| 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/ccpr/GrCCFiller.h" |
| 9 | |
| 10 | #include "include/core/SkPath.h" |
| 11 | #include "include/core/SkPoint.h" |
| 12 | #include "src/core/SkMathPriv.h" |
| 13 | #include "src/core/SkPathPriv.h" |
| 14 | #include "src/gpu/GrCaps.h" |
| 15 | #include "src/gpu/GrOnFlushResourceProvider.h" |
| 16 | #include "src/gpu/GrOpFlushState.h" |
| 17 | #include "src/gpu/GrProgramInfo.h" |
| 18 | #include <cstdlib> |
| 19 | |
| 20 | using TriPointInstance = GrCCCoverageProcessor::TriPointInstance; |
| 21 | using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance; |
| 22 | |
| 23 | GrCCFiller::GrCCFiller(Algorithm algorithm, int numPaths, int numSkPoints, int numSkVerbs, |
| 24 | int numConicWeights) |
| 25 | : fAlgorithm(algorithm) |
| 26 | , fGeometry(numSkPoints, numSkVerbs, numConicWeights) |
| 27 | , fPathInfos(numPaths) |
| 28 | , fScissorSubBatches(numPaths) |
| 29 | , fTotalPrimitiveCounts{PrimitiveTallies(), PrimitiveTallies()} { |
| 30 | // Batches decide what to draw by looking where the previous one ended. Define initial batches |
| 31 | // that "end" at the beginning of the data. These will not be drawn, but will only be be read by |
| 32 | // the first actual batch. |
| 33 | fScissorSubBatches.push_back() = {PrimitiveTallies(), SkIRect::MakeEmpty()}; |
| 34 | fBatches.push_back() = {PrimitiveTallies(), fScissorSubBatches.count(), PrimitiveTallies()}; |
| 35 | } |
| 36 | |
| 37 | void GrCCFiller::parseDeviceSpaceFill(const SkPath& path, const SkPoint* deviceSpacePts, |
| 38 | GrScissorTest scissorTest, const SkIRect& clippedDevIBounds, |
| 39 | const SkIVector& devToAtlasOffset) { |
| 40 | SkASSERT(!fInstanceBuffer.hasGpuBuffer()); // Can't call after prepareToDraw(). |
| 41 | SkASSERT(!path.isEmpty()); |
| 42 | |
| 43 | int currPathPointsIdx = fGeometry.points().count(); |
| 44 | int currPathVerbsIdx = fGeometry.verbs().count(); |
| 45 | PrimitiveTallies currPathPrimitiveCounts = PrimitiveTallies(); |
| 46 | |
| 47 | fGeometry.beginPath(); |
| 48 | |
| 49 | const float* conicWeights = SkPathPriv::ConicWeightData(path); |
| 50 | int ptsIdx = 0; |
| 51 | int conicWeightsIdx = 0; |
| 52 | bool insideContour = false; |
| 53 | |
| 54 | for (SkPath::Verb verb : SkPathPriv::Verbs(path)) { |
| 55 | switch (verb) { |
| 56 | case SkPath::kMove_Verb: |
| 57 | if (insideContour) { |
| 58 | currPathPrimitiveCounts += fGeometry.endContour(); |
| 59 | } |
| 60 | fGeometry.beginContour(deviceSpacePts[ptsIdx]); |
| 61 | ++ptsIdx; |
| 62 | insideContour = true; |
| 63 | continue; |
| 64 | case SkPath::kClose_Verb: |
| 65 | if (insideContour) { |
| 66 | currPathPrimitiveCounts += fGeometry.endContour(); |
| 67 | } |
| 68 | insideContour = false; |
| 69 | continue; |
| 70 | case SkPath::kLine_Verb: |
| 71 | fGeometry.lineTo(&deviceSpacePts[ptsIdx - 1]); |
| 72 | ++ptsIdx; |
| 73 | continue; |
| 74 | case SkPath::kQuad_Verb: |
| 75 | fGeometry.quadraticTo(&deviceSpacePts[ptsIdx - 1]); |
| 76 | ptsIdx += 2; |
| 77 | continue; |
| 78 | case SkPath::kCubic_Verb: |
| 79 | fGeometry.cubicTo(&deviceSpacePts[ptsIdx - 1]); |
| 80 | ptsIdx += 3; |
| 81 | continue; |
| 82 | case SkPath::kConic_Verb: |
| 83 | fGeometry.conicTo(&deviceSpacePts[ptsIdx - 1], conicWeights[conicWeightsIdx]); |
| 84 | ptsIdx += 2; |
