1 | /* |
2 | * Copyright 2018 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkContourMeasure.h" |
9 | #include "include/core/SkPath.h" |
10 | #include "src/core/SkGeometry.h" |
11 | #include "src/core/SkPathMeasurePriv.h" |
12 | #include "src/core/SkPathPriv.h" |
13 | #include "src/core/SkTSearch.h" |
14 | |
15 | #define kMaxTValue 0x3FFFFFFF |
16 | |
17 | constexpr static inline SkScalar tValue2Scalar(int t) { |
18 | SkASSERT((unsigned)t <= kMaxTValue); |
19 | // 1/kMaxTValue can't be represented as a float, but it's close and the limits work fine. |
20 | const SkScalar kMaxTReciprocal = 1.0f / (SkScalar)kMaxTValue; |
21 | return t * kMaxTReciprocal; |
22 | } |
23 | |
24 | static_assert(0.0f == tValue2Scalar( 0), "Lower limit should be exact." ); |
25 | static_assert(1.0f == tValue2Scalar(kMaxTValue), "Upper limit should be exact." ); |
26 | |
27 | SkScalar SkContourMeasure::Segment::getScalarT() const { |
28 | return tValue2Scalar(fTValue); |
29 | } |
30 | |
31 | void SkContourMeasure_segTo(const SkPoint pts[], unsigned segType, |
32 | SkScalar startT, SkScalar stopT, SkPath* dst) { |
33 | SkASSERT(startT >= 0 && startT <= SK_Scalar1); |
34 | SkASSERT(stopT >= 0 && stopT <= SK_Scalar1); |
35 | SkASSERT(startT <= stopT); |
36 | |
37 | if (startT == stopT) { |
38 | if (!dst->isEmpty()) { |
39 | /* if the dash as a zero-length on segment, add a corresponding zero-length line. |
40 | The stroke code will add end caps to zero length lines as appropriate */ |
41 | SkPoint lastPt; |
42 | SkAssertResult(dst->getLastPt(&lastPt)); |
43 | dst->lineTo(lastPt); |
44 | } |
45 | return; |
46 | } |
47 | |
48 | SkPoint tmp0[7], tmp1[7]; |
49 | |
50 | switch (segType) { |
51 | case kLine_SegType: |
52 | if (SK_Scalar1 == stopT) { |
53 | dst->lineTo(pts[1]); |
54 | } else { |
55 | dst->lineTo(SkScalarInterp(pts[0].fX, pts[1].fX, stopT), |
56 | SkScalarInterp(pts[0].fY, pts[1].fY, stopT)); |
57 | } |
58 | break; |
59 | case kQuad_SegType: |
60 | if (0 == startT) { |
61 | if (SK_Scalar1 == stopT) { |
62 | dst->quadTo(pts[1], pts[2]); |
63 | } else { |
64 | SkChopQuadAt(pts, tmp0, stopT); |
65 | dst->quadTo(tmp0[1], tmp0[2]); |
66 | } |
67 | } else { |
68 | SkChopQuadAt(pts, tmp0, startT); |
69 | if (SK_Scalar1 == stopT) { |
70 | dst->quadTo(tmp0[3], tmp0[4]); |
71 | } else { |
72 | SkChopQuadAt(&tmp0[2], tmp1, (stopT - startT) / (1 - startT)); |
73 | dst->quadTo(tmp1[1], tmp1[2]); |
74 | } |
75 | } |
76 | break; |
77 | case kConic_SegType: { |
78 | SkConic conic(pts[0], pts[2], pts[3], pts[1].fX); |
79 | |
80 | if (0 == startT) { |
81 | if (SK_Scalar1 == stopT) { |
82 | dst->conicTo(conic.fPts[1], conic.fPts[2], conic.fW); |
83 | } else { |
84 | SkConic tmp[2]; |
85 | if (conic.chopAt(stopT, tmp)) { |
86 | dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW); |
87 | } |
88 | } |
89 | } else { |
90 | if (SK_Scalar1 == stopT) { |
91 | SkConic tmp1[2]; |
92 | if (conic.chopAt(startT, tmp1)) { |
93 | dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW); |
94 | } |
95 | } else { |
96 | SkConic tmp; |
97 | conic.chopAt(startT, stopT, &tmp); |
98 | dst->conicTo(tmp.fPts[1], tmp.fPts[2], tmp.fW); |
99 | } |
100 | } |
101 | } break; |
102 | case kCubic_SegType: |
103 | if (0 == startT) { |
104 | if (SK_Scalar1 == stopT) { |
