1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkMatrix.h" |
9 | |
10 | #include "include/core/SkPaint.h" |
11 | #include "include/core/SkPoint3.h" |
12 | #include "include/core/SkRSXform.h" |
13 | #include "include/core/SkString.h" |
14 | #include "include/private/SkFloatBits.h" |
15 | #include "include/private/SkNx.h" |
16 | #include "include/private/SkTo.h" |
17 | #include "src/core/SkMathPriv.h" |
18 | #include "src/core/SkMatrixPriv.h" |
19 | #include "src/core/SkPathPriv.h" |
20 | |
21 | #include <cstddef> |
22 | #include <utility> |
23 | |
24 | void SkMatrix::doNormalizePerspective() { |
25 | // If the bottom row of the matrix is [0, 0, not_one], we will treat the matrix as if it |
26 | // is in perspective, even though it stills behaves like its affine. If we divide everything |
27 | // by the not_one value, then it will behave the same, but will be treated as affine, |
28 | // and therefore faster (e.g. clients can forward-difference calculations). |
29 | // |
30 | if (0 == fMat[SkMatrix::kMPersp0] && 0 == fMat[SkMatrix::kMPersp1]) { |
31 | SkScalar p2 = fMat[SkMatrix::kMPersp2]; |
32 | if (p2 != 0 && p2 != 1) { |
33 | double inv = 1.0 / p2; |
34 | for (int i = 0; i < 6; ++i) { |
35 | fMat[i] = SkDoubleToScalar(fMat[i] * inv); |
36 | } |
37 | fMat[SkMatrix::kMPersp2] = 1; |
38 | } |
39 | this->setTypeMask(kUnknown_Mask); |
40 | } |
41 | } |
42 | |
43 | // In a few places, we performed the following |
44 | // a * b + c * d + e |
45 | // as |
46 | // a * b + (c * d + e) |
47 | // |
48 | // sdot and scross are indended to capture these compound operations into a |
49 | // function, with an eye toward considering upscaling the intermediates to |
50 | // doubles for more precision (as we do in concat and invert). |
51 | // |
52 | // However, these few lines that performed the last add before the "dot", cause |
53 | // tiny image differences, so we guard that change until we see the impact on |
54 | // chrome's layouttests. |
55 | // |
56 | #define SK_LEGACY_MATRIX_MATH_ORDER |
57 | |
58 | /* [scale-x skew-x trans-x] [X] [X'] |
59 | [skew-y scale-y trans-y] * [Y] = [Y'] |
60 | [persp-0 persp-1 persp-2] [1] [1 ] |
61 | */ |
62 | |
63 | SkMatrix& SkMatrix::reset() { *this = SkMatrix(); return *this; } |
64 | |
65 | SkMatrix& SkMatrix::set9(const SkScalar buffer[]) { |
66 | memcpy(fMat, buffer, 9 * sizeof(SkScalar)); |
67 | this->setTypeMask(kUnknown_Mask); |
68 | return *this; |
69 | } |
70 | |
71 | SkMatrix& SkMatrix::setAffine(const SkScalar buffer[]) { |
72 | fMat[kMScaleX] = buffer[kAScaleX]; |
73 | fMat[kMSkewX] = buffer[kASkewX]; |
74 | fMat[kMTransX] = buffer[kATransX]; |
75 | fMat[kMSkewY] = buffer[kASkewY]; |
76 | fMat[kMScaleY] = buffer[kAScaleY]; |
77 | fMat[kMTransY] = buffer[kATransY]; |
78 | fMat[kMPersp0] = 0; |
79 | fMat[kMPersp1] = 0; |
80 | fMat[kMPersp2] = 1; |
81 | this->setTypeMask(kUnknown_Mask); |
82 | return *this; |
83 | } |
84 | |
85 | // this aligns with the masks, so we can compute a mask from a variable 0/1 |
86 | enum { |
87 | kTranslate_Shift, |
88 | kScale_Shift, |
89 | kAffine_Shift, |
90 | kPerspective_Shift, |
91 | kRectStaysRect_Shift |
92 | }; |
93 | |
94 | static const int32_t kScalar1Int = 0x3f800000; |
95 | |
96 | uint8_t SkMatrix::computePerspectiveTypeMask() const { |
97 | // Benchmarking suggests that replacing this set of SkScalarAs2sCompliment |
98 | // is a win, but replacing those below is not. We don't yet understand |
99 | // that result. |
100 | if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { |
101 | // If this is a perspective transform, we return true for all other |
102 | // transform flags - this does not disable any optimizations, respects |
103 | // the rule that the type mask must be conservative, and speeds up |
104 | // type mask computation. |
105 | return SkToU8(kORableMasks); |
106 | } |
107 | |
108 | return SkToU8(kOnlyPerspectiveValid_Mask | kUnknown_Mask); |
109 | } |
110 | |
111 | uint8_t SkMatrix::computeTypeMask() const { |
112 | unsigned mask = 0; |
113 | |
114 | if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { |
115 | // Once it is determined that that this is a perspective transform, |
116 | // all other flags are moot as far as optimizations are concerned. |
117 | return SkToU8(kORableMasks); |
118 | } |
119 | |
120 | if (fMat[kMTransX] != 0 || fMat[kMTransY] != 0) { |
121 | mask |= kTranslate_Mask; |
122 | } |
123 | |
124 | int m00 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleX]); |
125 | int m01 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewX]); |
126 | int m10 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewY]); |
127 | int m11 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleY]); |
128 | |
129 | if (m01 | m10) { |
130 | // The skew components may be scale-inducing, unless we are dealing |
131 | // with a pure rotation. Testing for a pure rotation is expensive, |
132 | // so we opt for being conservative by always setting the scale bit. |
133 | // along with affine. |
134 | // By doing this, we are also ensuring that matrices have the same |
135 | // type masks as their inverses. |
136 | mask |= kAffine_Mask | kScale_Mask; |
137 | |
138 | // For rectStaysRect, in the affine case, we only need check that |
139 | // the primary diagonal is all zeros and that the secondary diagonal |
140 | // is all non-zero. |
141 | |
142 | // map non-zero to 1 |
143 | m01 = m01 != 0; |
144 | m10 = m10 != 0; |
145 | |
146 | int dp0 = 0 == (m00 | m11) ; // true if both are 0 |
147 | int ds1 = m01 & m10; // true if both are 1 |
148 | |
149 | mask |= (dp0 & ds1) << kRectStaysRect_Shift; |
150 | } else { |
151 | // Only test for scale explicitly if not affine, since affine sets the |
152 | // scale bit. |
153 | if ((m00 ^ kScalar1Int) | (m11 ^ kScalar1Int)) { |
154 | mask |= kScale_Mask; |
155 | } |
156 | |
157 | // Not affine, therefore we already know secondary diagonal is |
158 | // all zeros, so we just need to check that primary diagonal is |
159 | // all non-zero. |
160 | |
161 | // map non-zero to 1 |
162 | m00 = m00 != 0; |
163 | m11 = m11 != 0; |
164 | |
165 | // record if the (p)rimary diagonal is all non-zero |
166 | mask |= (m00 & m11) << kRectStaysRect_Shift; |
167 | } |
168 | |
169 | return SkToU8(mask); |
170 | } |
171 | |
172 | /////////////////////////////////////////////////////////////////////////////// |
173 | |
174 | bool operator==(const SkMatrix& a, const SkMatrix& b) { |
175 | const SkScalar* SK_RESTRICT ma = a.fMat; |
176 | const SkScalar* SK_RESTRICT mb = b.fMat; |
177 | |
178 | return ma[0] == mb[0] && ma[1] == mb[1] && ma[2] == mb[2] && |
179 | ma[3] == mb[3] && ma[4] == mb[4] && ma[5] == mb[5] && |
180 | ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8]; |
181 | } |
182 | |
183 | /////////////////////////////////////////////////////////////////////////////// |
184 | |
185 | // helper function to determine if upper-left 2x2 of matrix is degenerate |
186 | static inline bool is_degenerate_2x2(SkScalar scaleX, SkScalar skewX, |
187 | SkScalar skewY, SkScalar scaleY) { |
188 | SkScalar perp_dot = scaleX*scaleY - skewX*skewY; |
189 | return SkScalarNearlyZero(perp_dot, SK_ScalarNearlyZero*SK_ScalarNearlyZero); |
190 | } |
191 | |
192 | /////////////////////////////////////////////////////////////////////////////// |
193 | |
194 | bool SkMatrix::isSimilarity(SkScalar tol) const { |
195 | // if identity or translate matrix |
196 | TypeMask mask = this->getType(); |
197 | if (mask <= kTranslate_Mask) { |
198 | return true; |
199 | } |
200 | if (mask & kPerspective_Mask) { |
201 | return false; |
202 | } |
203 | |
204 | SkScalar mx = fMat[kMScaleX]; |
205 | SkScalar my = fMat[kMScaleY]; |
206 | // if no skew, can just compare scale factors |
207 | if (!(mask & kAffine_Mask)) { |
208 | return !SkScalarNearlyZero(mx) && SkScalarNearlyEqual(SkScalarAbs(mx), SkScalarAbs(my)); |
209 | } |
210 | SkScalar sx = fMat[kMSkewX]; |
211 | SkScalar sy = fMat[kMSkewY]; |
212 | |
213 | if (is_degenerate_2x2(mx, sx, sy, my)) { |
214 | return false; |
215 | } |
216 | |
217 | // upper 2x2 is rotation/reflection + uniform scale if basis vectors |
218 | // are 90 degree rotations of each other |
219 | return (SkScalarNearlyEqual(mx, my, tol) && SkScalarNearlyEqual(sx, -sy, tol)) |
