahead, boolean_skip_table); |
2986 | ASSERT(skip_distance != 0); |
2987 | |
2988 | BlockLabel cont, again; |
2989 | |
2990 | masm->BindBlock(&again); |
2991 | masm->CheckPreemption(/*is_backtrack=*/false); |
2992 | masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
2993 | masm->CheckBitInTable(boolean_skip_table, &cont); |
2994 | masm->AdvanceCurrentPosition(skip_distance); |
2995 | masm->GoTo(&again); |
2996 | masm->BindBlock(&cont); |
2997 | |
2998 | return; |
2999 | } |
3000 | |
3001 | /* Code generation for choice nodes. |
3002 | * |
3003 | * We generate quick checks that do a mask and compare to eliminate a |
3004 | * choice. If the quick check succeeds then it jumps to the continuation to |
3005 | * do slow checks and check subsequent nodes. If it fails (the common case) |
3006 | * it falls through to the next choice. |
3007 | * |
3008 | * Here is the desired flow graph. Nodes directly below each other imply |
3009 | * fallthrough. Alternatives 1 and 2 have quick checks. Alternative |
3010 | * 3 doesn't have a quick check so we have to call the slow check. |
3011 | * Nodes are marked Qn for quick checks and Sn for slow checks. The entire |
3012 | * regexp continuation is generated directly after the Sn node, up to the |
3013 | * next GoTo if we decide to reuse some already generated code. Some |
3014 | * nodes expect preload_characters to be preloaded into the current |
3015 | * character register. R nodes do this preloading. Vertices are marked |
3016 | * F for failures and S for success (possible success in the case of quick |
3017 | * nodes). L, V, < and > are used as arrow heads. |
3018 | * |
3019 | * ----------> R |
3020 | * | |
3021 | * V |
3022 | * Q1 -----> S1 |
3023 | * | S / |
3024 | * F| / |
3025 | * | F/ |
3026 | * | / |
3027 | * | R |
3028 | * | / |
3029 | * V L |
3030 | * Q2 -----> S2 |
3031 | * | S / |
3032 | * F| / |
3033 | * | F/ |
3034 | * | / |
3035 | * | R |
3036 | * | / |
3037 | * V L |
3038 | * S3 |
3039 | * | |
3040 | * F| |
3041 | * | |
3042 | * R |
3043 | * | |
3044 | * backtrack V |
3045 | * <----------Q4 |
3046 | * \ F | |
3047 | * \ |S |
3048 | * \ F V |
3049 | * \-----S4 |
3050 | * |
3051 | * For greedy loops we push the current position, then generate the code that |
3052 | * eats the input specially in EmitGreedyLoop. The other choice (the |
3053 | * continuation) is generated by the normal code in EmitChoices, and steps back |
3054 | * in the input to the starting position when it fails to match. The loop code |
3055 | * looks like this (U is the unwind code that steps back in the greedy loop). |
3056 | * |
3057 | * _____ |
3058 | * / \ |
3059 | * V | |
3060 | * ----------> S1 | |
3061 | * /| | |
3062 | * / |S | |
3063 | * F/ \_____/ |
3064 | * / |
3065 | * |<----- |
3066 | * | \ |
3067 | * V |S |
3068 | * Q2 ---> U----->backtrack |
3069 | * | F / |
3070 | * S| / |
3071 | * V F / |
3072 | * S2--/ |
3073 | */ |
3074 | |
3075 | GreedyLoopState::GreedyLoopState(bool not_at_start) { |
3076 | counter_backtrack_trace_.set_backtrack(&label_); |
3077 | if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE); |
3078 | } |
3079 | |
3080 | void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { |
3081 | #ifdef DEBUG |
3082 | intptr_t choice_count = alternatives_->length(); |
3083 | for (intptr_t i = 0; i < choice_count - 1; i++) { |
3084 | GuardedAlternative alternative = alternatives_->At(i); |
3085 | ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
3086 | intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
3087 | for (intptr_t j = 0; j < guard_count; j++) { |
3088 | ASSERT(!trace->mentions_reg(guards->At(j)->reg())); |
3089 | } |
3090 | } |
3091 | #endif |
3092 | } |
3093 | |
3094 | void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, |
3095 | Trace* current_trace, |
3096 | PreloadState* state) { |
3097 | if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) { |
3098 | // Save some time by looking at most one machine word ahead. |
3099 | state->eats_at_least_ = |
3100 | EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget, |
3101 | current_trace->at_start() == Trace::FALSE_VALUE); |
3102 | } |
3103 | state->preload_characters_ = |
3104 | CalculatePreloadCharacters(compiler, state->eats_at_least_); |
3105 | |
3106 | state->preload_is_current_ = |
3107 | (current_trace->characters_preloaded() == state->preload_characters_); |
3108 | state->preload_has_checked_bounds_ = state->preload_is_current_; |
3109 | } |
3110 | |
3111 | void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
3112 | intptr_t choice_count = alternatives_->length(); |
3113 | |
3114 | if (choice_count == 1 && alternatives_->At(0).guards() == nullptr) { |
3115 | alternatives_->At(0).node()->Emit(compiler, trace); |
3116 | return; |
3117 | } |
3118 | |
3119 | AssertGuardsMentionRegisters(trace); |
3120 | |
3121 | LimitResult limit_result = LimitVersions(compiler, trace); |
3122 | if (limit_result == DONE) return; |
3123 | ASSERT(limit_result == CONTINUE); |
3124 | |
3125 | // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for |
3126 | // other choice nodes we only flush if we are out of code size budget. |
3127 | if (trace->flush_budget() == 0 && trace->actions() != NULL) { |
3128 | trace->Flush(compiler, this); |
3129 | return; |
3130 | } |
3131 | |
3132 | RecursionCheck rc(compiler); |
3133 | |
3134 | PreloadState preload; |
3135 | preload.init(); |
3136 | GreedyLoopState greedy_loop_state(not_at_start()); |
3137 | |
3138 | intptr_t text_length = |
3139 | GreedyLoopTextLengthForAlternative(&alternatives_->At(0)); |
3140 | AlternativeGenerationList alt_gens(choice_count); |
3141 | |
3142 | if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { |
3143 | trace = EmitGreedyLoop(compiler, trace, &alt_gens, &preload, |
3144 | &greedy_loop_state, text_length); |
3145 | } else { |
3146 | // TODO(erikcorry): Delete this. We don't need this label, but it makes us |
3147 | // match the traces produced pre-cleanup. |
3148 | BlockLabel second_choice; |
3149 | compiler->macro_assembler()->BindBlock(&second_choice); |
3150 | |
3151 | preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); |
3152 | |
3153 | EmitChoices(compiler, &alt_gens, 0, trace, &preload); |
3154 | } |
3155 | |
3156 | // At this point we need to generate slow checks for the alternatives where |
3157 | // the quick check was inlined. We can recognize these because the associated |
3158 | // label was bound. |
3159 | intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
3160 | for (intptr_t i = 0; i < choice_count; i++) { |
3161 | AlternativeGeneration* alt_gen = alt_gens.at(i); |
3162 | Trace new_trace(*trace); |
3163 | // If there are actions to be flushed we have to limit how many times |
3164 | // they are flushed. Take the budget of the parent trace and distribute |
3165 | // it fairly amongst the children. |
3166 | if (new_trace.actions() != NULL) { |
3167 | new_trace.set_flush_budget(new_flush_budget); |
3168 | } |
3169 | bool next_expects_preload = |
3170 | i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; |
3171 | EmitOutOfLineContinuation(compiler, &new_trace, alternatives_->At(i), |
3172 | alt_gen, preload.preload_characters_, |
3173 | next_expects_preload); |
3174 | } |
3175 | } |
3176 | |
3177 | Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
3178 | Trace* trace, |
3179 | AlternativeGenerationList* alt_gens, |
3180 | PreloadState* preload, |
3181 | GreedyLoopState* greedy_loop_state, |
3182 | intptr_t text_length) { |
3183 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
3184 | // Here we have special handling for greedy loops containing only text nodes |
3185 | // and other simple nodes. These are handled by pushing the current |
3186 | // position on the stack and then incrementing the current position each |
3187 | // time around the switch. On backtrack we decrement the current position |
3188 | // and check it against the pushed value. This avoids pushing backtrack |
3189 | // information for each iteration of the loop, which could take up a lot of |
3190 | // space. |
3191 | ASSERT(trace->stop_node() == NULL); |
3192 | macro_assembler->PushCurrentPosition(); |
3193 | BlockLabel greedy_match_failed; |
3194 | Trace greedy_match_trace; |
3195 | if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE); |
3196 | greedy_match_trace.set_backtrack(&greedy_match_failed); |
3197 | BlockLabel loop_label; |
3198 | macro_assembler->BindBlock(&loop_label); |
3199 | macro_assembler->CheckPreemption(/*is_backtrack=*/false); |
3200 | greedy_match_trace.set_stop_node(this); |
3201 | greedy_match_trace.set_loop_label(&loop_label); |
3202 | (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace); |
3203 | macro_assembler->BindBlock(&greedy_match_failed); |
3204 | |
3205 | BlockLabel second_choice; // For use in greedy matches. |
3206 | macro_assembler->BindBlock(&second_choice); |
3207 | |
3208 | Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); |
3209 | |
3210 | EmitChoices(compiler, alt_gens, 1, new_trace, preload); |
3211 | |
3212 | macro_assembler->BindBlock(greedy_loop_state->label()); |
3213 | // If we have unwound to the bottom then backtrack. |
3214 | macro_assembler->CheckGreedyLoop(trace->backtrack()); |
3215 | // Otherwise try the second priority at an earlier position. |
3216 | macro_assembler->AdvanceCurrentPosition(-text_length); |
3217 | macro_assembler->GoTo(&second_choice); |
3218 | return new_trace; |
3219 | } |
3220 | |
3221 | intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
3222 | Trace* trace) { |
3223 | intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; |
3224 | if (alternatives_->length() != 2) return eats_at_least; |
3225 | |
3226 | GuardedAlternative alt1 = alternatives_->At(1); |
3227 | if (alt1.guards() != NULL && alt1.guards()->length() != 0) { |
3228 | return eats_at_least; |
3229 | } |
3230 | RegExpNode* eats_anything_node = alt1.node(); |
3231 | if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) { |
3232 | return eats_at_least; |
3233 | } |
3234 | |
3235 | // Really we should be creating a new trace when we execute this function, |
3236 | // but there is no need, because the code it generates cannot backtrack, and |
3237 | // we always arrive here with a trivial trace (since it's the entry to a |
3238 | // loop. That also implies that there are no preloaded characters, which is |
3239 | // good, because it means we won't be violating any assumptions by |
3240 | // overwriting those characters with new load instructions. |
3241 | ASSERT(trace->is_trivial()); |
3242 | |
3243 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
3244 | // At this point we know that we are at a non-greedy loop that will eat |
3245 | // any character one at a time. Any non-anchored regexp has such a |
3246 | // loop prepended to it in order to find where it starts. We look for |
3247 | // a pattern of the form ...abc... where we can look 6 characters ahead |
3248 | // and step forwards 3 if the character is not one of abc. Abc need |
3249 | // not be atoms, they can be any reasonably limited character class or |
3250 | // small alternation. |
3251 | BoyerMooreLookahead* bm = bm_info(false); |
3252 | if (bm == NULL) { |
3253 | eats_at_least = Utils::Minimum( |
3254 | kMaxLookaheadForBoyerMoore, |
3255 | EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, false)); |
3256 | if (eats_at_least >= 1) { |
3257 | bm = new (Z) BoyerMooreLookahead(eats_at_least, compiler, Z); |
3258 | GuardedAlternative alt0 = alternatives_->At(0); |
3259 | alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false); |
3260 | } |
3261 | } |
3262 | if (bm != NULL) { |
3263 | bm->EmitSkipInstructions(macro_assembler); |
3264 | } |
3265 | return eats_at_least; |
3266 | } |
3267 | |
3268 | void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
3269 | AlternativeGenerationList* alt_gens, |
3270 | intptr_t first_choice, |
3271 | Trace* trace, |
3272 | PreloadState* preload) { |
3273 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
3274 | SetUpPreLoad(compiler, trace, preload); |
3275 | |
3276 | // For now we just call all choices one after the other. The idea ultimately |
3277 | // is to use the Dispatch table to try only the relevant ones. |
3278 | intptr_t choice_count = alternatives_->length(); |
3279 | |
3280 | intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
3281 | |
3282 | for (intptr_t i = first_choice; i < choice_count; i++) { |
3283 | bool is_last = i == choice_count - 1; |
3284 | bool fall_through_on_failure = !is_last; |
3285 | GuardedAlternative alternative = alternatives_->At(i); |
3286 | AlternativeGeneration* alt_gen = alt_gens->at(i); |
3287 | alt_gen->quick_check_details.set_characters(preload->preload_characters_); |
3288 | ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
3289 | intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
3290 | Trace new_trace(*trace); |
3291 | new_trace.set_characters_preloaded( |
3292 | preload->preload_is_current_ ? preload->preload_characters_ : 0); |
3293 | if (preload->preload_has_checked_bounds_) { |
3294 | new_trace.set_bound_checked_up_to(preload->preload_characters_); |
3295 | } |
3296 | new_trace.quick_check_performed()->Clear(); |
3297 | if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); |
3298 | if (!is_last) { |
3299 | new_trace.set_backtrack(&alt_gen->after); |
3300 | } |
3301 | alt_gen->expects_preload = preload->preload_is_current_; |
3302 | bool generate_full_check_inline = false; |
3303 | if (kRegexpOptimization && |
3304 | try_to_emit_quick_check_for_alternative(i == 0) && |
3305 | alternative.node()->EmitQuickCheck( |