105 | dst->cubicTo(pts[1], pts[2], pts[3]); |
106 | } else { |
107 | SkChopCubicAt(pts, tmp0, stopT); |
108 | dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]); |
109 | } |
110 | } else { |
111 | SkChopCubicAt(pts, tmp0, startT); |
112 | if (SK_Scalar1 == stopT) { |
113 | dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]); |
114 | } else { |
115 | SkChopCubicAt(&tmp0[3], tmp1, (stopT - startT) / (1 - startT)); |
116 | dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]); |
117 | } |
118 | } |
119 | break; |
120 | default: |
121 | SK_ABORT("unknown segType" ); |
122 | } |
123 | } |
124 | |
125 | /////////////////////////////////////////////////////////////////////////////// |
126 | |
127 | static inline int tspan_big_enough(int tspan) { |
128 | SkASSERT((unsigned)tspan <= kMaxTValue); |
129 | return tspan >> 10; |
130 | } |
131 | |
132 | // can't use tangents, since we need [0..1..................2] to be seen |
133 | // as definitely not a line (it is when drawn, but not parametrically) |
134 | // so we compare midpoints |
135 | #define CHEAP_DIST_LIMIT (SK_Scalar1/2) // just made this value up |
136 | |
137 | static bool quad_too_curvy(const SkPoint pts[3], SkScalar tolerance) { |
138 | // diff = (a/4 + b/2 + c/4) - (a/2 + c/2) |
139 | // diff = -a/4 + b/2 - c/4 |
140 | SkScalar dx = SkScalarHalf(pts[1].fX) - |
141 | SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX)); |
142 | SkScalar dy = SkScalarHalf(pts[1].fY) - |
143 | SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY)); |
144 | |
145 | SkScalar dist = std::max(SkScalarAbs(dx), SkScalarAbs(dy)); |
146 | return dist > tolerance; |
147 | } |
148 | |
149 | static bool conic_too_curvy(const SkPoint& firstPt, const SkPoint& midTPt, |
150 | const SkPoint& lastPt, SkScalar tolerance) { |
151 | SkPoint midEnds = firstPt + lastPt; |
152 | midEnds *= 0.5f; |
153 | SkVector dxy = midTPt - midEnds; |
154 | SkScalar dist = std::max(SkScalarAbs(dxy.fX), SkScalarAbs(dxy.fY)); |
155 | return dist > tolerance; |
156 | } |
157 | |
158 | static bool cheap_dist_exceeds_limit(const SkPoint& pt, SkScalar x, SkScalar y, |
159 | SkScalar tolerance) { |
160 | SkScalar dist = std::max(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY)); |
161 | // just made up the 1/2 |
162 | return dist > tolerance; |
163 | } |
164 | |
165 | static bool cubic_too_curvy(const SkPoint pts[4], SkScalar tolerance) { |
166 | return cheap_dist_exceeds_limit(pts[1], |
167 | SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3), |
168 | SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3), tolerance) |
169 | || |
170 | cheap_dist_exceeds_limit(pts[2], |
171 | SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3), |
172 | SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3), tolerance); |
173 | } |
174 | |
175 | class SkContourMeasureIter::Impl { |
176 | public: |
177 | Impl(const SkPath& path, bool forceClosed, SkScalar resScale) |
178 | : fIter(SkPathPriv::Iterate(path).begin()) |
179 | , fPath(path) |
180 | , fTolerance(CHEAP_DIST_LIMIT * SkScalarInvert(resScale)) |
181 | , fForceClosed(forceClosed) {} |
182 | |
183 | bool hasNextSegments() const { return fIter != SkPathPriv::Iterate(fPath).end(); } |
184 | SkContourMeasure* buildSegments(); |
