| 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkPathBuilder.h" |
| 9 | #include "include/core/SkRRect.h" |
| 10 | #include "include/private/SkPathRef.h" |
| 11 | #include "include/private/SkSafe32.h" |
| 12 | #include "src/core/SkGeometry.h" |
| 13 | // need SkDVector |
| 14 | #include "src/pathops/SkPathOpsPoint.h" |
| 15 | |
| 16 | SkPathBuilder::SkPathBuilder() { |
| 17 | this->reset(); |
| 18 | } |
| 19 | |
| 20 | SkPathBuilder::~SkPathBuilder() { |
| 21 | } |
| 22 | |
| 23 | SkPathBuilder& SkPathBuilder::reset() { |
| 24 | fPts.reset(); |
| 25 | fVerbs.reset(); |
| 26 | fConicWeights.reset(); |
| 27 | fFillType = SkPathFillType::kWinding; |
| 28 | fIsVolatile = false; |
| 29 | |
| 30 | // these are internal state |
| 31 | |
| 32 | fSegmentMask = 0; |
| 33 | fLastMovePoint = {0, 0}; |
| 34 | fNeedsMoveVerb = true; |
| 35 | |
| 36 | return *this; |
| 37 | } |
| 38 | |
| 39 | void SkPathBuilder::incReserve(int , int ) { |
| 40 | fPts.setReserve( Sk32_sat_add(fPts.count(), extraPtCount)); |
| 41 | fVerbs.setReserve(Sk32_sat_add(fVerbs.count(), extraVbCount)); |
| 42 | } |
| 43 | |
| 44 | /* |
| 45 | * Some old behavior in SkPath -- should we keep it? |
| 46 | * |
| 47 | * After each edit (i.e. adding a verb) |
| 48 | this->setConvexityType(SkPathConvexityType::kUnknown); |
| 49 | this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection); |
| 50 | */ |
| 51 | |
| 52 | SkPathBuilder& SkPathBuilder::moveTo(SkPoint pt) { |
| 53 | fPts.push_back(pt); |
| 54 | fVerbs.push_back((uint8_t)SkPathVerb::kMove); |
| 55 | |
| 56 | fLastMovePoint = pt; |
| 57 | fNeedsMoveVerb = false; |
| 58 | return *this; |
| 59 | } |
| 60 | |
| 61 | SkPathBuilder& SkPathBuilder::lineTo(SkPoint pt) { |
| 62 | this->ensureMove(); |
| 63 | |
| 64 | fPts.push_back(pt); |
| 65 | fVerbs.push_back((uint8_t)SkPathVerb::kLine); |
| 66 | |
| 67 | fSegmentMask |= kLine_SkPathSegmentMask; |
| 68 | return *this; |
| 69 | } |
| 70 | |
| 71 | SkPathBuilder& SkPathBuilder::quadTo(SkPoint pt1, SkPoint pt2) { |
| 72 | this->ensureMove(); |
| 73 | |
| 74 | SkPoint* p = fPts.append(2); |
| 75 | p[0] = pt1; |
| 76 | p[1] = pt2; |
| 77 | fVerbs.push_back((uint8_t)SkPathVerb::kQuad); |
| 78 | |
| 79 | fSegmentMask |= kQuad_SkPathSegmentMask; |
| 80 | return *this; |
| 81 | } |
| 82 | |
| 83 | SkPathBuilder& SkPathBuilder::conicTo(SkPoint pt1, SkPoint pt2, SkScalar w) { |
| 84 | this->ensureMove(); |
| 85 | |
| 86 | SkPoint* p = fPts.append(2); |
| 87 | p[0] = pt1; |
| 88 | p[1] = pt2; |
| 89 | fVerbs.push_back((uint8_t)SkPathVerb::kConic); |
| 90 | fConicWeights.push_back(w); |
| 91 | |
| 92 | fSegmentMask |= kConic_SkPathSegmentMask; |
| 93 | return *this; |
| 94 | } |
| 95 | |
| 96 | SkPathBuilder& SkPathBuilder::cubicTo(SkPoint pt1, SkPoint pt2, SkPoint pt3) { |
| 97 | this->ensureMove(); |
| 98 | |
| 99 | SkPoint* p = fPts.append(3); |
| 100 | p[0] = pt1; |
| 101 | p[1] = pt2; |
| 102 | p[2] = pt3; |
| 103 | fVerbs.push_back((uint8_t)SkPathVerb::kCubic); |
| 104 | |
| 105 | fSegmentMask |= kCubic_SkPathSegmentMask; |
| 106 | return *this; |
| 107 | } |
| 108 | |
| 109 | SkPathBuilder& SkPathBuilder::close() { |
| 110 | this->ensureMove(); |
| 111 | |
| 112 | fVerbs.push_back((uint8_t)SkPathVerb::kClose); |
| 113 | |
| 114 | // fLastMovePoint stays where it is -- the previous moveTo |
| 115 | fNeedsMoveVerb = true; |
| 116 | return *this; |
| 117 | } |
| 118 | |
| 119 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 120 | |
| 121 | SkPathBuilder& SkPathBuilder::rLineTo(SkPoint p1) { |