3306 | compiler, trace, &new_trace, preload->preload_has_checked_bounds_, |
3307 | &alt_gen->possible_success, &alt_gen->quick_check_details, |
3308 | fall_through_on_failure)) { |
3309 | // Quick check was generated for this choice. |
3310 | preload->preload_is_current_ = true; |
3311 | preload->preload_has_checked_bounds_ = true; |
3312 | // If we generated the quick check to fall through on possible success, |
3313 | // we now need to generate the full check inline. |
3314 | if (!fall_through_on_failure) { |
3315 | macro_assembler->BindBlock(&alt_gen->possible_success); |
3316 | new_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
3317 | new_trace.set_characters_preloaded(preload->preload_characters_); |
3318 | new_trace.set_bound_checked_up_to(preload->preload_characters_); |
3319 | generate_full_check_inline = true; |
3320 | } |
3321 | } else if (alt_gen->quick_check_details.cannot_match()) { |
3322 | if (!fall_through_on_failure) { |
3323 | macro_assembler->GoTo(trace->backtrack()); |
3324 | } |
3325 | continue; |
3326 | } else { |
3327 | // No quick check was generated. Put the full code here. |
3328 | // If this is not the first choice then there could be slow checks from |
3329 | // previous cases that go here when they fail. There's no reason to |
3330 | // insist that they preload characters since the slow check we are about |
3331 | // to generate probably can't use it. |
3332 | if (i != first_choice) { |
3333 | alt_gen->expects_preload = false; |
3334 | new_trace.InvalidateCurrentCharacter(); |
3335 | } |
3336 | generate_full_check_inline = true; |
3337 | } |
3338 | if (generate_full_check_inline) { |
3339 | if (new_trace.actions() != NULL) { |
3340 | new_trace.set_flush_budget(new_flush_budget); |
3341 | } |
3342 | for (intptr_t j = 0; j < guard_count; j++) { |
3343 | GenerateGuard(macro_assembler, guards->At(j), &new_trace); |
3344 | } |
3345 | alternative.node()->Emit(compiler, &new_trace); |
3346 | preload->preload_is_current_ = false; |
3347 | } |
3348 | macro_assembler->BindBlock(&alt_gen->after); |
3349 | } |
3350 | } |
3351 | |
3352 | void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, |
3353 | Trace* trace, |
3354 | GuardedAlternative alternative, |
3355 | AlternativeGeneration* alt_gen, |
3356 | intptr_t preload_characters, |
3357 | bool next_expects_preload) { |
3358 | if (!alt_gen->possible_success.is_linked()) return; |
3359 | |
3360 | RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
3361 | macro_assembler->BindBlock(&alt_gen->possible_success); |
3362 | Trace out_of_line_trace(*trace); |
3363 | out_of_line_trace.set_characters_preloaded(preload_characters); |
3364 | out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
3365 | if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); |
3366 | ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
3367 | intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
3368 | if (next_expects_preload) { |
3369 | BlockLabel reload_current_char; |
3370 | out_of_line_trace.set_backtrack(&reload_current_char); |
3371 | for (intptr_t j = 0; j < guard_count; j++) { |
3372 | GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
3373 | } |
3374 | alternative.node()->Emit(compiler, &out_of_line_trace); |
3375 | macro_assembler->BindBlock(&reload_current_char); |
3376 | // Reload the current character, since the next quick check expects that. |
3377 | // We don't need to check bounds here because we only get into this |
3378 | // code through a quick check which already did the checked load. |
3379 | macro_assembler->LoadCurrentCharacter(trace->cp_offset(), NULL, false, |
3380 | preload_characters); |
3381 | macro_assembler->GoTo(&(alt_gen->after)); |
3382 | } else { |
3383 | out_of_line_trace.set_backtrack(&(alt_gen->after)); |
3384 | for (intptr_t j = 0; j < guard_count; j++) { |
3385 | GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
3386 | } |
3387 | alternative.node()->Emit(compiler, &out_of_line_trace); |
3388 | } |
3389 | } |
3390 | |
3391 | void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
3392 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
3393 | LimitResult limit_result = LimitVersions(compiler, trace); |
3394 | if (limit_result == DONE) return; |
3395 | ASSERT(limit_result == CONTINUE); |
3396 | |
3397 | RecursionCheck rc(compiler); |
3398 | |
3399 | switch (action_type_) { |
3400 | case STORE_POSITION: { |
3401 | Trace::DeferredCapture new_capture(data_.u_position_register.reg, |
3402 | data_.u_position_register.is_capture, |
3403 | trace); |
3404 | Trace new_trace = *trace; |
3405 | new_trace.add_action(&new_capture); |
3406 | on_success()->Emit(compiler, &new_trace); |
3407 | break; |
3408 | } |
3409 | case INCREMENT_REGISTER: { |
3410 | Trace::DeferredIncrementRegister new_increment( |
3411 | data_.u_increment_register.reg); |
3412 | Trace new_trace = *trace; |
3413 | new_trace.add_action(&new_increment); |
3414 | on_success()->Emit(compiler, &new_trace); |
3415 | break; |
3416 | } |
3417 | case SET_REGISTER: { |
3418 | Trace::DeferredSetRegister new_set(data_.u_store_register.reg, |
3419 | data_.u_store_register.value); |
3420 | Trace new_trace = *trace; |
3421 | new_trace.add_action(&new_set); |
3422 | on_success()->Emit(compiler, &new_trace); |
3423 | break; |
3424 | } |
3425 | case CLEAR_CAPTURES: { |
3426 | Trace::DeferredClearCaptures new_capture(Interval( |
3427 | data_.u_clear_captures.range_from, data_.u_clear_captures.range_to)); |
3428 | Trace new_trace = *trace; |
3429 | new_trace.add_action(&new_capture); |
3430 | on_success()->Emit(compiler, &new_trace); |
3431 | break; |
3432 | } |
3433 | case BEGIN_SUBMATCH: |
3434 | if (!trace->is_trivial()) { |
3435 | trace->Flush(compiler, this); |
3436 | } else { |
3437 | assembler->WriteCurrentPositionToRegister( |
3438 | data_.u_submatch.current_position_register, 0); |
3439 | assembler->WriteStackPointerToRegister( |
3440 | data_.u_submatch.stack_pointer_register); |
3441 | on_success()->Emit(compiler, trace); |
3442 | } |
3443 | break; |
3444 | case EMPTY_MATCH_CHECK: { |
3445 | intptr_t start_pos_reg = data_.u_empty_match_check.start_register; |
3446 | intptr_t stored_pos = 0; |
3447 | intptr_t rep_reg = data_.u_empty_match_check.repetition_register; |
3448 | bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); |
3449 | bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); |
3450 | if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { |
3451 | // If we know we haven't advanced and there is no minimum we |
3452 | // can just backtrack immediately. |
3453 | assembler->GoTo(trace->backtrack()); |
3454 | } else if (know_dist && stored_pos < trace->cp_offset()) { |
3455 | // If we know we've advanced we can generate the continuation |
3456 | // immediately. |
3457 | on_success()->Emit(compiler, trace); |
3458 | } else if (!trace->is_trivial()) { |
3459 | trace->Flush(compiler, this); |
3460 | } else { |
3461 | BlockLabel skip_empty_check; |
3462 | // If we have a minimum number of repetitions we check the current |
3463 | // number first and skip the empty check if it's not enough. |
3464 | if (has_minimum) { |
3465 | intptr_t limit = data_.u_empty_match_check.repetition_limit; |
3466 | assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); |
3467 | } |
3468 | // If the match is empty we bail out, otherwise we fall through |
3469 | // to the on-success continuation. |
3470 | assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, |
3471 | trace->backtrack()); |
3472 | assembler->BindBlock(&skip_empty_check); |
3473 | on_success()->Emit(compiler, trace); |
3474 | } |
3475 | break; |
3476 | } |
3477 | case POSITIVE_SUBMATCH_SUCCESS: { |
3478 | if (!trace->is_trivial()) { |
3479 | trace->Flush(compiler, this); |
3480 | return; |
3481 | } |
3482 | assembler->ReadCurrentPositionFromRegister( |
3483 | data_.u_submatch.current_position_register); |
3484 | assembler->ReadStackPointerFromRegister( |
3485 | data_.u_submatch.stack_pointer_register); |
3486 | intptr_t clear_register_count = data_.u_submatch.clear_register_count; |
3487 | if (clear_register_count == 0) { |
3488 | on_success()->Emit(compiler, trace); |
3489 | return; |
3490 | } |
3491 | intptr_t clear_registers_from = data_.u_submatch.clear_register_from; |
3492 | BlockLabel clear_registers_backtrack; |
3493 | Trace new_trace = *trace; |
3494 | new_trace.set_backtrack(&clear_registers_backtrack); |
3495 | on_success()->Emit(compiler, &new_trace); |
3496 | |
3497 | assembler->BindBlock(&clear_registers_backtrack); |
3498 | intptr_t clear_registers_to = |
3499 | clear_registers_from + clear_register_count - 1; |
3500 | assembler->ClearRegisters(clear_registers_from, clear_registers_to); |
3501 | |
3502 | ASSERT(trace->backtrack() == NULL); |
3503 | assembler->Backtrack(); |
3504 | return; |
3505 | } |
3506 | default: |
3507 | UNREACHABLE(); |
3508 | } |
3509 | } |
3510 | |
3511 | void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
3512 | RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
3513 | if (!trace->is_trivial()) { |
3514 | trace->Flush(compiler, this); |
3515 | return; |
3516 | } |
3517 | |
3518 | LimitResult limit_result = LimitVersions(compiler, trace); |
3519 | if (limit_result == DONE) return; |
3520 | ASSERT(limit_result == CONTINUE); |
3521 | |
3522 | RecursionCheck rc(compiler); |
3523 | |
3524 | ASSERT(start_reg_ + 1 == end_reg_); |
3525 | if (flags_.IgnoreCase()) { |
3526 | assembler->CheckNotBackReferenceIgnoreCase( |
3527 | start_reg_, read_backward(), flags_.IsUnicode(), trace->backtrack()); |
3528 | } else { |
3529 | assembler->CheckNotBackReference(start_reg_, read_backward(), |
3530 | trace->backtrack()); |
3531 | } |
3532 | // We are going to advance backward, so we may end up at the start. |
3533 | if (read_backward()) trace->set_at_start(Trace::UNKNOWN); |
3534 | |
3535 | // Check that the back reference does not end inside a surrogate pair. |
3536 | if (flags_.IsUnicode() && !compiler->one_byte()) { |
3537 | assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack()); |
3538 | } |
3539 | |
3540 | on_success()->Emit(compiler, trace); |
3541 | } |
3542 | |
3543 | // ------------------------------------------------------------------- |
3544 | // Dot/dotty output |
3545 | |
3546 | #ifdef DEBUG |
3547 | |
3548 | class DotPrinter : public NodeVisitor { |
3549 | public: |
3550 | explicit DotPrinter(bool ignore_case) {} |
3551 | void PrintNode(const char* label, RegExpNode* node); |
3552 | void Visit(RegExpNode* node); |
3553 | void PrintAttributes(RegExpNode* from); |
3554 | void PrintOnFailure(RegExpNode* from, RegExpNode* to); |
3555 | #define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that); |
3556 | FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
3557 | #undef DECLARE_VISIT |
3558 | }; |
3559 | |
3560 | void DotPrinter::PrintNode(const char* label, RegExpNode* node) { |
3561 | OS::PrintErr("digraph G {\n graph [label=\"" ); |
3562 | for (intptr_t i = 0; label[i] != '\0'; i++) { |
3563 | switch (label[i]) { |
3564 | case '\\': |
3565 | OS::PrintErr("\\\\" ); |
3566 | break; |
3567 | case '"': |
3568 | OS::PrintErr("\"" ); |
3569 | break; |
3570 | default: |
3571 | OS::PrintErr("%c" , label[i]); |
3572 | break; |
3573 | } |
3574 | } |
3575 | OS::PrintErr("\"];\n" ); |
3576 | Visit(node); |
3577 | OS::PrintErr("}\n" ); |
3578 | } |
3579 | |
3580 | void DotPrinter::Visit(RegExpNode* node) { |
3581 | if (node->info()->visited) return; |
3582 | node->info()->visited = true; |
3583 | node->Accept(this); |
3584 | } |
3585 | |
3586 | void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { |
3587 | OS::PrintErr(" n%p -> n%p [style=dotted];\n" , from, on_failure); |
3588 | Visit(on_failure); |
3589 | } |
3590 | |
3591 | class AttributePrinter : public ValueObject { |
3592 | public: |
3593 | AttributePrinter() : first_(true) {} |
3594 | void PrintSeparator() { |
3595 | if (first_) { |
3596 | first_ = false; |
3597 | } else { |
3598 | OS::PrintErr("|" ); |
3599 | } |
3600 | } |
3601 | void PrintBit(const char* name, bool value) { |
3602 | if (!value) return; |
3603 | PrintSeparator(); |
3604 | OS::PrintErr("{%s}" , name); |
3605 | } |
3606 | void PrintPositive(const char* name, intptr_t value) { |
3607 | if (value < 0) return; |
3608 | PrintSeparator(); |
3609 | OS::PrintErr("{%s|%" Pd "}" , name, value); |
3610 | } |
3611 | |
3612 | private: |
3613 | bool first_; |
3614 | }; |
3615 | |
3616 | void DotPrinter::PrintAttributes(RegExpNode* that) { |
3617 | OS::PrintErr( |
3618 | " a%p [shape=Mrecord, color=grey, fontcolor=grey, " |
3619 | "margin=0.1, fontsize=10, label=\"{" , |
3620 | that); |
3621 | AttributePrinter printer; |
3622 | NodeInfo* info = that->info(); |
3623 | printer.PrintBit("NI" , info->follows_newline_interest); |
3624 | printer.PrintBit("WI" , info->follows_word_interest); |
3625 | printer.PrintBit("SI" , info->follows_start_interest); |
3626 | BlockLabel* label = that->label(); |
3627 | if (label->is_bound()) printer.PrintPositive("@" , label->pos()); |
3628 | OS::PrintErr( |
3629 | "}\"];\n" |
3630 | " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n" , |
3631 | that, that); |
3632 | } |
3633 | |
3634 | void DotPrinter::VisitChoice(ChoiceNode* that) { |
3635 | OS::PrintErr(" n%p [shape=Mrecord, label=\"?\"];\n" , that); |
3636 | for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
3637 | GuardedAlternative alt = that->alternatives()->At(i); |
3638 | OS::PrintErr(" n%p -> n%p" , that, alt.node()); |
3639 | } |
3640 | for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
3641 | GuardedAlternative alt = that->alternatives()->At(i); |
3642 | alt.node()->Accept(this); |
3643 | } |