185 | |
186 | private: |
187 | SkPathPriv::RangeIter fIter; |
188 | SkPath fPath; |
189 | SkScalar fTolerance; |
190 | bool fForceClosed; |
191 | |
192 | // temporary |
193 | SkTDArray<SkContourMeasure::Segment> fSegments; |
194 | SkTDArray<SkPoint> fPts; // Points used to define the segments |
195 | |
196 | SkScalar compute_line_seg(SkPoint p0, SkPoint p1, SkScalar distance, unsigned ptIndex); |
197 | SkScalar compute_quad_segs(const SkPoint pts[3], SkScalar distance, |
198 | int mint, int maxt, unsigned ptIndex); |
199 | SkScalar compute_conic_segs(const SkConic& conic, SkScalar distance, |
200 | int mint, const SkPoint& minPt, |
201 | int maxt, const SkPoint& maxPt, |
202 | unsigned ptIndex); |
203 | SkScalar compute_cubic_segs(const SkPoint pts[4], SkScalar distance, |
204 | int mint, int maxt, unsigned ptIndex); |
205 | }; |
206 | |
207 | SkScalar SkContourMeasureIter::Impl::compute_quad_segs(const SkPoint pts[3], SkScalar distance, |
208 | int mint, int maxt, unsigned ptIndex) { |
209 | if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts, fTolerance)) { |
210 | SkPoint tmp[5]; |
211 | int halft = (mint + maxt) >> 1; |
212 | |
213 | SkChopQuadAtHalf(pts, tmp); |
214 | distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex); |
215 | distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex); |
216 | } else { |
217 | SkScalar d = SkPoint::Distance(pts[0], pts[2]); |
218 | SkScalar prevD = distance; |
219 | distance += d; |
220 | if (distance > prevD) { |
221 | SkASSERT(ptIndex < (unsigned)fPts.count()); |
222 | SkContourMeasure::Segment* seg = fSegments.append(); |
223 | seg->fDistance = distance; |
224 | seg->fPtIndex = ptIndex; |
225 | seg->fType = kQuad_SegType; |
226 | seg->fTValue = maxt; |
227 | } |
228 | } |
229 | return distance; |
230 | } |
231 | |
232 | SkScalar SkContourMeasureIter::Impl::compute_conic_segs(const SkConic& conic, SkScalar distance, |
233 | int mint, const SkPoint& minPt, |
234 | int maxt, const SkPoint& maxPt, |
235 | unsigned ptIndex) { |
236 | int halft = (mint + maxt) >> 1; |
237 | SkPoint halfPt = conic.evalAt(tValue2Scalar(halft)); |
238 | if (!halfPt.isFinite()) { |
239 | return distance; |
240 | } |
241 | if (tspan_big_enough(maxt - mint) && conic_too_curvy(minPt, halfPt, maxPt, fTolerance)) { |
242 | distance = this->compute_conic_segs(conic, distance, mint, minPt, halft, halfPt, ptIndex); |
243 | distance = this->compute_conic_segs(conic, distance, halft, halfPt, maxt, maxPt, ptIndex); |
244 | } else { |
245 | SkScalar d = SkPoint::Distance(minPt, maxPt); |
246 | SkScalar prevD = distance; |
247 | distance += d; |
248 | if (distance > prevD) { |
249 | SkASSERT(ptIndex < (unsigned)fPts.count()); |
250 | SkContourMeasure::Segment* seg = fSegments.append(); |
251 | seg->fDistance = distance; |
252 | seg->fPtIndex = ptIndex; |
253 | seg->fType = kConic_SegType; |
254 | seg->fTValue = maxt; |
255 | } |
256 | } |
257 | return distance; |
258 | } |
259 | |
260 | SkScalar SkContourMeasureIter::Impl::compute_cubic_segs(const SkPoint pts[4], SkScalar distance, |
261 | int mint, int maxt, unsigned ptIndex) { |
262 | if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts, fTolerance)) { |
263 | SkPoint tmp[7]; |
264 | int halft = (mint + maxt) >> 1; |
265 | |