| 122 | this->ensureMove(); |
| 123 | return this->lineTo(fPts.back() + p1); |
| 124 | } |
| 125 | |
| 126 | SkPathBuilder& SkPathBuilder::rQuadTo(SkPoint p1, SkPoint p2) { |
| 127 | this->ensureMove(); |
| 128 | SkPoint base = fPts.back(); |
| 129 | return this->quadTo(base + p1, base + p2); |
| 130 | } |
| 131 | |
| 132 | SkPathBuilder& SkPathBuilder::rConicTo(SkPoint p1, SkPoint p2, SkScalar w) { |
| 133 | this->ensureMove(); |
| 134 | SkPoint base = fPts.back(); |
| 135 | return this->conicTo(base + p1, base + p2, w); |
| 136 | } |
| 137 | |
| 138 | SkPathBuilder& SkPathBuilder::rCubicTo(SkPoint p1, SkPoint p2, SkPoint p3) { |
| 139 | this->ensureMove(); |
| 140 | SkPoint base = fPts.back(); |
| 141 | return this->cubicTo(base + p1, base + p2, base + p3); |
| 142 | } |
| 143 | |
| 144 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 145 | |
| 146 | SkPath SkPathBuilder::make(sk_sp<SkPathRef> pr) const { |
| 147 | switch (fIsA) { |
| 148 | case kIsA_Oval: pr->setIsOval( true, fIsACCW, fIsAStart); break; |
| 149 | case kIsA_RRect: pr->setIsRRect(true, fIsACCW, fIsAStart); break; |
| 150 | default: break; |
| 151 | } |
| 152 | return SkPath(std::move(pr), fFillType, fIsVolatile); |
| 153 | } |
| 154 | |
| 155 | SkPath SkPathBuilder::snapshot() { |
| 156 | return this->make(sk_sp<SkPathRef>(new SkPathRef(fPts, |
| 157 | fVerbs, |
| 158 | fConicWeights, |
| 159 | fSegmentMask))); |
| 160 | } |
| 161 | |
| 162 | SkPath SkPathBuilder::detach() { |
| 163 | auto path = this->make(sk_sp<SkPathRef>(new SkPathRef(std::move(fPts), |
| 164 | std::move(fVerbs), |
| 165 | std::move(fConicWeights), |
| 166 | fSegmentMask))); |
| 167 | this->reset(); |
| 168 | return path; |
| 169 | } |
| 170 | |
| 171 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 172 | |
| 173 | static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
| 174 | SkPoint* pt) { |
| 175 | if (0 == sweepAngle && (0 == startAngle || SkIntToScalar(360) == startAngle)) { |
| 176 | // Chrome uses this path to move into and out of ovals. If not |
| 177 | // treated as a special case the moves can distort the oval's |
| 178 | // bounding box (and break the circle special case). |
| 179 | pt->set(oval.fRight, oval.centerY()); |
| 180 | return true; |
| 181 | } else if (0 == oval.width() && 0 == oval.height()) { |
| 182 | // Chrome will sometimes create 0 radius round rects. Having degenerate |
| 183 | // quad segments in the path prevents the path from being recognized as |
| 184 | // a rect. |
| 185 | // TODO: optimizing the case where only one of width or height is zero |
| 186 | // should also be considered. This case, however, doesn't seem to be |
| 187 | // as common as the single point case. |
| 188 | pt->set(oval.fRight, oval.fTop); |
| 189 | return true; |
| 190 | } |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | // Return the unit vectors pointing at the start/stop points for the given start/sweep angles |
| 195 | // |
| 196 | static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle, |
| 197 | SkVector* startV, SkVector* stopV, SkRotationDirection* dir) { |
| 198 | SkScalar startRad = SkDegreesToRadians(startAngle), |
| 199 | stopRad = SkDegreesToRadians(startAngle + sweepAngle); |
| 200 | |
| 201 | startV->fY = SkScalarSinSnapToZero(startRad); |
| 202 | startV->fX = SkScalarCosSnapToZero(startRad); |
| 203 | stopV->fY = SkScalarSinSnapToZero(stopRad); |
| 204 | stopV->fX = SkScalarCosSnapToZero(stopRad); |
| 205 | |
| 206 | /* If the sweep angle is nearly (but less than) 360, then due to precision |
