| 1 | /**************************************************************************/ |
| 2 | /* aabb.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef AABB_H |
| 32 | #define AABB_H |
| 33 | |
| 34 | #include "core/math/plane.h" |
| 35 | #include "core/math/vector3.h" |
| 36 | |
| 37 | /** |
| 38 | * AABB (Axis Aligned Bounding Box) |
| 39 | * This is implemented by a point (position) and the box size. |
| 40 | */ |
| 41 | |
| 42 | class Variant; |
| 43 | |
| 44 | struct _NO_DISCARD_ AABB { |
| 45 | Vector3 position; |
| 46 | Vector3 size; |
| 47 | |
| 48 | real_t get_volume() const; |
| 49 | _FORCE_INLINE_ bool has_volume() const { |
| 50 | return size.x > 0.0f && size.y > 0.0f && size.z > 0.0f; |
| 51 | } |
| 52 | |
| 53 | _FORCE_INLINE_ bool has_surface() const { |
| 54 | return size.x > 0.0f || size.y > 0.0f || size.z > 0.0f; |
| 55 | } |
| 56 | |
| 57 | const Vector3 &get_position() const { return position; } |
| 58 | void set_position(const Vector3 &p_pos) { position = p_pos; } |
| 59 | const Vector3 &get_size() const { return size; } |
| 60 | void set_size(const Vector3 &p_size) { size = p_size; } |
| 61 | |
| 62 | bool operator==(const AABB &p_rval) const; |
| 63 | bool operator!=(const AABB &p_rval) const; |
| 64 | |
| 65 | bool is_equal_approx(const AABB &p_aabb) const; |
| 66 | bool is_finite() const; |
| 67 | _FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap |
| 68 | _FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap |
| 69 | _FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this |
| 70 | |
| 71 | AABB merge(const AABB &p_with) const; |
| 72 | void merge_with(const AABB &p_aabb); ///merge with another AABB |
| 73 | AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs |
| 74 | bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; |
| 75 | bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; |
| 76 | _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const; |
| 77 | |
| 78 | _FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const; |
| 79 | _FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const; |
| 80 | bool intersects_plane(const Plane &p_plane) const; |
| 81 | |
| 82 | _FORCE_INLINE_ bool has_point(const Vector3 &p_point) const; |
| 83 | _FORCE_INLINE_ Vector3 get_support(const Vector3 &p_normal) const; |
| 84 | |
| 85 | Vector3 get_longest_axis() const; |
| 86 | int get_longest_axis_index() const; |
| 87 | _FORCE_INLINE_ real_t get_longest_axis_size() const; |
| 88 | |
| 89 | Vector3 get_shortest_axis() const; |
| 90 | int get_shortest_axis_index() const; |
| 91 | _FORCE_INLINE_ real_t get_shortest_axis_size() const; |
| 92 | |
| 93 | AABB grow(real_t p_by) const; |
| 94 | _FORCE_INLINE_ void grow_by(real_t p_amount); |
| 95 | |
| 96 | void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const; |
| 97 | _FORCE_INLINE_ Vector3 get_endpoint(int p_point) const; |
| 98 | |
| 99 | AABB expand(const Vector3 &p_vector) const; |
| 100 | _FORCE_INLINE_ void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const; |
| 101 | _FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */ |
| 102 | |
| 103 | _FORCE_INLINE_ AABB abs() const { |
| 104 | return AABB(Vector3(position.x + MIN(size.x, (real_t)0), position.y + MIN(size.y, (real_t)0), position.z + MIN(size.z, (real_t)0)), size.abs()); |
| 105 | } |
| 106 | |
| 107 | Variant intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const; |
| 108 | Variant intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const; |
| 109 | |
| 110 | _FORCE_INLINE_ void quantize(real_t p_unit); |
| 111 | _FORCE_INLINE_ AABB quantized(real_t p_unit) const; |
| 112 | |
| 113 | _FORCE_INLINE_ void set_end(const Vector3 &p_end) { |
| 114 | size = p_end - position; |
| 115 | } |
| 116 | |
| 117 | _FORCE_INLINE_ Vector3 get_end() const { |
| 118 | return position + size; |
| 119 | } |
| 120 | |
| 121 | _FORCE_INLINE_ Vector3 get_center() const { |
| 122 | return position + (size * 0.5f); |
| 123 | } |
| 124 | |
| 125 | operator String() const; |
| 126 | |
| 127 | _FORCE_INLINE_ AABB() {} |
| 128 | inline AABB(const Vector3 &p_pos, const Vector3 &p_size) : |
| 129 | position(p_pos), |
| 130 | size(p_size) { |
| 131 | } |
| 132 | }; |
| 133 | |
| 134 | inline bool AABB::intersects(const AABB &p_aabb) const { |
| 135 | #ifdef MATH_CHECKS |