3644 | } |
3645 | |
3646 | void DotPrinter::VisitText(TextNode* that) { |
3647 | OS::PrintErr(" n%p [label=\"" , that); |
3648 | for (intptr_t i = 0; i < that->elements()->length(); i++) { |
3649 | if (i > 0) OS::PrintErr(" " ); |
3650 | TextElement elm = that->elements()->At(i); |
3651 | switch (elm.text_type()) { |
3652 | case TextElement::ATOM: { |
3653 | ZoneGrowableArray<uint16_t>* data = elm.atom()->data(); |
3654 | for (intptr_t i = 0; i < data->length(); i++) { |
3655 | OS::PrintErr("%c" , static_cast<char>(data->At(i))); |
3656 | } |
3657 | break; |
3658 | } |
3659 | case TextElement::CHAR_CLASS: { |
3660 | RegExpCharacterClass* node = elm.char_class(); |
3661 | OS::PrintErr("[" ); |
3662 | if (node->is_negated()) OS::PrintErr("^" ); |
3663 | for (intptr_t j = 0; j < node->ranges()->length(); j++) { |
3664 | CharacterRange range = node->ranges()->At(j); |
3665 | PrintUtf16(range.from()); |
3666 | OS::PrintErr("-" ); |
3667 | PrintUtf16(range.to()); |
3668 | } |
3669 | OS::PrintErr("]" ); |
3670 | break; |
3671 | } |
3672 | default: |
3673 | UNREACHABLE(); |
3674 | } |
3675 | } |
3676 | OS::PrintErr("\", shape=box, peripheries=2];\n" ); |
3677 | PrintAttributes(that); |
3678 | OS::PrintErr(" n%p -> n%p;\n" , that, that->on_success()); |
3679 | Visit(that->on_success()); |
3680 | } |
3681 | |
3682 | void DotPrinter::VisitBackReference(BackReferenceNode* that) { |
3683 | OS::PrintErr(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n" , |
3684 | that, that->start_register(), that->end_register()); |
3685 | PrintAttributes(that); |
3686 | OS::PrintErr(" n%p -> n%p;\n" , that, that->on_success()); |
3687 | Visit(that->on_success()); |
3688 | } |
3689 | |
3690 | void DotPrinter::VisitEnd(EndNode* that) { |
3691 | OS::PrintErr(" n%p [style=bold, shape=point];\n" , that); |
3692 | PrintAttributes(that); |
3693 | } |
3694 | |
3695 | void DotPrinter::VisitAssertion(AssertionNode* that) { |
3696 | OS::PrintErr(" n%p [" , that); |
3697 | switch (that->assertion_type()) { |
3698 | case AssertionNode::AT_END: |
3699 | OS::PrintErr("label=\"$\", shape=septagon" ); |
3700 | break; |
3701 | case AssertionNode::AT_START: |
3702 | OS::PrintErr("label=\"^\", shape=septagon" ); |
3703 | break; |
3704 | case AssertionNode::AT_BOUNDARY: |
3705 | OS::PrintErr("label=\"\\b\", shape=septagon" ); |
3706 | break; |
3707 | case AssertionNode::AT_NON_BOUNDARY: |
3708 | OS::PrintErr("label=\"\\B\", shape=septagon" ); |
3709 | break; |
3710 | case AssertionNode::AFTER_NEWLINE: |
3711 | OS::PrintErr("label=\"(?<=\\n)\", shape=septagon" ); |
3712 | break; |
3713 | } |
3714 | OS::PrintErr("];\n" ); |
3715 | PrintAttributes(that); |
3716 | RegExpNode* successor = that->on_success(); |
3717 | OS::PrintErr(" n%p -> n%p;\n" , that, successor); |
3718 | Visit(successor); |
3719 | } |
3720 | |
3721 | void DotPrinter::VisitAction(ActionNode* that) { |
3722 | OS::PrintErr(" n%p [" , that); |
3723 | switch (that->action_type_) { |
3724 | case ActionNode::SET_REGISTER: |
3725 | OS::PrintErr("label=\"$%" Pd ":=%" Pd "\", shape=octagon" , |
3726 | that->data_.u_store_register.reg, |
3727 | that->data_.u_store_register.value); |
3728 | break; |
3729 | case ActionNode::INCREMENT_REGISTER: |
3730 | OS::PrintErr("label=\"$%" Pd "++\", shape=octagon" , |
3731 | that->data_.u_increment_register.reg); |
3732 | break; |
3733 | case ActionNode::STORE_POSITION: |
3734 | OS::PrintErr("label=\"$%" Pd ":=$pos\", shape=octagon" , |
3735 | that->data_.u_position_register.reg); |
3736 | break; |
3737 | case ActionNode::BEGIN_SUBMATCH: |
3738 | OS::PrintErr("label=\"$%" Pd ":=$pos,begin\", shape=septagon" , |
3739 | that->data_.u_submatch.current_position_register); |
3740 | break; |
3741 | case ActionNode::POSITIVE_SUBMATCH_SUCCESS: |
3742 | OS::PrintErr("label=\"escape\", shape=septagon" ); |
3743 | break; |
3744 | case ActionNode::EMPTY_MATCH_CHECK: |
3745 | OS::PrintErr("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon" , |
3746 | that->data_.u_empty_match_check.start_register, |
3747 | that->data_.u_empty_match_check.repetition_register, |
3748 | that->data_.u_empty_match_check.repetition_limit); |
3749 | break; |
3750 | case ActionNode::CLEAR_CAPTURES: { |
3751 | OS::PrintErr("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon" , |
3752 | that->data_.u_clear_captures.range_from, |
3753 | that->data_.u_clear_captures.range_to); |
3754 | break; |
3755 | } |
3756 | } |
3757 | OS::PrintErr("];\n" ); |
3758 | PrintAttributes(that); |
3759 | RegExpNode* successor = that->on_success(); |
3760 | OS::PrintErr(" n%p -> n%p;\n" , that, successor); |
3761 | Visit(successor); |
3762 | } |
3763 | |
3764 | void RegExpEngine::DotPrint(const char* label, |
3765 | RegExpNode* node, |
3766 | bool ignore_case) { |
3767 | DotPrinter printer(ignore_case); |
3768 | printer.PrintNode(label, node); |
3769 | } |
3770 | |
3771 | #endif // DEBUG |
3772 | |
3773 | // ------------------------------------------------------------------- |
3774 | // Tree to graph conversion |
3775 | |
3776 | // The zone in which we allocate graph nodes. |
3777 | #define OZ (on_success->zone()) |
3778 | |
3779 | RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, |
3780 | RegExpNode* on_success) { |
3781 | ZoneGrowableArray<TextElement>* elms = |
3782 | new (OZ) ZoneGrowableArray<TextElement>(1); |
3783 | elms->Add(TextElement::Atom(this)); |
3784 | return new (OZ) TextNode(elms, compiler->read_backward(), on_success); |
3785 | } |
3786 | |
3787 | RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, |
3788 | RegExpNode* on_success) { |
3789 | ZoneGrowableArray<TextElement>* elms = |
3790 | new (OZ) ZoneGrowableArray<TextElement>(1); |
3791 | for (intptr_t i = 0; i < elements()->length(); i++) { |
3792 | elms->Add(elements()->At(i)); |
3793 | } |
3794 | return new (OZ) TextNode(elms, compiler->read_backward(), on_success); |
3795 | } |
3796 | |
3797 | static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges, |
3798 | const int32_t* special_class, |
3799 | intptr_t length) { |
3800 | length--; // Remove final kRangeEndMarker. |
3801 | ASSERT(special_class[length] == kRangeEndMarker); |
3802 | ASSERT(ranges->length() != 0); |
3803 | ASSERT(length != 0); |
3804 | ASSERT(special_class[0] != 0); |
3805 | if (ranges->length() != (length >> 1) + 1) { |
3806 | return false; |
3807 | } |
3808 | CharacterRange range = ranges->At(0); |
3809 | if (range.from() != 0) { |
3810 | return false; |
3811 | } |
3812 | for (intptr_t i = 0; i < length; i += 2) { |
3813 | if (special_class[i] != (range.to() + 1)) { |
3814 | return false; |
3815 | } |
3816 | range = ranges->At((i >> 1) + 1); |
3817 | if (special_class[i + 1] != range.from()) { |
3818 | return false; |
3819 | } |
3820 | } |
3821 | if (range.to() != Utf::kMaxCodePoint) { |
3822 | return false; |
3823 | } |
3824 | return true; |
3825 | } |
3826 | |
3827 | static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges, |
3828 | const int32_t* special_class, |
3829 | intptr_t length) { |
3830 | length--; // Remove final kRangeEndMarker. |
3831 | ASSERT(special_class[length] == kRangeEndMarker); |
3832 | if (ranges->length() * 2 != length) { |
3833 | return false; |
3834 | } |
3835 | for (intptr_t i = 0; i < length; i += 2) { |
3836 | CharacterRange range = ranges->At(i >> 1); |
3837 | if (range.from() != special_class[i] || |
3838 | range.to() != special_class[i + 1] - 1) { |
3839 | return false; |
3840 | } |
3841 | } |
3842 | return true; |
3843 | } |
3844 | |
3845 | bool RegExpCharacterClass::is_standard() { |
3846 | // TODO(lrn): Remove need for this function, by not throwing away information |
3847 | // along the way. |
3848 | if (is_negated()) { |
3849 | return false; |
3850 | } |
3851 | if (set_.is_standard()) { |
3852 | return true; |
3853 | } |
3854 | if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { |
3855 | set_.set_standard_set_type('s'); |
3856 | return true; |
3857 | } |
3858 | if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { |
3859 | set_.set_standard_set_type('S'); |
3860 | return true; |
3861 | } |
3862 | if (CompareInverseRanges(set_.ranges(), kLineTerminatorRanges, |
3863 | kLineTerminatorRangeCount)) { |
3864 | set_.set_standard_set_type('.'); |
3865 | return true; |
3866 | } |
3867 | if (CompareRanges(set_.ranges(), kLineTerminatorRanges, |
3868 | kLineTerminatorRangeCount)) { |
3869 | set_.set_standard_set_type('n'); |
3870 | return true; |
3871 | } |
3872 | if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) { |
3873 | set_.set_standard_set_type('w'); |
3874 | return true; |
3875 | } |
3876 | if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) { |
3877 | set_.set_standard_set_type('W'); |
3878 | return true; |
3879 | } |
3880 | return false; |
3881 | } |
3882 | |
3883 | UnicodeRangeSplitter::UnicodeRangeSplitter( |
3884 | Zone* zone, |
3885 | ZoneGrowableArray<CharacterRange>* base) |
3886 | : zone_(zone), |
3887 | table_(zone), |
3888 | bmp_(nullptr), |
3889 | lead_surrogates_(nullptr), |
3890 | trail_surrogates_(nullptr), |
3891 | non_bmp_(nullptr) { |
3892 | // The unicode range splitter categorizes given character ranges into: |
3893 | // - Code points from the BMP representable by one code unit. |
3894 | // - Code points outside the BMP that need to be split into surrogate pairs. |
3895 | // - Lone lead surrogates. |
3896 | // - Lone trail surrogates. |
3897 | // Lone surrogates are valid code points, even though no actual characters. |
3898 | // They require special matching to make sure we do not split surrogate pairs. |
3899 | // We use the dispatch table to accomplish this. The base range is split up |
3900 | // by the table by the overlay ranges, and the Call callback is used to |
3901 | // filter and collect ranges for each category. |
3902 | for (intptr_t i = 0; i < base->length(); i++) { |
3903 | table_.AddRange(base->At(i), kBase, zone_); |
3904 | } |
3905 | // Add overlay ranges. |
3906 | table_.AddRange(CharacterRange::Range(0, Utf16::kLeadSurrogateStart - 1), |
3907 | kBmpCodePoints, zone_); |
3908 | table_.AddRange(CharacterRange::Range(Utf16::kLeadSurrogateStart, |
3909 | Utf16::kLeadSurrogateEnd), |
3910 | kLeadSurrogates, zone_); |
3911 | table_.AddRange(CharacterRange::Range(Utf16::kTrailSurrogateStart, |
3912 | Utf16::kTrailSurrogateEnd), |
3913 | kTrailSurrogates, zone_); |
3914 | table_.AddRange( |
3915 | CharacterRange::Range(Utf16::kTrailSurrogateEnd + 1, Utf16::kMaxCodeUnit), |
3916 | kBmpCodePoints, zone_); |
3917 | table_.AddRange( |
3918 | CharacterRange::Range(Utf16::kMaxCodeUnit + 1, Utf::kMaxCodePoint), |
3919 | kNonBmpCodePoints, zone_); |
3920 | table_.ForEach(this); |
3921 | } |
3922 | |
3923 | void UnicodeRangeSplitter::Call(uint32_t from, ChoiceTable::Entry entry) { |
3924 | OutSet* outset = entry.out_set(); |
3925 | if (!outset->Get(kBase)) return; |
3926 | ZoneGrowableArray<CharacterRange>** target = nullptr; |
3927 | if (outset->Get(kBmpCodePoints)) { |
3928 | target = &bmp_; |
3929 | } else if (outset->Get(kLeadSurrogates)) { |
3930 | target = &lead_surrogates_; |
3931 | } else if (outset->Get(kTrailSurrogates)) { |
3932 | target = &trail_surrogates_; |
3933 | } else { |
3934 | ASSERT(outset->Get(kNonBmpCodePoints)); |
3935 | target = &non_bmp_; |
3936 | } |
3937 | if (*target == nullptr) { |
3938 | *target = new (zone_) ZoneGrowableArray<CharacterRange>(2); |
3939 | } |
3940 | (*target)->Add(CharacterRange::Range(entry.from(), entry.to())); |
3941 | } |
3942 | |
3943 | void AddBmpCharacters(RegExpCompiler* compiler, |
3944 | ChoiceNode* result, |
3945 | RegExpNode* on_success, |
3946 | UnicodeRangeSplitter* splitter) { |
3947 | ZoneGrowableArray<CharacterRange>* bmp = splitter->bmp(); |
3948 | if (bmp == nullptr) return; |
3949 | result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges( |
3950 | bmp, compiler->read_backward(), on_success, RegExpFlags()))); |
3951 | } |
3952 | |
3953 | void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, |
3954 | ChoiceNode* result, |
3955 | RegExpNode* on_success, |
3956 | UnicodeRangeSplitter* splitter) { |
3957 | ZoneGrowableArray<CharacterRange>* non_bmp = splitter->non_bmp(); |
3958 | if (non_bmp == nullptr) return; |
3959 | ASSERT(!compiler->one_byte()); |
3960 | CharacterRange::Canonicalize(non_bmp); |
3961 | for (int i = 0; i < non_bmp->length(); i++) { |
3962 | // Match surrogate pair. |
3963 | // E.g. [\u10005-\u11005] becomes |
3964 | // \ud800[\udc05-\udfff]| |
3965 | // [\ud801-\ud803][\udc00-\udfff]| |
3966 | // \ud804[\udc00-\udc05] |
3967 | uint32_t from = non_bmp->At(i).from(); |
3968 | uint32_t to = non_bmp->At(i).to(); |
3969 | uint16_t from_points[2]; |
3970 | Utf16::Encode(from, from_points); |
3971 | uint16_t to_points[2]; |
3972 | Utf16::Encode(to, to_points); |
3973 | if (from_points[0] == to_points[0]) { |
3974 | // The lead surrogate is the same. |
3975 | result->AddAlternative( |
3976 | GuardedAlternative(TextNode::CreateForSurrogatePair( |
3977 | CharacterRange::Singleton(from_points[0]), |
3978 | CharacterRange::Range(from_points[1], to_points[1]), |
3979 | compiler->read_backward(), on_success, RegExpFlags()))); |
3980 | } else { |
3981 | if (from_points[1] != Utf16::kTrailSurrogateStart) { |
3982 | // Add [from_l][from_t-\udfff] |
3983 | result->AddAlternative( |
3984 | GuardedAlternative(TextNode::CreateForSurrogatePair( |
3985 | CharacterRange::Singleton(from_points[0]), |
3986 | CharacterRange::Range(from_points[1], |
3987 | Utf16::kTrailSurrogateEnd), |
3988 | compiler->read_backward(), on_success, RegExpFlags()))); |
3989 | from_points[0]++; |
3990 | } |
3991 | if (to_points[1] != Utf16::kTrailSurrogateEnd) { |
