1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/core/SkGeometry.h" |
8 | #include "src/core/SkTSort.h" |
9 | #include "src/pathops/SkLineParameters.h" |
10 | #include "src/pathops/SkPathOpsConic.h" |
11 | #include "src/pathops/SkPathOpsCubic.h" |
12 | #include "src/pathops/SkPathOpsCurve.h" |
13 | #include "src/pathops/SkPathOpsLine.h" |
14 | #include "src/pathops/SkPathOpsQuad.h" |
15 | #include "src/pathops/SkPathOpsRect.h" |
16 | |
17 | const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in test framework |
18 | |
19 | void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const { |
20 | if (fPts[endIndex].fX == fPts[ctrlIndex].fX) { |
21 | dstPt->fX = fPts[endIndex].fX; |
22 | } |
23 | if (fPts[endIndex].fY == fPts[ctrlIndex].fY) { |
24 | dstPt->fY = fPts[endIndex].fY; |
25 | } |
26 | } |
27 | |
28 | // give up when changing t no longer moves point |
29 | // also, copy point rather than recompute it when it does change |
30 | double SkDCubic::binarySearch(double min, double max, double axisIntercept, |
31 | SearchAxis xAxis) const { |
32 | double t = (min + max) / 2; |
33 | double step = (t - min) / 2; |
34 | SkDPoint cubicAtT = ptAtT(t); |
35 | double calcPos = (&cubicAtT.fX)[xAxis]; |
36 | double calcDist = calcPos - axisIntercept; |
37 | do { |
38 | double priorT = std::max(min, t - step); |
39 | SkDPoint lessPt = ptAtT(priorT); |
40 | if (approximately_equal_half(lessPt.fX, cubicAtT.fX) |
41 | && approximately_equal_half(lessPt.fY, cubicAtT.fY)) { |
42 | return -1; // binary search found no point at this axis intercept |
43 | } |
44 | double lessDist = (&lessPt.fX)[xAxis] - axisIntercept; |
45 | #if DEBUG_CUBIC_BINARY_SEARCH |
46 | SkDebugf("t=%1.9g calc=%1.9g dist=%1.9g step=%1.9g less=%1.9g\n" , t, calcPos, calcDist, |
47 | step, lessDist); |
48 | #endif |
49 | double lastStep = step; |
50 | step /= 2; |
51 | if (calcDist > 0 ? calcDist > lessDist : calcDist < lessDist) { |
52 | t = priorT; |
53 | } else { |
54 | double nextT = t + lastStep; |
55 | if (nextT > max) { |
56 | return -1; |
57 | } |
58 | SkDPoint morePt = ptAtT(nextT); |
59 | if (approximately_equal_half(morePt.fX, cubicAtT.fX) |
60 | && approximately_equal_half(morePt.fY, cubicAtT.fY)) { |
61 | return -1; // binary search found no point at this axis intercept |
62 | } |
63 | double moreDist = (&morePt.fX)[xAxis] - axisIntercept; |
64 | if (calcDist > 0 ? calcDist <= moreDist : calcDist >= moreDist) { |
65 | continue; |
66 | } |
67 | t = nextT; |
68 | } |
69 | SkDPoint testAtT = ptAtT(t); |
70 | cubicAtT = testAtT; |
71 | calcPos = (&cubicAtT.fX)[xAxis]; |
72 | calcDist = calcPos - axisIntercept; |
73 | } while (!approximately_equal(calcPos, axisIntercept)); |
74 | return t; |
75 | } |
76 | |
77 | // get the rough scale of the cubic; used to determine if curvature is extreme |
78 | double SkDCubic::calcPrecision() const { |
79 | return ((fPts[1] - fPts[0]).length() |
80 | + (fPts[2] - fPts[1]).length() |
81 | + (fPts[3] - fPts[2]).length()) / gPrecisionUnit; |
82 | } |
83 | |
84 | /* classic one t subdivision */ |
85 | static void interp_cubic_coords(const double* src, double* dst, double t) { |
86 | double ab = SkDInterp(src[0], src[2], t); |
87 | double bc = SkDInterp(src[2], src[4], t); |
88 | double cd = SkDInterp(src[4], src[6], t); |
89 | double abc = SkDInterp(ab, bc, t); |
90 | double bcd = SkDInterp(bc, cd, t); |
91 | double abcd = SkDInterp(abc, bcd, t); |
92 | |
93 | dst[0] = src[0]; |