220 | || (SkScalarNearlyEqual(mx, -my, tol) && SkScalarNearlyEqual(sx, sy, tol)); |
221 | } |
222 | |
223 | bool SkMatrix::preservesRightAngles(SkScalar tol) const { |
224 | TypeMask mask = this->getType(); |
225 | |
226 | if (mask <= kTranslate_Mask) { |
227 | // identity, translate and/or scale |
228 | return true; |
229 | } |
230 | if (mask & kPerspective_Mask) { |
231 | return false; |
232 | } |
233 | |
234 | SkASSERT(mask & (kAffine_Mask | kScale_Mask)); |
235 | |
236 | SkScalar mx = fMat[kMScaleX]; |
237 | SkScalar my = fMat[kMScaleY]; |
238 | SkScalar sx = fMat[kMSkewX]; |
239 | SkScalar sy = fMat[kMSkewY]; |
240 | |
241 | if (is_degenerate_2x2(mx, sx, sy, my)) { |
242 | return false; |
243 | } |
244 | |
245 | // upper 2x2 is scale + rotation/reflection if basis vectors are orthogonal |
246 | SkVector vec[2]; |
247 | vec[0].set(mx, sy); |
248 | vec[1].set(sx, my); |
249 | |
250 | return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)); |
251 | } |
252 | |
253 | /////////////////////////////////////////////////////////////////////////////// |
254 | |
255 | static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { |
256 | return a * b + c * d; |
257 | } |
258 | |
259 | static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
260 | SkScalar e, SkScalar f) { |
261 | return a * b + c * d + e * f; |
262 | } |
263 | |
264 | static inline SkScalar scross(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { |
265 | return a * b - c * d; |
266 | } |
267 | |
268 | SkMatrix& SkMatrix::setTranslate(SkScalar dx, SkScalar dy) { |
269 | *this = SkMatrix(1, 0, dx, |
270 | 0, 1, dy, |
271 | 0, 0, 1, |
272 | (dx != 0 || dy != 0) ? kTranslate_Mask | kRectStaysRect_Mask |
273 | : kIdentity_Mask | kRectStaysRect_Mask); |
274 | return *this; |
275 | } |
276 | |
277 | SkMatrix& SkMatrix::preTranslate(SkScalar dx, SkScalar dy) { |
278 | const unsigned mask = this->getType(); |
279 | |
280 | if (mask <= kTranslate_Mask) { |
281 | fMat[kMTransX] += dx; |
282 | fMat[kMTransY] += dy; |
283 | } else if (mask & kPerspective_Mask) { |
284 | SkMatrix m; |
285 | m.setTranslate(dx, dy); |
286 | return this->preConcat(m); |
287 | } else { |
288 | fMat[kMTransX] += sdot(fMat[kMScaleX], dx, fMat[kMSkewX], dy); |
289 | fMat[kMTransY] += sdot(fMat[kMSkewY], dx, fMat[kMScaleY], dy); |
290 | } |
291 | this->updateTranslateMask(); |
292 | return *this; |
293 | } |
294 | |
295 | SkMatrix& SkMatrix::postTranslate(SkScalar dx, SkScalar dy) { |
296 | if (this->hasPerspective()) { |
297 | SkMatrix m; |
298 | m.setTranslate(dx, dy); |
299 | this->postConcat(m); |
300 | } else { |
301 | fMat[kMTransX] += dx; |
302 | fMat[kMTransY] += dy; |
303 | this->updateTranslateMask(); |
304 | } |
305 | return *this; |
306 | } |
307 | |
308 | /////////////////////////////////////////////////////////////////////////////// |
309 | |
310 | SkMatrix& SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
311 | if (1 == sx && 1 == sy) { |
312 | this->reset(); |
313 | } else { |
314 | this->setScaleTranslate(sx, sy, px - sx * px, py - sy * py); |
315 | } |
316 | return *this; |
317 | } |
318 | |
319 | SkMatrix& SkMatrix::setScale(SkScalar sx, SkScalar sy) { |
320 | *this = SkMatrix(sx, 0, 0, |
321 | 0, sy, 0, |
322 | 0, 0, 1, |
323 | (sx == 1 && sy == 1) ? kIdentity_Mask | kRectStaysRect_Mask |
324 | : kScale_Mask | kRectStaysRect_Mask); |
325 | return *this; |
326 | } |
327 | |
328 | SkMatrix& SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
329 | if (1 == sx && 1 == sy) { |
330 | return *this; |
331 | } |
332 | |
333 | SkMatrix m; |
334 | m.setScale(sx, sy, px, py); |
335 | return this->preConcat(m); |
336 | } |
337 | |
338 | SkMatrix& SkMatrix::preScale(SkScalar sx, SkScalar sy) { |
339 | if (1 == sx && 1 == sy) { |
340 | return *this; |
341 | } |
342 | |
343 | // the assumption is that these multiplies are very cheap, and that |
344 | // a full concat and/or just computing the matrix type is more expensive. |
345 | // Also, the fixed-point case checks for overflow, but the float doesn't, |
346 | // so we can get away with these blind multiplies. |
347 | |
348 | fMat[kMScaleX] *= sx; |
349 | fMat[kMSkewY] *= sx; |
350 | fMat[kMPersp0] *= sx; |
351 | |
352 | fMat[kMSkewX] *= sy; |
353 | fMat[kMScaleY] *= sy; |
354 | fMat[kMPersp1] *= sy; |
355 | |
356 | // Attempt to simplify our type when applying an inverse scale. |
357 | // TODO: The persp/affine preconditions are in place to keep the mask consistent with |
358 | // what computeTypeMask() would produce (persp/skew always implies kScale). |
359 | // We should investigate whether these flag dependencies are truly needed. |
360 | if (fMat[kMScaleX] == 1 && fMat[kMScaleY] == 1 |
361 | && !(fTypeMask & (kPerspective_Mask | kAffine_Mask))) { |
362 | this->clearTypeMask(kScale_Mask); |
363 | } else { |
364 | this->orTypeMask(kScale_Mask); |
365 | } |
366 | return *this; |
367 | } |
368 | |
369 | SkMatrix& SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
370 | if (1 == sx && 1 == sy) { |
371 | return *this; |
372 | } |
373 | SkMatrix m; |
374 | m.setScale(sx, sy, px, py); |
375 | return this->postConcat(m); |
376 | } |
377 | |
378 | SkMatrix& SkMatrix::postScale(SkScalar sx, SkScalar sy) { |
379 | if (1 == sx && 1 == sy) { |
380 | return *this; |
381 | } |
382 | SkMatrix m; |
383 | m.setScale(sx, sy); |
384 | return this->postConcat(m); |
385 | } |
386 | |
387 | // this perhaps can go away, if we have a fract/high-precision way to |
388 | // scale matrices |
389 | bool SkMatrix::postIDiv(int divx, int divy) { |
390 | if (divx == 0 || divy == 0) { |
391 | return false; |
392 | } |
393 | |
394 | const float invX = 1.f / divx; |
395 | const float invY = 1.f / divy; |
396 | |
397 | fMat[kMScaleX] *= invX; |
398 | fMat[kMSkewX] *= invX; |
399 | fMat[kMTransX] *= invX; |
400 | |
401 | fMat[kMScaleY] *= invY; |
402 | fMat[kMSkewY] *= invY; |
403 | fMat[kMTransY] *= invY; |
404 | |
405 | this->setTypeMask(kUnknown_Mask); |
406 | return true; |
407 | } |
408 | |
409 | //////////////////////////////////////////////////////////////////////////////////// |
410 | |
411 | SkMatrix& SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV, SkScalar px, SkScalar py) { |
412 | const SkScalar oneMinusCosV = 1 - cosV; |
413 | |
414 | fMat[kMScaleX] = cosV; |
415 | fMat[kMSkewX] = -sinV; |
416 | fMat[kMTransX] = sdot(sinV, py, oneMinusCosV, px); |
417 | |
418 | fMat[kMSkewY] = sinV; |
419 | fMat[kMScaleY] = cosV; |
420 | fMat[kMTransY] = sdot(-sinV, px, oneMinusCosV, py); |
421 | |
422 | fMat[kMPersp0] = fMat[kMPersp1] = 0; |
423 | fMat[kMPersp2] = 1; |
424 | |
425 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
426 | return *this; |
427 | } |
428 | |
429 | SkMatrix& SkMatrix::setRSXform(const SkRSXform& xform) { |
430 | fMat[kMScaleX] = xform.fSCos; |
431 | fMat[kMSkewX] = -xform.fSSin; |
432 | fMat[kMTransX] = xform.fTx; |
433 | |
434 | fMat[kMSkewY] = xform.fSSin; |
435 | fMat[kMScaleY] = xform.fSCos; |
436 | fMat[kMTransY] = xform.fTy; |
437 | |
438 | fMat[kMPersp0] = fMat[kMPersp1] = 0; |
439 | fMat[kMPersp2] = 1; |
440 | |
441 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
442 | return *this; |
443 | } |
444 | |
445 | SkMatrix& SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) { |
446 | fMat[kMScaleX] = cosV; |
447 | fMat[kMSkewX] = -sinV; |
448 | fMat[kMTransX] = 0; |
449 | |
450 | fMat[kMSkewY] = sinV; |
451 | fMat[kMScaleY] = cosV; |
452 | fMat[kMTransY] = 0; |
453 | |
454 | fMat[kMPersp0] = fMat[kMPersp1] = 0; |
455 | fMat[kMPersp2] = 1; |
456 | |
457 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
458 | return *this; |
459 | } |
460 | |
461 | SkMatrix& SkMatrix::setRotate(SkScalar degrees, SkScalar px, SkScalar py) { |
462 | SkScalar rad = SkDegreesToRadians(degrees); |
463 | return this->setSinCos(SkScalarSinSnapToZero(rad), SkScalarCosSnapToZero(rad), px, py); |
464 | } |
465 | |
466 | SkMatrix& SkMatrix::setRotate(SkScalar degrees) { |
467 | SkScalar rad = SkDegreesToRadians(degrees); |
468 | return this->setSinCos(SkScalarSinSnapToZero(rad), SkScalarCosSnapToZero(rad)); |
469 | } |
470 | |
471 | SkMatrix& SkMatrix::preRotate(SkScalar degrees, SkScalar px, SkScalar py) { |
472 | SkMatrix m; |
473 | m.setRotate(degrees, px, py); |