| 85 | ++conicWeightsIdx; |
| 86 | continue; |
| 87 | default: |
| 88 | SK_ABORT("Unexpected path verb." ); |
| 89 | } |
| 90 | } |
| 91 | SkASSERT(ptsIdx == path.countPoints()); |
| 92 | SkASSERT(conicWeightsIdx == SkPathPriv::ConicWeightCnt(path)); |
| 93 | |
| 94 | if (insideContour) { |
| 95 | currPathPrimitiveCounts += fGeometry.endContour(); |
| 96 | } |
| 97 | |
| 98 | fPathInfos.emplace_back(scissorTest, devToAtlasOffset); |
| 99 | |
| 100 | // Tessellate fans from very large and/or simple paths, in order to reduce overdraw. |
| 101 | int numVerbs = fGeometry.verbs().count() - currPathVerbsIdx - 1; |
| 102 | int64_t tessellationWork = (int64_t)numVerbs * (32 - SkCLZ(numVerbs)); // N log N. |
| 103 | int64_t fanningWork = (int64_t)clippedDevIBounds.height() * clippedDevIBounds.width(); |
| 104 | if (tessellationWork * (50*50) + (100*100) < fanningWork) { // Don't tessellate under 100x100. |
| 105 | fPathInfos.back().tessellateFan( |
| 106 | fAlgorithm, path, fGeometry, currPathVerbsIdx, currPathPointsIdx, clippedDevIBounds, |
| 107 | &currPathPrimitiveCounts); |
| 108 | } |
| 109 | |
| 110 | fTotalPrimitiveCounts[(int)scissorTest] += currPathPrimitiveCounts; |
| 111 | |
| 112 | if (GrScissorTest::kEnabled == scissorTest) { |
| 113 | fScissorSubBatches.push_back() = {fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled], |
| 114 | clippedDevIBounds.makeOffset(devToAtlasOffset)}; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | void GrCCFiller::PathInfo::tessellateFan( |
| 119 | Algorithm algorithm, const SkPath& originalPath, const GrCCFillGeometry& geometry, |
| 120 | int verbsIdx, int ptsIdx, const SkIRect& clippedDevIBounds, |
| 121 | PrimitiveTallies* newTriangleCounts) { |
| 122 | using Verb = GrCCFillGeometry::Verb; |
| 123 | SkASSERT(-1 == fFanTessellationCount); |
| 124 | SkASSERT(!fFanTessellation); |
| 125 | |
| 126 | const SkTArray<Verb, true>& verbs = geometry.verbs(); |
| 127 | const SkTArray<SkPoint, true>& pts = geometry.points(); |
| 128 | |
| 129 | newTriangleCounts->fTriangles = |
| 130 | newTriangleCounts->fWeightedTriangles = 0; |
| 131 | |
| 132 | // Build an SkPath of the Redbook fan. |
| 133 | SkPath fan; |
| 134 | if (Algorithm::kCoverageCount == algorithm) { |
| 135 | // We use "winding" fill type right now because we are producing a coverage count, and must |
| 136 | // fill in every region that has non-zero wind. The path processor will convert coverage |
| 137 | // count to the appropriate fill type later. |
| 138 | fan.setFillType(SkPathFillType::kWinding); |
| 139 | } else { |
| 140 | // When counting winding numbers in the stencil buffer, it works to use even/odd for the fan |
| 141 | // tessellation (where applicable). But we need to strip out inverse fill info because |
| 142 | // inverse-ness gets accounted for later on. |
| 143 | fan.setFillType(SkPathFillType_ConvertToNonInverse(originalPath.getFillType())); |
| 144 | } |
| 145 | SkASSERT(Verb::kBeginPath == verbs[verbsIdx]); |
| 146 | for (int i = verbsIdx + 1; i < verbs.count(); ++i) { |
| 147 | switch (verbs[i]) { |
| 148 | case Verb::kBeginPath: |
| 149 | SK_ABORT("Invalid GrCCFillGeometry" ); |
| 150 | continue; |
| 151 | |
| 152 | case Verb::kBeginContour: |
| 153 | fan.moveTo(pts[ptsIdx++]); |
| 154 | continue; |
