1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkWriteBuffer.h" |
9 | |
10 | #include "include/core/SkBitmap.h" |
11 | #include "include/core/SkData.h" |
12 | #include "include/core/SkM44.h" |
13 | #include "include/core/SkStream.h" |
14 | #include "include/core/SkTypeface.h" |
15 | #include "include/private/SkTo.h" |
16 | #include "src/core/SkImagePriv.h" |
17 | #include "src/core/SkMatrixPriv.h" |
18 | #include "src/core/SkPaintPriv.h" |
19 | #include "src/core/SkPtrRecorder.h" |
20 | |
21 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
22 | |
23 | SkBinaryWriteBuffer::SkBinaryWriteBuffer() |
24 | : fFactorySet(nullptr) |
25 | , fTFSet(nullptr) { |
26 | } |
27 | |
28 | SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) |
29 | : fFactorySet(nullptr) |
30 | , fTFSet(nullptr) |
31 | , fWriter(storage, storageSize) |
32 | {} |
33 | |
34 | SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} |
35 | |
36 | bool SkBinaryWriteBuffer::usingInitialStorage() const { |
37 | return fWriter.usingInitialStorage(); |
38 | } |
39 | |
40 | void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
41 | fWriter.write32(SkToU32(size)); |
42 | fWriter.writePad(data, size); |
43 | } |
44 | |
45 | void SkBinaryWriteBuffer::writeBool(bool value) { |
46 | fWriter.writeBool(value); |
47 | } |
48 | |
49 | void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
50 | fWriter.writeScalar(value); |
51 | } |
52 | |
53 | void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
54 | fWriter.write32(count); |
55 | fWriter.write(value, count * sizeof(SkScalar)); |
56 | } |
57 | |
58 | void SkBinaryWriteBuffer::writeInt(int32_t value) { |
59 | fWriter.write32(value); |
60 | } |
61 | |
62 | void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
63 | fWriter.write32(count); |
64 | fWriter.write(value, count * sizeof(int32_t)); |
65 | } |
66 | |
67 | void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
68 | fWriter.write32(value); |
69 | } |
70 | |
71 | void SkBinaryWriteBuffer::writeString(const char* value) { |
72 | fWriter.writeString(value); |
73 | } |
74 | |
75 | void SkBinaryWriteBuffer::writeColor(SkColor color) { |
76 | fWriter.write32(color); |
77 | } |
78 | |
79 | void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
80 | fWriter.write32(count); |
81 | fWriter.write(color, count * sizeof(SkColor)); |
82 | } |
83 | |
84 | void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
85 | fWriter.write(&color, sizeof(SkColor4f)); |
86 | } |
87 | |
88 | void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
89 | fWriter.write32(count); |
90 | fWriter.write(color, count * sizeof(SkColor4f)); |
91 | } |
92 | |
93 | void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
94 | fWriter.writeScalar(point.fX); |
95 | fWriter.writeScalar(point.fY); |
96 | } |
97 | |
98 | void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { |
99 | this->writePad32(&point, sizeof(SkPoint3)); |
100 | } |
101 | |
102 | void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
103 | fWriter.write32(count); |
104 | fWriter.write(point, count * sizeof(SkPoint)); |
105 | } |
106 | |
107 | void SkBinaryWriteBuffer::write(const SkM44& matrix) { |
108 | fWriter.write(SkMatrixPriv::M44ColMajor(matrix), sizeof(float) * 16); |
109 | } |
110 | |
111 | void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
112 | fWriter.writeMatrix(matrix); |
113 | } |
114 | |
115 | void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
116 | fWriter.write(&rect, sizeof(SkIRect)); |
117 | } |
118 | |
119 | void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
120 | fWriter.writeRect(rect); |
121 | } |
122 | |
123 | void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
124 | fWriter.writeRegion(region); |
125 | } |
126 | |
127 | void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
128 | fWriter.writePath(path); |
129 | } |
130 | |
131 | size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
132 | fWriter.write32(SkToU32(length)); |
133 | size_t bytesWritten = fWriter.readFromStream(stream, length); |
134 | if (bytesWritten < length) { |
135 | fWriter.reservePad(length - bytesWritten); |
136 | } |
137 | return bytesWritten; |
138 | } |
139 | |
140 | bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { |
141 | return fWriter.writeToStream(stream); |
142 | } |
143 | |
144 | #include "src/image/SkImage_Base.h" |
145 | |