| 207 | loss in radians-conversion and/or sin/cos, we may end up with coincident |
| 208 | vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead |
| 209 | of drawing a nearly complete circle (good). |
| 210 | e.g. canvas.drawArc(0, 359.99, ...) |
| 211 | -vs- canvas.drawArc(0, 359.9, ...) |
| 212 | We try to detect this edge case, and tweak the stop vector |
| 213 | */ |
| 214 | if (*startV == *stopV) { |
| 215 | SkScalar sw = SkScalarAbs(sweepAngle); |
| 216 | if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) { |
| 217 | // make a guess at a tiny angle (in radians) to tweak by |
| 218 | SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle); |
| 219 | // not sure how much will be enough, so we use a loop |
| 220 | do { |
| 221 | stopRad -= deltaRad; |
| 222 | stopV->fY = SkScalarSinSnapToZero(stopRad); |
| 223 | stopV->fX = SkScalarCosSnapToZero(stopRad); |
| 224 | } while (*startV == *stopV); |
| 225 | } |
| 226 | } |
| 227 | *dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection; |
| 228 | } |
| 229 | |
| 230 | /** |
| 231 | * If this returns 0, then the caller should just line-to the singlePt, else it should |
| 232 | * ignore singlePt and append the specified number of conics. |
| 233 | */ |
| 234 | static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop, |
| 235 | SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc], |
| 236 | SkPoint* singlePt) { |
| 237 | SkMatrix matrix; |
| 238 | |
| 239 | matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height())); |
| 240 | matrix.postTranslate(oval.centerX(), oval.centerY()); |
| 241 | |
| 242 | int count = SkConic::BuildUnitArc(start, stop, dir, &matrix, conics); |
| 243 | if (0 == count) { |
| 244 | matrix.mapXY(stop.x(), stop.y(), singlePt); |
| 245 | } |
| 246 | return count; |
| 247 | } |
| 248 | |
| 249 | static bool nearly_equal(const SkPoint& a, const SkPoint& b) { |
| 250 | return SkScalarNearlyEqual(a.fX, b.fX) |
| 251 | && SkScalarNearlyEqual(a.fY, b.fY); |
| 252 | } |
| 253 | |
| 254 | SkPathBuilder& SkPathBuilder::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
| 255 | bool forceMoveTo) { |
| 256 | if (oval.width() < 0 || oval.height() < 0) { |
| 257 | return *this; |
| 258 | } |
| 259 | |
| 260 | if (fVerbs.count() == 0) { |
| 261 | forceMoveTo = true; |
| 262 | } |
| 263 | |
| 264 | SkPoint lonePt; |
| 265 | if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) { |
| 266 | return forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt); |
| 267 | } |
| 268 | |
| 269 | SkVector startV, stopV; |
| 270 | SkRotationDirection dir; |
| 271 | angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir); |
| 272 | |
| 273 | SkPoint singlePt; |
| 274 | |
| 275 | // Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently |
| 276 | // close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous |
| 277 | // arcs from the same oval. |
| 278 | auto addPt = [forceMoveTo, this](const SkPoint& pt) { |
| 279 | if (forceMoveTo) { |
| 280 | this->moveTo(pt); |
| 281 | } else if (!nearly_equal(fPts.back(), pt)) { |
| 282 | this->lineTo(pt); |
| 283 | } |
| 284 | }; |
| 285 | |
| 286 | // At this point, we know that the arc is not a lone point, but startV == stopV |
| 287 | // indicates that the sweepAngle is too small such that angles_to_unit_vectors |
| 288 | // cannot handle it. |
| 289 | if (startV == stopV) { |
| 290 | SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle); |
| 291 | SkScalar radiusX = oval.width() / 2; |
| 292 | SkScalar radiusY = oval.height() / 2; |