266 | SkChopCubicAtHalf(pts, tmp); |
267 | distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex); |
268 | distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex); |
269 | } else { |
270 | SkScalar d = SkPoint::Distance(pts[0], pts[3]); |
271 | SkScalar prevD = distance; |
272 | distance += d; |
273 | if (distance > prevD) { |
274 | SkASSERT(ptIndex < (unsigned)fPts.count()); |
275 | SkContourMeasure::Segment* seg = fSegments.append(); |
276 | seg->fDistance = distance; |
277 | seg->fPtIndex = ptIndex; |
278 | seg->fType = kCubic_SegType; |
279 | seg->fTValue = maxt; |
280 | } |
281 | } |
282 | return distance; |
283 | } |
284 | |
285 | SkScalar SkContourMeasureIter::Impl::compute_line_seg(SkPoint p0, SkPoint p1, SkScalar distance, |
286 | unsigned ptIndex) { |
287 | SkScalar d = SkPoint::Distance(p0, p1); |
288 | SkASSERT(d >= 0); |
289 | SkScalar prevD = distance; |
290 | distance += d; |
291 | if (distance > prevD) { |
292 | SkASSERT((unsigned)ptIndex < (unsigned)fPts.count()); |
293 | SkContourMeasure::Segment* seg = fSegments.append(); |
294 | seg->fDistance = distance; |
295 | seg->fPtIndex = ptIndex; |
296 | seg->fType = kLine_SegType; |
297 | seg->fTValue = kMaxTValue; |
298 | } |
299 | return distance; |
300 | } |
301 | |
302 | SkContourMeasure* SkContourMeasureIter::Impl::buildSegments() { |
303 | int ptIndex = -1; |
304 | SkScalar distance = 0; |
305 | bool haveSeenClose = fForceClosed; |
306 | bool haveSeenMoveTo = false; |
307 | |
308 | /* Note: |
309 | * as we accumulate distance, we have to check that the result of += |
310 | * actually made it larger, since a very small delta might be > 0, but |
311 | * still have no effect on distance (if distance >>> delta). |
312 | * |
313 | * We do this check below, and in compute_quad_segs and compute_cubic_segs |
314 | */ |
315 | |
316 | fSegments.reset(); |
317 | fPts.reset(); |
318 | |
319 | auto end = SkPathPriv::Iterate(fPath).end(); |
320 | for (; fIter != end; ++fIter) { |
321 | auto [verb, pts, w] = *fIter; |
322 | if (haveSeenMoveTo && verb == SkPathVerb::kMove) { |
323 | break; |
324 | } |
325 | switch (verb) { |
326 | case SkPathVerb::kMove: |
327 | ptIndex += 1; |
328 | fPts.append(1, pts); |
329 | SkASSERT(!haveSeenMoveTo); |
330 | haveSeenMoveTo = true; |
331 | break; |
332 | |
333 | case SkPathVerb::kLine: { |
334 | SkASSERT(haveSeenMoveTo); |
335 | SkScalar prevD = distance; |
336 | distance = this->compute_line_seg(pts[0], pts[1], distance, ptIndex); |
337 | if (distance > prevD) { |
338 | fPts.append(1, pts + 1); |
339 | ptIndex++; |
340 | } |
341 | } break; |
342 | |
343 | case SkPathVerb::kQuad: { |
344 | SkASSERT(haveSeenMoveTo); |
345 | SkScalar prevD = distance; |
346 | distance = this->compute_quad_segs(pts, distance, 0, kMaxTValue, ptIndex); |
347 | if (distance > prevD) { |
348 | fPts.append(2, pts + 1); |
349 | ptIndex += 2; |
350 | } |
351 | } break; |
352 | |
353 | case SkPathVerb::kConic: { |
354 | SkASSERT(haveSeenMoveTo); |
355 | const SkConic conic(pts, *w); |
356 | SkScalar prevD = distance; |
357 | distance = this->compute_conic_segs(conic, distance, 0, conic.fPts[0], |
358 | kMaxTValue, conic.fPts[2], ptIndex); |
359 | if (distance > prevD) { |
360 | // we store the conic weight in our next point, followed by the last 2 pts |