146 | /* Format: |
147 | * flags: U32 |
148 | * encoded : size_32 + data[] |
149 | * [subset: IRect] |
150 | * [mips] : size_32 + data[] |
151 | */ |
152 | void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
153 | uint32_t flags = 0; |
154 | const SkMipmap* mips = as_IB(image)->onPeekMips(); |
155 | if (mips) { |
156 | flags |= SkWriteBufferImageFlags::kHasMipmap; |
157 | } |
158 | |
159 | this->write32(flags); |
160 | |
161 | sk_sp<SkData> data; |
162 | if (fProcs.fImageProc) { |
163 | data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx); |
164 | } |
165 | if (!data) { |
166 | data = image->encodeToData(); |
167 | } |
168 | this->writeDataAsByteArray(data.get()); |
169 | |
170 | if (flags & SkWriteBufferImageFlags::kHasMipmap) { |
171 | this->writeDataAsByteArray(mips->serialize().get()); |
172 | } |
173 | } |
174 | |
175 | void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
176 | // Write 32 bits (signed) |
177 | // 0 -- default font |
178 | // >0 -- index |
179 | // <0 -- custom (serial procs) |
180 | |
181 | if (obj == nullptr) { |
182 | fWriter.write32(0); |
183 | } else if (fProcs.fTypefaceProc) { |
184 | auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
185 | if (data) { |
186 | size_t size = data->size(); |
187 | if (!SkTFitsIn<int32_t>(size)) { |
188 | size = 0; // fall back to default font |
189 | } |
190 | int32_t ssize = SkToS32(size); |
191 | fWriter.write32(-ssize); // negative to signal custom |
192 | if (size) { |
193 | this->writePad32(data->data(), size); |
194 | } |
195 | return; |
196 | } |
197 | // no data means fall through for std behavior |
198 | } |
199 | fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
200 | } |
201 | |
202 | void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
203 | SkPaintPriv::Flatten(paint, *this); |
204 | } |
205 | |
206 | void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { |
207 | fFactorySet = std::move(rec); |
208 | } |
209 | |
210 | void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { |
211 | fTFSet = std::move(rec); |
212 | } |
213 | |
214 | void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
215 | if (nullptr == flattenable) { |
216 | this->write32(0); |
217 | return; |
218 | } |
219 | |
220 | /* |
221 | * We can write 1 of 2 versions of the flattenable: |
222 | * |
223 | * 1. index into fFactorySet: This assumes the writer will later resolve the function-ptrs |
224 | * into strings for its reader. SkPicture does exactly this, by writing a table of names |
225 | * (matching the indices) up front in its serialized form. |
226 | * |
227 | * 2. string name of the flattenable or index into fFlattenableDict: We store the string to |
228 | * allow the reader to specify its own factories after write time. In order to improve |
229 | * compression, if we have already written the string, we write its index instead. |
230 | */ |
231 | |
232 | if (SkFlattenable::Factory factory = flattenable->getFactory(); factory && fFactorySet) { |
233 | this->write32(fFactorySet->add(factory)); |
234 | } else { |
235 | const char* name = flattenable->getTypeName(); |
236 | SkASSERT(name); |
237 | SkASSERT(0 != strcmp("" , name)); |
238 | |
239 | if (uint32_t* indexPtr = fFlattenableDict.find(name)) { |
240 | // We will write the index as a 32-bit int. We want the first byte |
241 | // that we send to be zero - this will act as a sentinel that we |
242 | // have an index (not a string). This means that we will send the |
243 | // the index shifted left by 8. The remaining 24-bits should be |
244 | // plenty to store the index. Note that this strategy depends on |
245 | // being little endian, and type names being non-empty. |
246 | SkASSERT(0 == *indexPtr >> 24); |
247 | this->write32(*indexPtr << 8); |
248 | } else { |
249 | this->writeString(name); |
250 | fFlattenableDict.set(name, fFlattenableDict.count() + 1); |
251 | } |
252 | } |
253 | |
254 | // make room for the size of the flattened object |
255 | (void)fWriter.reserve(sizeof(uint32_t)); |
256 | // record the current size, so we can subtract after the object writes. |
257 | size_t offset = fWriter.bytesWritten(); |
258 | // now flatten the object |
259 | flattenable->flatten(*this); |
260 | size_t objSize = fWriter.bytesWritten() - offset; |
261 | // record the obj's size |
262 | fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
263 | } |
264 | |