| 293 | // We do not use SkScalar[Sin|Cos]SnapToZero here. When sin(startAngle) is 0 and sweepAngle |
| 294 | // is very small and radius is huge, the expected behavior here is to draw a line. But |
| 295 | // calling SkScalarSinSnapToZero will make sin(endAngle) be 0 which will then draw a dot. |
| 296 | singlePt.set(oval.centerX() + radiusX * SkScalarCos(endAngle), |
| 297 | oval.centerY() + radiusY * SkScalarSin(endAngle)); |
| 298 | addPt(singlePt); |
| 299 | return *this; |
| 300 | } |
| 301 | |
| 302 | SkConic conics[SkConic::kMaxConicsForArc]; |
| 303 | int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt); |
| 304 | if (count) { |
| 305 | this->incReserve(count * 2 + 1); |
| 306 | const SkPoint& pt = conics[0].fPts[0]; |
| 307 | addPt(pt); |
| 308 | for (int i = 0; i < count; ++i) { |
| 309 | this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW); |
| 310 | } |
| 311 | } else { |
| 312 | addPt(singlePt); |
| 313 | } |
| 314 | return *this; |
| 315 | } |
| 316 | |
| 317 | SkPathBuilder& SkPathBuilder::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) { |
| 318 | if (oval.isEmpty() || 0 == sweepAngle) { |
| 319 | return *this; |
| 320 | } |
| 321 | |
| 322 | const SkScalar kFullCircleAngle = SkIntToScalar(360); |
| 323 | |
| 324 | if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) { |
| 325 | // We can treat the arc as an oval if it begins at one of our legal starting positions. |
| 326 | // See SkPath::addOval() docs. |
| 327 | SkScalar startOver90 = startAngle / 90.f; |
| 328 | SkScalar startOver90I = SkScalarRoundToScalar(startOver90); |
| 329 | SkScalar error = startOver90 - startOver90I; |
| 330 | if (SkScalarNearlyEqual(error, 0)) { |
| 331 | // Index 1 is at startAngle == 0. |
| 332 | SkScalar startIndex = std::fmod(startOver90I + 1.f, 4.f); |
| 333 | startIndex = startIndex < 0 ? startIndex + 4.f : startIndex; |
| 334 | return this->addOval(oval, sweepAngle > 0 ? SkPathDirection::kCW : SkPathDirection::kCCW, |
| 335 | (unsigned) startIndex); |
| 336 | } |
| 337 | } |
| 338 | return this->arcTo(oval, startAngle, sweepAngle, true); |
| 339 | } |
| 340 | |
| 341 | SkPathBuilder& SkPathBuilder::arcTo(SkPoint p1, SkPoint p2, SkScalar radius) { |
| 342 | this->ensureMove(); |
| 343 | |
| 344 | if (radius == 0) { |
| 345 | return this->lineTo(p1); |
| 346 | } |
| 347 | |
| 348 | // need to know our prev pt so we can construct tangent vectors |
| 349 | SkPoint start = fPts.back(); |
| 350 | |
| 351 | // need double precision for these calcs. |
| 352 | SkDVector befored, afterd; |
| 353 | befored.set({p1.fX - start.fX, p1.fY - start.fY}).normalize(); |
| 354 | afterd.set({p2.fX - p1.fX, p2.fY - p1.fY}).normalize(); |
| 355 | double cosh = befored.dot(afterd); |
| 356 | double sinh = befored.cross(afterd); |
| 357 | |
| 358 | if (!befored.isFinite() || !afterd.isFinite() || SkScalarNearlyZero(SkDoubleToScalar(sinh))) { |
| 359 | return this->lineTo(p1); |
| 360 | } |
| 361 | |
| 362 | // safe to convert back to floats now |
| 363 | SkVector before = befored.asSkVector(); |
| 364 | SkVector after = afterd.asSkVector(); |
| 365 | SkScalar dist = SkScalarAbs(SkDoubleToScalar(radius * (1 - cosh) / sinh)); |
| 366 | SkScalar xx = p1.fX - dist * before.fX; |
| 367 | SkScalar yy = p1.fY - dist * before.fY; |
| 368 | after.setLength(dist); |
| 369 | this->lineTo(xx, yy); |
| 370 | SkScalar weight = SkScalarSqrt(SkDoubleToScalar(SK_ScalarHalf + cosh * 0.5)); |
| 371 | return this->conicTo(p1, p1 + after, weight); |
| 372 | } |
| 373 | |