| 155 | |
| 156 | case Verb::kLineTo: |
| 157 | fan.lineTo(pts[ptsIdx++]); |
| 158 | continue; |
| 159 | |
| 160 | case Verb::kMonotonicQuadraticTo: |
| 161 | case Verb::kMonotonicConicTo: |
| 162 | fan.lineTo(pts[ptsIdx + 1]); |
| 163 | ptsIdx += 2; |
| 164 | continue; |
| 165 | |
| 166 | case Verb::kMonotonicCubicTo: |
| 167 | fan.lineTo(pts[ptsIdx + 2]); |
| 168 | ptsIdx += 3; |
| 169 | continue; |
| 170 | |
| 171 | case Verb::kEndClosedContour: |
| 172 | case Verb::kEndOpenContour: |
| 173 | fan.close(); |
| 174 | continue; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | GrTriangulator::WindingVertex* vertices = nullptr; |
| 179 | SkASSERT(!fan.isInverseFillType()); |
| 180 | fFanTessellationCount = GrTriangulator::PathToVertices( |
| 181 | fan, std::numeric_limits<float>::infinity(), SkRect::Make(clippedDevIBounds), |
| 182 | &vertices); |
| 183 | if (fFanTessellationCount <= 0) { |
| 184 | SkASSERT(0 == fFanTessellationCount); |
| 185 | SkASSERT(nullptr == vertices); |
| 186 | return; |
| 187 | } |
| 188 | |
| 189 | SkASSERT(0 == fFanTessellationCount % 3); |
| 190 | for (int i = 0; i < fFanTessellationCount; i += 3) { |
| 191 | int weight = abs(vertices[i].fWinding); |
| 192 | if (SkPathFillType::kEvenOdd == fan.getFillType()) { |
| 193 | // The tessellator doesn't wrap weights modulo 2 when we request even/odd fill type. |
| 194 | SkASSERT(weight & 1); |
| 195 | weight = 1; |
| 196 | } |
| 197 | if (weight > 1 && Algorithm::kCoverageCount == algorithm) { |
| 198 | ++newTriangleCounts->fWeightedTriangles; |
| 199 | } else { |
| 200 | newTriangleCounts->fTriangles += weight; |
| 201 | } |
| 202 | vertices[i].fWinding = weight; |
| 203 | } |
| 204 | |
| 205 | fFanTessellation.reset(vertices); |
| 206 | } |
| 207 | |
| 208 | GrCCFiller::BatchID GrCCFiller::closeCurrentBatch() { |
| 209 | SkASSERT(!fInstanceBuffer.hasGpuBuffer()); |
| 210 | SkASSERT(!fBatches.empty()); |
| 211 | |
| 212 | const auto& lastBatch = fBatches.back(); |
| 213 | int maxMeshes = 1 + fScissorSubBatches.count() - lastBatch.fEndScissorSubBatchIdx; |
| 214 | fMaxMeshesPerDraw = std::max(fMaxMeshesPerDraw, maxMeshes); |
| 215 | |
| 216 | const auto& lastScissorSubBatch = fScissorSubBatches[lastBatch.fEndScissorSubBatchIdx - 1]; |
| 217 | PrimitiveTallies batchTotalCounts = fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled] - |
| 218 | lastBatch.fEndNonScissorIndices; |
| 219 | batchTotalCounts += fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled] - |
| 220 | lastScissorSubBatch.fEndPrimitiveIndices; |
| 221 | |
| 222 | // This will invalidate lastBatch. |
| 223 | fBatches.push_back() = { |
| 224 | fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled], |
| 225 | fScissorSubBatches.count(), |
| 226 | batchTotalCounts |
| 227 | }; |
| 228 | return fBatches.count() - 1; |
| 229 | } |
| 230 | |
| 231 | // Emits a contour's triangle fan. |
| 232 | // |
| 233 | // Classic Redbook fanning would be the triangles: [0 1 2], [0 2 3], ..., [0 n-2 n-1]. |
| 234 | // |
| 235 | // This function emits the triangle: [0 n/3 n*2/3], and then recurses on all three sides. The |
| 236 | // advantage to this approach is that for a convex-ish contour, it generates larger triangles. |
| 237 | // Classic fanning tends to generate long, skinny triangles, which are expensive to draw since they |