474 | return this->preConcat(m); |
475 | } |
476 | |
477 | SkMatrix& SkMatrix::preRotate(SkScalar degrees) { |
478 | SkMatrix m; |
479 | m.setRotate(degrees); |
480 | return this->preConcat(m); |
481 | } |
482 | |
483 | SkMatrix& SkMatrix::postRotate(SkScalar degrees, SkScalar px, SkScalar py) { |
484 | SkMatrix m; |
485 | m.setRotate(degrees, px, py); |
486 | return this->postConcat(m); |
487 | } |
488 | |
489 | SkMatrix& SkMatrix::postRotate(SkScalar degrees) { |
490 | SkMatrix m; |
491 | m.setRotate(degrees); |
492 | return this->postConcat(m); |
493 | } |
494 | |
495 | //////////////////////////////////////////////////////////////////////////////////// |
496 | |
497 | SkMatrix& SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
498 | *this = SkMatrix(1, sx, -sx * py, |
499 | sy, 1, -sy * px, |
500 | 0, 0, 1, |
501 | kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
502 | return *this; |
503 | } |
504 | |
505 | SkMatrix& SkMatrix::setSkew(SkScalar sx, SkScalar sy) { |
506 | fMat[kMScaleX] = 1; |
507 | fMat[kMSkewX] = sx; |
508 | fMat[kMTransX] = 0; |
509 | |
510 | fMat[kMSkewY] = sy; |
511 | fMat[kMScaleY] = 1; |
512 | fMat[kMTransY] = 0; |
513 | |
514 | fMat[kMPersp0] = fMat[kMPersp1] = 0; |
515 | fMat[kMPersp2] = 1; |
516 | |
517 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
518 | return *this; |
519 | } |
520 | |
521 | SkMatrix& SkMatrix::preSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
522 | SkMatrix m; |
523 | m.setSkew(sx, sy, px, py); |
524 | return this->preConcat(m); |
525 | } |
526 | |
527 | SkMatrix& SkMatrix::preSkew(SkScalar sx, SkScalar sy) { |
528 | SkMatrix m; |
529 | m.setSkew(sx, sy); |
530 | return this->preConcat(m); |
531 | } |
532 | |
533 | SkMatrix& SkMatrix::postSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { |
534 | SkMatrix m; |
535 | m.setSkew(sx, sy, px, py); |
536 | return this->postConcat(m); |
537 | } |
538 | |
539 | SkMatrix& SkMatrix::postSkew(SkScalar sx, SkScalar sy) { |
540 | SkMatrix m; |
541 | m.setSkew(sx, sy); |
542 | return this->postConcat(m); |
543 | } |
544 | |
545 | /////////////////////////////////////////////////////////////////////////////// |
546 | |
547 | bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit align) { |
548 | if (src.isEmpty()) { |
549 | this->reset(); |
550 | return false; |
551 | } |
552 | |
553 | if (dst.isEmpty()) { |
554 | sk_bzero(fMat, 8 * sizeof(SkScalar)); |
555 | fMat[kMPersp2] = 1; |
556 | this->setTypeMask(kScale_Mask | kRectStaysRect_Mask); |
557 | } else { |
558 | SkScalar tx, sx = dst.width() / src.width(); |
559 | SkScalar ty, sy = dst.height() / src.height(); |
560 | bool xLarger = false; |
561 | |
562 | if (align != kFill_ScaleToFit) { |
563 | if (sx > sy) { |
564 | xLarger = true; |
565 | sx = sy; |
566 | } else { |
567 | sy = sx; |
568 | } |
569 | } |
570 | |
571 | tx = dst.fLeft - src.fLeft * sx; |
572 | ty = dst.fTop - src.fTop * sy; |
573 | if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) { |
574 | SkScalar diff; |
575 | |
576 | if (xLarger) { |
577 | diff = dst.width() - src.width() * sy; |
578 | } else { |
579 | diff = dst.height() - src.height() * sy; |
580 | } |
581 | |
582 | if (align == kCenter_ScaleToFit) { |
583 | diff = SkScalarHalf(diff); |
584 | } |
585 | |
586 | if (xLarger) { |
587 | tx += diff; |
588 | } else { |
589 | ty += diff; |
590 | } |
591 | } |
592 | |
593 | this->setScaleTranslate(sx, sy, tx, ty); |
594 | } |
595 | return true; |
596 | } |
597 | |
598 | /////////////////////////////////////////////////////////////////////////////// |
599 | |
600 | static inline float muladdmul(float a, float b, float c, float d) { |
601 | return sk_double_to_float((double)a * b + (double)c * d); |
602 | } |
603 | |
604 | static inline float rowcol3(const float row[], const float col[]) { |
605 | return row[0] * col[0] + row[1] * col[3] + row[2] * col[6]; |
606 | } |
607 | |
608 | static bool only_scale_and_translate(unsigned mask) { |
609 | return 0 == (mask & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)); |
610 | } |
611 | |
612 | SkMatrix& SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) { |
613 | TypeMask aType = a.getType(); |
614 | TypeMask bType = b.getType(); |
615 | |
616 | if (a.isTriviallyIdentity()) { |
617 | *this = b; |
618 | } else if (b.isTriviallyIdentity()) { |
619 | *this = a; |
620 | } else if (only_scale_and_translate(aType | bType)) { |
621 | this->setScaleTranslate(a.fMat[kMScaleX] * b.fMat[kMScaleX], |
622 | a.fMat[kMScaleY] * b.fMat[kMScaleY], |
623 | a.fMat[kMScaleX] * b.fMat[kMTransX] + a.fMat[kMTransX], |
624 | a.fMat[kMScaleY] * b.fMat[kMTransY] + a.fMat[kMTransY]); |
625 | } else { |
626 | SkMatrix tmp; |
627 | |
628 | if ((aType | bType) & kPerspective_Mask) { |
629 | tmp.fMat[kMScaleX] = rowcol3(&a.fMat[0], &b.fMat[0]); |
630 | tmp.fMat[kMSkewX] = rowcol3(&a.fMat[0], &b.fMat[1]); |
631 | tmp.fMat[kMTransX] = rowcol3(&a.fMat[0], &b.fMat[2]); |
632 | tmp.fMat[kMSkewY] = rowcol3(&a.fMat[3], &b.fMat[0]); |
633 | tmp.fMat[kMScaleY] = rowcol3(&a.fMat[3], &b.fMat[1]); |
634 | tmp.fMat[kMTransY] = rowcol3(&a.fMat[3], &b.fMat[2]); |
635 | tmp.fMat[kMPersp0] = rowcol3(&a.fMat[6], &b.fMat[0]); |
636 | tmp.fMat[kMPersp1] = rowcol3(&a.fMat[6], &b.fMat[1]); |
637 | tmp.fMat[kMPersp2] = rowcol3(&a.fMat[6], &b.fMat[2]); |
638 | |
639 | tmp.setTypeMask(kUnknown_Mask); |
640 | } else { |
641 | tmp.fMat[kMScaleX] = muladdmul(a.fMat[kMScaleX], |
642 | b.fMat[kMScaleX], |
643 | a.fMat[kMSkewX], |
644 | b.fMat[kMSkewY]); |
645 | |
646 | tmp.fMat[kMSkewX] = muladdmul(a.fMat[kMScaleX], |
647 | b.fMat[kMSkewX], |
648 | a.fMat[kMSkewX], |
649 | b.fMat[kMScaleY]); |
650 | |
651 | tmp.fMat[kMTransX] = muladdmul(a.fMat[kMScaleX], |
652 | b.fMat[kMTransX], |
653 | a.fMat[kMSkewX], |
654 | b.fMat[kMTransY]) + a.fMat[kMTransX]; |
655 | |
656 | tmp.fMat[kMSkewY] = muladdmul(a.fMat[kMSkewY], |
657 | b.fMat[kMScaleX], |
658 | a.fMat[kMScaleY], |
659 | b.fMat[kMSkewY]); |
660 | |
661 | tmp.fMat[kMScaleY] = muladdmul(a.fMat[kMSkewY], |
662 | b.fMat[kMSkewX], |
663 | a.fMat[kMScaleY], |
664 | b.fMat[kMScaleY]); |
665 | |
666 | tmp.fMat[kMTransY] = muladdmul(a.fMat[kMSkewY], |
667 | b.fMat[kMTransX], |
668 | a.fMat[kMScaleY], |
669 | b.fMat[kMTransY]) + a.fMat[kMTransY]; |
670 | |
671 | tmp.fMat[kMPersp0] = 0; |
672 | tmp.fMat[kMPersp1] = 0; |
673 | tmp.fMat[kMPersp2] = 1; |
674 | //SkDebugf("Concat mat non-persp type: %d\n", tmp.getType()); |
675 | //SkASSERT(!(tmp.getType() & kPerspective_Mask)); |
676 | tmp.setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); |
677 | } |
678 | *this = tmp; |
679 | } |
680 | return *this; |
681 | } |
682 | |
683 | SkMatrix& SkMatrix::preConcat(const SkMatrix& mat) { |
684 | // check for identity first, so we don't do a needless copy of ourselves |
685 | // to ourselves inside setConcat() |
686 | if(!mat.isIdentity()) { |
687 | this->setConcat(*this, mat); |
688 | } |
689 | return *this; |
690 | } |
691 | |
692 | SkMatrix& SkMatrix::postConcat(const SkMatrix& mat) { |
693 | // check for identity first, so we don't do a needless copy of ourselves |
694 | // to ourselves inside setConcat() |
695 | if (!mat.isIdentity()) { |
696 | this->setConcat(mat, *this); |
697 | } |
698 | return *this; |
699 | } |
700 | |
701 | /////////////////////////////////////////////////////////////////////////////// |
702 | |
703 | /* Matrix inversion is very expensive, but also the place where keeping |
704 | precision may be most important (here and matrix concat). Hence to avoid |
705 | bitmap blitting artifacts when walking the inverse, we use doubles for |
706 | the intermediate math, even though we know that is more expensive. |
707 | */ |
708 | |
709 | static inline SkScalar scross_dscale(SkScalar a, SkScalar b, |
710 | SkScalar c, SkScalar d, double scale) { |
711 | return SkDoubleToScalar(scross(a, b, c, d) * scale); |
712 | } |
713 | |
714 | static inline double dcross(double a, double b, double c, double d) { |
715 | return a * b - c * d; |
716 | } |
717 | |
718 | static inline SkScalar dcross_dscale(double a, double b, |
719 | double c, double d, double scale) { |
720 | return SkDoubleToScalar(dcross(a, b, c, d) * scale); |
721 | } |
722 | |