3992 | // Add [to_l][\udc00-to_t] |
3993 | result->AddAlternative( |
3994 | GuardedAlternative(TextNode::CreateForSurrogatePair( |
3995 | CharacterRange::Singleton(to_points[0]), |
3996 | CharacterRange::Range(Utf16::kTrailSurrogateStart, |
3997 | to_points[1]), |
3998 | compiler->read_backward(), on_success, RegExpFlags()))); |
3999 | to_points[0]--; |
4000 | } |
4001 | if (from_points[0] <= to_points[0]) { |
4002 | // Add [from_l-to_l][\udc00-\udfff] |
4003 | result->AddAlternative( |
4004 | GuardedAlternative(TextNode::CreateForSurrogatePair( |
4005 | CharacterRange::Range(from_points[0], to_points[0]), |
4006 | CharacterRange::Range(Utf16::kTrailSurrogateStart, |
4007 | Utf16::kTrailSurrogateEnd), |
4008 | compiler->read_backward(), on_success, RegExpFlags()))); |
4009 | } |
4010 | } |
4011 | } |
4012 | } |
4013 | |
4014 | RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch( |
4015 | RegExpCompiler* compiler, |
4016 | ZoneGrowableArray<CharacterRange>* lookbehind, |
4017 | ZoneGrowableArray<CharacterRange>* match, |
4018 | RegExpNode* on_success, |
4019 | bool read_backward, |
4020 | RegExpFlags flags) { |
4021 | RegExpNode* match_node = TextNode::CreateForCharacterRanges( |
4022 | match, read_backward, on_success, flags); |
4023 | int stack_register = compiler->UnicodeLookaroundStackRegister(); |
4024 | int position_register = compiler->UnicodeLookaroundPositionRegister(); |
4025 | RegExpLookaround::Builder lookaround(false, match_node, stack_register, |
4026 | position_register); |
4027 | RegExpNode* negative_match = TextNode::CreateForCharacterRanges( |
4028 | lookbehind, !read_backward, lookaround.on_match_success(), flags); |
4029 | return lookaround.ForMatch(negative_match); |
4030 | } |
4031 | |
4032 | RegExpNode* MatchAndNegativeLookaroundInReadDirection( |
4033 | RegExpCompiler* compiler, |
4034 | ZoneGrowableArray<CharacterRange>* match, |
4035 | ZoneGrowableArray<CharacterRange>* lookahead, |
4036 | RegExpNode* on_success, |
4037 | bool read_backward, |
4038 | RegExpFlags flags) { |
4039 | int stack_register = compiler->UnicodeLookaroundStackRegister(); |
4040 | int position_register = compiler->UnicodeLookaroundPositionRegister(); |
4041 | RegExpLookaround::Builder lookaround(false, on_success, stack_register, |
4042 | position_register); |
4043 | RegExpNode* negative_match = TextNode::CreateForCharacterRanges( |
4044 | lookahead, read_backward, lookaround.on_match_success(), flags); |
4045 | return TextNode::CreateForCharacterRanges( |
4046 | match, read_backward, lookaround.ForMatch(negative_match), flags); |
4047 | } |
4048 | |
4049 | void AddLoneLeadSurrogates(RegExpCompiler* compiler, |
4050 | ChoiceNode* result, |
4051 | RegExpNode* on_success, |
4052 | UnicodeRangeSplitter* splitter) { |
4053 | auto lead_surrogates = splitter->lead_surrogates(); |
4054 | if (lead_surrogates == nullptr) return; |
4055 | // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]). |
4056 | auto trail_surrogates = CharacterRange::List( |
4057 | on_success->zone(), CharacterRange::Range(Utf16::kTrailSurrogateStart, |
4058 | Utf16::kTrailSurrogateEnd)); |
4059 | |
4060 | RegExpNode* match; |
4061 | if (compiler->read_backward()) { |
4062 | // Reading backward. Assert that reading forward, there is no trail |
4063 | // surrogate, and then backward match the lead surrogate. |
4064 | match = NegativeLookaroundAgainstReadDirectionAndMatch( |
4065 | compiler, trail_surrogates, lead_surrogates, on_success, true, |
4066 | RegExpFlags()); |
4067 | } else { |
4068 | // Reading forward. Forward match the lead surrogate and assert that |
4069 | // no trail surrogate follows. |
4070 | match = MatchAndNegativeLookaroundInReadDirection( |
4071 | compiler, lead_surrogates, trail_surrogates, on_success, false, |
4072 | RegExpFlags()); |
4073 | } |
4074 | result->AddAlternative(GuardedAlternative(match)); |
4075 | } |
4076 | |
4077 | void AddLoneTrailSurrogates(RegExpCompiler* compiler, |
4078 | ChoiceNode* result, |
4079 | RegExpNode* on_success, |
4080 | UnicodeRangeSplitter* splitter) { |
4081 | auto trail_surrogates = splitter->trail_surrogates(); |
4082 | if (trail_surrogates == nullptr) return; |
4083 | // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01 |
4084 | auto lead_surrogates = CharacterRange::List( |
4085 | on_success->zone(), CharacterRange::Range(Utf16::kLeadSurrogateStart, |
4086 | Utf16::kLeadSurrogateEnd)); |
4087 | |
4088 | RegExpNode* match; |
4089 | if (compiler->read_backward()) { |
4090 | // Reading backward. Backward match the trail surrogate and assert that no |
4091 | // lead surrogate precedes it. |
4092 | match = MatchAndNegativeLookaroundInReadDirection( |
4093 | compiler, trail_surrogates, lead_surrogates, on_success, true, |
4094 | RegExpFlags()); |
4095 | } else { |
4096 | // Reading forward. Assert that reading backward, there is no lead |
4097 | // surrogate, and then forward match the trail surrogate. |
4098 | match = NegativeLookaroundAgainstReadDirectionAndMatch( |
4099 | compiler, lead_surrogates, trail_surrogates, on_success, false, |
4100 | RegExpFlags()); |
4101 | } |
4102 | result->AddAlternative(GuardedAlternative(match)); |
4103 | } |
4104 | |
4105 | RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler, |
4106 | RegExpNode* on_success) { |
4107 | // This implements ES2015 21.2.5.2.3, AdvanceStringIndex. |
4108 | ASSERT(!compiler->read_backward()); |
4109 | // Advance any character. If the character happens to be a lead surrogate and |
4110 | // we advanced into the middle of a surrogate pair, it will work out, as |
4111 | // nothing will match from there. We will have to advance again, consuming |
4112 | // the associated trail surrogate. |
4113 | auto range = CharacterRange::List( |
4114 | on_success->zone(), CharacterRange::Range(0, Utf16::kMaxCodeUnit)); |
4115 | return TextNode::CreateForCharacterRanges(range, false, on_success, |
4116 | RegExpFlags()); |
4117 | } |
4118 | |
4119 | void AddUnicodeCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges) { |
4120 | ASSERT(CharacterRange::IsCanonical(ranges)); |
4121 | |
4122 | // Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver. |
4123 | // See also https://crbug.com/v8/6727. |
4124 | // TODO(sstrickl): This only covers the special case of the {0,0x10FFFF} |
4125 | // range, which we use frequently internally. But large ranges can also easily |
4126 | // be created by the user. We might want to have a more general caching |
4127 | // mechanism for such ranges. |
4128 | if (ranges->length() == 1 && ranges->At(0).IsEverything(Utf::kMaxCodePoint)) { |
4129 | return; |
4130 | } |
4131 | |
4132 | icu::UnicodeSet set; |
4133 | for (int i = 0; i < ranges->length(); i++) { |
4134 | set.add(ranges->At(i).from(), ranges->At(i).to()); |
4135 | } |
4136 | ranges->Clear(); |
4137 | set.closeOver(USET_CASE_INSENSITIVE); |
4138 | // Full case mapping map single characters to multiple characters. |
4139 | // Those are represented as strings in the set. Remove them so that |
4140 | // we end up with only simple and common case mappings. |
4141 | set.removeAllStrings(); |
4142 | for (int i = 0; i < set.getRangeCount(); i++) { |
4143 | ranges->Add( |
4144 | CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i))); |
4145 | } |
4146 | // No errors and everything we collected have been ranges. |
4147 | CharacterRange::Canonicalize(ranges); |
4148 | } |
4149 | |
4150 | RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, |
4151 | RegExpNode* on_success) { |
4152 | set_.Canonicalize(); |
4153 | ZoneGrowableArray<CharacterRange>* ranges = this->ranges(); |
4154 | if (flags_.NeedsUnicodeCaseEquivalents()) { |
4155 | AddUnicodeCaseEquivalents(ranges); |
4156 | } |
4157 | if (flags_.IsUnicode() && !compiler->one_byte() && |
4158 | !contains_split_surrogate()) { |
4159 | if (is_negated()) { |
4160 | ZoneGrowableArray<CharacterRange>* negated = |
4161 | new ZoneGrowableArray<CharacterRange>(2); |
4162 | CharacterRange::Negate(ranges, negated); |
4163 | ranges = negated; |
4164 | } |
4165 | if (ranges->length() == 0) { |
4166 | RegExpCharacterClass* fail = |
4167 | new RegExpCharacterClass(ranges, RegExpFlags()); |
4168 | return new TextNode(fail, compiler->read_backward(), on_success); |
4169 | } |
4170 | if (standard_type() == '*') { |
4171 | return UnanchoredAdvance(compiler, on_success); |
4172 | } else { |
4173 | ChoiceNode* result = new (OZ) ChoiceNode(2, OZ); |
4174 | UnicodeRangeSplitter splitter(OZ, ranges); |
4175 | AddBmpCharacters(compiler, result, on_success, &splitter); |
4176 | AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter); |
4177 | AddLoneLeadSurrogates(compiler, result, on_success, &splitter); |
4178 | AddLoneTrailSurrogates(compiler, result, on_success, &splitter); |
4179 | return result; |
4180 | } |
4181 | } else { |
4182 | return new TextNode(this, compiler->read_backward(), on_success); |
4183 | } |
4184 | return new (OZ) TextNode(this, compiler->read_backward(), on_success); |
4185 | } |
4186 | |
4187 | RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, |
4188 | RegExpNode* on_success) { |
4189 | ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives(); |
4190 | intptr_t length = alternatives->length(); |
4191 | ChoiceNode* result = new (OZ) ChoiceNode(length, OZ); |
4192 | for (intptr_t i = 0; i < length; i++) { |
4193 | GuardedAlternative alternative( |
4194 | alternatives->At(i)->ToNode(compiler, on_success)); |
4195 | result->AddAlternative(alternative); |
4196 | } |
4197 | return result; |
4198 | } |
4199 | |
4200 | RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, |
4201 | RegExpNode* on_success) { |
4202 | return ToNode(min(), max(), is_greedy(), body(), compiler, on_success); |
4203 | } |
4204 | |
4205 | // Scoped object to keep track of how much we unroll quantifier loops in the |
4206 | // regexp graph generator. |
4207 | class RegExpExpansionLimiter : public ValueObject { |
4208 | public: |
4209 | static const intptr_t kMaxExpansionFactor = 6; |
4210 | RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor) |
4211 | : compiler_(compiler), |
4212 | saved_expansion_factor_(compiler->current_expansion_factor()), |
4213 | ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { |
4214 | ASSERT(factor > 0); |
4215 | if (ok_to_expand_) { |
4216 | if (factor > kMaxExpansionFactor) { |
4217 | // Avoid integer overflow of the current expansion factor. |
4218 | ok_to_expand_ = false; |
4219 | compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); |
4220 | } else { |
4221 | intptr_t new_factor = saved_expansion_factor_ * factor; |
4222 | ok_to_expand_ = (new_factor <= kMaxExpansionFactor); |
4223 | compiler->set_current_expansion_factor(new_factor); |
4224 | } |
4225 | } |
4226 | } |
4227 | |
4228 | ~RegExpExpansionLimiter() { |
4229 | compiler_->set_current_expansion_factor(saved_expansion_factor_); |
4230 | } |
4231 | |
4232 | bool ok_to_expand() { return ok_to_expand_; } |
4233 | |
4234 | private: |
4235 | RegExpCompiler* compiler_; |
4236 | intptr_t saved_expansion_factor_; |
4237 | bool ok_to_expand_; |
4238 | |
4239 | DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); |
4240 | }; |
4241 | |
4242 | RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
4243 | intptr_t max, |
4244 | bool is_greedy, |
4245 | RegExpTree* body, |
4246 | RegExpCompiler* compiler, |
4247 | RegExpNode* on_success, |
4248 | bool not_at_start) { |
4249 | // x{f, t} becomes this: |
4250 | // |
4251 | // (r++)<-. |
4252 | // | ` |
4253 | // | (x) |
4254 | // v ^ |
4255 | // (r=0)-->(?)---/ [if r < t] |
4256 | // | |
4257 | // [if r >= f] \----> ... |
4258 | // |
4259 | |
4260 | // 15.10.2.5 RepeatMatcher algorithm. |
4261 | // The parser has already eliminated the case where max is 0. In the case |
4262 | // where max_match is zero the parser has removed the quantifier if min was |
4263 | // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. |
4264 | |
4265 | // If we know that we cannot match zero length then things are a little |
4266 | // simpler since we don't need to make the special zero length match check |
4267 | // from step 2.1. If the min and max are small we can unroll a little in |
4268 | // this case. |
4269 | // Unroll (foo)+ and (foo){3,} |
4270 | static const intptr_t kMaxUnrolledMinMatches = 3; |
4271 | // Unroll (foo)? and (foo){x,3} |
4272 | static const intptr_t kMaxUnrolledMaxMatches = 3; |
4273 | if (max == 0) return on_success; // This can happen due to recursion. |
4274 | bool body_can_be_empty = (body->min_match() == 0); |
4275 | intptr_t body_start_reg = RegExpCompiler::kNoRegister; |
4276 | Interval capture_registers = body->CaptureRegisters(); |
4277 | bool needs_capture_clearing = !capture_registers.is_empty(); |
4278 | Zone* zone = compiler->zone(); |
4279 | |
4280 | if (body_can_be_empty) { |
4281 | body_start_reg = compiler->AllocateRegister(); |
4282 | } else if (kRegexpOptimization && !needs_capture_clearing) { |
4283 | // Only unroll if there are no captures and the body can't be |
4284 | // empty. |
4285 | { |
4286 | RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0)); |
4287 | if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { |
4288 | intptr_t new_max = (max == kInfinity) ? max : max - min; |
4289 | // Recurse once to get the loop or optional matches after the fixed |
4290 | // ones. |
4291 | RegExpNode* answer = |
4292 | ToNode(0, new_max, is_greedy, body, compiler, on_success, true); |
4293 | // Unroll the forced matches from 0 to min. This can cause chains of |
4294 | // TextNodes (which the parser does not generate). These should be |
4295 | // combined if it turns out they hinder good code generation. |