| 374 | // This converts the SVG arc to conics. |
| 375 | // Partly adapted from Niko's code in kdelibs/kdecore/svgicons. |
| 376 | // Then transcribed from webkit/chrome's SVGPathNormalizer::decomposeArcToCubic() |
| 377 | // See also SVG implementation notes: |
| 378 | // http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter |
| 379 | // Note that arcSweep bool value is flipped from the original implementation. |
| 380 | SkPathBuilder& SkPathBuilder::arcTo(SkPoint rad, SkScalar angle, SkPathBuilder::ArcSize arcLarge, |
| 381 | SkPathDirection arcSweep, SkPoint endPt) { |
| 382 | this->ensureMove(); |
| 383 | |
| 384 | SkPoint srcPts[2] = { fPts.back(), endPt }; |
| 385 | |
| 386 | // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto") |
| 387 | // joining the endpoints. |
| 388 | // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters |
| 389 | if (!rad.fX || !rad.fY) { |
| 390 | return this->lineTo(endPt); |
| 391 | } |
| 392 | // If the current point and target point for the arc are identical, it should be treated as a |
| 393 | // zero length path. This ensures continuity in animations. |
| 394 | if (srcPts[0] == srcPts[1]) { |
| 395 | return this->lineTo(endPt); |
| 396 | } |
| 397 | SkScalar rx = SkScalarAbs(rad.fX); |
| 398 | SkScalar ry = SkScalarAbs(rad.fY); |
| 399 | SkVector midPointDistance = srcPts[0] - srcPts[1]; |
| 400 | midPointDistance *= 0.5f; |
| 401 | |
| 402 | SkMatrix pointTransform; |
| 403 | pointTransform.setRotate(-angle); |
| 404 | |
| 405 | SkPoint transformedMidPoint; |
| 406 | pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1); |
| 407 | SkScalar squareRx = rx * rx; |
| 408 | SkScalar squareRy = ry * ry; |
| 409 | SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX; |
| 410 | SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY; |
| 411 | |
| 412 | // Check if the radii are big enough to draw the arc, scale radii if not. |
| 413 | // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii |
| 414 | SkScalar radiiScale = squareX / squareRx + squareY / squareRy; |
| 415 | if (radiiScale > 1) { |
| 416 | radiiScale = SkScalarSqrt(radiiScale); |
| 417 | rx *= radiiScale; |
| 418 | ry *= radiiScale; |
| 419 | } |
| 420 | |
| 421 | pointTransform.setScale(1 / rx, 1 / ry); |
| 422 | pointTransform.preRotate(-angle); |
| 423 | |
| 424 | SkPoint unitPts[2]; |
| 425 | pointTransform.mapPoints(unitPts, srcPts, (int) SK_ARRAY_COUNT(unitPts)); |
| 426 | SkVector delta = unitPts[1] - unitPts[0]; |
| 427 | |
| 428 | SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY; |
| 429 | SkScalar scaleFactorSquared = std::max(1 / d - 0.25f, 0.f); |
| 430 | |
| 431 | SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared); |
| 432 | if ((arcSweep == SkPathDirection::kCCW) != SkToBool(arcLarge)) { // flipped from the original implementation |
| 433 | scaleFactor = -scaleFactor; |
| 434 | } |
| 435 | delta.scale(scaleFactor); |
| 436 | SkPoint centerPoint = unitPts[0] + unitPts[1]; |
| 437 | centerPoint *= 0.5f; |
| 438 | centerPoint.offset(-delta.fY, delta.fX); |
| 439 | unitPts[0] -= centerPoint; |
| 440 | unitPts[1] -= centerPoint; |
| 441 | SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX); |
| 442 | SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX); |
| 443 | SkScalar thetaArc = theta2 - theta1; |
| 444 | if (thetaArc < 0 && (arcSweep == SkPathDirection::kCW)) { // arcSweep flipped from the original implementation |
| 445 | thetaArc += SK_ScalarPI * 2; |
