| 1 | /* | 
|---|
| 2 | * Copyright 2011 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef GrPathUtils_DEFINED | 
|---|
| 9 | #define GrPathUtils_DEFINED | 
|---|
| 10 |  | 
|---|
| 11 | #include "include/core/SkRect.h" | 
|---|
| 12 | #include "include/private/SkTArray.h" | 
|---|
| 13 | #include "src/core/SkGeometry.h" | 
|---|
| 14 | #include "src/core/SkPathPriv.h" | 
|---|
| 15 |  | 
|---|
| 16 | class SkMatrix; | 
|---|
| 17 |  | 
|---|
| 18 | /** | 
|---|
| 19 | *  Utilities for evaluating paths. | 
|---|
| 20 | */ | 
|---|
| 21 | namespace GrPathUtils { | 
|---|
| 22 | // Very small tolerances will be increased to a minimum threshold value, to avoid division | 
|---|
| 23 | // problems in subsequent math. | 
|---|
| 24 | SkScalar scaleToleranceToSrc(SkScalar devTol, | 
|---|
| 25 | const SkMatrix& viewM, | 
|---|
| 26 | const SkRect& pathBounds); | 
|---|
| 27 |  | 
|---|
| 28 | int worstCasePointCount(const SkPath&, | 
|---|
| 29 | int* subpaths, | 
|---|
| 30 | SkScalar tol); | 
|---|
| 31 |  | 
|---|
| 32 | uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol); | 
|---|
| 33 |  | 
|---|
| 34 | uint32_t generateQuadraticPoints(const SkPoint& p0, | 
|---|
| 35 | const SkPoint& p1, | 
|---|
| 36 | const SkPoint& p2, | 
|---|
| 37 | SkScalar tolSqd, | 
|---|
| 38 | SkPoint** points, | 
|---|
| 39 | uint32_t pointsLeft); | 
|---|
| 40 |  | 
|---|
| 41 | uint32_t cubicPointCount(const SkPoint points[], SkScalar tol); | 
|---|
| 42 |  | 
|---|
| 43 | uint32_t generateCubicPoints(const SkPoint& p0, | 
|---|
| 44 | const SkPoint& p1, | 
|---|
| 45 | const SkPoint& p2, | 
|---|
| 46 | const SkPoint& p3, | 
|---|
| 47 | SkScalar tolSqd, | 
|---|
| 48 | SkPoint** points, | 
|---|
| 49 | uint32_t pointsLeft); | 
|---|
| 50 |  | 
|---|
| 51 | // A 2x3 matrix that goes from the 2d space coordinates to UV space where | 
|---|
| 52 | // u^2-v = 0 specifies the quad. The matrix is determined by the control | 
|---|
| 53 | // points of the quadratic. | 
|---|
| 54 | class QuadUVMatrix { | 
|---|
| 55 | public: | 
|---|
| 56 | QuadUVMatrix() {} | 
|---|
| 57 | // Initialize the matrix from the control pts | 
|---|
| 58 | QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); } | 
|---|
| 59 | void set(const SkPoint controlPts[3]); | 
|---|
| 60 |  | 
|---|
| 61 | /** | 
|---|
| 62 | * Applies the matrix to vertex positions to compute UV coords. | 
|---|
| 63 | * | 
|---|
| 64 | * vertices is a pointer to the first vertex. | 
|---|
| 65 | * vertexCount is the number of vertices. | 
|---|
| 66 | * stride is the size of each vertex. | 
|---|
| 67 | * uvOffset is the offset of the UV values within each vertex. | 
|---|
| 68 | */ | 
|---|
| 69 | void apply(void* vertices, int vertexCount, size_t stride, size_t uvOffset) const { | 
|---|
| 70 | intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices); | 
|---|
| 71 | intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + uvOffset; | 
|---|
| 72 | float sx = fM[0]; | 
|---|
| 73 | float kx = fM[1]; | 
|---|
| 74 | float tx = fM[2]; | 
|---|
| 75 | float ky = fM[3]; | 
|---|
| 76 | float sy = fM[4]; | 
|---|
| 77 | float ty = fM[5]; | 
|---|
| 78 | for (int i = 0; i < vertexCount; ++i) { | 
|---|
| 79 | const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr); | 
|---|
| 80 | SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr); | 
|---|
| 81 | uv->fX = sx * xy->fX + kx * xy->fY + tx; | 
|---|
| 82 | uv->fY = ky * xy->fX + sy * xy->fY + ty; | 
|---|
| 83 | xyPtr += stride; | 
|---|
| 84 | uvPtr += stride; | 
|---|
| 85 | } | 
|---|
| 86 | } | 
|---|
| 87 | private: | 
|---|
| 88 | float fM[6]; | 
|---|
| 89 | }; | 
|---|
| 90 |  | 
|---|
| 91 | // Input is 3 control points and a weight for a bezier conic. Calculates the | 
|---|