| 136 | if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { |
| 137 | ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size." ); |
| 138 | } |
| 139 | #endif |
| 140 | if (position.x >= (p_aabb.position.x + p_aabb.size.x)) { |
| 141 | return false; |
| 142 | } |
| 143 | if ((position.x + size.x) <= p_aabb.position.x) { |
| 144 | return false; |
| 145 | } |
| 146 | if (position.y >= (p_aabb.position.y + p_aabb.size.y)) { |
| 147 | return false; |
| 148 | } |
| 149 | if ((position.y + size.y) <= p_aabb.position.y) { |
| 150 | return false; |
| 151 | } |
| 152 | if (position.z >= (p_aabb.position.z + p_aabb.size.z)) { |
| 153 | return false; |
| 154 | } |
| 155 | if ((position.z + size.z) <= p_aabb.position.z) { |
| 156 | return false; |
| 157 | } |
| 158 | |
| 159 | return true; |
| 160 | } |
| 161 | |
| 162 | inline bool AABB::intersects_inclusive(const AABB &p_aabb) const { |
| 163 | #ifdef MATH_CHECKS |
| 164 | if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { |
| 165 | ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size." ); |
| 166 | } |
| 167 | #endif |
| 168 | if (position.x > (p_aabb.position.x + p_aabb.size.x)) { |
| 169 | return false; |
| 170 | } |
| 171 | if ((position.x + size.x) < p_aabb.position.x) { |
| 172 | return false; |
| 173 | } |
| 174 | if (position.y > (p_aabb.position.y + p_aabb.size.y)) { |
| 175 | return false; |
| 176 | } |
| 177 | if ((position.y + size.y) < p_aabb.position.y) { |
| 178 | return false; |
| 179 | } |
| 180 | if (position.z > (p_aabb.position.z + p_aabb.size.z)) { |
| 181 | return false; |
| 182 | } |
| 183 | if ((position.z + size.z) < p_aabb.position.z) { |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | return true; |
| 188 | } |
| 189 | |
| 190 | inline bool AABB::encloses(const AABB &p_aabb) const { |
| 191 | #ifdef MATH_CHECKS |
| 192 | if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { |
| 193 | ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size." ); |
| 194 | } |
| 195 | #endif |
| 196 | Vector3 src_min = position; |
| 197 | Vector3 src_max = position + size; |
| 198 | Vector3 dst_min = p_aabb.position; |
| 199 | Vector3 dst_max = p_aabb.position + p_aabb.size; |
| 200 | |
| 201 | return ( |
| 202 | (src_min.x <= dst_min.x) && |
| 203 | (src_max.x > dst_max.x) && |
| 204 | (src_min.y <= dst_min.y) && |
| 205 | (src_max.y > dst_max.y) && |
| 206 | (src_min.z <= dst_min.z) && |
| 207 | (src_max.z > dst_max.z)); |
| 208 | } |
| 209 | |
| 210 | Vector3 AABB::get_support(const Vector3 &p_normal) const { |
| 211 | Vector3 half_extents = size * 0.5f; |
| 212 | Vector3 ofs = position + half_extents; |
| 213 | |
| 214 | return Vector3( |
| 215 | (p_normal.x > 0) ? half_extents.x : -half_extents.x, |
| 216 | (p_normal.y > 0) ? half_extents.y : -half_extents.y, |
| 217 | (p_normal.z > 0) ? half_extents.z : -half_extents.z) + |
| 218 | ofs; |
| 219 | } |
| 220 | |
| 221 | Vector3 AABB::get_endpoint(int p_point) const { |
| 222 | switch (p_point) { |
| 223 | case 0: |
| 224 | return Vector3(position.x, position.y, position.z); |
| 225 | case 1: |
| 226 | return Vector3(position.x, position.y, position.z + size.z); |
| 227 | case 2: |
| 228 | return Vector3(position.x, position.y + size.y, position.z); |
| 229 | case 3: |
| 230 | return Vector3(position.x, position.y + size.y, position.z + size.z); |
| 231 | case 4: |
| 232 | return Vector3(position.x + size.x, position.y, position.z); |
| 233 | case 5: |
| 234 | return Vector3(position.x + size.x, position.y, position.z + size.z); |
| 235 | case 6: |
| 236 | return Vector3(position.x + size.x, position.y + size.y, position.z); |
| 237 | case 7: |
| 238 | return Vector3(position.x + size.x, position.y + size.y, position.z + size.z); |
| 239 | } |
| 240 | |
| 241 | ERR_FAIL_V(Vector3()); |
| 242 | } |
| 243 | |
| 244 | bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const { |
| 245 | Vector3 half_extents = size * 0.5f; |
| 246 | Vector3 ofs = position + half_extents; |
| 247 | |
| 248 | for (int i = 0; i < p_plane_count; i++) { |
| 249 | const Plane &p = p_planes[i]; |
| 250 | Vector3 point( |
| 251 | (p.normal.x > 0) ? -half_extents.x : half_extents.x, |
| 252 | (p.normal.y > 0) ? -half_extents.y : half_extents.y, |
| 253 | (p.normal.z > 0) ? -half_extents.z : half_extents.z); |