94 | dst[2] = ab; |
95 | dst[4] = abc; |
96 | dst[6] = abcd; |
97 | dst[8] = bcd; |
98 | dst[10] = cd; |
99 | dst[12] = src[6]; |
100 | } |
101 | |
102 | SkDCubicPair SkDCubic::chopAt(double t) const { |
103 | SkDCubicPair dst; |
104 | if (t == 0.5) { |
105 | dst.pts[0] = fPts[0]; |
106 | dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; |
107 | dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; |
108 | dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; |
109 | dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; |
110 | dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8; |
111 | dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8; |
112 | dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; |
113 | dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; |
114 | dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; |
115 | dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; |
116 | dst.pts[6] = fPts[3]; |
117 | return dst; |
118 | } |
119 | interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
120 | interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
121 | return dst; |
122 | } |
123 | |
124 | void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) { |
125 | *A = src[6]; // d |
126 | *B = src[4] * 3; // 3*c |
127 | *C = src[2] * 3; // 3*b |
128 | *D = src[0]; // a |
129 | *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d |
130 | *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c |
131 | *C -= 3 * *D; // C = -3*a + 3*b |
132 | } |
133 | |
134 | bool SkDCubic::endsAreExtremaInXOrY() const { |
135 | return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) |
136 | && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) |
137 | || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) |
138 | && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); |
139 | } |
140 | |
141 | // Do a quick reject by rotating all points relative to a line formed by |
142 | // a pair of one cubic's points. If the 2nd cubic's points |
143 | // are on the line or on the opposite side from the 1st cubic's 'odd man', the |
144 | // curves at most intersect at the endpoints. |
145 | /* if returning true, check contains true if cubic's hull collapsed, making the cubic linear |
146 | if returning false, check contains true if the the cubic pair have only the end point in common |
147 | */ |
148 | bool SkDCubic::hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const { |
149 | bool linear = true; |
150 | char hullOrder[4]; |
151 | int hullCount = convexHull(hullOrder); |
152 | int end1 = hullOrder[0]; |
153 | int hullIndex = 0; |
154 | const SkDPoint* endPt[2]; |
155 | endPt[0] = &fPts[end1]; |
156 | do { |
157 | hullIndex = (hullIndex + 1) % hullCount; |
158 | int end2 = hullOrder[hullIndex]; |
159 | endPt[1] = &fPts[end2]; |
160 | double origX = endPt[0]->fX; |
161 | double origY = endPt[0]->fY; |
162 | double adj = endPt[1]->fX - origX; |
163 | double opp = endPt[1]->fY - origY; |
164 | int oddManMask = other_two(end1, end2); |
165 | int oddMan = end1 ^ oddManMask; |
166 | double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; |
167 | int oddMan2 = end2 ^ oddManMask; |
168 | double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp; |
169 | if (sign * sign2 < 0) { |
170 | continue; |
171 | } |
172 | if (approximately_zero(sign)) { |
173 | sign = sign2; |
174 | if (approximately_zero(sign)) { |
175 | continue; |
176 | } |
177 | } |