723 | static double sk_inv_determinant(const float mat[9], int isPerspective) { |
724 | double det; |
725 | |
726 | if (isPerspective) { |
727 | det = mat[SkMatrix::kMScaleX] * |
728 | dcross(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], |
729 | mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]) |
730 | + |
731 | mat[SkMatrix::kMSkewX] * |
732 | dcross(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], |
733 | mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2]) |
734 | + |
735 | mat[SkMatrix::kMTransX] * |
736 | dcross(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1], |
737 | mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]); |
738 | } else { |
739 | det = dcross(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY], |
740 | mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]); |
741 | } |
742 | |
743 | // Since the determinant is on the order of the cube of the matrix members, |
744 | // compare to the cube of the default nearly-zero constant (although an |
745 | // estimate of the condition number would be better if it wasn't so expensive). |
746 | if (SkScalarNearlyZero(sk_double_to_float(det), |
747 | SK_ScalarNearlyZero * SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { |
748 | return 0; |
749 | } |
750 | return 1.0 / det; |
751 | } |
752 | |
753 | void SkMatrix::SetAffineIdentity(SkScalar affine[6]) { |
754 | affine[kAScaleX] = 1; |
755 | affine[kASkewY] = 0; |
756 | affine[kASkewX] = 0; |
757 | affine[kAScaleY] = 1; |
758 | affine[kATransX] = 0; |
759 | affine[kATransY] = 0; |
760 | } |
761 | |
762 | bool SkMatrix::asAffine(SkScalar affine[6]) const { |
763 | if (this->hasPerspective()) { |
764 | return false; |
765 | } |
766 | if (affine) { |
767 | affine[kAScaleX] = this->fMat[kMScaleX]; |
768 | affine[kASkewY] = this->fMat[kMSkewY]; |
769 | affine[kASkewX] = this->fMat[kMSkewX]; |
770 | affine[kAScaleY] = this->fMat[kMScaleY]; |
771 | affine[kATransX] = this->fMat[kMTransX]; |
772 | affine[kATransY] = this->fMat[kMTransY]; |
773 | } |
774 | return true; |
775 | } |
776 | |
777 | void SkMatrix::mapPoints(SkPoint dst[], const SkPoint src[], int count) const { |
778 | SkASSERT((dst && src && count > 0) || 0 == count); |
779 | // no partial overlap |
780 | SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]); |
781 | this->getMapPtsProc()(*this, dst, src, count); |
782 | } |
783 | |
784 | void SkMatrix::mapXY(SkScalar x, SkScalar y, SkPoint* result) const { |
785 | SkASSERT(result); |
786 | this->getMapXYProc()(*this, x, y, result); |
787 | } |
788 | |
789 | void SkMatrix::ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp) { |
790 | SkASSERT(src != dst); |
791 | SkASSERT(src && dst); |
792 | |
793 | if (isPersp) { |
794 | dst[kMScaleX] = scross_dscale(src[kMScaleY], src[kMPersp2], src[kMTransY], src[kMPersp1], invDet); |
795 | dst[kMSkewX] = scross_dscale(src[kMTransX], src[kMPersp1], src[kMSkewX], src[kMPersp2], invDet); |
796 | dst[kMTransX] = scross_dscale(src[kMSkewX], src[kMTransY], src[kMTransX], src[kMScaleY], invDet); |
797 | |
798 | dst[kMSkewY] = scross_dscale(src[kMTransY], src[kMPersp0], src[kMSkewY], src[kMPersp2], invDet); |
799 | dst[kMScaleY] = scross_dscale(src[kMScaleX], src[kMPersp2], src[kMTransX], src[kMPersp0], invDet); |
800 | dst[kMTransY] = scross_dscale(src[kMTransX], src[kMSkewY], src[kMScaleX], src[kMTransY], invDet); |
801 | |
802 | dst[kMPersp0] = scross_dscale(src[kMSkewY], src[kMPersp1], src[kMScaleY], src[kMPersp0], invDet); |
803 | dst[kMPersp1] = scross_dscale(src[kMSkewX], src[kMPersp0], src[kMScaleX], src[kMPersp1], invDet); |
804 | dst[kMPersp2] = scross_dscale(src[kMScaleX], src[kMScaleY], src[kMSkewX], src[kMSkewY], invDet); |
805 | } else { // not perspective |
806 | dst[kMScaleX] = SkDoubleToScalar(src[kMScaleY] * invDet); |
807 | dst[kMSkewX] = SkDoubleToScalar(-src[kMSkewX] * invDet); |
808 | dst[kMTransX] = dcross_dscale(src[kMSkewX], src[kMTransY], src[kMScaleY], src[kMTransX], invDet); |
809 | |
810 | dst[kMSkewY] = SkDoubleToScalar(-src[kMSkewY] * invDet); |
811 | dst[kMScaleY] = SkDoubleToScalar(src[kMScaleX] * invDet); |
812 | dst[kMTransY] = dcross_dscale(src[kMSkewY], src[kMTransX], src[kMScaleX], src[kMTransY], invDet); |
813 | |
814 | dst[kMPersp0] = 0; |
815 | dst[kMPersp1] = 0; |
816 | dst[kMPersp2] = 1; |
817 | } |
818 | } |
819 | |
820 | bool SkMatrix::invertNonIdentity(SkMatrix* inv) const { |
821 | SkASSERT(!this->isIdentity()); |
822 | |
823 | TypeMask mask = this->getType(); |
824 | |
825 | if (0 == (mask & ~(kScale_Mask | kTranslate_Mask))) { |
826 | bool invertible = true; |
827 | if (inv) { |
828 | if (mask & kScale_Mask) { |
829 | SkScalar invX = fMat[kMScaleX]; |
830 | SkScalar invY = fMat[kMScaleY]; |
831 | if (0 == invX || 0 == invY) { |
832 | return false; |
833 | } |
834 | invX = SkScalarInvert(invX); |
835 | invY = SkScalarInvert(invY); |
836 | |
837 | // Must be careful when writing to inv, since it may be the |
838 | // same memory as this. |
839 | |
840 | inv->fMat[kMSkewX] = inv->fMat[kMSkewY] = |
841 | inv->fMat[kMPersp0] = inv->fMat[kMPersp1] = 0; |
842 | |
843 | inv->fMat[kMScaleX] = invX; |
844 | inv->fMat[kMScaleY] = invY; |
845 | inv->fMat[kMPersp2] = 1; |
846 | inv->fMat[kMTransX] = -fMat[kMTransX] * invX; |
847 | inv->fMat[kMTransY] = -fMat[kMTransY] * invY; |
848 | |
849 | inv->setTypeMask(mask | kRectStaysRect_Mask); |
850 | } else { |
851 | // translate only |
852 | inv->setTranslate(-fMat[kMTransX], -fMat[kMTransY]); |
853 | } |
854 | } else { // inv is nullptr, just check if we're invertible |
855 | if (!fMat[kMScaleX] || !fMat[kMScaleY]) { |
856 | invertible = false; |
857 | } |
858 | } |
859 | return invertible; |
860 | } |
861 | |
862 | int isPersp = mask & kPerspective_Mask; |
863 | double invDet = sk_inv_determinant(fMat, isPersp); |
864 | |
865 | if (invDet == 0) { // underflow |
866 | return false; |
867 | } |
868 | |
869 | bool applyingInPlace = (inv == this); |
870 | |
871 | SkMatrix* tmp = inv; |
872 | |
873 | SkMatrix storage; |
874 | if (applyingInPlace || nullptr == tmp) { |
875 | tmp = &storage; // we either need to avoid trampling memory or have no memory |
876 | } |
877 | |
878 | ComputeInv(tmp->fMat, fMat, invDet, isPersp); |
879 | if (!tmp->isFinite()) { |
880 | return false; |
881 | } |
882 | |
883 | tmp->setTypeMask(fTypeMask); |
884 | |
885 | if (applyingInPlace) { |
886 | *inv = storage; // need to copy answer back |
887 | } |
888 | |
889 | return true; |
890 | } |
891 | |
892 | /////////////////////////////////////////////////////////////////////////////// |
893 | |
894 | void SkMatrix::Identity_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { |
895 | SkASSERT(m.getType() == 0); |
896 | |
897 | if (dst != src && count > 0) { |
898 | memcpy(dst, src, count * sizeof(SkPoint)); |
899 | } |
900 | } |
901 | |
902 | void SkMatrix::Trans_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { |
903 | SkASSERT(m.getType() <= SkMatrix::kTranslate_Mask); |
904 | if (count > 0) { |
905 | SkScalar tx = m.getTranslateX(); |
906 | SkScalar ty = m.getTranslateY(); |
907 | if (count & 1) { |
908 | dst->fX = src->fX + tx; |
909 | dst->fY = src->fY + ty; |
910 | src += 1; |
911 | dst += 1; |
912 | } |
913 | Sk4s trans4(tx, ty, tx, ty); |
914 | count >>= 1; |
915 | if (count & 1) { |
916 | (Sk4s::Load(src) + trans4).store(dst); |
917 | src += 2; |
918 | dst += 2; |
919 | } |
920 | count >>= 1; |
921 | for (int i = 0; i < count; ++i) { |
922 | (Sk4s::Load(src+0) + trans4).store(dst+0); |
923 | (Sk4s::Load(src+2) + trans4).store(dst+2); |
924 | src += 4; |
925 | dst += 4; |
926 | } |
927 | } |
928 | } |
929 | |
930 | void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { |
931 | SkASSERT(m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)); |
932 | if (count > 0) { |
933 | SkScalar tx = m.getTranslateX(); |
934 | SkScalar ty = m.getTranslateY(); |
935 | SkScalar sx = m.getScaleX(); |
936 | SkScalar sy = m.getScaleY(); |
937 | if (count & 1) { |
938 | dst->fX = src->fX * sx + tx; |
939 | dst->fY = src->fY * sy + ty; |
940 | src += 1; |
941 | dst += 1; |
942 | } |
943 | Sk4s trans4(tx, ty, tx, ty); |
944 | Sk4s scale4(sx, sy, sx, sy); |
945 | count >>= 1; |
946 | if (count & 1) { |
947 | (Sk4s::Load(src) * scale4 + trans4).store(dst); |