361 | // thus to reconstitue a conic, you'd need to say |
362 | // SkConic(pts[0], pts[2], pts[3], weight = pts[1].fX) |
363 | fPts.append()->set(conic.fW, 0); |
364 | fPts.append(2, pts + 1); |
365 | ptIndex += 3; |
366 | } |
367 | } break; |
368 | |
369 | case SkPathVerb::kCubic: { |
370 | SkASSERT(haveSeenMoveTo); |
371 | SkScalar prevD = distance; |
372 | distance = this->compute_cubic_segs(pts, distance, 0, kMaxTValue, ptIndex); |
373 | if (distance > prevD) { |
374 | fPts.append(3, pts + 1); |
375 | ptIndex += 3; |
376 | } |
377 | } break; |
378 | |
379 | case SkPathVerb::kClose: |
380 | haveSeenClose = true; |
381 | break; |
382 | } |
383 | |
384 | } |
385 | |
386 | if (!SkScalarIsFinite(distance)) { |
387 | return nullptr; |
388 | } |
389 | if (fSegments.count() == 0) { |
390 | return nullptr; |
391 | } |
392 | |
393 | if (haveSeenClose) { |
394 | SkScalar prevD = distance; |
395 | SkPoint firstPt = fPts[0]; |
396 | distance = this->compute_line_seg(fPts[ptIndex], firstPt, distance, ptIndex); |
397 | if (distance > prevD) { |
398 | *fPts.append() = firstPt; |
399 | } |
400 | } |
401 | |
402 | #ifdef SK_DEBUG |
403 | { |
404 | const SkContourMeasure::Segment* seg = fSegments.begin(); |
405 | const SkContourMeasure::Segment* stop = fSegments.end(); |
406 | unsigned ptIndex = 0; |
407 | SkScalar distance = 0; |
408 | // limit the loop to a reasonable number; pathological cases can run for minutes |
409 | int maxChecks = 10000000; // set to INT_MAX to defeat the check |
410 | while (seg < stop) { |
411 | SkASSERT(seg->fDistance > distance); |
412 | SkASSERT(seg->fPtIndex >= ptIndex); |
413 | SkASSERT(seg->fTValue > 0); |
414 | |
415 | const SkContourMeasure::Segment* s = seg; |
416 | while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex && --maxChecks > 0) { |
417 | SkASSERT(s[0].fType == s[1].fType); |
418 | SkASSERT(s[0].fTValue < s[1].fTValue); |
419 | s += 1; |
420 | } |
421 | |
422 | distance = seg->fDistance; |
423 | ptIndex = seg->fPtIndex; |
424 | seg += 1; |
425 | } |
426 | // SkDebugf("\n"); |
427 | } |
428 | #endif |
429 | |
430 | return new SkContourMeasure(std::move(fSegments), std::move(fPts), distance, haveSeenClose); |
431 | } |
432 | |
433 | static void compute_pos_tan(const SkPoint pts[], unsigned segType, |
434 | SkScalar t, SkPoint* pos, SkVector* tangent) { |
435 | switch (segType) { |
436 | case kLine_SegType: |
437 | if (pos) { |
438 | pos->set(SkScalarInterp(pts[0].fX, pts[1].fX, t), |
439 | SkScalarInterp(pts[0].fY, pts[1].fY, t)); |
440 | } |
441 | if (tangent) { |
442 | tangent->setNormalize(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY); |
443 | } |
444 | break; |
445 | case kQuad_SegType: |
446 | SkEvalQuadAt(pts, t, pos, tangent); |
447 | if (tangent) { |
448 | tangent->normalize(); |
449 | } |
450 | break; |
451 | case kConic_SegType: { |
452 | SkConic(pts[0], pts[2], pts[3], pts[1].fX).evalAt(t, pos, tangent); |
453 | if (tangent) { |
454 | tangent->normalize(); |
455 | } |
456 | } break; |
457 | case kCubic_SegType: |
458 | SkEvalCubicAt(pts, t, pos, tangent, nullptr); |
459 | if (tangent) { |
460 | tangent->normalize(); |
461 | } |
462 | break; |
463 | default: |
464 | SkDEBUGFAIL("unknown segType" ); |
465 | } |
466 | } |