178 | linear = false; |
179 | bool foundOutlier = false; |
180 | for (int n = 0; n < ptCount; ++n) { |
181 | double test = (pts[n].fY - origY) * adj - (pts[n].fX - origX) * opp; |
182 | if (test * sign > 0 && !precisely_zero(test)) { |
183 | foundOutlier = true; |
184 | break; |
185 | } |
186 | } |
187 | if (!foundOutlier) { |
188 | return false; |
189 | } |
190 | endPt[0] = endPt[1]; |
191 | end1 = end2; |
192 | } while (hullIndex); |
193 | *isLinear = linear; |
194 | return true; |
195 | } |
196 | |
197 | bool SkDCubic::hullIntersects(const SkDCubic& c2, bool* isLinear) const { |
198 | return hullIntersects(c2.fPts, SkDCubic::kPointCount, isLinear); |
199 | } |
200 | |
201 | bool SkDCubic::hullIntersects(const SkDQuad& quad, bool* isLinear) const { |
202 | return hullIntersects(quad.fPts, SkDQuad::kPointCount, isLinear); |
203 | } |
204 | |
205 | bool SkDCubic::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
206 | |
207 | return hullIntersects(conic.fPts, isLinear); |
208 | } |
209 | |
210 | bool SkDCubic::isLinear(int startIndex, int endIndex) const { |
211 | if (fPts[0].approximatelyDEqual(fPts[3])) { |
212 | return ((const SkDQuad *) this)->isLinear(0, 2); |
213 | } |
214 | SkLineParameters lineParameters; |
215 | lineParameters.cubicEndPoints(*this, startIndex, endIndex); |
216 | // FIXME: maybe it's possible to avoid this and compare non-normalized |
217 | lineParameters.normalize(); |
218 | double tiniest = std::min(std::min(std::min(std::min(std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), |
219 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); |
220 | double largest = std::max(std::max(std::max(std::max(std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), |
221 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); |
222 | largest = std::max(largest, -tiniest); |
223 | double distance = lineParameters.controlPtDistance(*this, 1); |
224 | if (!approximately_zero_when_compared_to(distance, largest)) { |
225 | return false; |
226 | } |
227 | distance = lineParameters.controlPtDistance(*this, 2); |
228 | return approximately_zero_when_compared_to(distance, largest); |
229 | } |
230 | |
231 | // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf |
232 | // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 |
233 | // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 |
234 | // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 |
235 | static double derivative_at_t(const double* src, double t) { |
236 | double one_t = 1 - t; |
237 | double a = src[0]; |
238 | double b = src[2]; |
239 | double c = src[4]; |
240 | double d = src[6]; |
241 | return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); |
242 | } |
243 | |
244 | int SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) { |
245 | SkDCubic cubic; |
246 | cubic.set(pointsPtr); |
247 | if (cubic.monotonicInX() && cubic.monotonicInY()) { |
248 | return 0; |
249 | } |
250 | double tt[2], ss[2]; |
251 | SkCubicType cubicType = SkClassifyCubic(pointsPtr, tt, ss); |
252 | switch (cubicType) { |
253 | case SkCubicType::kLoop: { |
254 | const double &td = tt[0], &te = tt[1], &sd = ss[0], &se = ss[1]; |
255 | if (roughly_between(0, td, sd) && roughly_between(0, te, se)) { |
256 | t[0] = static_cast<SkScalar>((td * se + te * sd) / (2 * sd * se)); |
257 | return (int) (t[0] > 0 && t[0] < 1); |
258 | } |
259 | } |
260 | [[fallthrough]]; // fall through if no t value found |
261 | case SkCubicType::kSerpentine: |