| 238 | // have a longer perimeter to rasterize and antialias. |
| 239 | // |
| 240 | // The indices array indexes the fan's points (think: glDrawElements), and must have at least log3 |
| 241 | // elements past the end for this method to use as scratch space. |
| 242 | // |
| 243 | // Returns the next triangle instance after the final one emitted. |
| 244 | static TriPointInstance* emit_recursive_fan( |
| 245 | const SkTArray<SkPoint, true>& pts, SkTArray<int32_t, true>& indices, int firstIndex, |
| 246 | int indexCount, const Sk2f& devToAtlasOffset, TriPointInstance::Ordering ordering, |
| 247 | TriPointInstance out[]) { |
| 248 | if (indexCount < 3) { |
| 249 | return out; |
| 250 | } |
| 251 | |
| 252 | int32_t oneThirdCount = indexCount / 3; |
| 253 | int32_t twoThirdsCount = (2 * indexCount) / 3; |
| 254 | out++->set(pts[indices[firstIndex]], pts[indices[firstIndex + oneThirdCount]], |
| 255 | pts[indices[firstIndex + twoThirdsCount]], devToAtlasOffset, ordering); |
| 256 | |
| 257 | out = emit_recursive_fan( |
| 258 | pts, indices, firstIndex, oneThirdCount + 1, devToAtlasOffset, ordering, out); |
| 259 | out = emit_recursive_fan( |
| 260 | pts, indices, firstIndex + oneThirdCount, twoThirdsCount - oneThirdCount + 1, |
| 261 | devToAtlasOffset, ordering, out); |
| 262 | |
| 263 | int endIndex = firstIndex + indexCount; |
| 264 | int32_t oldValue = indices[endIndex]; |
| 265 | indices[endIndex] = indices[firstIndex]; |
| 266 | out = emit_recursive_fan( |
| 267 | pts, indices, firstIndex + twoThirdsCount, indexCount - twoThirdsCount + 1, |
| 268 | devToAtlasOffset, ordering, out); |
| 269 | indices[endIndex] = oldValue; |
| 270 | |
| 271 | return out; |
| 272 | } |
| 273 | |
| 274 | void GrCCFiller::emitTessellatedFan( |
| 275 | const GrTriangulator::WindingVertex* vertices, int numVertices, |
| 276 | const Sk2f& devToAtlasOffset, TriPointInstance::Ordering ordering, |
| 277 | TriPointInstance* triPointInstanceData, QuadPointInstance* quadPointInstanceData, |
| 278 | GrCCFillGeometry::PrimitiveTallies* indices) { |
| 279 | for (int i = 0; i < numVertices; i += 3) { |
| 280 | int weight = vertices[i].fWinding; |
| 281 | SkASSERT(weight >= 1); |
| 282 | if (weight > 1 && Algorithm::kStencilWindingCount != fAlgorithm) { |
| 283 | quadPointInstanceData[indices->fWeightedTriangles++].setW( |
| 284 | vertices[i].fPos, vertices[i+1].fPos, vertices[i + 2].fPos, devToAtlasOffset, |
| 285 | static_cast<float>(abs(vertices[i].fWinding))); |
| 286 | } else for (int j = 0; j < weight; ++j) { |
| 287 | // Unfortunately, there is not a way to increment stencil values by an amount larger |
| 288 | // than 1. Instead we draw the triangle 'weight' times. |
| 289 | triPointInstanceData[indices->fTriangles++].set( |
| 290 | vertices[i].fPos, vertices[i + 1].fPos, vertices[i + 2].fPos, devToAtlasOffset, |
| 291 | ordering); |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | bool GrCCFiller::prepareToDraw(GrOnFlushResourceProvider* onFlushRP) { |
| 297 | using Verb = GrCCFillGeometry::Verb; |
| 298 | SkASSERT(!fInstanceBuffer.hasGpuBuffer()); |
| 299 | SkASSERT(fBatches.back().fEndNonScissorIndices == // Call closeCurrentBatch(). |
| 300 | fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled]); |