4296 | for (intptr_t i = 0; i < min; i++) { |
4297 | answer = body->ToNode(compiler, answer); |
4298 | } |
4299 | return answer; |
4300 | } |
4301 | } |
4302 | if (max <= kMaxUnrolledMaxMatches && min == 0) { |
4303 | ASSERT(max > 0); // Due to the 'if' above. |
4304 | RegExpExpansionLimiter limiter(compiler, max); |
4305 | if (limiter.ok_to_expand()) { |
4306 | // Unroll the optional matches up to max. |
4307 | RegExpNode* answer = on_success; |
4308 | for (intptr_t i = 0; i < max; i++) { |
4309 | ChoiceNode* alternation = new (zone) ChoiceNode(2, zone); |
4310 | if (is_greedy) { |
4311 | alternation->AddAlternative( |
4312 | GuardedAlternative(body->ToNode(compiler, answer))); |
4313 | alternation->AddAlternative(GuardedAlternative(on_success)); |
4314 | } else { |
4315 | alternation->AddAlternative(GuardedAlternative(on_success)); |
4316 | alternation->AddAlternative( |
4317 | GuardedAlternative(body->ToNode(compiler, answer))); |
4318 | } |
4319 | answer = alternation; |
4320 | if (not_at_start && !compiler->read_backward()) { |
4321 | alternation->set_not_at_start(); |
4322 | } |
4323 | } |
4324 | return answer; |
4325 | } |
4326 | } |
4327 | } |
4328 | bool has_min = min > 0; |
4329 | bool has_max = max < RegExpTree::kInfinity; |
4330 | bool needs_counter = has_min || has_max; |
4331 | intptr_t reg_ctr = needs_counter ? compiler->AllocateRegister() |
4332 | : RegExpCompiler::kNoRegister; |
4333 | LoopChoiceNode* center = new (zone) |
4334 | LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone); |
4335 | if (not_at_start && !compiler->read_backward()) center->set_not_at_start(); |
4336 | RegExpNode* loop_return = |
4337 | needs_counter ? static_cast<RegExpNode*>( |
4338 | ActionNode::IncrementRegister(reg_ctr, center)) |
4339 | : static_cast<RegExpNode*>(center); |
4340 | if (body_can_be_empty) { |
4341 | // If the body can be empty we need to check if it was and then |
4342 | // backtrack. |
4343 | loop_return = |
4344 | ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return); |
4345 | } |
4346 | RegExpNode* body_node = body->ToNode(compiler, loop_return); |
4347 | if (body_can_be_empty) { |
4348 | // If the body can be empty we need to store the start position |
4349 | // so we can bail out if it was empty. |
4350 | body_node = ActionNode::StorePosition(body_start_reg, false, body_node); |
4351 | } |
4352 | if (needs_capture_clearing) { |
4353 | // Before entering the body of this loop we need to clear captures. |
4354 | body_node = ActionNode::ClearCaptures(capture_registers, body_node); |
4355 | } |
4356 | GuardedAlternative body_alt(body_node); |
4357 | if (has_max) { |
4358 | Guard* body_guard = new (zone) Guard(reg_ctr, Guard::LT, max); |
4359 | body_alt.AddGuard(body_guard, zone); |
4360 | } |
4361 | GuardedAlternative rest_alt(on_success); |
4362 | if (has_min) { |
4363 | Guard* rest_guard = new (zone) Guard(reg_ctr, Guard::GEQ, min); |
4364 | rest_alt.AddGuard(rest_guard, zone); |
4365 | } |
4366 | if (is_greedy) { |
4367 | center->AddLoopAlternative(body_alt); |
4368 | center->AddContinueAlternative(rest_alt); |
4369 | } else { |
4370 | center->AddContinueAlternative(rest_alt); |
4371 | center->AddLoopAlternative(body_alt); |
4372 | } |
4373 | if (needs_counter) { |
4374 | return ActionNode::SetRegister(reg_ctr, 0, center); |
4375 | } else { |
4376 | return center; |
4377 | } |
4378 | } |
4379 | |
4380 | namespace { |
4381 | // Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and |
4382 | // \B to (?<=\w)(?=\w)|(?<=\W)(?=\W) |
4383 | RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler, |
4384 | RegExpNode* on_success, |
4385 | RegExpAssertion::AssertionType type, |
4386 | RegExpFlags flags) { |
4387 | ASSERT(flags.NeedsUnicodeCaseEquivalents()); |
4388 | ZoneGrowableArray<CharacterRange>* word_range = |
4389 | new ZoneGrowableArray<CharacterRange>(2); |
4390 | CharacterRange::AddClassEscape('w', word_range, true); |
4391 | int stack_register = compiler->UnicodeLookaroundStackRegister(); |
4392 | int position_register = compiler->UnicodeLookaroundPositionRegister(); |
4393 | ChoiceNode* result = new (OZ) ChoiceNode(2, OZ); |
4394 | // Add two choices. The (non-)boundary could start with a word or |
4395 | // a non-word-character. |
4396 | for (int i = 0; i < 2; i++) { |
4397 | bool lookbehind_for_word = i == 0; |
4398 | bool lookahead_for_word = |
4399 | (type == RegExpAssertion::BOUNDARY) ^ lookbehind_for_word; |
4400 | // Look to the left. |
4401 | RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success, |
4402 | stack_register, position_register); |
4403 | RegExpNode* backward = TextNode::CreateForCharacterRanges( |
4404 | word_range, true, lookbehind.on_match_success(), flags); |
4405 | // Look to the right. |
4406 | RegExpLookaround::Builder lookahead(lookahead_for_word, |
4407 | lookbehind.ForMatch(backward), |
4408 | stack_register, position_register); |
4409 | RegExpNode* forward = TextNode::CreateForCharacterRanges( |
4410 | word_range, false, lookahead.on_match_success(), flags); |
4411 | result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward))); |
4412 | } |
4413 | return result; |
4414 | } |
4415 | } // anonymous namespace |
4416 | |
4417 | RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
4418 | RegExpNode* on_success) { |
4419 | switch (assertion_type()) { |
4420 | case START_OF_LINE: |
4421 | return AssertionNode::AfterNewline(on_success); |
4422 | case START_OF_INPUT: |
4423 | return AssertionNode::AtStart(on_success); |
4424 | case BOUNDARY: |
4425 | return flags_.NeedsUnicodeCaseEquivalents() |
4426 | ? BoundaryAssertionAsLookaround(compiler, on_success, BOUNDARY, |
4427 | flags_) |
4428 | : AssertionNode::AtBoundary(on_success); |
4429 | case NON_BOUNDARY: |
4430 | return flags_.NeedsUnicodeCaseEquivalents() |
4431 | ? BoundaryAssertionAsLookaround(compiler, on_success, |
4432 | NON_BOUNDARY, flags_) |
4433 | : AssertionNode::AtNonBoundary(on_success); |
4434 | case END_OF_INPUT: |
4435 | return AssertionNode::AtEnd(on_success); |
4436 | case END_OF_LINE: { |
4437 | // Compile $ in multiline regexps as an alternation with a positive |
4438 | // lookahead in one side and an end-of-input on the other side. |
4439 | // We need two registers for the lookahead. |
4440 | intptr_t stack_pointer_register = compiler->AllocateRegister(); |
4441 | intptr_t position_register = compiler->AllocateRegister(); |
4442 | // The ChoiceNode to distinguish between a newline and end-of-input. |
4443 | ChoiceNode* result = new ChoiceNode(2, on_success->zone()); |
4444 | // Create a newline atom. |
4445 | ZoneGrowableArray<CharacterRange>* newline_ranges = |
4446 | new ZoneGrowableArray<CharacterRange>(3); |
4447 | CharacterRange::AddClassEscape('n', newline_ranges); |
4448 | RegExpCharacterClass* newline_atom = |
4449 | new RegExpCharacterClass('n', RegExpFlags()); |
4450 | TextNode* newline_matcher = |
4451 | new TextNode(newline_atom, /*read_backwards=*/false, |
4452 | ActionNode::PositiveSubmatchSuccess( |
4453 | stack_pointer_register, position_register, |
4454 | 0, // No captures inside. |
4455 | -1, // Ignored if no captures. |
4456 | on_success)); |
4457 | // Create an end-of-input matcher. |
4458 | RegExpNode* end_of_line = ActionNode::BeginSubmatch( |
4459 | stack_pointer_register, position_register, newline_matcher); |
4460 | // Add the two alternatives to the ChoiceNode. |
4461 | GuardedAlternative eol_alternative(end_of_line); |
4462 | result->AddAlternative(eol_alternative); |
4463 | GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); |
4464 | result->AddAlternative(end_alternative); |
4465 | return result; |
4466 | } |
4467 | default: |
4468 | UNREACHABLE(); |
4469 | } |
4470 | return on_success; |
4471 | } |
4472 | |
4473 | RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, |
4474 | RegExpNode* on_success) { |
4475 | return new (OZ) BackReferenceNode(RegExpCapture::StartRegister(index()), |
4476 | RegExpCapture::EndRegister(index()), flags_, |
4477 | compiler->read_backward(), on_success); |
4478 | } |
4479 | |
4480 | RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, |
4481 | RegExpNode* on_success) { |
4482 | return on_success; |
4483 | } |
4484 | |
4485 | RegExpLookaround::Builder::Builder(bool is_positive, |
4486 | RegExpNode* on_success, |
4487 | intptr_t stack_pointer_register, |
4488 | intptr_t position_register, |
4489 | intptr_t capture_register_count, |
4490 | intptr_t capture_register_start) |
4491 | : is_positive_(is_positive), |
4492 | on_success_(on_success), |
4493 | stack_pointer_register_(stack_pointer_register), |
4494 | position_register_(position_register) { |
4495 | if (is_positive_) { |
4496 | on_match_success_ = ActionNode::PositiveSubmatchSuccess( |
4497 | stack_pointer_register, position_register, capture_register_count, |
4498 | capture_register_start, on_success); |
4499 | } else { |
4500 | on_match_success_ = new (OZ) NegativeSubmatchSuccess( |
4501 | stack_pointer_register, position_register, capture_register_count, |
4502 | capture_register_start, OZ); |
4503 | } |
4504 | } |
4505 | |
4506 | RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) { |
4507 | if (is_positive_) { |
4508 | return ActionNode::BeginSubmatch(stack_pointer_register_, |
4509 | position_register_, match); |
4510 | } else { |
4511 | Zone* zone = on_success_->zone(); |
4512 | // We use a ChoiceNode to represent the negative lookaround. The first |
4513 | // alternative is the negative match. On success, the end node backtracks. |
4514 | // On failure, the second alternative is tried and leads to success. |
4515 | // NegativeLookaroundChoiceNode is a special ChoiceNode that ignores the |
4516 | // first exit when calculating quick checks. |
4517 | ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode( |
4518 | GuardedAlternative(match), GuardedAlternative(on_success_), zone); |
4519 | return ActionNode::BeginSubmatch(stack_pointer_register_, |
4520 | position_register_, choice_node); |
4521 | } |
4522 | } |
4523 | |
4524 | RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler, |
4525 | RegExpNode* on_success) { |
4526 | intptr_t stack_pointer_register = compiler->AllocateRegister(); |
4527 | intptr_t position_register = compiler->AllocateRegister(); |
4528 | |
4529 | const intptr_t registers_per_capture = 2; |
4530 | const intptr_t register_of_first_capture = 2; |
4531 | intptr_t register_count = capture_count_ * registers_per_capture; |
4532 | intptr_t register_start = |
4533 | register_of_first_capture + capture_from_ * registers_per_capture; |
4534 | |
4535 | RegExpNode* result; |
4536 | bool was_reading_backward = compiler->read_backward(); |
4537 | compiler->set_read_backward(type() == LOOKBEHIND); |
4538 | Builder builder(is_positive(), on_success, stack_pointer_register, |
4539 | position_register, register_count, register_start); |
4540 | RegExpNode* match = body_->ToNode(compiler, builder.on_match_success()); |
4541 | result = builder.ForMatch(match); |
4542 | compiler->set_read_backward(was_reading_backward); |
4543 | return result; |
4544 | } |
4545 | |
4546 | RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, |
4547 | RegExpNode* on_success) { |
4548 | return ToNode(body(), index(), compiler, on_success); |
4549 | } |
4550 | |
4551 | RegExpNode* RegExpCapture::ToNode(RegExpTree* body, |
4552 | intptr_t index, |
4553 | RegExpCompiler* compiler, |
4554 | RegExpNode* on_success) { |
4555 | ASSERT(body != nullptr); |
4556 | intptr_t start_reg = RegExpCapture::StartRegister(index); |
4557 | intptr_t end_reg = RegExpCapture::EndRegister(index); |
4558 | if (compiler->read_backward()) { |
4559 | intptr_t tmp = end_reg; |
4560 | end_reg = start_reg; |
4561 | start_reg = tmp; |
4562 | } |
4563 | RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); |
4564 | RegExpNode* body_node = body->ToNode(compiler, store_end); |
4565 | return ActionNode::StorePosition(start_reg, true, body_node); |
4566 | } |
4567 | |
4568 | RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, |
4569 | RegExpNode* on_success) { |
4570 | ZoneGrowableArray<RegExpTree*>* children = nodes(); |
4571 | RegExpNode* current = on_success; |
4572 | if (compiler->read_backward()) { |
4573 | for (intptr_t i = 0; i < children->length(); i++) { |
4574 | current = children->At(i)->ToNode(compiler, current); |
4575 | } |
4576 | } else { |
4577 | for (intptr_t i = children->length() - 1; i >= 0; i--) { |
4578 | current = children->At(i)->ToNode(compiler, current); |
4579 | } |
4580 | } |
4581 | return current; |
4582 | } |
4583 | |
4584 | static void AddClass(const int32_t* elmv, |
4585 | intptr_t elmc, |
4586 | ZoneGrowableArray<CharacterRange>* ranges) { |
4587 | elmc--; |
4588 | ASSERT(elmv[elmc] == kRangeEndMarker); |
4589 | for (intptr_t i = 0; i < elmc; i += 2) { |
4590 | ASSERT(elmv[i] < elmv[i + 1]); |
4591 | ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1)); |
4592 | } |
4593 | } |
4594 | |
4595 | static void AddClassNegated(const int32_t* elmv, |
4596 | intptr_t elmc, |
4597 | ZoneGrowableArray<CharacterRange>* ranges) { |
4598 | elmc--; |
4599 | ASSERT(elmv[elmc] == kRangeEndMarker); |
4600 | ASSERT(elmv[0] != 0x0000); |
4601 | ASSERT(elmv[elmc - 1] != Utf::kMaxCodePoint); |
4602 | uint16_t last = 0x0000; |
4603 | for (intptr_t i = 0; i < elmc; i += 2) { |
4604 | ASSERT(last <= elmv[i] - 1); |
4605 | ASSERT(elmv[i] < elmv[i + 1]); |
4606 | ranges->Add(CharacterRange(last, elmv[i] - 1)); |
4607 | last = elmv[i + 1]; |
4608 | } |
4609 | ranges->Add(CharacterRange(last, Utf::kMaxCodePoint)); |
4610 | } |
4611 | |
4612 | void CharacterRange::AddClassEscape(uint16_t type, |