| 92 | // three linear functionals (K,L,M) that represent the implicit equation of the | 
|---|
| 93 | // conic, k^2 - lm. | 
|---|
| 94 | // | 
|---|
| 95 | // Output: klm holds the linear functionals K,L,M as row vectors: | 
|---|
| 96 | // | 
|---|
| 97 | //     | ..K.. |   | x |      | k | | 
|---|
| 98 | //     | ..L.. | * | y |  ==  | l | | 
|---|
| 99 | //     | ..M.. |   | 1 |      | m | | 
|---|
| 100 | // | 
|---|
| 101 | void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm); | 
|---|
| 102 |  | 
|---|
| 103 | // Converts a cubic into a sequence of quads. If working in device space | 
|---|
| 104 | // use tolScale = 1, otherwise set based on stretchiness of the matrix. The | 
|---|
| 105 | // result is sets of 3 points in quads. This will preserve the starting and | 
|---|
| 106 | // ending tangent vectors (modulo FP precision). | 
|---|
| 107 | void convertCubicToQuads(const SkPoint p[4], | 
|---|
| 108 | SkScalar tolScale, | 
|---|
| 109 | SkTArray<SkPoint, true>* quads); | 
|---|
| 110 |  | 
|---|
| 111 | // When we approximate a cubic {a,b,c,d} with a quadratic we may have to | 
|---|
| 112 | // ensure that the new control point lies between the lines ab and cd. The | 
|---|
| 113 | // convex path renderer requires this. It starts with a path where all the | 
|---|
| 114 | // control points taken together form a convex polygon. It relies on this | 
|---|
| 115 | // property and the quadratic approximation of cubics step cannot alter it. | 
|---|
| 116 | // This variation enforces this constraint. The cubic must be simple and dir | 
|---|
| 117 | // must specify the orientation of the contour containing the cubic. | 
|---|
| 118 | void convertCubicToQuadsConstrainToTangents(const SkPoint p[4], | 
|---|
| 119 | SkScalar tolScale, | 
|---|
| 120 | SkPathPriv::FirstDirection dir, | 
|---|
| 121 | SkTArray<SkPoint, true>* quads); | 
|---|
| 122 |  | 
|---|
| 123 | enum class ExcludedTerm { | 
|---|
| 124 | kNonInvertible, | 
|---|
| 125 | kQuadraticTerm, | 
|---|
| 126 | kLinearTerm | 
|---|
| 127 | }; | 
|---|
| 128 |  | 
|---|
| 129 | // Computes the inverse-transpose of the cubic's power basis matrix, after removing a specific | 
|---|
| 130 | // row of coefficients. | 
|---|
| 131 | // | 
|---|
| 132 | // E.g. if the cubic is defined in power basis form as follows: | 
|---|
| 133 | // | 
|---|
| 134 | //                                         | x3   y3   0 | | 
|---|
| 135 | //     C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | x2   y2   0 | | 
|---|
| 136 | //                                         | x1   y1   0 | | 
|---|
| 137 | //                                         | x0   y0   1 | | 
|---|
| 138 | // | 
|---|
| 139 | // And the excluded term is "kQuadraticTerm", then the resulting inverse-transpose will be: | 
|---|
| 140 | // | 
|---|
| 141 | //     | x3   y3   0 | -1 T | 
|---|
| 142 | //     | x1   y1   0 | | 
|---|
| 143 | //     | x0   y0   1 | | 
|---|
| 144 | // | 
|---|
| 145 | // (The term to exclude is chosen based on maximizing the resulting matrix determinant.) | 
|---|
| 146 | // | 
|---|
| 147 | // This can be used to find the KLM linear functionals: | 
|---|
| 148 | // | 
|---|
| 149 | //     | ..K.. |   | ..kcoeffs.. | | 
|---|
| 150 | //     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix | 
|---|
| 151 | //     | ..M.. |   | ..mcoeffs.. | | 
|---|
| 152 | // | 
|---|
| 153 | // NOTE: the same term that was excluded here must also be removed from the corresponding column | 
|---|
| 154 | // of the klmcoeffs matrix. | 
|---|
| 155 | // | 
|---|
| 156 | // Returns which row of coefficients was removed, or kNonInvertible if the cubic was degenerate. | 
|---|
| 157 | ExcludedTerm calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4], SkMatrix* out); | 