262 | case SkCubicType::kLocalCusp: |
263 | case SkCubicType::kCuspAtInfinity: { |
264 | double inflectionTs[2]; |
265 | int infTCount = cubic.findInflections(inflectionTs); |
266 | double maxCurvature[3]; |
267 | int roots = cubic.findMaxCurvature(maxCurvature); |
268 | #if DEBUG_CUBIC_SPLIT |
269 | SkDebugf("%s\n" , __FUNCTION__); |
270 | cubic.dump(); |
271 | for (int index = 0; index < infTCount; ++index) { |
272 | SkDebugf("inflectionsTs[%d]=%1.9g " , index, inflectionTs[index]); |
273 | SkDPoint pt = cubic.ptAtT(inflectionTs[index]); |
274 | SkDVector dPt = cubic.dxdyAtT(inflectionTs[index]); |
275 | SkDLine perp = {{pt - dPt, pt + dPt}}; |
276 | perp.dump(); |
277 | } |
278 | for (int index = 0; index < roots; ++index) { |
279 | SkDebugf("maxCurvature[%d]=%1.9g " , index, maxCurvature[index]); |
280 | SkDPoint pt = cubic.ptAtT(maxCurvature[index]); |
281 | SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]); |
282 | SkDLine perp = {{pt - dPt, pt + dPt}}; |
283 | perp.dump(); |
284 | } |
285 | #endif |
286 | if (infTCount == 2) { |
287 | for (int index = 0; index < roots; ++index) { |
288 | if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) { |
289 | t[0] = maxCurvature[index]; |
290 | return (int) (t[0] > 0 && t[0] < 1); |
291 | } |
292 | } |
293 | } else { |
294 | int resultCount = 0; |
295 | // FIXME: constant found through experimentation -- maybe there's a better way.... |
296 | double precision = cubic.calcPrecision() * 2; |
297 | for (int index = 0; index < roots; ++index) { |
298 | double testT = maxCurvature[index]; |
299 | if (0 >= testT || testT >= 1) { |
300 | continue; |
301 | } |
302 | // don't call dxdyAtT since we want (0,0) results |
303 | SkDVector dPt = { derivative_at_t(&cubic.fPts[0].fX, testT), |
304 | derivative_at_t(&cubic.fPts[0].fY, testT) }; |
305 | double dPtLen = dPt.length(); |
306 | if (dPtLen < precision) { |
307 | t[resultCount++] = testT; |
308 | } |
309 | } |
310 | if (!resultCount && infTCount == 1) { |
311 | t[0] = inflectionTs[0]; |
312 | resultCount = (int) (t[0] > 0 && t[0] < 1); |
313 | } |
314 | return resultCount; |
315 | } |
316 | break; |
317 | } |
318 | default: |
319 | break; |
320 | } |
321 | return 0; |
322 | } |
323 | |
324 | bool SkDCubic::monotonicInX() const { |
325 | return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX) |
326 | && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX); |
327 | } |
328 | |
329 | bool SkDCubic::monotonicInY() const { |
330 | return precisely_between(fPts[0].fY, fPts[1].fY, fPts[3].fY) |
331 | && precisely_between(fPts[0].fY, fPts[2].fY, fPts[3].fY); |
332 | } |
333 | |
334 | void SkDCubic::otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const { |
335 | int offset = (int) !SkToBool(index); |
336 | o1Pts[0] = &fPts[offset]; |
337 | o1Pts[1] = &fPts[++offset]; |
338 | o1Pts[2] = &fPts[++offset]; |
339 | } |
340 | |
341 | int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept, |
342 | SearchAxis xAxis, double* validRoots) const { |
343 | extrema += findInflections(&extremeTs[extrema]); |
344 | extremeTs[extrema++] = 0; |
345 | extremeTs[extrema] = 1; |
346 | SkASSERT(extrema < 6); |
347 | SkTQSort(extremeTs, extremeTs + extrema + 1); |
348 | int validCount = 0; |
349 | for (int index = 0; index < extrema; ) { |
350 | double min = extremeTs[index]; |
351 | double max = extremeTs[++index]; |
352 | if (min == max) { |
353 | continue; |
354 | } |