948 | src += 2; |
949 | dst += 2; |
950 | } |
951 | count >>= 1; |
952 | for (int i = 0; i < count; ++i) { |
953 | (Sk4s::Load(src+0) * scale4 + trans4).store(dst+0); |
954 | (Sk4s::Load(src+2) * scale4 + trans4).store(dst+2); |
955 | src += 4; |
956 | dst += 4; |
957 | } |
958 | } |
959 | } |
960 | |
961 | void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[], |
962 | const SkPoint src[], int count) { |
963 | SkASSERT(m.hasPerspective()); |
964 | |
965 | if (count > 0) { |
966 | do { |
967 | SkScalar sy = src->fY; |
968 | SkScalar sx = src->fX; |
969 | src += 1; |
970 | |
971 | SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
972 | SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
973 | #ifdef SK_LEGACY_MATRIX_MATH_ORDER |
974 | SkScalar z = sx * m.fMat[kMPersp0] + (sy * m.fMat[kMPersp1] + m.fMat[kMPersp2]); |
975 | #else |
976 | SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; |
977 | #endif |
978 | if (z) { |
979 | z = 1 / z; |
980 | } |
981 | |
982 | dst->fY = y * z; |
983 | dst->fX = x * z; |
984 | dst += 1; |
985 | } while (--count); |
986 | } |
987 | } |
988 | |
989 | void SkMatrix::Affine_vpts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { |
990 | SkASSERT(m.getType() != SkMatrix::kPerspective_Mask); |
991 | if (count > 0) { |
992 | SkScalar tx = m.getTranslateX(); |
993 | SkScalar ty = m.getTranslateY(); |
994 | SkScalar sx = m.getScaleX(); |
995 | SkScalar sy = m.getScaleY(); |
996 | SkScalar kx = m.getSkewX(); |
997 | SkScalar ky = m.getSkewY(); |
998 | if (count & 1) { |
999 | dst->set(src->fX * sx + src->fY * kx + tx, |
1000 | src->fX * ky + src->fY * sy + ty); |
1001 | src += 1; |
1002 | dst += 1; |
1003 | } |
1004 | Sk4s trans4(tx, ty, tx, ty); |
1005 | Sk4s scale4(sx, sy, sx, sy); |
1006 | Sk4s skew4(kx, ky, kx, ky); // applied to swizzle of src4 |
1007 | count >>= 1; |
1008 | for (int i = 0; i < count; ++i) { |
1009 | Sk4s src4 = Sk4s::Load(src); |
1010 | Sk4s swz4 = SkNx_shuffle<1,0,3,2>(src4); // y0 x0, y1 x1 |
1011 | (src4 * scale4 + swz4 * skew4 + trans4).store(dst); |
1012 | src += 2; |
1013 | dst += 2; |
1014 | } |
1015 | } |
1016 | } |
1017 | |
1018 | const SkMatrix::MapPtsProc SkMatrix::gMapPtsProcs[] = { |
1019 | SkMatrix::Identity_pts, SkMatrix::Trans_pts, |
1020 | SkMatrix::Scale_pts, SkMatrix::Scale_pts, |
1021 | SkMatrix::Affine_vpts, SkMatrix::Affine_vpts, |
1022 | SkMatrix::Affine_vpts, SkMatrix::Affine_vpts, |
1023 | // repeat the persp proc 8 times |
1024 | SkMatrix::Persp_pts, SkMatrix::Persp_pts, |
1025 | SkMatrix::Persp_pts, SkMatrix::Persp_pts, |
1026 | SkMatrix::Persp_pts, SkMatrix::Persp_pts, |
1027 | SkMatrix::Persp_pts, SkMatrix::Persp_pts |
1028 | }; |
1029 | |
1030 | /////////////////////////////////////////////////////////////////////////////// |
1031 | |
1032 | void SkMatrixPriv::MapHomogeneousPointsWithStride(const SkMatrix& mx, SkPoint3 dst[], |
1033 | size_t dstStride, const SkPoint3 src[], |
1034 | size_t srcStride, int count) { |
1035 | SkASSERT((dst && src && count > 0) || 0 == count); |
1036 | // no partial overlap |
1037 | SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]); |
1038 | |
1039 | if (count > 0) { |
1040 | if (mx.isIdentity()) { |
1041 | if (src != dst) { |
1042 | if (srcStride == sizeof(SkPoint3) && dstStride == sizeof(SkPoint3)) { |
1043 | memcpy(dst, src, count * sizeof(SkPoint3)); |
1044 | } else { |
1045 | for (int i = 0; i < count; ++i) { |
1046 | *dst = *src; |
1047 | dst = reinterpret_cast<SkPoint3*>(reinterpret_cast<char*>(dst) + dstStride); |
1048 | src = reinterpret_cast<const SkPoint3*>(reinterpret_cast<const char*>(src) + |
1049 | srcStride); |
1050 | } |
1051 | } |
1052 | } |
1053 | return; |
1054 | } |
1055 | do { |
1056 | SkScalar sx = src->fX; |
1057 | SkScalar sy = src->fY; |
1058 | SkScalar sw = src->fZ; |
1059 | src = reinterpret_cast<const SkPoint3*>(reinterpret_cast<const char*>(src) + srcStride); |
1060 | const SkScalar* mat = mx.fMat; |
1061 | typedef SkMatrix M; |
1062 | SkScalar x = sdot(sx, mat[M::kMScaleX], sy, mat[M::kMSkewX], sw, mat[M::kMTransX]); |
1063 | SkScalar y = sdot(sx, mat[M::kMSkewY], sy, mat[M::kMScaleY], sw, mat[M::kMTransY]); |
1064 | SkScalar w = sdot(sx, mat[M::kMPersp0], sy, mat[M::kMPersp1], sw, mat[M::kMPersp2]); |
1065 | |
1066 | dst->set(x, y, w); |
1067 | dst = reinterpret_cast<SkPoint3*>(reinterpret_cast<char*>(dst) + dstStride); |
1068 | } while (--count); |
1069 | } |
1070 | } |
1071 | |
1072 | void SkMatrix::mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const { |
1073 | SkMatrixPriv::MapHomogeneousPointsWithStride(*this, dst, sizeof(SkPoint3), src, |
1074 | sizeof(SkPoint3), count); |
1075 | } |
1076 | |
1077 | void SkMatrix::mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const { |
1078 | if (this->isIdentity()) { |
1079 | for (int i = 0; i < count; ++i) { |
1080 | dst[i] = { src[i].fX, src[i].fY, 1 }; |
1081 | } |
1082 | } else if (this->hasPerspective()) { |
1083 | for (int i = 0; i < count; ++i) { |
1084 | dst[i] = { |
1085 | fMat[0] * src[i].fX + fMat[1] * src[i].fY + fMat[2], |
1086 | fMat[3] * src[i].fX + fMat[4] * src[i].fY + fMat[5], |
1087 | fMat[6] * src[i].fX + fMat[7] * src[i].fY + fMat[8], |
1088 | }; |
1089 | } |
1090 | } else { // affine |
1091 | for (int i = 0; i < count; ++i) { |
1092 | dst[i] = { |
1093 | fMat[0] * src[i].fX + fMat[1] * src[i].fY + fMat[2], |
1094 | fMat[3] * src[i].fX + fMat[4] * src[i].fY + fMat[5], |
1095 | 1, |
1096 | }; |
1097 | } |
1098 | } |
1099 | } |
1100 | |
1101 | /////////////////////////////////////////////////////////////////////////////// |
1102 | |
1103 | void SkMatrix::mapVectors(SkPoint dst[], const SkPoint src[], int count) const { |
1104 | if (this->hasPerspective()) { |
1105 | SkPoint origin; |
1106 | |
1107 | MapXYProc proc = this->getMapXYProc(); |
1108 | proc(*this, 0, 0, &origin); |
1109 | |
1110 | for (int i = count - 1; i >= 0; --i) { |
1111 | SkPoint tmp; |
1112 | |
1113 | proc(*this, src[i].fX, src[i].fY, &tmp); |
1114 | dst[i].set(tmp.fX - origin.fX, tmp.fY - origin.fY); |
1115 | } |
1116 | } else { |
1117 | SkMatrix tmp = *this; |
1118 | |
1119 | tmp.fMat[kMTransX] = tmp.fMat[kMTransY] = 0; |
1120 | tmp.clearTypeMask(kTranslate_Mask); |
1121 | tmp.mapPoints(dst, src, count); |
1122 | } |
1123 | } |
1124 | |
1125 | static Sk4f sort_as_rect(const Sk4f& ltrb) { |
1126 | Sk4f rblt(ltrb[2], ltrb[3], ltrb[0], ltrb[1]); |
1127 | Sk4f min = Sk4f::Min(ltrb, rblt); |
1128 | Sk4f max = Sk4f::Max(ltrb, rblt); |
1129 | // We can extract either pair [0,1] or [2,3] from min and max and be correct, but on |
1130 | // ARM this sequence generates the fastest (a single instruction). |
1131 | return Sk4f(min[2], min[3], max[0], max[1]); |
1132 | } |
1133 | |
1134 | void SkMatrix::mapRectScaleTranslate(SkRect* dst, const SkRect& src) const { |
1135 | SkASSERT(dst); |
1136 | SkASSERT(this->isScaleTranslate()); |
1137 | |
1138 | SkScalar sx = fMat[kMScaleX]; |
1139 | SkScalar sy = fMat[kMScaleY]; |
1140 | SkScalar tx = fMat[kMTransX]; |
1141 | SkScalar ty = fMat[kMTransY]; |
1142 | Sk4f scale(sx, sy, sx, sy); |
1143 | Sk4f trans(tx, ty, tx, ty); |
1144 | sort_as_rect(Sk4f::Load(&src.fLeft) * scale + trans).store(&dst->fLeft); |
1145 | } |
1146 | |
1147 | bool SkMatrix::mapRect(SkRect* dst, const SkRect& src, SkApplyPerspectiveClip pc) const { |
1148 | SkASSERT(dst); |
1149 | |
1150 | if (this->getType() <= kTranslate_Mask) { |
1151 | SkScalar tx = fMat[kMTransX]; |
1152 | SkScalar ty = fMat[kMTransY]; |
1153 | Sk4f trans(tx, ty, tx, ty); |
1154 | sort_as_rect(Sk4f::Load(&src.fLeft) + trans).store(&dst->fLeft); |
1155 | return true; |
1156 | } |
1157 | if (this->isScaleTranslate()) { |
1158 | this->mapRectScaleTranslate(dst, src); |
1159 | return true; |
1160 | } else if (pc == SkApplyPerspectiveClip::kYes && this->hasPerspective()) { |
1161 | SkPath path; |
1162 | path.addRect(src); |
1163 | path.transform(*this); |
1164 | *dst = path.getBounds(); |
1165 | return false; |
1166 | } else { |
1167 | SkPoint quad[4]; |
1168 | |
1169 | src.toQuad(quad); |
1170 | this->mapPoints(quad, quad, 4); |
1171 | dst->setBoundsNoCheck(quad, 4); |
1172 | return this->rectStaysRect(); // might still return true if rotated by 90, etc. |
1173 | } |
1174 | } |
1175 | |