4613 | ZoneGrowableArray<CharacterRange>* ranges, |
4614 | bool add_unicode_case_equivalents) { |
4615 | if (add_unicode_case_equivalents && (type == 'w' || type == 'W')) { |
4616 | // See #sec-runtime-semantics-wordcharacters-abstract-operation |
4617 | // In case of unicode and ignore_case, we need to create the closure over |
4618 | // case equivalent characters before negating. |
4619 | ZoneGrowableArray<CharacterRange>* new_ranges = |
4620 | new ZoneGrowableArray<CharacterRange>(2); |
4621 | AddClass(kWordRanges, kWordRangeCount, new_ranges); |
4622 | AddUnicodeCaseEquivalents(new_ranges); |
4623 | if (type == 'W') { |
4624 | ZoneGrowableArray<CharacterRange>* negated = |
4625 | new ZoneGrowableArray<CharacterRange>(2); |
4626 | CharacterRange::Negate(new_ranges, negated); |
4627 | new_ranges = negated; |
4628 | } |
4629 | ranges->AddArray(*new_ranges); |
4630 | return; |
4631 | } |
4632 | AddClassEscape(type, ranges); |
4633 | } |
4634 | |
4635 | void CharacterRange::AddClassEscape(uint16_t type, |
4636 | ZoneGrowableArray<CharacterRange>* ranges) { |
4637 | switch (type) { |
4638 | case 's': |
4639 | AddClass(kSpaceRanges, kSpaceRangeCount, ranges); |
4640 | break; |
4641 | case 'S': |
4642 | AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges); |
4643 | break; |
4644 | case 'w': |
4645 | AddClass(kWordRanges, kWordRangeCount, ranges); |
4646 | break; |
4647 | case 'W': |
4648 | AddClassNegated(kWordRanges, kWordRangeCount, ranges); |
4649 | break; |
4650 | case 'd': |
4651 | AddClass(kDigitRanges, kDigitRangeCount, ranges); |
4652 | break; |
4653 | case 'D': |
4654 | AddClassNegated(kDigitRanges, kDigitRangeCount, ranges); |
4655 | break; |
4656 | case '.': |
4657 | AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges); |
4658 | break; |
4659 | // This is not a character range as defined by the spec but a |
4660 | // convenient shorthand for a character class that matches any |
4661 | // character. |
4662 | case '*': |
4663 | ranges->Add(CharacterRange::Everything()); |
4664 | break; |
4665 | // This is the set of characters matched by the $ and ^ symbols |
4666 | // in multiline mode. |
4667 | case 'n': |
4668 | AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges); |
4669 | break; |
4670 | default: |
4671 | UNREACHABLE(); |
4672 | } |
4673 | } |
4674 | |
4675 | void CharacterRange::AddCaseEquivalents( |
4676 | ZoneGrowableArray<CharacterRange>* ranges, |
4677 | bool is_one_byte, |
4678 | Zone* zone) { |
4679 | CharacterRange::Canonicalize(ranges); |
4680 | int range_count = ranges->length(); |
4681 | for (intptr_t i = 0; i < range_count; i++) { |
4682 | CharacterRange range = ranges->At(i); |
4683 | int32_t bottom = range.from(); |
4684 | if (bottom > Utf16::kMaxCodeUnit) continue; |
4685 | int32_t top = Utils::Minimum(range.to(), Utf16::kMaxCodeUnit); |
4686 | // Nothing to be done for surrogates |
4687 | if (bottom >= Utf16::kLeadSurrogateStart && |
4688 | top <= Utf16::kTrailSurrogateEnd) { |
4689 | continue; |
4690 | } |
4691 | if (is_one_byte && !RangeContainsLatin1Equivalents(range)) { |
4692 | if (bottom > Symbols::kMaxOneCharCodeSymbol) continue; |
4693 | if (top > Symbols::kMaxOneCharCodeSymbol) { |
4694 | top = Symbols::kMaxOneCharCodeSymbol; |
4695 | } |
4696 | } |
4697 | |
4698 | unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
4699 | unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange; |
4700 | int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
4701 | if (top == bottom) { |
4702 | // If this is a singleton we just expand the one character. |
4703 | intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); |
4704 | for (intptr_t i = 0; i < length; i++) { |
4705 | int32_t chr = chars[i]; |
4706 | if (chr != bottom) { |
4707 | ranges->Add(CharacterRange::Singleton(chars[i])); |
4708 | } |
4709 | } |
4710 | } else { |
4711 | // If this is a range we expand the characters block by block, |
4712 | // expanding contiguous subranges (blocks) one at a time. |
4713 | // The approach is as follows. For a given start character we |
4714 | // look up the remainder of the block that contains it (represented |
4715 | // by the end point), for instance we find 'z' if the character |
4716 | // is 'c'. A block is characterized by the property |
4717 | // that all characters uncanonicalize in the same way, except that |
4718 | // each entry in the result is incremented by the distance from the first |
4719 | // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] |
4720 | // and the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. |
4721 | // Once we've found the end point we look up its uncanonicalization |
4722 | // and produce a range for each element. For instance for [c-f] |
4723 | // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only |
4724 | // add a range if it is not already contained in the input, so [c-f] |
4725 | // will be skipped but [C-F] will be added. If this range is not |
4726 | // completely contained in a block we do this for all the blocks |
4727 | // covered by the range (handling characters that is not in a block |
4728 | // as a "singleton block"). |
4729 | int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
4730 | intptr_t pos = bottom; |
4731 | while (pos <= top) { |
4732 | intptr_t length = jsregexp_canonrange.get(pos, '\0', range); |
4733 | int32_t block_end; |
4734 | if (length == 0) { |
4735 | block_end = pos; |
4736 | } else { |
4737 | ASSERT(length == 1); |
4738 | block_end = range[0]; |
4739 | } |
4740 | intptr_t end = (block_end > top) ? top : block_end; |
4741 | length = jsregexp_uncanonicalize.get(block_end, '\0', range); |
4742 | for (intptr_t i = 0; i < length; i++) { |
4743 | int32_t c = range[i]; |
4744 | int32_t range_from = c - (block_end - pos); |
4745 | int32_t range_to = c - (block_end - end); |
4746 | if (!(bottom <= range_from && range_to <= top)) { |
4747 | ranges->Add(CharacterRange(range_from, range_to)); |
4748 | } |
4749 | } |
4750 | pos = end + 1; |
4751 | } |
4752 | } |
4753 | } |
4754 | } |
4755 | |
4756 | bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) { |
4757 | ASSERT(ranges != NULL); |
4758 | intptr_t n = ranges->length(); |
4759 | if (n <= 1) return true; |
4760 | intptr_t max = ranges->At(0).to(); |
4761 | for (intptr_t i = 1; i < n; i++) { |
4762 | CharacterRange next_range = ranges->At(i); |
4763 | if (next_range.from() <= max + 1) return false; |
4764 | max = next_range.to(); |
4765 | } |
4766 | return true; |
4767 | } |
4768 | |
4769 | ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() { |
4770 | if (ranges_ == NULL) { |
4771 | ranges_ = new ZoneGrowableArray<CharacterRange>(2); |
4772 | CharacterRange::AddClassEscape(standard_set_type_, ranges_); |
4773 | } |
4774 | return ranges_; |
4775 | } |
4776 | |
4777 | // Move a number of elements in a zone array to another position |
4778 | // in the same array. Handles overlapping source and target areas. |
4779 | static void MoveRanges(ZoneGrowableArray<CharacterRange>* list, |
4780 | intptr_t from, |
4781 | intptr_t to, |
4782 | intptr_t count) { |
4783 | // Ranges are potentially overlapping. |
4784 | if (from < to) { |
4785 | for (intptr_t i = count - 1; i >= 0; i--) { |
4786 | (*list)[to + i] = list->At(from + i); |
4787 | } |
4788 | } else { |
4789 | for (intptr_t i = 0; i < count; i++) { |
4790 | (*list)[to + i] = list->At(from + i); |
4791 | } |
4792 | } |
4793 | } |
4794 | |
4795 | static intptr_t InsertRangeInCanonicalList( |
4796 | ZoneGrowableArray<CharacterRange>* list, |
4797 | intptr_t count, |
4798 | CharacterRange insert) { |
4799 | // Inserts a range into list[0..count[, which must be sorted |
4800 | // by from value and non-overlapping and non-adjacent, using at most |
4801 | // list[0..count] for the result. Returns the number of resulting |
4802 | // canonicalized ranges. Inserting a range may collapse existing ranges into |
4803 | // fewer ranges, so the return value can be anything in the range 1..count+1. |
4804 | int32_t from = insert.from(); |
4805 | int32_t to = insert.to(); |
4806 | intptr_t start_pos = 0; |
4807 | intptr_t end_pos = count; |
4808 | for (intptr_t i = count - 1; i >= 0; i--) { |
4809 | CharacterRange current = list->At(i); |
4810 | if (current.from() > to + 1) { |
4811 | end_pos = i; |
4812 | } else if (current.to() + 1 < from) { |
4813 | start_pos = i + 1; |
4814 | break; |
4815 | } |
4816 | } |
4817 | |
4818 | // Inserted range overlaps, or is adjacent to, ranges at positions |
4819 | // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are |
4820 | // not affected by the insertion. |
4821 | // If start_pos == end_pos, the range must be inserted before start_pos. |
4822 | // if start_pos < end_pos, the entire range from start_pos to end_pos |
4823 | // must be merged with the insert range. |
4824 | |
4825 | if (start_pos == end_pos) { |
4826 | // Insert between existing ranges at position start_pos. |
4827 | if (start_pos < count) { |
4828 | MoveRanges(list, start_pos, start_pos + 1, count - start_pos); |
4829 | } |
4830 | (*list)[start_pos] = insert; |
4831 | return count + 1; |
4832 | } |
4833 | if (start_pos + 1 == end_pos) { |
4834 | // Replace single existing range at position start_pos. |
4835 | CharacterRange to_replace = list->At(start_pos); |
4836 | intptr_t new_from = Utils::Minimum(to_replace.from(), from); |
4837 | intptr_t new_to = Utils::Maximum(to_replace.to(), to); |
4838 | (*list)[start_pos] = CharacterRange(new_from, new_to); |
4839 | return count; |
4840 | } |
4841 | // Replace a number of existing ranges from start_pos to end_pos - 1. |
4842 | // Move the remaining ranges down. |
4843 | |
4844 | intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from); |
4845 | intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to); |
4846 | if (end_pos < count) { |
4847 | MoveRanges(list, end_pos, start_pos + 1, count - end_pos); |
4848 | } |
4849 | (*list)[start_pos] = CharacterRange(new_from, new_to); |
4850 | return count - (end_pos - start_pos) + 1; |
4851 | } |
4852 | |
4853 | void CharacterSet::Canonicalize() { |
4854 | // Special/default classes are always considered canonical. The result |
4855 | // of calling ranges() will be sorted. |
4856 | if (ranges_ == NULL) return; |
4857 | CharacterRange::Canonicalize(ranges_); |
4858 | } |
4859 | |
4860 | void CharacterRange::Canonicalize( |
4861 | ZoneGrowableArray<CharacterRange>* character_ranges) { |
4862 | if (character_ranges->length() <= 1) return; |
4863 | // Check whether ranges are already canonical (increasing, non-overlapping, |
4864 | // non-adjacent). |
4865 | intptr_t n = character_ranges->length(); |
4866 | intptr_t max = character_ranges->At(0).to(); |
4867 | intptr_t i = 1; |
4868 | while (i < n) { |
4869 | CharacterRange current = character_ranges->At(i); |
4870 | if (current.from() <= max + 1) { |
4871 | break; |
4872 | } |
4873 | max = current.to(); |
4874 | i++; |
4875 | } |
4876 | // Canonical until the i'th range. If that's all of them, we are done. |
4877 | if (i == n) return; |
4878 | |
4879 | // The ranges at index i and forward are not canonicalized. Make them so by |
4880 | // doing the equivalent of insertion sort (inserting each into the previous |
4881 | // list, in order). |
4882 | // Notice that inserting a range can reduce the number of ranges in the |
4883 | // result due to combining of adjacent and overlapping ranges. |
4884 | intptr_t read = i; // Range to insert. |
4885 | intptr_t num_canonical = i; // Length of canonicalized part of list. |
4886 | do { |
4887 | num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical, |
4888 | character_ranges->At(read)); |
4889 | read++; |
4890 | } while (read < n); |
4891 | character_ranges->TruncateTo(num_canonical); |
4892 | |
4893 | ASSERT(CharacterRange::IsCanonical(character_ranges)); |
4894 | } |
4895 | |
4896 | void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges, |
4897 | ZoneGrowableArray<CharacterRange>* negated_ranges) { |
4898 | ASSERT(CharacterRange::IsCanonical(ranges)); |
4899 | ASSERT(negated_ranges->length() == 0); |
4900 | intptr_t range_count = ranges->length(); |
4901 | uint32_t from = 0; |
4902 | intptr_t i = 0; |
4903 | if (range_count > 0 && ranges->At(0).from() == 0) { |
4904 | from = ranges->At(0).to(); |
4905 | i = 1; |
4906 | } |
4907 | while (i < range_count) { |
4908 | CharacterRange range = ranges->At(i); |
4909 | negated_ranges->Add(CharacterRange(from + 1, range.from() - 1)); |
4910 | from = range.to(); |
4911 | i++; |
4912 | } |
4913 | if (from < Utf::kMaxCodePoint) { |
4914 | negated_ranges->Add(CharacterRange(from + 1, Utf::kMaxCodePoint)); |
4915 | } |
4916 | } |
4917 | |
4918 | // ------------------------------------------------------------------- |
4919 | // Splay tree |
4920 | |
4921 | // Workaround for the fact that ZoneGrowableArray does not have contains(). |
4922 | static bool ArrayContains(ZoneGrowableArray<unsigned>* array, unsigned value) { |
4923 | for (intptr_t i = 0; i < array->length(); i++) { |
4924 | if (array->At(i) == value) { |
4925 | return true; |
4926 | } |
4927 | } |
4928 | return false; |
4929 | } |
4930 | |
4931 | OutSet* OutSet::Extend(unsigned value, Zone* zone) { |
4932 | if (Get(value)) return this; |
4933 | if (successors() != nullptr) { |
4934 | for (int i = 0; i < successors()->length(); i++) { |
4935 | OutSet* successor = successors()->At(i); |
4936 | if (successor->Get(value)) return successor; |
4937 | } |
4938 | } else { |
4939 | successors_ = new (zone) ZoneGrowableArray<OutSet*>(2); |
4940 | } |
4941 | OutSet* result = new (zone) OutSet(first_, remaining_); |
4942 | result->Set(value, zone); |