467 | |
468 | |
469 | //////////////////////////////////////////////////////////////////////////////// |
470 | //////////////////////////////////////////////////////////////////////////////// |
471 | |
472 | SkContourMeasureIter::SkContourMeasureIter() { |
473 | } |
474 | |
475 | SkContourMeasureIter::SkContourMeasureIter(const SkPath& path, bool forceClosed, |
476 | SkScalar resScale) { |
477 | this->reset(path, forceClosed, resScale); |
478 | } |
479 | |
480 | SkContourMeasureIter::~SkContourMeasureIter() {} |
481 | |
482 | /** Assign a new path, or null to have none. |
483 | */ |
484 | void SkContourMeasureIter::reset(const SkPath& path, bool forceClosed, SkScalar resScale) { |
485 | if (path.isFinite()) { |
486 | fImpl = std::make_unique<Impl>(path, forceClosed, resScale); |
487 | } else { |
488 | fImpl.reset(); |
489 | } |
490 | } |
491 | |
492 | sk_sp<SkContourMeasure> SkContourMeasureIter::next() { |
493 | if (!fImpl) { |
494 | return nullptr; |
495 | } |
496 | while (fImpl->hasNextSegments()) { |
497 | auto cm = fImpl->buildSegments(); |
498 | if (cm) { |
499 | return sk_sp<SkContourMeasure>(cm); |
500 | } |
501 | } |
502 | return nullptr; |
503 | } |
504 | |
505 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
506 | |
507 | SkContourMeasure::SkContourMeasure(SkTDArray<Segment>&& segs, SkTDArray<SkPoint>&& pts, SkScalar length, bool isClosed) |
508 | : fSegments(std::move(segs)) |
509 | , fPts(std::move(pts)) |
510 | , fLength(length) |
511 | , fIsClosed(isClosed) |
512 | {} |
513 | |
514 | template <typename T, typename K> |
515 | int SkTKSearch(const T base[], int count, const K& key) { |
516 | SkASSERT(count >= 0); |
517 | if (count <= 0) { |
518 | return ~0; |
519 | } |
520 | |
521 | SkASSERT(base != nullptr); // base may be nullptr if count is zero |
522 | |
523 | unsigned lo = 0; |
524 | unsigned hi = count - 1; |
525 | |
526 | while (lo < hi) { |
527 | unsigned mid = (hi + lo) >> 1; |
528 | if (base[mid].fDistance < key) { |
529 | lo = mid + 1; |
530 | } else { |
531 | hi = mid; |
532 | } |
533 | } |
534 | |
535 | if (base[hi].fDistance < key) { |
536 | hi += 1; |
537 | hi = ~hi; |
538 | } else if (key < base[hi].fDistance) { |
539 | hi = ~hi; |
540 | } |
541 | return hi; |
542 | } |
543 | |
544 | const SkContourMeasure::Segment* SkContourMeasure::distanceToSegment( SkScalar distance, |
545 | SkScalar* t) const { |
546 | SkDEBUGCODE(SkScalar length = ) this->length(); |
547 | SkASSERT(distance >= 0 && distance <= length); |
548 | |
549 | const Segment* seg = fSegments.begin(); |
550 | int count = fSegments.count(); |
551 | |
552 | int index = SkTKSearch<Segment, SkScalar>(seg, count, distance); |
553 | // don't care if we hit an exact match or not, so we xor index if it is negative |
554 | index ^= (index >> 31); |
555 | seg = &seg[index]; |
556 | |
557 | // now interpolate t-values with the prev segment (if possible) |
558 | SkScalar startT = 0, startD = 0; |
559 | // check if the prev segment is legal, and references the same set of points |
560 | if (index > 0) { |
561 | startD = seg[-1].fDistance; |
562 | if (seg[-1].fPtIndex == seg->fPtIndex) { |
563 | SkASSERT(seg[-1].fType == seg->fType); |
564 | startT = seg[-1].getScalarT(); |
565 | } |
566 | } |
567 | |