1176 | SkScalar SkMatrix::mapRadius(SkScalar radius) const { |
1177 | SkVector vec[2]; |
1178 | |
1179 | vec[0].set(radius, 0); |
1180 | vec[1].set(0, radius); |
1181 | this->mapVectors(vec, 2); |
1182 | |
1183 | SkScalar d0 = vec[0].length(); |
1184 | SkScalar d1 = vec[1].length(); |
1185 | |
1186 | // return geometric mean |
1187 | return SkScalarSqrt(d0 * d1); |
1188 | } |
1189 | |
1190 | /////////////////////////////////////////////////////////////////////////////// |
1191 | |
1192 | void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1193 | SkPoint* pt) { |
1194 | SkASSERT(m.hasPerspective()); |
1195 | |
1196 | SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
1197 | SkScalar y = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
1198 | SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; |
1199 | if (z) { |
1200 | z = 1 / z; |
1201 | } |
1202 | pt->fX = x * z; |
1203 | pt->fY = y * z; |
1204 | } |
1205 | |
1206 | void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1207 | SkPoint* pt) { |
1208 | SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask); |
1209 | |
1210 | #ifdef SK_LEGACY_MATRIX_MATH_ORDER |
1211 | pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]); |
1212 | pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); |
1213 | #else |
1214 | pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
1215 | pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
1216 | #endif |
1217 | } |
1218 | |
1219 | void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1220 | SkPoint* pt) { |
1221 | SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask))== kAffine_Mask); |
1222 | SkASSERT(0 == m.fMat[kMTransX]); |
1223 | SkASSERT(0 == m.fMat[kMTransY]); |
1224 | |
1225 | #ifdef SK_LEGACY_MATRIX_MATH_ORDER |
1226 | pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX] + m.fMat[kMTransX]); |
1227 | pt->fY = sx * m.fMat[kMSkewY] + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); |
1228 | #else |
1229 | pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) + m.fMat[kMTransX]; |
1230 | pt->fY = sdot(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; |
1231 | #endif |
1232 | } |
1233 | |
1234 | void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1235 | SkPoint* pt) { |
1236 | SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) |
1237 | == kScale_Mask); |
1238 | |
1239 | pt->fX = sx * m.fMat[kMScaleX] + m.fMat[kMTransX]; |
1240 | pt->fY = sy * m.fMat[kMScaleY] + m.fMat[kMTransY]; |
1241 | } |
1242 | |
1243 | void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1244 | SkPoint* pt) { |
1245 | SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) |
1246 | == kScale_Mask); |
1247 | SkASSERT(0 == m.fMat[kMTransX]); |
1248 | SkASSERT(0 == m.fMat[kMTransY]); |
1249 | |
1250 | pt->fX = sx * m.fMat[kMScaleX]; |
1251 | pt->fY = sy * m.fMat[kMScaleY]; |
1252 | } |
1253 | |
1254 | void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1255 | SkPoint* pt) { |
1256 | SkASSERT(m.getType() == kTranslate_Mask); |
1257 | |
1258 | pt->fX = sx + m.fMat[kMTransX]; |
1259 | pt->fY = sy + m.fMat[kMTransY]; |
1260 | } |
1261 | |
1262 | void SkMatrix::Identity_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, |
1263 | SkPoint* pt) { |
1264 | SkASSERT(0 == m.getType()); |
1265 | |
1266 | pt->fX = sx; |
1267 | pt->fY = sy; |
1268 | } |
1269 | |
1270 | const SkMatrix::MapXYProc SkMatrix::gMapXYProcs[] = { |
1271 | SkMatrix::Identity_xy, SkMatrix::Trans_xy, |
1272 | SkMatrix::Scale_xy, SkMatrix::ScaleTrans_xy, |
1273 | SkMatrix::Rot_xy, SkMatrix::RotTrans_xy, |
1274 | SkMatrix::Rot_xy, SkMatrix::RotTrans_xy, |
1275 | // repeat the persp proc 8 times |
1276 | SkMatrix::Persp_xy, SkMatrix::Persp_xy, |
1277 | SkMatrix::Persp_xy, SkMatrix::Persp_xy, |
1278 | SkMatrix::Persp_xy, SkMatrix::Persp_xy, |
1279 | SkMatrix::Persp_xy, SkMatrix::Persp_xy |
1280 | }; |
1281 | |
1282 | /////////////////////////////////////////////////////////////////////////////// |
1283 | #if 0 |
1284 | // if its nearly zero (just made up 26, perhaps it should be bigger or smaller) |
1285 | #define PerspNearlyZero(x) SkScalarNearlyZero(x, (1.0f / (1 << 26))) |
1286 | |
1287 | bool SkMatrix::isFixedStepInX() const { |
1288 | return PerspNearlyZero(fMat[kMPersp0]); |
1289 | } |
1290 | |
1291 | SkVector SkMatrix::fixedStepInX(SkScalar y) const { |
1292 | SkASSERT(PerspNearlyZero(fMat[kMPersp0])); |
1293 | if (PerspNearlyZero(fMat[kMPersp1]) && |
1294 | PerspNearlyZero(fMat[kMPersp2] - 1)) { |
1295 | return SkVector::Make(fMat[kMScaleX], fMat[kMSkewY]); |
1296 | } else { |
1297 | SkScalar z = y * fMat[kMPersp1] + fMat[kMPersp2]; |
1298 | return SkVector::Make(fMat[kMScaleX] / z, fMat[kMSkewY] / z); |
1299 | } |
1300 | } |
1301 | #endif |
1302 | |
1303 | /////////////////////////////////////////////////////////////////////////////// |
1304 | |
1305 | static inline bool checkForZero(float x) { |
1306 | return x*x == 0; |
1307 | } |
1308 | |
1309 | bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst) { |
1310 | dst->fMat[kMScaleX] = srcPt[1].fY - srcPt[0].fY; |
1311 | dst->fMat[kMSkewY] = srcPt[0].fX - srcPt[1].fX; |
1312 | dst->fMat[kMPersp0] = 0; |
1313 | |
1314 | dst->fMat[kMSkewX] = srcPt[1].fX - srcPt[0].fX; |
1315 | dst->fMat[kMScaleY] = srcPt[1].fY - srcPt[0].fY; |
1316 | dst->fMat[kMPersp1] = 0; |
1317 | |
1318 | dst->fMat[kMTransX] = srcPt[0].fX; |
1319 | dst->fMat[kMTransY] = srcPt[0].fY; |
1320 | dst->fMat[kMPersp2] = 1; |
1321 | dst->setTypeMask(kUnknown_Mask); |
1322 | return true; |
1323 | } |
1324 | |
1325 | bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst) { |
1326 | dst->fMat[kMScaleX] = srcPt[2].fX - srcPt[0].fX; |
1327 | dst->fMat[kMSkewY] = srcPt[2].fY - srcPt[0].fY; |
1328 | dst->fMat[kMPersp0] = 0; |
1329 | |
1330 | dst->fMat[kMSkewX] = srcPt[1].fX - srcPt[0].fX; |
1331 | dst->fMat[kMScaleY] = srcPt[1].fY - srcPt[0].fY; |
1332 | dst->fMat[kMPersp1] = 0; |
1333 | |
1334 | dst->fMat[kMTransX] = srcPt[0].fX; |
1335 | dst->fMat[kMTransY] = srcPt[0].fY; |
1336 | dst->fMat[kMPersp2] = 1; |
1337 | dst->setTypeMask(kUnknown_Mask); |
1338 | return true; |
1339 | } |
1340 | |
1341 | bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst) { |
1342 | float a1, a2; |
1343 | float x0, y0, x1, y1, x2, y2; |
1344 | |
1345 | x0 = srcPt[2].fX - srcPt[0].fX; |
1346 | y0 = srcPt[2].fY - srcPt[0].fY; |
1347 | x1 = srcPt[2].fX - srcPt[1].fX; |
1348 | y1 = srcPt[2].fY - srcPt[1].fY; |
1349 | x2 = srcPt[2].fX - srcPt[3].fX; |
1350 | y2 = srcPt[2].fY - srcPt[3].fY; |
1351 | |
1352 | /* check if abs(x2) > abs(y2) */ |
1353 | if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) { |
1354 | float denom = sk_ieee_float_divide(x1 * y2, x2) - y1; |
1355 | if (checkForZero(denom)) { |
1356 | return false; |
1357 | } |
1358 | a1 = (((x0 - x1) * y2 / x2) - y0 + y1) / denom; |
1359 | } else { |
1360 | float denom = x1 - sk_ieee_float_divide(y1 * x2, y2); |
1361 | if (checkForZero(denom)) { |
1362 | return false; |
1363 | } |
1364 | a1 = (x0 - x1 - sk_ieee_float_divide((y0 - y1) * x2, y2)) / denom; |
1365 | } |
1366 | |
1367 | /* check if abs(x1) > abs(y1) */ |
1368 | if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) { |
1369 | float denom = y2 - sk_ieee_float_divide(x2 * y1, x1); |
1370 | if (checkForZero(denom)) { |
1371 | return false; |
1372 | } |
1373 | a2 = (y0 - y2 - sk_ieee_float_divide((x0 - x2) * y1, x1)) / denom; |
1374 | } else { |
1375 | float denom = sk_ieee_float_divide(y2 * x1, y1) - x2; |
1376 | if (checkForZero(denom)) { |
1377 | return false; |
1378 | } |
1379 | a2 = (sk_ieee_float_divide((y0 - y2) * x1, y1) - x0 + x2) / denom; |
1380 | } |
1381 | |
1382 | dst->fMat[kMScaleX] = a2 * srcPt[3].fX + srcPt[3].fX - srcPt[0].fX; |
1383 | dst->fMat[kMSkewY] = a2 * srcPt[3].fY + srcPt[3].fY - srcPt[0].fY; |
1384 | dst->fMat[kMPersp0] = a2; |
1385 | |
1386 | dst->fMat[kMSkewX] = a1 * srcPt[1].fX + srcPt[1].fX - srcPt[0].fX; |
1387 | dst->fMat[kMScaleY] = a1 * srcPt[1].fY + srcPt[1].fY - srcPt[0].fY; |
1388 | dst->fMat[kMPersp1] = a1; |
1389 | |
1390 | dst->fMat[kMTransX] = srcPt[0].fX; |
1391 | dst->fMat[kMTransY] = srcPt[0].fY; |
1392 | dst->fMat[kMPersp2] = 1; |
1393 | dst->setTypeMask(kUnknown_Mask); |
1394 | return true; |
1395 | } |
1396 | |