4943 | successors()->Add(result); |
4944 | return result; |
4945 | } |
4946 | |
4947 | void OutSet::Set(unsigned value, Zone* zone) { |
4948 | if (value < kFirstLimit) { |
4949 | first_ |= (1 << value); |
4950 | } else { |
4951 | if (remaining_ == NULL) |
4952 | remaining_ = new (zone) ZoneGrowableArray<unsigned>(1); |
4953 | |
4954 | bool remaining_contains_value = ArrayContains(remaining_, value); |
4955 | if (remaining_->is_empty() || !remaining_contains_value) { |
4956 | remaining_->Add(value); |
4957 | } |
4958 | } |
4959 | } |
4960 | |
4961 | bool OutSet::Get(unsigned value) const { |
4962 | if (value < kFirstLimit) { |
4963 | return (first_ & (1 << value)) != 0; |
4964 | } else if (remaining_ == NULL) { |
4965 | return false; |
4966 | } else { |
4967 | return ArrayContains(remaining_, value); |
4968 | } |
4969 | } |
4970 | |
4971 | const int32_t ChoiceTable::Config::kNoKey = Utf::kInvalidChar; |
4972 | |
4973 | void ChoiceTable::AddRange(CharacterRange full_range, |
4974 | int32_t value, |
4975 | Zone* zone) { |
4976 | CharacterRange current = full_range; |
4977 | if (tree()->is_empty()) { |
4978 | // If this is the first range we just insert into the table. |
4979 | ZoneSplayTree<Config>::Locator loc; |
4980 | bool inserted = tree()->Insert(current.from(), &loc); |
4981 | ASSERT(inserted); |
4982 | USE(inserted); |
4983 | loc.set_value( |
4984 | Entry(current.from(), current.to(), empty()->Extend(value, zone))); |
4985 | return; |
4986 | } |
4987 | // First see if there is a range to the left of this one that |
4988 | // overlaps. |
4989 | ZoneSplayTree<Config>::Locator loc; |
4990 | if (tree()->FindGreatestLessThan(current.from(), &loc)) { |
4991 | Entry* entry = &loc.value(); |
4992 | // If we've found a range that overlaps with this one, and it |
4993 | // starts strictly to the left of this one, we have to fix it |
4994 | // because the following code only handles ranges that start on |
4995 | // or after the start point of the range we're adding. |
4996 | if (entry->from() < current.from() && entry->to() >= current.from()) { |
4997 | // Snap the overlapping range in half around the start point of |
4998 | // the range we're adding. |
4999 | CharacterRange left = |
5000 | CharacterRange::Range(entry->from(), current.from() - 1); |
5001 | CharacterRange right = CharacterRange::Range(current.from(), entry->to()); |
5002 | // The left part of the overlapping range doesn't overlap. |
5003 | // Truncate the whole entry to be just the left part. |
5004 | entry->set_to(left.to()); |
5005 | // The right part is the one that overlaps. We add this part |
5006 | // to the map and let the next step deal with merging it with |
5007 | // the range we're adding. |
5008 | ZoneSplayTree<Config>::Locator loc; |
5009 | bool inserted = tree()->Insert(right.from(), &loc); |
5010 | ASSERT(inserted); |
5011 | USE(inserted); |
5012 | loc.set_value(Entry(right.from(), right.to(), entry->out_set())); |
5013 | } |
5014 | } |
5015 | while (current.is_valid()) { |
5016 | if (tree()->FindLeastGreaterThan(current.from(), &loc) && |
5017 | (loc.value().from() <= current.to()) && |
5018 | (loc.value().to() >= current.from())) { |
5019 | Entry* entry = &loc.value(); |
5020 | // We have overlap. If there is space between the start point of |
5021 | // the range we're adding and where the overlapping range starts |
5022 | // then we have to add a range covering just that space. |
5023 | if (current.from() < entry->from()) { |
5024 | ZoneSplayTree<Config>::Locator ins; |
5025 | bool inserted = tree()->Insert(current.from(), &ins); |
5026 | ASSERT(inserted); |
5027 | USE(inserted); |
5028 | ins.set_value(Entry(current.from(), entry->from() - 1, |
5029 | empty()->Extend(value, zone))); |
5030 | current.set_from(entry->from()); |
5031 | } |
5032 | ASSERT(current.from() == entry->from()); |
5033 | // If the overlapping range extends beyond the one we want to add |
5034 | // we have to snap the right part off and add it separately. |
5035 | if (entry->to() > current.to()) { |
5036 | ZoneSplayTree<Config>::Locator ins; |
5037 | bool inserted = tree()->Insert(current.to() + 1, &ins); |
5038 | ASSERT(inserted); |
5039 | USE(inserted); |
5040 | ins.set_value(Entry(current.to() + 1, entry->to(), entry->out_set())); |
5041 | entry->set_to(current.to()); |
5042 | } |
5043 | ASSERT(entry->to() <= current.to()); |
5044 | // The overlapping range is now completely contained by the range |
5045 | // we're adding so we can just update it and move the start point |
5046 | // of the range we're adding just past it. |
5047 | entry->AddValue(value, zone); |
5048 | ASSERT(entry->to() + 1 > current.from()); |
5049 | current.set_from(entry->to() + 1); |
5050 | } else { |
5051 | // There is no overlap so we can just add the range |
5052 | ZoneSplayTree<Config>::Locator ins; |
5053 | bool inserted = tree()->Insert(current.from(), &ins); |
5054 | ASSERT(inserted); |
5055 | USE(inserted); |
5056 | ins.set_value( |
5057 | Entry(current.from(), current.to(), empty()->Extend(value, zone))); |
5058 | break; |
5059 | } |
5060 | } |
5061 | } |
5062 | |
5063 | OutSet* ChoiceTable::Get(int32_t value) { |
5064 | ZoneSplayTree<Config>::Locator loc; |
5065 | if (!tree()->FindGreatestLessThan(value, &loc)) return empty(); |
5066 | Entry* entry = &loc.value(); |
5067 | if (value <= entry->to()) |
5068 | return entry->out_set(); |
5069 | else |
5070 | return empty(); |
5071 | } |
5072 | |
5073 | // ------------------------------------------------------------------- |
5074 | // Analysis |
5075 | |
5076 | void Analysis::EnsureAnalyzed(RegExpNode* that) { |
5077 | if (that->info()->been_analyzed || that->info()->being_analyzed) return; |
5078 | that->info()->being_analyzed = true; |
5079 | that->Accept(this); |
5080 | that->info()->being_analyzed = false; |
5081 | that->info()->been_analyzed = true; |
5082 | } |
5083 | |
5084 | void Analysis::VisitEnd(EndNode* that) { |
5085 | // nothing to do |
5086 | } |
5087 | |
5088 | void TextNode::CalculateOffsets() { |
5089 | intptr_t element_count = elements()->length(); |
5090 | // Set up the offsets of the elements relative to the start. This is a fixed |
5091 | // quantity since a TextNode can only contain fixed-width things. |
5092 | intptr_t cp_offset = 0; |
5093 | for (intptr_t i = 0; i < element_count; i++) { |
5094 | TextElement& elm = (*elements())[i]; |
5095 | elm.set_cp_offset(cp_offset); |
5096 | cp_offset += elm.length(); |
5097 | } |
5098 | } |
5099 | |
5100 | void Analysis::VisitText(TextNode* that) { |
5101 | that->MakeCaseIndependent(is_one_byte_); |
5102 | EnsureAnalyzed(that->on_success()); |
5103 | if (!has_failed()) { |
5104 | that->CalculateOffsets(); |
5105 | } |
5106 | } |
5107 | |
5108 | void Analysis::VisitAction(ActionNode* that) { |
5109 | RegExpNode* target = that->on_success(); |
5110 | EnsureAnalyzed(target); |
5111 | if (!has_failed()) { |
5112 | // If the next node is interested in what it follows then this node |
5113 | // has to be interested too so it can pass the information on. |
5114 | that->info()->AddFromFollowing(target->info()); |
5115 | } |
5116 | } |
5117 | |
5118 | void Analysis::VisitChoice(ChoiceNode* that) { |
5119 | NodeInfo* info = that->info(); |
5120 | for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
5121 | RegExpNode* node = (*that->alternatives())[i].node(); |
5122 | EnsureAnalyzed(node); |
5123 | if (has_failed()) return; |
5124 | // Anything the following nodes need to know has to be known by |
5125 | // this node also, so it can pass it on. |
5126 | info->AddFromFollowing(node->info()); |
5127 | } |
5128 | } |
5129 | |
5130 | void Analysis::VisitLoopChoice(LoopChoiceNode* that) { |
5131 | NodeInfo* info = that->info(); |
5132 | for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
5133 | RegExpNode* node = (*that->alternatives())[i].node(); |
5134 | if (node != that->loop_node()) { |
5135 | EnsureAnalyzed(node); |
5136 | if (has_failed()) return; |
5137 | info->AddFromFollowing(node->info()); |
5138 | } |
5139 | } |
5140 | // Check the loop last since it may need the value of this node |
5141 | // to get a correct result. |
5142 | EnsureAnalyzed(that->loop_node()); |
5143 | if (!has_failed()) { |
5144 | info->AddFromFollowing(that->loop_node()->info()); |
5145 | } |
5146 | } |
5147 | |
5148 | void Analysis::VisitBackReference(BackReferenceNode* that) { |
5149 | EnsureAnalyzed(that->on_success()); |
5150 | } |
5151 | |
5152 | void Analysis::VisitAssertion(AssertionNode* that) { |
5153 | EnsureAnalyzed(that->on_success()); |
5154 | } |
5155 | |
5156 | void BackReferenceNode::FillInBMInfo(intptr_t offset, |
5157 | intptr_t budget, |
5158 | BoyerMooreLookahead* bm, |
5159 | bool not_at_start) { |
5160 | // Working out the set of characters that a backreference can match is too |
5161 | // hard, so we just say that any character can match. |
5162 | bm->SetRest(offset); |
5163 | SaveBMInfo(bm, not_at_start, offset); |
5164 | } |
5165 | |
5166 | COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize == |
5167 | RegExpMacroAssembler::kTableSize); |
5168 | |
5169 | void ChoiceNode::FillInBMInfo(intptr_t offset, |
5170 | intptr_t budget, |
5171 | BoyerMooreLookahead* bm, |
5172 | bool not_at_start) { |
5173 | ZoneGrowableArray<GuardedAlternative>* alts = alternatives(); |
5174 | budget = (budget - 1) / alts->length(); |
5175 | for (intptr_t i = 0; i < alts->length(); i++) { |
5176 | GuardedAlternative& alt = (*alts)[i]; |
5177 | if (alt.guards() != NULL && alt.guards()->length() != 0) { |
5178 | bm->SetRest(offset); // Give up trying to fill in info. |
5179 | SaveBMInfo(bm, not_at_start, offset); |
5180 | return; |
5181 | } |
5182 | alt.node()->FillInBMInfo(offset, budget, bm, not_at_start); |
5183 | } |
5184 | SaveBMInfo(bm, not_at_start, offset); |
5185 | } |
5186 | |
5187 | void TextNode::FillInBMInfo(intptr_t initial_offset, |
5188 | intptr_t budget, |
5189 | BoyerMooreLookahead* bm, |
5190 | bool not_at_start) { |
5191 | if (initial_offset >= bm->length()) return; |
5192 | intptr_t offset = initial_offset; |
5193 | intptr_t max_char = bm->max_char(); |
5194 | for (intptr_t i = 0; i < elements()->length(); i++) { |
5195 | if (offset >= bm->length()) { |
5196 | if (initial_offset == 0) set_bm_info(not_at_start, bm); |
5197 | return; |
5198 | } |
5199 | TextElement text = elements()->At(i); |
5200 | if (text.text_type() == TextElement::ATOM) { |
5201 | RegExpAtom* atom = text.atom(); |
5202 | for (intptr_t j = 0; j < atom->length(); j++, offset++) { |
5203 | if (offset >= bm->length()) { |
5204 | if (initial_offset == 0) set_bm_info(not_at_start, bm); |
5205 | return; |
5206 | } |
5207 | uint16_t character = atom->data()->At(j); |
5208 | if (atom->flags().IgnoreCase()) { |
5209 | int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
5210 | intptr_t length = GetCaseIndependentLetters( |
5211 | character, bm->max_char() == Symbols::kMaxOneCharCodeSymbol, |
5212 | chars); |
5213 | for (intptr_t j = 0; j < length; j++) { |
5214 | bm->Set(offset, chars[j]); |
5215 | } |
5216 | } else { |
5217 | if (character <= max_char) bm->Set(offset, character); |
5218 | } |
5219 | } |
5220 | } else { |
5221 | ASSERT(text.text_type() == TextElement::CHAR_CLASS); |
5222 | RegExpCharacterClass* char_class = text.char_class(); |
5223 | ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges(); |
5224 | if (char_class->is_negated()) { |
5225 | bm->SetAll(offset); |
5226 | } else { |
5227 | for (intptr_t k = 0; k < ranges->length(); k++) { |
5228 | const CharacterRange& range = ranges->At(k); |
5229 | if (range.from() > max_char) continue; |
5230 | intptr_t to = |
5231 | Utils::Minimum(max_char, static_cast<intptr_t>(range.to())); |
5232 | bm->SetInterval(offset, Interval(range.from(), to)); |
5233 | } |
5234 | } |
5235 | offset++; |
5236 | } |
5237 | } |
5238 | if (offset >= bm->length()) { |
5239 | if (initial_offset == 0) set_bm_info(not_at_start, bm); |
5240 | return; |
5241 | } |
5242 | on_success()->FillInBMInfo(offset, budget - 1, bm, |
5243 | true); // Not at start after a text node. |
5244 | if (initial_offset == 0) set_bm_info(not_at_start, bm); |
5245 | } |
5246 | |
5247 | RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler, |
5248 | RegExpNode* on_success, |
5249 | RegExpFlags flags) { |
5250 | // If the regexp matching starts within a surrogate pair, step back |
5251 | // to the lead surrogate and start matching from there. |
5252 | ASSERT(!compiler->read_backward()); |
5253 | Zone* zone = compiler->zone(); |
5254 | |
5255 | auto lead_surrogates = CharacterRange::List( |
5256 | on_success->zone(), CharacterRange::Range(Utf16::kLeadSurrogateStart, |
5257 | Utf16::kLeadSurrogateEnd)); |
5258 | auto trail_surrogates = CharacterRange::List( |
5259 | on_success->zone(), CharacterRange::Range(Utf16::kTrailSurrogateStart, |
5260 | Utf16::kTrailSurrogateEnd)); |
5261 | |
5262 | ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone); |
5263 | |
5264 | int stack_register = compiler->UnicodeLookaroundStackRegister(); |
5265 | int position_register = compiler->UnicodeLookaroundPositionRegister(); |
5266 | RegExpNode* step_back = TextNode::CreateForCharacterRanges( |
5267 | lead_surrogates, /*read_backward=*/true, on_success, flags); |
5268 | RegExpLookaround::Builder builder(/*is_positive=*/true, step_back, |
5269 | stack_register, position_register); |
5270 | RegExpNode* match_trail = TextNode::CreateForCharacterRanges( |
5271 | trail_surrogates, /*read_backward=*/false, builder.on_match_success(), |
5272 | flags); |
5273 | |
5274 | optional_step_back->AddAlternative( |
5275 | GuardedAlternative(builder.ForMatch(match_trail))); |