| 446 | } else if (thetaArc > 0 && (arcSweep != SkPathDirection::kCW)) { // arcSweep flipped from the original implementation |
| 447 | thetaArc -= SK_ScalarPI * 2; |
| 448 | } |
| 449 | |
| 450 | // Very tiny angles cause our subsequent math to go wonky (skbug.com/9272) |
| 451 | // so we do a quick check here. The precise tolerance amount is just made up. |
| 452 | // PI/million happens to fix the bug in 9272, but a larger value is probably |
| 453 | // ok too. |
| 454 | if (SkScalarAbs(thetaArc) < (SK_ScalarPI / (1000 * 1000))) { |
| 455 | return this->lineTo(endPt); |
| 456 | } |
| 457 | |
| 458 | pointTransform.setRotate(angle); |
| 459 | pointTransform.preScale(rx, ry); |
| 460 | |
| 461 | // the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd |
| 462 | int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3))); |
| 463 | SkScalar thetaWidth = thetaArc / segments; |
| 464 | SkScalar t = SkScalarTan(0.5f * thetaWidth); |
| 465 | if (!SkScalarIsFinite(t)) { |
| 466 | return *this; |
| 467 | } |
| 468 | SkScalar startTheta = theta1; |
| 469 | SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf); |
| 470 | auto scalar_is_integer = [](SkScalar scalar) -> bool { |
| 471 | return scalar == SkScalarFloorToScalar(scalar); |
| 472 | }; |
| 473 | bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) && |
| 474 | scalar_is_integer(rx) && scalar_is_integer(ry) && |
| 475 | scalar_is_integer(endPt.fX) && scalar_is_integer(endPt.fY); |
| 476 | |
| 477 | for (int i = 0; i < segments; ++i) { |
| 478 | SkScalar endTheta = startTheta + thetaWidth, |
| 479 | sinEndTheta = SkScalarSinSnapToZero(endTheta), |
| 480 | cosEndTheta = SkScalarCosSnapToZero(endTheta); |
| 481 | |
| 482 | unitPts[1].set(cosEndTheta, sinEndTheta); |
| 483 | unitPts[1] += centerPoint; |
| 484 | unitPts[0] = unitPts[1]; |
| 485 | unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta); |
| 486 | SkPoint mapped[2]; |
| 487 | pointTransform.mapPoints(mapped, unitPts, (int) SK_ARRAY_COUNT(unitPts)); |
| 488 | /* |
| 489 | Computing the arc width introduces rounding errors that cause arcs to start |
| 490 | outside their marks. A round rect may lose convexity as a result. If the input |
| 491 | values are on integers, place the conic on integers as well. |
| 492 | */ |
| 493 | if (expectIntegers) { |
| 494 | for (SkPoint& point : mapped) { |
| 495 | point.fX = SkScalarRoundToScalar(point.fX); |
| 496 | point.fY = SkScalarRoundToScalar(point.fY); |
| 497 | } |
| 498 | } |
| 499 | this->conicTo(mapped[0], mapped[1], w); |
| 500 | startTheta = endTheta; |
| 501 | } |
| 502 | |
| 503 | #ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT |
| 504 | // The final point should match the input point (by definition); replace it to |
| 505 | // ensure that rounding errors in the above math don't cause any problems. |
| 506 | fPts.back() = endPt; |
| 507 | #endif |
| 508 | return *this; |
| 509 | } |
| 510 | |
| 511 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 512 | |
| 513 | namespace { |
| 514 | template <unsigned N> class PointIterator { |
| 515 | public: |
| 516 | PointIterator(SkPathDirection dir, unsigned startIndex) |
| 517 | : fCurrent(startIndex % N) |
| 518 | , fAdvance(dir == SkPathDirection::kCW ? 1 : N - 1) |
| 519 | {} |
| 520 | |
| 521 | const SkPoint& current() const { |
| 522 | SkASSERT(fCurrent < N); |
| 523 | return fPts[fCurrent]; |
| 524 | } |
| 525 | |
| 526 | const SkPoint& next() { |
| 527 | fCurrent = (fCurrent + fAdvance) % N; |
| 528 | return this->current(); |
| 529 | } |
| 530 | |
| 531 | protected: |
| 532 | SkPoint fPts[N]; |