1397 | typedef bool (*PolyMapProc)(const SkPoint[], SkMatrix*); |
1398 | |
1399 | /* Adapted from Rob Johnson's original sample code in QuickDraw GX |
1400 | */ |
1401 | bool SkMatrix::setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count) { |
1402 | if ((unsigned)count > 4) { |
1403 | SkDebugf("--- SkMatrix::setPolyToPoly count out of range %d\n" , count); |
1404 | return false; |
1405 | } |
1406 | |
1407 | if (0 == count) { |
1408 | this->reset(); |
1409 | return true; |
1410 | } |
1411 | if (1 == count) { |
1412 | this->setTranslate(dst[0].fX - src[0].fX, dst[0].fY - src[0].fY); |
1413 | return true; |
1414 | } |
1415 | |
1416 | const PolyMapProc gPolyMapProcs[] = { |
1417 | SkMatrix::Poly2Proc, SkMatrix::Poly3Proc, SkMatrix::Poly4Proc |
1418 | }; |
1419 | PolyMapProc proc = gPolyMapProcs[count - 2]; |
1420 | |
1421 | SkMatrix tempMap, result; |
1422 | |
1423 | if (!proc(src, &tempMap)) { |
1424 | return false; |
1425 | } |
1426 | if (!tempMap.invert(&result)) { |
1427 | return false; |
1428 | } |
1429 | if (!proc(dst, &tempMap)) { |
1430 | return false; |
1431 | } |
1432 | this->setConcat(tempMap, result); |
1433 | return true; |
1434 | } |
1435 | |
1436 | /////////////////////////////////////////////////////////////////////////////// |
1437 | |
1438 | enum MinMaxOrBoth { |
1439 | kMin_MinMaxOrBoth, |
1440 | kMax_MinMaxOrBoth, |
1441 | kBoth_MinMaxOrBoth |
1442 | }; |
1443 | |
1444 | template <MinMaxOrBoth MIN_MAX_OR_BOTH> bool get_scale_factor(SkMatrix::TypeMask typeMask, |
1445 | const SkScalar m[9], |
1446 | SkScalar results[/*1 or 2*/]) { |
1447 | if (typeMask & SkMatrix::kPerspective_Mask) { |
1448 | return false; |
1449 | } |
1450 | if (SkMatrix::kIdentity_Mask == typeMask) { |
1451 | results[0] = SK_Scalar1; |
1452 | if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1453 | results[1] = SK_Scalar1; |
1454 | } |
1455 | return true; |
1456 | } |
1457 | if (!(typeMask & SkMatrix::kAffine_Mask)) { |
1458 | if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1459 | results[0] = std::min(SkScalarAbs(m[SkMatrix::kMScaleX]), |
1460 | SkScalarAbs(m[SkMatrix::kMScaleY])); |
1461 | } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1462 | results[0] = std::max(SkScalarAbs(m[SkMatrix::kMScaleX]), |
1463 | SkScalarAbs(m[SkMatrix::kMScaleY])); |
1464 | } else { |
1465 | results[0] = SkScalarAbs(m[SkMatrix::kMScaleX]); |
1466 | results[1] = SkScalarAbs(m[SkMatrix::kMScaleY]); |
1467 | if (results[0] > results[1]) { |
1468 | using std::swap; |
1469 | swap(results[0], results[1]); |
1470 | } |
1471 | } |
1472 | return true; |
1473 | } |
1474 | // ignore the translation part of the matrix, just look at 2x2 portion. |
1475 | // compute singular values, take largest or smallest abs value. |
1476 | // [a b; b c] = A^T*A |
1477 | SkScalar a = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX], |
1478 | m[SkMatrix::kMSkewY], m[SkMatrix::kMSkewY]); |
1479 | SkScalar b = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX], |
1480 | m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]); |
1481 | SkScalar c = sdot(m[SkMatrix::kMSkewX], m[SkMatrix::kMSkewX], |
1482 | m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]); |
1483 | // eigenvalues of A^T*A are the squared singular values of A. |
1484 | // characteristic equation is det((A^T*A) - l*I) = 0 |
1485 | // l^2 - (a + c)l + (ac-b^2) |
1486 | // solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff |
1487 | // and roots are guaranteed to be pos and real). |
1488 | SkScalar bSqd = b * b; |
1489 | // if upper left 2x2 is orthogonal save some math |
1490 | if (bSqd <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
1491 | if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1492 | results[0] = std::min(a, c); |
1493 | } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1494 | results[0] = std::max(a, c); |
1495 | } else { |
1496 | results[0] = a; |
1497 | results[1] = c; |
1498 | if (results[0] > results[1]) { |
1499 | using std::swap; |
1500 | swap(results[0], results[1]); |
1501 | } |
1502 | } |
1503 | } else { |
1504 | SkScalar aminusc = a - c; |
1505 | SkScalar apluscdiv2 = SkScalarHalf(a + c); |
1506 | SkScalar x = SkScalarHalf(SkScalarSqrt(aminusc * aminusc + 4 * bSqd)); |
1507 | if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1508 | results[0] = apluscdiv2 - x; |
1509 | } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1510 | results[0] = apluscdiv2 + x; |
1511 | } else { |
1512 | results[0] = apluscdiv2 - x; |
1513 | results[1] = apluscdiv2 + x; |
1514 | } |
1515 | } |
1516 | if (!SkScalarIsFinite(results[0])) { |
1517 | return false; |
1518 | } |
1519 | // Due to the floating point inaccuracy, there might be an error in a, b, c |
1520 | // calculated by sdot, further deepened by subsequent arithmetic operations |
1521 | // on them. Therefore, we allow and cap the nearly-zero negative values. |
1522 | if (results[0] < 0) { |
1523 | results[0] = 0; |
1524 | } |
1525 | results[0] = SkScalarSqrt(results[0]); |
1526 | if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) { |
1527 | if (!SkScalarIsFinite(results[1])) { |
1528 | return false; |
1529 | } |
1530 | if (results[1] < 0) { |
1531 | results[1] = 0; |
1532 | } |
1533 | results[1] = SkScalarSqrt(results[1]); |
1534 | } |
1535 | return true; |
1536 | } |
1537 | |
1538 | SkScalar SkMatrix::getMinScale() const { |
1539 | SkScalar factor; |
1540 | if (get_scale_factor<kMin_MinMaxOrBoth>(this->getType(), fMat, &factor)) { |
1541 | return factor; |
1542 | } else { |
1543 | return -1; |
1544 | } |
1545 | } |
1546 | |
1547 | SkScalar SkMatrix::getMaxScale() const { |
1548 | SkScalar factor; |
1549 | if (get_scale_factor<kMax_MinMaxOrBoth>(this->getType(), fMat, &factor)) { |
1550 | return factor; |
1551 | } else { |
1552 | return -1; |
1553 | } |
1554 | } |
1555 | |
1556 | bool SkMatrix::getMinMaxScales(SkScalar scaleFactors[2]) const { |
1557 | return get_scale_factor<kBoth_MinMaxOrBoth>(this->getType(), fMat, scaleFactors); |
1558 | } |
1559 | |
1560 | const SkMatrix& SkMatrix::I() { |
1561 | static constexpr SkMatrix identity; |
1562 | SkASSERT(identity.isIdentity()); |
1563 | return identity; |
1564 | } |
1565 | |
1566 | const SkMatrix& SkMatrix::InvalidMatrix() { |
1567 | static constexpr SkMatrix invalid(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, |
1568 | SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, |
1569 | SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, |
1570 | kTranslate_Mask | kScale_Mask | |
1571 | kAffine_Mask | kPerspective_Mask); |
1572 | return invalid; |
1573 | } |
1574 | |
1575 | bool SkMatrix::decomposeScale(SkSize* scale, SkMatrix* remaining) const { |
1576 | if (this->hasPerspective()) { |
1577 | return false; |
1578 | } |
1579 | |
1580 | const SkScalar sx = SkVector::Length(this->getScaleX(), this->getSkewY()); |
1581 | const SkScalar sy = SkVector::Length(this->getSkewX(), this->getScaleY()); |
1582 | if (!SkScalarIsFinite(sx) || !SkScalarIsFinite(sy) || |
1583 | SkScalarNearlyZero(sx) || SkScalarNearlyZero(sy)) { |
1584 | return false; |
1585 | } |
1586 | |
1587 | if (scale) { |
1588 | scale->set(sx, sy); |
1589 | } |
1590 | if (remaining) { |
1591 | *remaining = *this; |
1592 | remaining->preScale(SkScalarInvert(sx), SkScalarInvert(sy)); |
1593 | } |
1594 | return true; |
1595 | } |
1596 | |
1597 | /////////////////////////////////////////////////////////////////////////////// |
1598 | |
1599 | size_t SkMatrix::writeToMemory(void* buffer) const { |
1600 | // TODO write less for simple matrices |
1601 | static const size_t sizeInMemory = 9 * sizeof(SkScalar); |
1602 | if (buffer) { |
1603 | memcpy(buffer, fMat, sizeInMemory); |
1604 | } |
1605 | return sizeInMemory; |
1606 | } |
1607 | |
1608 | size_t SkMatrix::readFromMemory(const void* buffer, size_t length) { |
1609 | static const size_t sizeInMemory = 9 * sizeof(SkScalar); |
1610 | if (length < sizeInMemory) { |
1611 | return 0; |
1612 | } |
1613 | memcpy(fMat, buffer, sizeInMemory); |
1614 | this->setTypeMask(kUnknown_Mask); |
1615 | return sizeInMemory; |
1616 | } |
1617 | |
1618 | void SkMatrix::dump() const { |
1619 | SkString str; |
1620 | str.appendf("[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]" , |