355 | double newT = binarySearch(min, max, axisIntercept, xAxis); |
356 | if (newT >= 0) { |
357 | if (validCount >= 3) { |
358 | return 0; |
359 | } |
360 | validRoots[validCount++] = newT; |
361 | } |
362 | } |
363 | return validCount; |
364 | } |
365 | |
366 | // cubic roots |
367 | |
368 | static const double PI = 3.141592653589793; |
369 | |
370 | // from SkGeometry.cpp (and Numeric Solutions, 5.6) |
371 | int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) { |
372 | double s[3]; |
373 | int realRoots = RootsReal(A, B, C, D, s); |
374 | int foundRoots = SkDQuad::AddValidTs(s, realRoots, t); |
375 | for (int index = 0; index < realRoots; ++index) { |
376 | double tValue = s[index]; |
377 | if (!approximately_one_or_less(tValue) && between(1, tValue, 1.00005)) { |
378 | for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
379 | if (approximately_equal(t[idx2], 1)) { |
380 | goto nextRoot; |
381 | } |
382 | } |
383 | SkASSERT(foundRoots < 3); |
384 | t[foundRoots++] = 1; |
385 | } else if (!approximately_zero_or_more(tValue) && between(-0.00005, tValue, 0)) { |
386 | for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
387 | if (approximately_equal(t[idx2], 0)) { |
388 | goto nextRoot; |
389 | } |
390 | } |
391 | SkASSERT(foundRoots < 3); |
392 | t[foundRoots++] = 0; |
393 | } |
394 | nextRoot: |
395 | ; |
396 | } |
397 | return foundRoots; |
398 | } |
399 | |
400 | int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) { |
401 | #ifdef SK_DEBUG |
402 | // create a string mathematica understands |
403 | // GDB set print repe 15 # if repeated digits is a bother |
404 | // set print elements 400 # if line doesn't fit |
405 | char str[1024]; |
406 | sk_bzero(str, sizeof(str)); |
407 | SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]" , |
408 | A, B, C, D); |
409 | SkPathOpsDebug::MathematicaIze(str, sizeof(str)); |
410 | #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
411 | SkDebugf("%s\n" , str); |
412 | #endif |
413 | #endif |
414 | if (approximately_zero(A) |
415 | && approximately_zero_when_compared_to(A, B) |
416 | && approximately_zero_when_compared_to(A, C) |
417 | && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic |
418 | return SkDQuad::RootsReal(B, C, D, s); |
419 | } |
420 | if (approximately_zero_when_compared_to(D, A) |
421 | && approximately_zero_when_compared_to(D, B) |
422 | && approximately_zero_when_compared_to(D, C)) { // 0 is one root |
423 | int num = SkDQuad::RootsReal(A, B, C, s); |
424 | for (int i = 0; i < num; ++i) { |
425 | if (approximately_zero(s[i])) { |
426 | return num; |
427 | } |
428 | } |
429 | s[num++] = 0; |
430 | return num; |
431 | } |
432 | if (approximately_zero(A + B + C + D)) { // 1 is one root |
433 | int num = SkDQuad::RootsReal(A, A + B, -D, s); |
434 | for (int i = 0; i < num; ++i) { |
435 | if (AlmostDequalUlps(s[i], 1)) { |
436 | return num; |
437 | } |
438 | } |
439 | s[num++] = 1; |
440 | return num; |
441 | } |
442 | double a, b, c; |
443 | { |
444 | double invA = 1 / A; |
445 | a = B * invA; |
446 | b = C * invA; |
447 | c = D * invA; |
448 | } |
449 | double a2 = a * a; |
450 | double Q = (a2 - b * 3) / 9; |
451 | double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
452 | double R2 = R * R; |
453 | double Q3 = Q * Q * Q; |
454 | double R2MinusQ3 = R2 - Q3; |
455 | double adiv3 = a / 3; |
456 | double r; |
457 | double* roots = s; |
458 | if (R2MinusQ3 < 0) { // we have 3 real roots |