5276 | optional_step_back->AddAlternative(GuardedAlternative(on_success)); |
5277 | |
5278 | return optional_step_back; |
5279 | } |
5280 | |
5281 | #if !defined(DART_PRECOMPILED_RUNTIME) |
5282 | RegExpEngine::CompilationResult RegExpEngine::CompileIR( |
5283 | RegExpCompileData* data, |
5284 | const ParsedFunction* parsed_function, |
5285 | const ZoneGrowableArray<const ICData*>& ic_data_array, |
5286 | intptr_t osr_id) { |
5287 | ASSERT(!FLAG_interpret_irregexp); |
5288 | Zone* zone = Thread::Current()->zone(); |
5289 | |
5290 | const Function& function = parsed_function->function(); |
5291 | const intptr_t specialization_cid = function.string_specialization_cid(); |
5292 | const bool is_sticky = function.is_sticky_specialization(); |
5293 | const bool is_one_byte = (specialization_cid == kOneByteStringCid || |
5294 | specialization_cid == kExternalOneByteStringCid); |
5295 | RegExp& regexp = RegExp::Handle(zone, function.regexp()); |
5296 | const String& pattern = String::Handle(zone, regexp.pattern()); |
5297 | |
5298 | ASSERT(!regexp.IsNull()); |
5299 | ASSERT(!pattern.IsNull()); |
5300 | |
5301 | const bool is_global = regexp.flags().IsGlobal(); |
5302 | const bool is_unicode = regexp.flags().IsUnicode(); |
5303 | |
5304 | RegExpCompiler compiler(data->capture_count, is_one_byte); |
5305 | |
5306 | // TODO(zerny): Frequency sampling is currently disabled because of several |
5307 | // issues. We do not want to store subject strings in the regexp object since |
5308 | // they might be long and we should not prevent their garbage collection. |
5309 | // Passing them to this function explicitly does not help, since we must |
5310 | // generate exactly the same IR for both the unoptimizing and optimizing |
5311 | // pipelines (otherwise it gets confused when i.e. deopt id's differ). |
5312 | // An option would be to store sampling results in the regexp object, but |
5313 | // I'm not sure the performance gains are relevant enough. |
5314 | |
5315 | // Wrap the body of the regexp in capture #0. |
5316 | RegExpNode* captured_body = |
5317 | RegExpCapture::ToNode(data->tree, 0, &compiler, compiler.accept()); |
5318 | |
5319 | RegExpNode* node = captured_body; |
5320 | const bool is_end_anchored = data->tree->IsAnchoredAtEnd(); |
5321 | const bool is_start_anchored = data->tree->IsAnchoredAtStart(); |
5322 | intptr_t max_length = data->tree->max_match(); |
5323 | if (!is_start_anchored && !is_sticky) { |
5324 | // Add a .*? at the beginning, outside the body capture, unless |
5325 | // this expression is anchored at the beginning or is sticky. |
5326 | RegExpNode* loop_node = RegExpQuantifier::ToNode( |
5327 | 0, RegExpTree::kInfinity, false, |
5328 | new (zone) RegExpCharacterClass('*', RegExpFlags()), &compiler, |
5329 | captured_body, data->contains_anchor); |
5330 | |
5331 | if (data->contains_anchor) { |
5332 | // Unroll loop once, to take care of the case that might start |
5333 | // at the start of input. |
5334 | ChoiceNode* first_step_node = new (zone) ChoiceNode(2, zone); |
5335 | first_step_node->AddAlternative(GuardedAlternative(captured_body)); |
5336 | first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode( |
5337 | new (zone) RegExpCharacterClass('*', RegExpFlags()), |
5338 | /*read_backwards=*/false, loop_node))); |
5339 | node = first_step_node; |
5340 | } else { |
5341 | node = loop_node; |
5342 | } |
5343 | } |
5344 | if (is_one_byte) { |
5345 | node = node->FilterOneByte(RegExpCompiler::kMaxRecursion); |
5346 | // Do it again to propagate the new nodes to places where they were not |
5347 | // put because they had not been calculated yet. |
5348 | if (node != NULL) { |
5349 | node = node->FilterOneByte(RegExpCompiler::kMaxRecursion); |
5350 | } |
5351 | } else if (is_unicode && (is_global || is_sticky)) { |
5352 | node = OptionallyStepBackToLeadSurrogate(&compiler, node, regexp.flags()); |
5353 | } |
5354 | |
5355 | if (node == NULL) node = new (zone) EndNode(EndNode::BACKTRACK, zone); |
5356 | data->node = node; |
5357 | Analysis analysis(is_one_byte); |
5358 | analysis.EnsureAnalyzed(node); |
5359 | if (analysis.has_failed()) { |
5360 | const char* error_message = analysis.error_message(); |
5361 | return CompilationResult(error_message); |
5362 | } |
5363 | |
5364 | // Native regexp implementation. |
5365 | |
5366 | IRRegExpMacroAssembler* macro_assembler = new (zone) |
5367 | IRRegExpMacroAssembler(specialization_cid, data->capture_count, |
5368 | parsed_function, ic_data_array, osr_id, zone); |
5369 | |
5370 | // Inserted here, instead of in Assembler, because it depends on information |
5371 | // in the AST that isn't replicated in the Node structure. |
5372 | static const intptr_t kMaxBacksearchLimit = 1024; |
5373 | if (is_end_anchored && !is_start_anchored && !is_sticky && |
5374 | max_length < kMaxBacksearchLimit) { |
5375 | macro_assembler->SetCurrentPositionFromEnd(max_length); |
5376 | } |
5377 | |
5378 | if (is_global) { |
5379 | RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL; |
5380 | if (data->tree->min_match() > 0) { |
5381 | mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK; |
5382 | } else if (is_unicode) { |
5383 | mode = RegExpMacroAssembler::GLOBAL_UNICODE; |
5384 | } |
5385 | macro_assembler->set_global_mode(mode); |
5386 | } |
5387 | |
5388 | RegExpEngine::CompilationResult result = |
5389 | compiler.Assemble(macro_assembler, node, data->capture_count, pattern); |
5390 | |
5391 | if (FLAG_trace_irregexp) { |
5392 | macro_assembler->PrintBlocks(); |
5393 | } |
5394 | |
5395 | return result; |
5396 | } |
5397 | #endif // !defined(DART_PRECOMPILED_RUNTIME) |
5398 | |
5399 | RegExpEngine::CompilationResult RegExpEngine::CompileBytecode( |
5400 | RegExpCompileData* data, |
5401 | const RegExp& regexp, |
5402 | bool is_one_byte, |
5403 | bool is_sticky, |
5404 | Zone* zone) { |
5405 | ASSERT(FLAG_interpret_irregexp); |
5406 | const String& pattern = String::Handle(zone, regexp.pattern()); |
5407 | |
5408 | ASSERT(!regexp.IsNull()); |
5409 | ASSERT(!pattern.IsNull()); |
5410 | |
5411 | const bool is_global = regexp.flags().IsGlobal(); |
5412 | const bool is_unicode = regexp.flags().IsUnicode(); |
5413 | |
5414 | RegExpCompiler compiler(data->capture_count, is_one_byte); |
5415 | |
5416 | // TODO(zerny): Frequency sampling is currently disabled because of several |
5417 | // issues. We do not want to store subject strings in the regexp object since |
5418 | // they might be long and we should not prevent their garbage collection. |
5419 | // Passing them to this function explicitly does not help, since we must |
5420 | // generate exactly the same IR for both the unoptimizing and optimizing |
5421 | // pipelines (otherwise it gets confused when i.e. deopt id's differ). |
5422 | // An option would be to store sampling results in the regexp object, but |
5423 | // I'm not sure the performance gains are relevant enough. |
5424 | |
5425 | // Wrap the body of the regexp in capture #0. |
5426 | RegExpNode* captured_body = |
5427 | RegExpCapture::ToNode(data->tree, 0, &compiler, compiler.accept()); |
5428 | |
5429 | RegExpNode* node = captured_body; |
5430 | bool is_end_anchored = data->tree->IsAnchoredAtEnd(); |
5431 | bool is_start_anchored = data->tree->IsAnchoredAtStart(); |
5432 | intptr_t max_length = data->tree->max_match(); |
5433 | if (!is_start_anchored && !is_sticky) { |
5434 | // Add a .*? at the beginning, outside the body capture, unless |
5435 | // this expression is anchored at the beginning. |
5436 | RegExpNode* loop_node = RegExpQuantifier::ToNode( |
5437 | 0, RegExpTree::kInfinity, false, |
5438 | new (zone) RegExpCharacterClass('*', RegExpFlags()), &compiler, |
5439 | captured_body, data->contains_anchor); |
5440 | |
5441 | if (data->contains_anchor) { |
5442 | // Unroll loop once, to take care of the case that might start |
5443 | // at the start of input. |
5444 | ChoiceNode* first_step_node = new (zone) ChoiceNode(2, zone); |
5445 | first_step_node->AddAlternative(GuardedAlternative(captured_body)); |
5446 | first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode( |
5447 | new (zone) RegExpCharacterClass('*', RegExpFlags()), |
5448 | /*read_backwards=*/false, loop_node))); |
5449 | node = first_step_node; |
5450 | } else { |
5451 | node = loop_node; |
5452 | } |
5453 | } |
5454 | if (is_one_byte) { |
5455 | node = node->FilterOneByte(RegExpCompiler::kMaxRecursion); |
5456 | // Do it again to propagate the new nodes to places where they were not |
5457 | // put because they had not been calculated yet. |
5458 | if (node != NULL) { |
5459 | node = node->FilterOneByte(RegExpCompiler::kMaxRecursion); |
5460 | } |
5461 | } else if (is_unicode && (is_global || is_sticky)) { |
5462 | node = OptionallyStepBackToLeadSurrogate(&compiler, node, regexp.flags()); |
5463 | } |
5464 | |
5465 | if (node == NULL) node = new (zone) EndNode(EndNode::BACKTRACK, zone); |
5466 | data->node = node; |
5467 | Analysis analysis(is_one_byte); |
5468 | analysis.EnsureAnalyzed(node); |
5469 | if (analysis.has_failed()) { |
5470 | const char* error_message = analysis.error_message(); |
5471 | return CompilationResult(error_message); |
5472 | } |
5473 | |
5474 | // Bytecode regexp implementation. |
5475 | |
5476 | ZoneGrowableArray<uint8_t> buffer(zone, 1024); |
5477 | BytecodeRegExpMacroAssembler* macro_assembler = |
5478 | new (zone) BytecodeRegExpMacroAssembler(&buffer, zone); |
5479 | |
5480 | // Inserted here, instead of in Assembler, because it depends on information |
5481 | // in the AST that isn't replicated in the Node structure. |
5482 | static const intptr_t kMaxBacksearchLimit = 1024; |
5483 | if (is_end_anchored && !is_start_anchored && !is_sticky && |
5484 | max_length < kMaxBacksearchLimit) { |
5485 | macro_assembler->SetCurrentPositionFromEnd(max_length); |
5486 | } |
5487 | |
5488 | if (is_global) { |
5489 | RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL; |
5490 | if (data->tree->min_match() > 0) { |
5491 | mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK; |
5492 | } else if (is_unicode) { |
5493 | mode = RegExpMacroAssembler::GLOBAL_UNICODE; |
5494 | } |
5495 | macro_assembler->set_global_mode(mode); |
5496 | } |
5497 | |
5498 | RegExpEngine::CompilationResult result = |
5499 | compiler.Assemble(macro_assembler, node, data->capture_count, pattern); |
5500 | |
5501 | if (FLAG_trace_irregexp) { |
5502 | macro_assembler->PrintBlocks(); |
5503 | } |
5504 | |
5505 | return result; |
5506 | } |
5507 | |
5508 | static void CreateSpecializedFunction(Thread* thread, |
5509 | Zone* zone, |
5510 | const RegExp& regexp, |
5511 | intptr_t specialization_cid, |
5512 | bool sticky, |
5513 | const Object& owner) { |
5514 | const intptr_t kParamCount = RegExpMacroAssembler::kParamCount; |
5515 | |
5516 | Function& fn = |
5517 | Function::Handle(zone, Function::New(Symbols::ColonMatcher(), |
5518 | FunctionLayout::kIrregexpFunction, |
5519 | true, // Static. |
5520 | false, // Not const. |
5521 | false, // Not abstract. |
5522 | false, // Not external. |
5523 | false, // Not native. |
5524 | owner, TokenPosition::kMinSource)); |
5525 | |
5526 | // TODO(zerny): Share these arrays between all irregexp functions. |
5527 | fn.set_num_fixed_parameters(kParamCount); |
5528 | fn.set_parameter_types( |
5529 | Array::Handle(zone, Array::New(kParamCount, Heap::kOld))); |
5530 | fn.set_parameter_names( |
5531 | Array::Handle(zone, Array::New(kParamCount, Heap::kOld))); |
5532 | fn.SetParameterTypeAt(RegExpMacroAssembler::kParamRegExpIndex, |
5533 | Object::dynamic_type()); |
5534 | fn.SetParameterNameAt(RegExpMacroAssembler::kParamRegExpIndex, |
5535 | Symbols::This()); |
5536 | fn.SetParameterTypeAt(RegExpMacroAssembler::kParamStringIndex, |
5537 | Object::dynamic_type()); |
5538 | fn.SetParameterNameAt(RegExpMacroAssembler::kParamStringIndex, |
5539 | Symbols::string_param()); |
5540 | fn.SetParameterTypeAt(RegExpMacroAssembler::kParamStartOffsetIndex, |
5541 | Object::dynamic_type()); |
5542 | fn.SetParameterNameAt(RegExpMacroAssembler::kParamStartOffsetIndex, |
5543 | Symbols::start_index_param()); |
5544 | fn.set_result_type(Type::Handle(zone, Type::ArrayType())); |
5545 | |
5546 | // Cache the result. |
5547 | regexp.set_function(specialization_cid, sticky, fn); |
5548 | |
5549 | fn.SetRegExpData(regexp, specialization_cid, sticky); |
5550 | fn.set_is_debuggable(false); |
5551 | |
5552 | // The function is compiled lazily during the first call. |
5553 | } |
5554 | |
5555 | RegExpPtr RegExpEngine::CreateRegExp(Thread* thread, |
5556 | const String& pattern, |
5557 | RegExpFlags flags) { |
5558 | Zone* zone = thread->zone(); |
5559 | const RegExp& regexp = RegExp::Handle(RegExp::New()); |
5560 | |
5561 | regexp.set_pattern(pattern); |
5562 | regexp.set_flags(flags); |
5563 | |
5564 | // TODO(zerny): We might want to use normal string searching algorithms |
5565 | // for simple patterns. |
5566 | regexp.set_is_complex(); |
5567 | regexp.set_is_global(); // All dart regexps are global. |
5568 | |
5569 | if (!FLAG_interpret_irregexp) { |
5570 | const Library& lib = Library::Handle(zone, Library::CoreLibrary()); |
5571 | const Class& owner = |
5572 | Class::Handle(zone, lib.LookupClass(Symbols::RegExp())); |
5573 | |
5574 | for (intptr_t cid = kOneByteStringCid; cid <= kExternalTwoByteStringCid; |
5575 | cid++) { |
5576 | CreateSpecializedFunction(thread, zone, regexp, cid, /*sticky=*/false, |
5577 | owner); |
5578 | CreateSpecializedFunction(thread, zone, regexp, cid, /*sticky=*/true, |
5579 | owner); |
5580 | } |
5581 | } |
5582 | |
5583 | return regexp.raw(); |
5584 | } |
5585 | |
5586 | } // namespace dart |
5587 | |