1621 | fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5], |
1622 | fMat[6], fMat[7], fMat[8]); |
1623 | SkDebugf("%s\n" , str.c_str()); |
1624 | } |
1625 | |
1626 | /////////////////////////////////////////////////////////////////////////////// |
1627 | |
1628 | #include "src/core/SkMatrixUtils.h" |
1629 | |
1630 | bool SkTreatAsSprite(const SkMatrix& mat, const SkISize& size, const SkPaint& paint) { |
1631 | // Our path aa is 2-bits, and our rect aa is 8, so we could use 8, |
1632 | // but in practice 4 seems enough (still looks smooth) and allows |
1633 | // more slightly fractional cases to fall into the fast (sprite) case. |
1634 | static const unsigned kAntiAliasSubpixelBits = 4; |
1635 | |
1636 | const unsigned subpixelBits = paint.isAntiAlias() ? kAntiAliasSubpixelBits : 0; |
1637 | |
1638 | // quick reject on affine or perspective |
1639 | if (mat.getType() & ~(SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) { |
1640 | return false; |
1641 | } |
1642 | |
1643 | // quick success check |
1644 | if (!subpixelBits && !(mat.getType() & ~SkMatrix::kTranslate_Mask)) { |
1645 | return true; |
1646 | } |
1647 | |
1648 | // mapRect supports negative scales, so we eliminate those first |
1649 | if (mat.getScaleX() < 0 || mat.getScaleY() < 0) { |
1650 | return false; |
1651 | } |
1652 | |
1653 | SkRect dst; |
1654 | SkIRect isrc = SkIRect::MakeSize(size); |
1655 | |
1656 | { |
1657 | SkRect src; |
1658 | src.set(isrc); |
1659 | mat.mapRect(&dst, src); |
1660 | } |
1661 | |
1662 | // just apply the translate to isrc |
1663 | isrc.offset(SkScalarRoundToInt(mat.getTranslateX()), |
1664 | SkScalarRoundToInt(mat.getTranslateY())); |
1665 | |
1666 | if (subpixelBits) { |
1667 | isrc.fLeft = SkLeftShift(isrc.fLeft, subpixelBits); |
1668 | isrc.fTop = SkLeftShift(isrc.fTop, subpixelBits); |
1669 | isrc.fRight = SkLeftShift(isrc.fRight, subpixelBits); |
1670 | isrc.fBottom = SkLeftShift(isrc.fBottom, subpixelBits); |
1671 | |
1672 | const float scale = 1 << subpixelBits; |
1673 | dst.fLeft *= scale; |
1674 | dst.fTop *= scale; |
1675 | dst.fRight *= scale; |
1676 | dst.fBottom *= scale; |
1677 | } |
1678 | |
1679 | SkIRect idst; |
1680 | dst.round(&idst); |
1681 | return isrc == idst; |
1682 | } |
1683 | |
1684 | // A square matrix M can be decomposed (via polar decomposition) into two matrices -- |
1685 | // an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T, |
1686 | // where U is another orthogonal matrix and W is a scale matrix. These can be recombined |
1687 | // to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix. |
1688 | // |
1689 | // The one wrinkle is that traditionally Q may contain a reflection -- the |
1690 | // calculation has been rejiggered to put that reflection into W. |
1691 | bool SkDecomposeUpper2x2(const SkMatrix& matrix, |
1692 | SkPoint* rotation1, |
1693 | SkPoint* scale, |
1694 | SkPoint* rotation2) { |
1695 | |
1696 | SkScalar A = matrix[SkMatrix::kMScaleX]; |
1697 | SkScalar B = matrix[SkMatrix::kMSkewX]; |
1698 | SkScalar C = matrix[SkMatrix::kMSkewY]; |
1699 | SkScalar D = matrix[SkMatrix::kMScaleY]; |
1700 | |
1701 | if (is_degenerate_2x2(A, B, C, D)) { |
1702 | return false; |
1703 | } |
1704 | |
1705 | double w1, w2; |
1706 | SkScalar cos1, sin1; |
1707 | SkScalar cos2, sin2; |
1708 | |
1709 | // do polar decomposition (M = Q*S) |
1710 | SkScalar cosQ, sinQ; |
1711 | double Sa, Sb, Sd; |
1712 | // if M is already symmetric (i.e., M = I*S) |
1713 | if (SkScalarNearlyEqual(B, C)) { |
1714 | cosQ = 1; |
1715 | sinQ = 0; |
1716 | |
1717 | Sa = A; |
1718 | Sb = B; |
1719 | Sd = D; |
1720 | } else { |
1721 | cosQ = A + D; |
1722 | sinQ = C - B; |
1723 | SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cosQ*cosQ + sinQ*sinQ)); |
1724 | cosQ *= reciplen; |
1725 | sinQ *= reciplen; |
1726 | |
1727 | // S = Q^-1*M |
1728 | // we don't calc Sc since it's symmetric |
1729 | Sa = A*cosQ + C*sinQ; |
1730 | Sb = B*cosQ + D*sinQ; |
1731 | Sd = -B*sinQ + D*cosQ; |
1732 | } |
1733 | |
1734 | // Now we need to compute eigenvalues of S (our scale factors) |
1735 | // and eigenvectors (bases for our rotation) |
1736 | // From this, should be able to reconstruct S as U*W*U^T |
1737 | if (SkScalarNearlyZero(SkDoubleToScalar(Sb))) { |
1738 | // already diagonalized |
1739 | cos1 = 1; |
1740 | sin1 = 0; |
1741 | w1 = Sa; |
1742 | w2 = Sd; |
1743 | cos2 = cosQ; |
1744 | sin2 = sinQ; |
1745 | } else { |
1746 | double diff = Sa - Sd; |
1747 | double discriminant = sqrt(diff*diff + 4.0*Sb*Sb); |
1748 | double trace = Sa + Sd; |
1749 | if (diff > 0) { |
1750 | w1 = 0.5*(trace + discriminant); |
1751 | w2 = 0.5*(trace - discriminant); |
1752 | } else { |
1753 | w1 = 0.5*(trace - discriminant); |
1754 | w2 = 0.5*(trace + discriminant); |
1755 | } |
1756 | |
1757 | cos1 = SkDoubleToScalar(Sb); sin1 = SkDoubleToScalar(w1 - Sa); |
1758 | SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cos1*cos1 + sin1*sin1)); |
1759 | cos1 *= reciplen; |
1760 | sin1 *= reciplen; |
1761 | |
1762 | // rotation 2 is composition of Q and U |
1763 | cos2 = cos1*cosQ - sin1*sinQ; |
1764 | sin2 = sin1*cosQ + cos1*sinQ; |
1765 | |
1766 | // rotation 1 is U^T |
1767 | sin1 = -sin1; |
1768 | } |
1769 | |
1770 | if (scale) { |
1771 | scale->fX = SkDoubleToScalar(w1); |
1772 | scale->fY = SkDoubleToScalar(w2); |
1773 | } |
1774 | if (rotation1) { |
1775 | rotation1->fX = cos1; |
1776 | rotation1->fY = sin1; |
1777 | } |
1778 | if (rotation2) { |
1779 | rotation2->fX = cos2; |
1780 | rotation2->fY = sin2; |
1781 | } |
1782 | |
1783 | return true; |
1784 | } |
1785 | |
1786 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
1787 | |
1788 | void SkRSXform::toQuad(SkScalar width, SkScalar height, SkPoint quad[4]) const { |
1789 | #if 0 |
1790 | // This is the slow way, but it documents what we're doing |
1791 | quad[0].set(0, 0); |
1792 | quad[1].set(width, 0); |
1793 | quad[2].set(width, height); |
1794 | quad[3].set(0, height); |
1795 | SkMatrix m; |
1796 | m.setRSXform(*this).mapPoints(quad, quad, 4); |
1797 | #else |
1798 | const SkScalar m00 = fSCos; |
1799 | const SkScalar m01 = -fSSin; |
1800 | const SkScalar m02 = fTx; |
1801 | const SkScalar m10 = -m01; |
1802 | const SkScalar m11 = m00; |
1803 | const SkScalar m12 = fTy; |
1804 | |
1805 | quad[0].set(m02, m12); |
1806 | quad[1].set(m00 * width + m02, m10 * width + m12); |
1807 | quad[2].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12); |
1808 | quad[3].set(m01 * height + m02, m11 * height + m12); |
1809 | #endif |
1810 | } |
1811 | |
1812 | void SkRSXform::toTriStrip(SkScalar width, SkScalar height, SkPoint strip[4]) const { |
1813 | const SkScalar m00 = fSCos; |
1814 | const SkScalar m01 = -fSSin; |
1815 | const SkScalar m02 = fTx; |
1816 | const SkScalar m10 = -m01; |
1817 | const SkScalar m11 = m00; |
1818 | const SkScalar m12 = fTy; |
1819 | |
1820 | strip[0].set(m02, m12); |
1821 | strip[1].set(m01 * height + m02, m11 * height + m12); |
1822 | strip[2].set(m00 * width + m02, m10 * width + m12); |
1823 | strip[3].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12); |
1824 | } |
1825 | |
1826 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
1827 | |
1828 | SkFilterQuality SkMatrixPriv::AdjustHighQualityFilterLevel(const SkMatrix& matrix, |
1829 | bool matrixIsInverse) { |
1830 | if (matrix.isIdentity()) { |
1831 | return kNone_SkFilterQuality; |
1832 | } |
1833 | |
1834 | auto is_minimizing = [&](SkScalar scale) { |
1835 | return matrixIsInverse ? scale > 1 : scale < 1; |
1836 | }; |
1837 | |
1838 | SkScalar scales[2]; |
1839 | if (!matrix.getMinMaxScales(scales) || is_minimizing(scales[0])) { |
1840 | // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped |
1841 | // entirely, |
1842 | return kMedium_SkFilterQuality; |
1843 | } |
1844 | |
1845 | // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling. |
1846 | if (scales[1] == SK_Scalar1) { |
1847 | if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) && |
1848 | SkScalarIsInt(matrix.getTranslateY())) { |
1849 | return kNone_SkFilterQuality; |
1850 | } else { |
1851 | // Use bilerp to handle rotation or fractional translation. |
1852 | return kLow_SkFilterQuality; |
1853 | } |
1854 | } |
1855 | |
1856 | return kHigh_SkFilterQuality; |
1857 | } |
1858 | |