459 | // the divide/root can, due to finite precisions, be slightly outside of -1...1 |
460 | double theta = acos(SkTPin(R / sqrt(Q3), -1., 1.)); |
461 | double neg2RootQ = -2 * sqrt(Q); |
462 | |
463 | r = neg2RootQ * cos(theta / 3) - adiv3; |
464 | *roots++ = r; |
465 | |
466 | r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
467 | if (!AlmostDequalUlps(s[0], r)) { |
468 | *roots++ = r; |
469 | } |
470 | r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
471 | if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) { |
472 | *roots++ = r; |
473 | } |
474 | } else { // we have 1 real root |
475 | double sqrtR2MinusQ3 = sqrt(R2MinusQ3); |
476 | double A = fabs(R) + sqrtR2MinusQ3; |
477 | A = SkDCubeRoot(A); |
478 | if (R > 0) { |
479 | A = -A; |
480 | } |
481 | if (A != 0) { |
482 | A += Q / A; |
483 | } |
484 | r = A - adiv3; |
485 | *roots++ = r; |
486 | if (AlmostDequalUlps((double) R2, (double) Q3)) { |
487 | r = -A / 2 - adiv3; |
488 | if (!AlmostDequalUlps(s[0], r)) { |
489 | *roots++ = r; |
490 | } |
491 | } |
492 | } |
493 | return static_cast<int>(roots - s); |
494 | } |
495 | |
496 | // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? |
497 | SkDVector SkDCubic::dxdyAtT(double t) const { |
498 | SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; |
499 | if (result.fX == 0 && result.fY == 0) { |
500 | if (t == 0) { |
501 | result = fPts[2] - fPts[0]; |
502 | } else if (t == 1) { |
503 | result = fPts[3] - fPts[1]; |
504 | } else { |
505 | // incomplete |
506 | SkDebugf("!c" ); |
507 | } |
508 | if (result.fX == 0 && result.fY == 0 && zero_or_one(t)) { |
509 | result = fPts[3] - fPts[0]; |
510 | } |
511 | } |
512 | return result; |
513 | } |
514 | |
515 | // OPTIMIZE? share code with formulate_F1DotF2 |
516 | int SkDCubic::findInflections(double tValues[]) const { |
517 | double Ax = fPts[1].fX - fPts[0].fX; |
518 | double Ay = fPts[1].fY - fPts[0].fY; |
519 | double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; |
520 | double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; |
521 | double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; |
522 | double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; |
523 | return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); |
524 | } |
525 | |
526 | static void formulate_F1DotF2(const double src[], double coeff[4]) { |
527 | double a = src[2] - src[0]; |
528 | double b = src[4] - 2 * src[2] + src[0]; |
529 | double c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
530 | coeff[0] = c * c; |
531 | coeff[1] = 3 * b * c; |
532 | coeff[2] = 2 * b * b + c * a; |
533 | coeff[3] = a * b; |
534 | } |
535 | |
536 | /** SkDCubic'(t) = At^2 + Bt + C, where |
537 | A = 3(-a + 3(b - c) + d) |
538 | B = 6(a - 2b + c) |
539 | C = 3(b - a) |
540 | Solve for t, keeping only those that fit between 0 < t < 1 |
541 | */ |
542 | int SkDCubic::FindExtrema(const double src[], double tValues[2]) { |
543 | // we divide A,B,C by 3 to simplify |
544 | double a = src[0]; |
545 | double b = src[2]; |
546 | double c = src[4]; |
547 | double d = src[6]; |
548 | double A = d - a + 3 * (b - c); |
549 | double B = 2 * (a - b - b + c); |
550 | double C = b - a; |
551 | |
552 | return SkDQuad::RootsValidT(A, B, C, tValues); |
553 | } |
554 | |
555 | /* from SkGeometry.cpp |
556 | Looking for F' dot F'' == 0 |
557 | |
558 | A = b - a |
559 | B = c - 2b + a |
560 | C = d - 3c + 3b - a |
561 | |
562 | F' = 3Ct^2 + 6Bt + 3A |
563 | F'' = 6Ct + 6B |