| 301 | SkASSERT(fBatches.back().fEndScissorSubBatchIdx == fScissorSubBatches.count()); |
| 302 | |
| 303 | auto triangleOrdering = (Algorithm::kCoverageCount == fAlgorithm) |
| 304 | ? TriPointInstance::Ordering::kXYTransposed |
| 305 | : TriPointInstance::Ordering::kXYInterleaved; |
| 306 | |
| 307 | // Here we build a single instance buffer to share with every internal batch. |
| 308 | // |
| 309 | // CCPR processs 3 different types of primitives: triangles, quadratics, cubics. Each primitive |
| 310 | // type is further divided into instances that require a scissor and those that don't. This |
| 311 | // leaves us with 3*2 = 6 independent instance arrays to build for the GPU. |
| 312 | // |
| 313 | // Rather than place each instance array in its own GPU buffer, we allocate a single |
| 314 | // megabuffer and lay them all out side-by-side. We can offset the "baseInstance" parameter in |
| 315 | // our draw calls to direct the GPU to the applicable elements within a given array. |
| 316 | // |
| 317 | // We already know how big to make each of the 6 arrays from fTotalPrimitiveCounts, so layout is |
| 318 | // straightforward. Start with triangles and quadratics. They both view the instance buffer as |
| 319 | // an array of TriPointInstance[], so we can begin at zero and lay them out one after the other. |
| 320 | fBaseInstances[0].fTriangles = 0; |
| 321 | fBaseInstances[1].fTriangles = fBaseInstances[0].fTriangles + |
| 322 | fTotalPrimitiveCounts[0].fTriangles; |
| 323 | fBaseInstances[0].fQuadratics = fBaseInstances[1].fTriangles + |
| 324 | fTotalPrimitiveCounts[1].fTriangles; |
| 325 | fBaseInstances[1].fQuadratics = fBaseInstances[0].fQuadratics + |
| 326 | fTotalPrimitiveCounts[0].fQuadratics; |
| 327 | int triEndIdx = fBaseInstances[1].fQuadratics + fTotalPrimitiveCounts[1].fQuadratics; |
| 328 | |
| 329 | // Wound triangles and cubics both view the same instance buffer as an array of |
| 330 | // QuadPointInstance[]. So, reinterpreting the instance data as QuadPointInstance[], we start |
| 331 | // them on the first index that will not overwrite previous TriPointInstance data. |
| 332 | int quadBaseIdx = |
| 333 | GrSizeDivRoundUp(triEndIdx * sizeof(TriPointInstance), sizeof(QuadPointInstance)); |
| 334 | fBaseInstances[0].fWeightedTriangles = quadBaseIdx; |
| 335 | fBaseInstances[1].fWeightedTriangles = fBaseInstances[0].fWeightedTriangles + |
| 336 | fTotalPrimitiveCounts[0].fWeightedTriangles; |
| 337 | fBaseInstances[0].fCubics = fBaseInstances[1].fWeightedTriangles + |
| 338 | fTotalPrimitiveCounts[1].fWeightedTriangles; |
| 339 | fBaseInstances[1].fCubics = fBaseInstances[0].fCubics + fTotalPrimitiveCounts[0].fCubics; |
| 340 | fBaseInstances[0].fConics = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics; |
| 341 | fBaseInstances[1].fConics = fBaseInstances[0].fConics + fTotalPrimitiveCounts[0].fConics; |
| 342 | int quadEndIdx = fBaseInstances[1].fConics + fTotalPrimitiveCounts[1].fConics; |
| 343 | |
| 344 | fInstanceBuffer.resetAndMapBuffer(onFlushRP, quadEndIdx * sizeof(QuadPointInstance)); |
| 345 | if (!fInstanceBuffer.hasGpuBuffer()) { |
| 346 | SkDebugf("WARNING: failed to allocate CCPR fill instance buffer.\n" ); |
| 347 | return false; |
| 348 | } |
| 349 | |
| 350 | auto triPointInstanceData = reinterpret_cast<TriPointInstance*>(fInstanceBuffer.data()); |