568 | SkASSERT(seg->getScalarT() > startT); |
569 | SkASSERT(distance >= startD); |
570 | SkASSERT(seg->fDistance > startD); |
571 | |
572 | *t = startT + (seg->getScalarT() - startT) * (distance - startD) / (seg->fDistance - startD); |
573 | return seg; |
574 | } |
575 | |
576 | bool SkContourMeasure::getPosTan(SkScalar distance, SkPoint* pos, SkVector* tangent) const { |
577 | if (SkScalarIsNaN(distance)) { |
578 | return false; |
579 | } |
580 | |
581 | const SkScalar length = this->length(); |
582 | SkASSERT(length > 0 && fSegments.count() > 0); |
583 | |
584 | // pin the distance to a legal range |
585 | if (distance < 0) { |
586 | distance = 0; |
587 | } else if (distance > length) { |
588 | distance = length; |
589 | } |
590 | |
591 | SkScalar t; |
592 | const Segment* seg = this->distanceToSegment(distance, &t); |
593 | if (SkScalarIsNaN(t)) { |
594 | return false; |
595 | } |
596 | |
597 | SkASSERT((unsigned)seg->fPtIndex < (unsigned)fPts.count()); |
598 | compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, t, pos, tangent); |
599 | return true; |
600 | } |
601 | |
602 | bool SkContourMeasure::getMatrix(SkScalar distance, SkMatrix* matrix, MatrixFlags flags) const { |
603 | SkPoint position; |
604 | SkVector tangent; |
605 | |
606 | if (this->getPosTan(distance, &position, &tangent)) { |
607 | if (matrix) { |
608 | if (flags & kGetTangent_MatrixFlag) { |
609 | matrix->setSinCos(tangent.fY, tangent.fX, 0, 0); |
610 | } else { |
611 | matrix->reset(); |
612 | } |
613 | if (flags & kGetPosition_MatrixFlag) { |
614 | matrix->postTranslate(position.fX, position.fY); |
615 | } |
616 | } |
617 | return true; |
618 | } |
619 | return false; |
620 | } |
621 | |
622 | bool SkContourMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst, |
623 | bool startWithMoveTo) const { |
624 | SkASSERT(dst); |
625 | |
626 | SkScalar length = this->length(); // ensure we have built our segments |
627 | |
628 | if (startD < 0) { |
629 | startD = 0; |
630 | } |
631 | if (stopD > length) { |
632 | stopD = length; |
633 | } |
634 | if (!(startD <= stopD)) { // catch NaN values as well |
635 | return false; |
636 | } |
637 | if (!fSegments.count()) { |
638 | return false; |
639 | } |
640 | |
641 | SkPoint p; |
642 | SkScalar startT, stopT; |
643 | const Segment* seg = this->distanceToSegment(startD, &startT); |
644 | if (!SkScalarIsFinite(startT)) { |
645 | return false; |
646 | } |
647 | const Segment* stopSeg = this->distanceToSegment(stopD, &stopT); |
648 | if (!SkScalarIsFinite(stopT)) { |
649 | return false; |
650 | } |
651 | SkASSERT(seg <= stopSeg); |
652 | if (startWithMoveTo) { |
653 | compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, startT, &p, nullptr); |
654 | dst->moveTo(p); |
655 | } |
656 | |
657 | if (seg->fPtIndex == stopSeg->fPtIndex) { |
658 | SkContourMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, stopT, dst); |
659 | } else { |
660 | do { |
661 | SkContourMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, SK_Scalar1, dst); |
662 | seg = SkContourMeasure::Segment::Next(seg); |
663 | startT = 0; |
664 | } while (seg->fPtIndex < stopSeg->fPtIndex); |
665 | SkContourMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, 0, stopT, dst); |
666 | } |
667 | |
668 | return true; |
669 | } |
670 | |