564 | |
565 | F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
566 | */ |
567 | int SkDCubic::findMaxCurvature(double tValues[]) const { |
568 | double coeffX[4], coeffY[4]; |
569 | int i; |
570 | formulate_F1DotF2(&fPts[0].fX, coeffX); |
571 | formulate_F1DotF2(&fPts[0].fY, coeffY); |
572 | for (i = 0; i < 4; i++) { |
573 | coeffX[i] = coeffX[i] + coeffY[i]; |
574 | } |
575 | return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); |
576 | } |
577 | |
578 | SkDPoint SkDCubic::ptAtT(double t) const { |
579 | if (0 == t) { |
580 | return fPts[0]; |
581 | } |
582 | if (1 == t) { |
583 | return fPts[3]; |
584 | } |
585 | double one_t = 1 - t; |
586 | double one_t2 = one_t * one_t; |
587 | double a = one_t2 * one_t; |
588 | double b = 3 * one_t2 * t; |
589 | double t2 = t * t; |
590 | double c = 3 * one_t * t2; |
591 | double d = t2 * t; |
592 | SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX, |
593 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; |
594 | return result; |
595 | } |
596 | |
597 | /* |
598 | Given a cubic c, t1, and t2, find a small cubic segment. |
599 | |
600 | The new cubic is defined as points A, B, C, and D, where |
601 | s1 = 1 - t1 |
602 | s2 = 1 - t2 |
603 | A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 |
604 | D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 |
605 | |
606 | We don't have B or C. So We define two equations to isolate them. |
607 | First, compute two reference T values 1/3 and 2/3 from t1 to t2: |
608 | |
609 | c(at (2*t1 + t2)/3) == E |
610 | c(at (t1 + 2*t2)/3) == F |
611 | |
612 | Next, compute where those values must be if we know the values of B and C: |
613 | |
614 | _12 = A*2/3 + B*1/3 |
615 | 12_ = A*1/3 + B*2/3 |
616 | _23 = B*2/3 + C*1/3 |
617 | 23_ = B*1/3 + C*2/3 |
618 | _34 = C*2/3 + D*1/3 |
619 | 34_ = C*1/3 + D*2/3 |
620 | _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 |
621 | 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 |
622 | _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 |
623 | 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 |
624 | _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 |
625 | = A*8/27 + B*12/27 + C*6/27 + D*1/27 |
626 | = E |
627 | 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 |
628 | = A*1/27 + B*6/27 + C*12/27 + D*8/27 |
629 | = F |
630 | E*27 = A*8 + B*12 + C*6 + D |
631 | F*27 = A + B*6 + C*12 + D*8 |
632 | |
633 | Group the known values on one side: |
634 | |
635 | M = E*27 - A*8 - D = B*12 + C* 6 |
636 | N = F*27 - A - D*8 = B* 6 + C*12 |
637 | M*2 - N = B*18 |
638 | N*2 - M = C*18 |
639 | B = (M*2 - N)/18 |
640 | C = (N*2 - M)/18 |
641 | */ |
642 | |
643 | static double interp_cubic_coords(const double* src, double t) { |
644 | double ab = SkDInterp(src[0], src[2], t); |
645 | double bc = SkDInterp(src[2], src[4], t); |
646 | double cd = SkDInterp(src[4], src[6], t); |
647 | double abc = SkDInterp(ab, bc, t); |
648 | double bcd = SkDInterp(bc, cd, t); |
649 | double abcd = SkDInterp(abc, bcd, t); |
650 | return abcd; |
651 | } |
652 | |
653 | SkDCubic SkDCubic::subDivide(double t1, double t2) const { |
654 | if (t1 == 0 || t2 == 1) { |
655 | if (t1 == 0 && t2 == 1) { |
656 | return *this; |
657 | } |
658 | SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1); |
659 | SkDCubic dst = t1 == 0 ? pair.first() : pair.second(); |
660 | return dst; |
661 | } |
662 | SkDCubic dst; |
663 | double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); |