| 533 | |
| 534 | private: |
| 535 | unsigned fCurrent; |
| 536 | unsigned fAdvance; |
| 537 | }; |
| 538 | |
| 539 | class RectPointIterator : public PointIterator<4> { |
| 540 | public: |
| 541 | RectPointIterator(const SkRect& rect, SkPathDirection dir, unsigned startIndex) |
| 542 | : PointIterator(dir, startIndex) { |
| 543 | |
| 544 | fPts[0] = SkPoint::Make(rect.fLeft, rect.fTop); |
| 545 | fPts[1] = SkPoint::Make(rect.fRight, rect.fTop); |
| 546 | fPts[2] = SkPoint::Make(rect.fRight, rect.fBottom); |
| 547 | fPts[3] = SkPoint::Make(rect.fLeft, rect.fBottom); |
| 548 | } |
| 549 | }; |
| 550 | |
| 551 | class OvalPointIterator : public PointIterator<4> { |
| 552 | public: |
| 553 | OvalPointIterator(const SkRect& oval, SkPathDirection dir, unsigned startIndex) |
| 554 | : PointIterator(dir, startIndex) { |
| 555 | |
| 556 | const SkScalar cx = oval.centerX(); |
| 557 | const SkScalar cy = oval.centerY(); |
| 558 | |
| 559 | fPts[0] = SkPoint::Make(cx, oval.fTop); |
| 560 | fPts[1] = SkPoint::Make(oval.fRight, cy); |
| 561 | fPts[2] = SkPoint::Make(cx, oval.fBottom); |
| 562 | fPts[3] = SkPoint::Make(oval.fLeft, cy); |
| 563 | } |
| 564 | }; |
| 565 | |
| 566 | class RRectPointIterator : public PointIterator<8> { |
| 567 | public: |
| 568 | RRectPointIterator(const SkRRect& rrect, SkPathDirection dir, unsigned startIndex) |
| 569 | : PointIterator(dir, startIndex) |
| 570 | { |
| 571 | const SkRect& bounds = rrect.getBounds(); |
| 572 | const SkScalar L = bounds.fLeft; |
| 573 | const SkScalar T = bounds.fTop; |
| 574 | const SkScalar R = bounds.fRight; |
| 575 | const SkScalar B = bounds.fBottom; |
| 576 | |
| 577 | fPts[0] = SkPoint::Make(L + rrect.radii(SkRRect::kUpperLeft_Corner).fX, T); |
| 578 | fPts[1] = SkPoint::Make(R - rrect.radii(SkRRect::kUpperRight_Corner).fX, T); |
| 579 | fPts[2] = SkPoint::Make(R, T + rrect.radii(SkRRect::kUpperRight_Corner).fY); |
| 580 | fPts[3] = SkPoint::Make(R, B - rrect.radii(SkRRect::kLowerRight_Corner).fY); |
| 581 | fPts[4] = SkPoint::Make(R - rrect.radii(SkRRect::kLowerRight_Corner).fX, B); |
| 582 | fPts[5] = SkPoint::Make(L + rrect.radii(SkRRect::kLowerLeft_Corner).fX, B); |
| 583 | fPts[6] = SkPoint::Make(L, B - rrect.radii(SkRRect::kLowerLeft_Corner).fY); |
| 584 | fPts[7] = SkPoint::Make(L, T + rrect.radii(SkRRect::kUpperLeft_Corner).fY); |
| 585 | } |
| 586 | }; |
| 587 | } // anonymous namespace |
| 588 | |
| 589 | |
| 590 | SkPathBuilder& SkPathBuilder::addRect(const SkRect& rect, SkPathDirection dir, unsigned index) { |
| 591 | const int kPts = 4; // moveTo + 3 lines |
| 592 | const int kVerbs = 5; // moveTo + 3 lines + close |
| 593 | this->incReserve(kPts, kVerbs); |
| 594 | |
| 595 | RectPointIterator iter(rect, dir, index); |
| 596 | |
| 597 | this->moveTo(iter.current()); |
| 598 | this->lineTo(iter.next()); |
| 599 | this->lineTo(iter.next()); |
| 600 | this->lineTo(iter.next()); |
| 601 | return this->close(); |
| 602 | } |
| 603 | |
| 604 | SkPathBuilder& SkPathBuilder::addOval(const SkRect& oval, SkPathDirection dir, unsigned index) { |
| 605 | const IsA prevIsA = fIsA; |
| 606 | |
| 607 | const int kPts = 9; // moveTo + 4 conics(2 pts each) |
| 608 | const int kVerbs = 6; // moveTo + 4 conics + close |
| 609 | this->incReserve(kPts, kVerbs); |
| 610 | |
| 611 | OvalPointIterator ovalIter(oval, dir, index); |
| 612 | RectPointIterator rectIter(oval, dir, index + (dir == SkPathDirection::kCW ? 0 : 1)); |
| 613 | |
| 614 | // The corner iterator pts are tracking "behind" the oval/radii pts. |
| 615 | |