|---|
| 158 |  | 
|---|
| 159 | // Computes the KLM linear functionals for the cubic implicit form. The "right" side of the | 
|---|
| 160 | // curve (when facing in the direction of increasing parameter values) will be the area that | 
|---|
| 161 | // satisfies: | 
|---|
| 162 | // | 
|---|
| 163 | //     k^3 < l*m | 
|---|
| 164 | // | 
|---|
| 165 | // Output: | 
|---|
| 166 | // | 
|---|
| 167 | // klm: Holds the linear functionals K,L,M as row vectors: | 
|---|
| 168 | // | 
|---|
| 169 | //          | ..K.. |   | x |      | k | | 
|---|
| 170 | //          | ..L.. | * | y |  ==  | l | | 
|---|
| 171 | //          | ..M.. |   | 1 |      | m | | 
|---|
| 172 | // | 
|---|
| 173 | // NOTE: the KLM lines are calculated in the same space as the input control points. If you | 
|---|
| 174 | // transform the points the lines will also need to be transformed. This can be done by mapping | 
|---|
| 175 | // the lines with the inverse-transpose of the matrix used to map the points. | 
|---|
| 176 | // | 
|---|
| 177 | // t[],s[]: These are set to the two homogeneous parameter values at which points the lines L&M | 
|---|
| 178 | // intersect with K (See SkClassifyCubic). | 
|---|
| 179 | // | 
|---|
| 180 | // Returns the cubic's classification. | 
|---|
| 181 | SkCubicType getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2], double s[2]); | 
|---|
| 182 |  | 
|---|
| 183 | // Chops the cubic bezier passed in by src, at the double point (intersection point) | 
|---|
| 184 | // if the curve is a cubic loop. If it is a loop, there will be two parametric values for | 
|---|
| 185 | // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1. | 
|---|
| 186 | // Return value: | 
|---|
| 187 | // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics, | 
|---|
| 188 | //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr | 
|---|
| 189 | // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics, | 
|---|
| 190 | //             dst[0..3] and dst[3..6] if dst is not nullptr | 
|---|
| 191 | // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic, | 
|---|
| 192 | //             src[0..3] | 
|---|
| 193 | // | 
|---|
| 194 | // Output: | 
|---|
| 195 | // | 
|---|
| 196 | // klm: Holds the linear functionals K,L,M as row vectors. (See getCubicKLM().) | 
|---|
| 197 | // | 
|---|
| 198 | // loopIndex: This value will tell the caller which of the chopped sections (if any) are the | 
|---|
| 199 | //            actual loop. A value of -1 means there is no loop section. The caller can then use | 
|---|
| 200 | //            this value to decide how/if they want to flip the orientation of this section. | 
|---|
| 201 | //            The flip should be done by negating the k and l values as follows: | 
|---|
| 202 | // | 
|---|
| 203 | //            KLM.postScale(-1, -1) | 
|---|
| 204 | int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm, | 
|---|
| 205 | int* loopIndex); | 
|---|
| 206 |  | 
|---|
| 207 | // When tessellating curved paths into linear segments, this defines the maximum distance | 
|---|
| 208 | // in screen space which a segment may deviate from the mathmatically correct value. | 
|---|
| 209 | // Above this value, the segment will be subdivided. | 
|---|
| 210 | // This value was chosen to approximate the supersampling accuracy of the raster path (16 | 
|---|
| 211 | // samples, or one quarter pixel). | 
|---|
| 212 | static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25); | 
|---|
| 213 |  | 
|---|
| 214 | // We guarantee that no quad or cubic will ever produce more than this many points | 
|---|
| 215 | static const int kMaxPointsPerCurve = 1 << 10; | 
|---|
| 216 | }  // namespace GrPathUtils | 
|---|
| 217 | #endif | 
|---|
| 218 |  | 
|---|