664 | double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); |
665 | double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); |
666 | double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); |
667 | double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); |
668 | double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); |
669 | double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); |
670 | double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); |
671 | double mx = ex * 27 - ax * 8 - dx; |
672 | double my = ey * 27 - ay * 8 - dy; |
673 | double nx = fx * 27 - ax - dx * 8; |
674 | double ny = fy * 27 - ay - dy * 8; |
675 | /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; |
676 | /* by = */ dst[1].fY = (my * 2 - ny) / 18; |
677 | /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; |
678 | /* cy = */ dst[2].fY = (ny * 2 - my) / 18; |
679 | // FIXME: call align() ? |
680 | return dst; |
681 | } |
682 | |
683 | void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d, |
684 | double t1, double t2, SkDPoint dst[2]) const { |
685 | SkASSERT(t1 != t2); |
686 | // this approach assumes that the control points computed directly are accurate enough |
687 | SkDCubic sub = subDivide(t1, t2); |
688 | dst[0] = sub[1] + (a - sub[0]); |
689 | dst[1] = sub[2] + (d - sub[3]); |
690 | if (t1 == 0 || t2 == 0) { |
691 | align(0, 1, t1 == 0 ? &dst[0] : &dst[1]); |
692 | } |
693 | if (t1 == 1 || t2 == 1) { |
694 | align(3, 2, t1 == 1 ? &dst[0] : &dst[1]); |
695 | } |
696 | if (AlmostBequalUlps(dst[0].fX, a.fX)) { |
697 | dst[0].fX = a.fX; |
698 | } |
699 | if (AlmostBequalUlps(dst[0].fY, a.fY)) { |
700 | dst[0].fY = a.fY; |
701 | } |
702 | if (AlmostBequalUlps(dst[1].fX, d.fX)) { |
703 | dst[1].fX = d.fX; |
704 | } |
705 | if (AlmostBequalUlps(dst[1].fY, d.fY)) { |
706 | dst[1].fY = d.fY; |
707 | } |
708 | } |
709 | |
710 | bool SkDCubic::toFloatPoints(SkPoint* pts) const { |
711 | const double* dCubic = &fPts[0].fX; |
712 | SkScalar* cubic = &pts[0].fX; |
713 | for (int index = 0; index < kPointCount * 2; ++index) { |
714 | cubic[index] = SkDoubleToScalar(dCubic[index]); |
715 | if (SkScalarAbs(cubic[index]) < FLT_EPSILON_ORDERABLE_ERR) { |
716 | cubic[index] = 0; |
717 | } |
718 | } |
719 | return SkScalarsAreFinite(&pts->fX, kPointCount * 2); |
720 | } |
721 | |
722 | double SkDCubic::top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const { |
723 | double extremeTs[2]; |
724 | double topT = -1; |
725 | int roots = SkDCubic::FindExtrema(&fPts[0].fY, extremeTs); |
726 | for (int index = 0; index < roots; ++index) { |
727 | double t = startT + (endT - startT) * extremeTs[index]; |
728 | SkDPoint mid = dCurve.ptAtT(t); |
729 | if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) { |
730 | topT = t; |
731 | *topPt = mid; |
732 | } |
733 | } |
734 | return topT; |
735 | } |
736 | |
737 | int SkTCubic::intersectRay(SkIntersections* i, const SkDLine& line) const { |
738 | return i->intersectRay(fCubic, line); |
739 | } |
740 | |
741 | bool SkTCubic::hullIntersects(const SkDQuad& quad, bool* isLinear) const { |
742 | return quad.hullIntersects(fCubic, isLinear); |
743 | } |
744 | |
745 | bool SkTCubic::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
746 | return conic.hullIntersects(fCubic, isLinear); |
747 | } |
748 | |
749 | void SkTCubic::setBounds(SkDRect* rect) const { |
750 | rect->setBounds(fCubic); |
751 | } |
752 | |