| 351 | auto quadPointInstanceData = reinterpret_cast<QuadPointInstance*>(fInstanceBuffer.data()); |
| 352 | SkASSERT(quadPointInstanceData); |
| 353 | |
| 354 | PathInfo* nextPathInfo = fPathInfos.begin(); |
| 355 | Sk2f devToAtlasOffset; |
| 356 | PrimitiveTallies instanceIndices[2] = {fBaseInstances[0], fBaseInstances[1]}; |
| 357 | PrimitiveTallies* currIndices = nullptr; |
| 358 | SkSTArray<256, int32_t, true> currFan; |
| 359 | bool currFanIsTessellated = false; |
| 360 | |
| 361 | const SkTArray<SkPoint, true>& pts = fGeometry.points(); |
| 362 | int ptsIdx = -1; |
| 363 | int nextConicWeightIdx = 0; |
| 364 | |
| 365 | // Expand the ccpr verbs into GPU instance buffers. |
| 366 | for (Verb verb : fGeometry.verbs()) { |
| 367 | switch (verb) { |
| 368 | case Verb::kBeginPath: |
| 369 | SkASSERT(currFan.empty()); |
| 370 | currIndices = &instanceIndices[(int)nextPathInfo->scissorTest()]; |
| 371 | devToAtlasOffset = Sk2f(static_cast<float>(nextPathInfo->devToAtlasOffset().fX), |
| 372 | static_cast<float>(nextPathInfo->devToAtlasOffset().fY)); |
| 373 | currFanIsTessellated = nextPathInfo->hasFanTessellation(); |
| 374 | if (currFanIsTessellated) { |
| 375 | this->emitTessellatedFan( |
| 376 | nextPathInfo->fanTessellation(), nextPathInfo->fanTessellationCount(), |
| 377 | devToAtlasOffset, triangleOrdering, triPointInstanceData, |
| 378 | quadPointInstanceData, currIndices); |
| 379 | } |
| 380 | ++nextPathInfo; |
| 381 | continue; |
| 382 | |
| 383 | case Verb::kBeginContour: |
| 384 | SkASSERT(currFan.empty()); |
| 385 | ++ptsIdx; |
| 386 | if (!currFanIsTessellated) { |
| 387 | currFan.push_back(ptsIdx); |
| 388 | } |
| 389 | continue; |
| 390 | |
| 391 | case Verb::kLineTo: |
| 392 | ++ptsIdx; |
| 393 | if (!currFanIsTessellated) { |
| 394 | SkASSERT(!currFan.empty()); |
| 395 | currFan.push_back(ptsIdx); |
| 396 | } |
| 397 | continue; |
| 398 | |
| 399 | case Verb::kMonotonicQuadraticTo: |
| 400 | triPointInstanceData[currIndices->fQuadratics++].set( |
| 401 | &pts[ptsIdx], devToAtlasOffset, TriPointInstance::Ordering::kXYTransposed); |
| 402 | ptsIdx += 2; |
| 403 | if (!currFanIsTessellated) { |
| 404 | SkASSERT(!currFan.empty()); |
| 405 | currFan.push_back(ptsIdx); |
| 406 | } |
| 407 | continue; |
| 408 | |
| 409 | case Verb::kMonotonicCubicTo: |
| 410 | quadPointInstanceData[currIndices->fCubics++].set( |
| 411 | &pts[ptsIdx], devToAtlasOffset[0], devToAtlasOffset[1]); |
| 412 | ptsIdx += 3; |
| 413 | if (!currFanIsTessellated) { |
| 414 | SkASSERT(!currFan.empty()); |
| 415 | currFan.push_back(ptsIdx); |
| 416 | } |
| 417 | continue; |
| 418 | |
| 419 | case Verb::kMonotonicConicTo: |
| 420 | quadPointInstanceData[currIndices->fConics++].setW( |
| 421 | &pts[ptsIdx], devToAtlasOffset, |
| 422 | fGeometry.getConicWeight(nextConicWeightIdx)); |
| 423 | ptsIdx += 2; |
| 424 | ++nextConicWeightIdx; |
| 425 | if (!currFanIsTessellated) { |
| 426 | SkASSERT(!currFan.empty()); |
| 427 | currFan.push_back(ptsIdx); |
| 428 | } |
| 429 | continue; |
| 430 | |
| 431 | case Verb::kEndClosedContour: // endPt == startPt. |
| 432 | if (!currFanIsTessellated) { |
| 433 | SkASSERT(!currFan.empty()); |
| 434 | currFan.pop_back(); |
| 435 | } |
| 436 | [[fallthrough]]; |