| 616 | this->moveTo(ovalIter.current()); |
| 617 | for (unsigned i = 0; i < 4; ++i) { |
| 618 | this->conicTo(rectIter.next(), ovalIter.next(), SK_ScalarRoot2Over2); |
| 619 | } |
| 620 | this->close(); |
| 621 | |
| 622 | if (prevIsA == kIsA_JustMoves) { |
| 623 | fIsA = kIsA_Oval; |
| 624 | fIsACCW = (dir == SkPathDirection::kCCW); |
| 625 | fIsAStart = index % 4; |
| 626 | } |
| 627 | return *this; |
| 628 | } |
| 629 | |
| 630 | SkPathBuilder& SkPathBuilder::addRRect(const SkRRect& rrect, SkPathDirection dir, unsigned index) { |
| 631 | const IsA prevIsA = fIsA; |
| 632 | const SkRect& bounds = rrect.getBounds(); |
| 633 | |
| 634 | if (rrect.isRect() || rrect.isEmpty()) { |
| 635 | // degenerate(rect) => radii points are collapsing |
| 636 | this->addRect(bounds, dir, (index + 1) / 2); |
| 637 | } else if (rrect.isOval()) { |
| 638 | // degenerate(oval) => line points are collapsing |
| 639 | this->addOval(bounds, dir, index / 2); |
| 640 | } else { |
| 641 | // we start with a conic on odd indices when moving CW vs. even indices when moving CCW |
| 642 | const bool startsWithConic = ((index & 1) == (dir == SkPathDirection::kCW)); |
| 643 | const SkScalar weight = SK_ScalarRoot2Over2; |
| 644 | |
| 645 | const int kVerbs = startsWithConic |
| 646 | ? 9 // moveTo + 4x conicTo + 3x lineTo + close |
| 647 | : 10; // moveTo + 4x lineTo + 4x conicTo + close |
| 648 | this->incReserve(kVerbs); |
| 649 | |
| 650 | RRectPointIterator rrectIter(rrect, dir, index); |
| 651 | // Corner iterator indices follow the collapsed radii model, |
| 652 | // adjusted such that the start pt is "behind" the radii start pt. |
| 653 | const unsigned rectStartIndex = index / 2 + (dir == SkPathDirection::kCW ? 0 : 1); |
| 654 | RectPointIterator rectIter(bounds, dir, rectStartIndex); |
| 655 | |
| 656 | this->moveTo(rrectIter.current()); |
| 657 | if (startsWithConic) { |
| 658 | for (unsigned i = 0; i < 3; ++i) { |
| 659 | this->conicTo(rectIter.next(), rrectIter.next(), weight); |
| 660 | this->lineTo(rrectIter.next()); |
| 661 | } |
| 662 | this->conicTo(rectIter.next(), rrectIter.next(), weight); |
| 663 | // final lineTo handled by close(). |
| 664 | } else { |
| 665 | for (unsigned i = 0; i < 4; ++i) { |
| 666 | this->lineTo(rrectIter.next()); |
| 667 | this->conicTo(rectIter.next(), rrectIter.next(), weight); |
| 668 | } |
| 669 | } |
| 670 | this->close(); |
| 671 | } |
| 672 | |
| 673 | if (prevIsA == kIsA_JustMoves) { |
| 674 | fIsA = kIsA_RRect; |
| 675 | fIsACCW = (dir == SkPathDirection::kCCW); |
| 676 | fIsAStart = index % 8; |
| 677 | } |
| 678 | return *this; |
| 679 | } |
| 680 | |
| 681 | SkPathBuilder& SkPathBuilder::addCircle(SkScalar x, SkScalar y, SkScalar r, SkPathDirection dir) { |
| 682 | if (r >= 0) { |
| 683 | this->addOval(SkRect::MakeLTRB(x - r, y - r, x + r, y + r), dir); |
| 684 | } |
| 685 | return *this; |
| 686 | } |
| 687 | |
| 688 | SkPathBuilder& SkPathBuilder::addPolygon(const SkPoint pts[], int count, bool isClosed) { |
| 689 | if (count <= 0) { |
| 690 | return *this; |
| 691 | } |
| 692 | |
| 693 | this->incReserve(count, count + isClosed); |
| 694 | |
| 695 | this->moveTo(pts[0]); |
| 696 | if (count > 1) { |
| 697 | count -= 1; |
| 698 | memcpy(fPts.append(count), &pts[1], count * sizeof(SkPoint)); |
| 699 | memset(fVerbs.append(count), (uint8_t)SkPathVerb::kLine, count); |
| 700 | fSegmentMask |= kLine_SkPathSegmentMask; |
| 701 | } |
| 702 | if (isClosed) { |
| 703 | this->close(); |
| 704 | } |
| 705 | return *this; |
| 706 | } |
| 707 | |