| 437 | case Verb::kEndOpenContour: // endPt != startPt. |
| 438 | SkASSERT(!currFanIsTessellated || currFan.empty()); |
| 439 | if (!currFanIsTessellated && currFan.count() >= 3) { |
| 440 | int fanSize = currFan.count(); |
| 441 | // Reserve space for emit_recursive_fan. Technically this can grow to |
| 442 | // fanSize + log3(fanSize), but we approximate with log2. |
| 443 | currFan.push_back_n(SkNextLog2(fanSize)); |
| 444 | SkDEBUGCODE(TriPointInstance* end =) emit_recursive_fan( |
| 445 | pts, currFan, 0, fanSize, devToAtlasOffset, triangleOrdering, |
| 446 | triPointInstanceData + currIndices->fTriangles); |
| 447 | currIndices->fTriangles += fanSize - 2; |
| 448 | SkASSERT(triPointInstanceData + currIndices->fTriangles == end); |
| 449 | } |
| 450 | currFan.reset(); |
| 451 | continue; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | fInstanceBuffer.unmapBuffer(); |
| 456 | |
| 457 | SkASSERT(nextPathInfo == fPathInfos.end()); |
| 458 | SkASSERT(ptsIdx == pts.count() - 1); |
| 459 | SkASSERT(instanceIndices[0].fTriangles == fBaseInstances[1].fTriangles); |
| 460 | SkASSERT(instanceIndices[1].fTriangles == fBaseInstances[0].fQuadratics); |
| 461 | SkASSERT(instanceIndices[0].fQuadratics == fBaseInstances[1].fQuadratics); |
| 462 | SkASSERT(instanceIndices[1].fQuadratics == triEndIdx); |
| 463 | SkASSERT(instanceIndices[0].fWeightedTriangles == fBaseInstances[1].fWeightedTriangles); |
| 464 | SkASSERT(instanceIndices[1].fWeightedTriangles == fBaseInstances[0].fCubics); |
| 465 | SkASSERT(instanceIndices[0].fCubics == fBaseInstances[1].fCubics); |
| 466 | SkASSERT(instanceIndices[1].fCubics == fBaseInstances[0].fConics); |
| 467 | SkASSERT(instanceIndices[0].fConics == fBaseInstances[1].fConics); |
| 468 | SkASSERT(instanceIndices[1].fConics == quadEndIdx); |
| 469 | |
| 470 | return true; |
| 471 | } |
| 472 | |
| 473 | void GrCCFiller::drawFills( |
| 474 | GrOpFlushState* flushState, GrCCCoverageProcessor* proc, const GrPipeline& pipeline, |
| 475 | BatchID batchID, const SkIRect& drawBounds) const { |
| 476 | using PrimitiveType = GrCCCoverageProcessor::PrimitiveType; |
| 477 | |
| 478 | SkASSERT(fInstanceBuffer.hasGpuBuffer()); |
| 479 | |
| 480 | GrResourceProvider* rp = flushState->resourceProvider(); |
| 481 | const PrimitiveTallies& batchTotalCounts = fBatches[batchID].fTotalPrimitiveCounts; |
| 482 | |
| 483 | int numSubpasses = proc->numSubpasses(); |
| 484 | |
| 485 | if (batchTotalCounts.fTriangles) { |
| 486 | for (int i = 0; i < numSubpasses; ++i) { |
| 487 | proc->reset(PrimitiveType::kTriangles, i, rp); |
| 488 | this->drawPrimitives(flushState, *proc, pipeline, batchID, |
| 489 | &PrimitiveTallies::fTriangles, drawBounds); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | if (batchTotalCounts.fWeightedTriangles) { |
| 494 | SkASSERT(Algorithm::kStencilWindingCount != fAlgorithm); |
| 495 | for (int i = 0; i < numSubpasses; ++i) { |
| 496 | proc->reset(PrimitiveType::kWeightedTriangles, i, rp); |
| 497 | this->drawPrimitives(flushState, *proc, pipeline, batchID, |
| 498 | &PrimitiveTallies::fWeightedTriangles, drawBounds); |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | if (batchTotalCounts.fQuadratics) { |
| 503 | for (int i = 0; i < numSubpasses; ++i) { |
| 504 | proc->reset(PrimitiveType::kQuadratics, i, rp); |
| 505 | this->drawPrimitives(flushState, *proc, pipeline, batchID, |
| 506 | &PrimitiveTallies::fQuadratics, drawBounds); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | if (batchTotalCounts.fCubics) { |
| 511 | for (int i = 0; i < numSubpasses; ++i) { |
| 512 | proc->reset(PrimitiveType::kCubics, i, rp); |
| 513 | this->drawPrimitives(flushState, *proc, pipeline, batchID, &PrimitiveTallies::fCubics, |
| 514 | drawBounds); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | if (batchTotalCounts.fConics) { |
| 519 | for (int i = 0; i < numSubpasses; ++i) { |
| 520 | proc->reset(PrimitiveType::kConics, i, rp); |
| 521 | this->drawPrimitives(flushState, *proc, pipeline, batchID, &PrimitiveTallies::fConics, |
| 522 | drawBounds); |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | void GrCCFiller::drawPrimitives( |
| 528 | GrOpFlushState* flushState, const GrCCCoverageProcessor& proc, const GrPipeline& pipeline, |
| 529 | BatchID batchID, int PrimitiveTallies::*instanceType, const SkIRect& drawBounds) const { |
| 530 | SkASSERT(pipeline.isScissorTestEnabled()); |
| 531 | |
| 532 | GrOpsRenderPass* renderPass = flushState->opsRenderPass(); |
| 533 | proc.bindPipeline(flushState, pipeline, SkRect::Make(drawBounds)); |
| 534 | proc.bindBuffers(renderPass, fInstanceBuffer.gpuBuffer()); |
| 535 | |
| 536 | SkASSERT(batchID > 0); |
| 537 | SkASSERT(batchID < fBatches.count()); |
| 538 | const Batch& previousBatch = fBatches[batchID - 1]; |
| 539 | const Batch& batch = fBatches[batchID]; |
| 540 | SkDEBUGCODE(int totalInstanceCount = 0); |
| 541 | |
| 542 | if (int instanceCount = batch.fEndNonScissorIndices.*instanceType - |
| 543 | previousBatch.fEndNonScissorIndices.*instanceType) { |
| 544 | SkASSERT(instanceCount > 0); |
| 545 | int baseInstance = fBaseInstances[(int)GrScissorTest::kDisabled].*instanceType + |
| 546 | previousBatch.fEndNonScissorIndices.*instanceType; |
| 547 | renderPass->setScissorRect(SkIRect::MakeXYWH(0, 0, drawBounds.width(), |
| 548 | drawBounds.height())); |
| 549 | proc.drawInstances(renderPass, instanceCount, baseInstance); |
| 550 | SkDEBUGCODE(totalInstanceCount += instanceCount); |
| 551 | } |
| 552 | |
| 553 | SkASSERT(previousBatch.fEndScissorSubBatchIdx > 0); |
| 554 | SkASSERT(batch.fEndScissorSubBatchIdx <= fScissorSubBatches.count()); |
| 555 | int baseScissorInstance = fBaseInstances[(int)GrScissorTest::kEnabled].*instanceType; |
| 556 | for (int i = previousBatch.fEndScissorSubBatchIdx; i < batch.fEndScissorSubBatchIdx; ++i) { |
| 557 | const ScissorSubBatch& previousSubBatch = fScissorSubBatches[i - 1]; |
| 558 | const ScissorSubBatch& scissorSubBatch = fScissorSubBatches[i]; |
| 559 | int startIndex = previousSubBatch.fEndPrimitiveIndices.*instanceType; |
| 560 | int instanceCount = scissorSubBatch.fEndPrimitiveIndices.*instanceType - startIndex; |
| 561 | if (!instanceCount) { |
| 562 | continue; |
| 563 | } |
| 564 | SkASSERT(instanceCount > 0); |
| 565 | renderPass->setScissorRect(scissorSubBatch.fScissor); |
| 566 | proc.drawInstances(renderPass, instanceCount, baseScissorInstance + startIndex); |
| 567 | SkDEBUGCODE(totalInstanceCount += instanceCount); |
| 568 | } |
| 569 | |
| 570 | SkASSERT(totalInstanceCount == batch.fTotalPrimitiveCounts.*instanceType); |
| 571 | } |
| 572 | |