| 254 | point += ofs; |
| 255 | if (p.is_point_over(point)) { |
| 256 | return false; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | // Make sure all points in the shape aren't fully separated from the AABB on |
| 261 | // each axis. |
| 262 | int bad_point_counts_positive[3] = { 0 }; |
| 263 | int bad_point_counts_negative[3] = { 0 }; |
| 264 | |
| 265 | for (int k = 0; k < 3; k++) { |
| 266 | for (int i = 0; i < p_point_count; i++) { |
| 267 | if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) { |
| 268 | bad_point_counts_positive[k]++; |
| 269 | } |
| 270 | if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) { |
| 271 | bad_point_counts_negative[k]++; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | if (bad_point_counts_negative[k] == p_point_count) { |
| 276 | return false; |
| 277 | } |
| 278 | if (bad_point_counts_positive[k] == p_point_count) { |
| 279 | return false; |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | return true; |
| 284 | } |
| 285 | |
| 286 | bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const { |
| 287 | Vector3 half_extents = size * 0.5f; |
| 288 | Vector3 ofs = position + half_extents; |
| 289 | |
| 290 | for (int i = 0; i < p_plane_count; i++) { |
| 291 | const Plane &p = p_planes[i]; |
| 292 | Vector3 point( |
| 293 | (p.normal.x < 0) ? -half_extents.x : half_extents.x, |
| 294 | (p.normal.y < 0) ? -half_extents.y : half_extents.y, |
| 295 | (p.normal.z < 0) ? -half_extents.z : half_extents.z); |
| 296 | point += ofs; |
| 297 | if (p.is_point_over(point)) { |
| 298 | return false; |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | return true; |
| 303 | } |
| 304 | |
| 305 | bool AABB::has_point(const Vector3 &p_point) const { |
| 306 | #ifdef MATH_CHECKS |
| 307 | if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { |
| 308 | ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size." ); |
| 309 | } |
| 310 | #endif |
| 311 | if (p_point.x < position.x) { |
| 312 | return false; |
| 313 | } |
| 314 | if (p_point.y < position.y) { |
| 315 | return false; |
| 316 | } |
| 317 | if (p_point.z < position.z) { |
| 318 | return false; |
| 319 | } |
| 320 | if (p_point.x > position.x + size.x) { |
| 321 | return false; |
| 322 | } |
| 323 | if (p_point.y > position.y + size.y) { |
| 324 | return false; |
| 325 | } |
| 326 | if (p_point.z > position.z + size.z) { |
| 327 | return false; |
| 328 | } |
| 329 | |
| 330 | return true; |
| 331 | } |
| 332 | |
| 333 | inline void AABB::expand_to(const Vector3 &p_vector) { |
| 334 | #ifdef MATH_CHECKS |
| 335 | if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { |
| 336 | ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size." ); |
| 337 | } |
| 338 | #endif |
| 339 | Vector3 begin = position; |
| 340 | Vector3 end = position + size; |
| 341 | |
| 342 | if (p_vector.x < begin.x) { |
| 343 | begin.x = p_vector.x; |
| 344 | } |
| 345 | if (p_vector.y < begin.y) { |
| 346 | begin.y = p_vector.y; |
| 347 | } |
| 348 | if (p_vector.z < begin.z) { |
| 349 | begin.z = p_vector.z; |
| 350 | } |
| 351 | |
| 352 | if (p_vector.x > end.x) { |
| 353 | end.x = p_vector.x; |
| 354 | } |
| 355 | if (p_vector.y > end.y) { |
| 356 | end.y = p_vector.y; |
| 357 | } |
| 358 | if (p_vector.z > end.z) { |
| 359 | end.z = p_vector.z; |
| 360 | } |
| 361 | |
| 362 | position = begin; |
| 363 | size = end - begin; |
| 364 | } |
| 365 | |
| 366 | void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const { |
| 367 | Vector3 half_extents(size.x * 0.5f, size.y * 0.5f, size.z * 0.5f); |
| 368 | Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z); |
| 369 | |
| 370 | real_t length = p_plane.normal.abs().dot(half_extents); |
| 371 | real_t distance = p_plane.distance_to(center); |
| 372 | r_min = distance - length; |
| 373 | r_max = distance + length; |
| 374 | } |
| 375 | |
| 376 | inline real_t AABB::get_longest_axis_size() const { |
| 377 | real_t max_size = size.x; |
| 378 | |
| 379 | if (size.y > max_size) { |
| 380 | max_size = size.y; |
| 381 | } |
| 382 | |
| 383 | if (size.z > max_size) { |
| 384 | max_size = size.z; |
| 385 | } |
| 386 | |
| 387 | return max_size; |
| 388 | } |
| 389 | |
| 390 | inline real_t AABB::get_shortest_axis_size() const { |
| 391 | real_t max_size = size.x; |
| 392 | |
| 393 | if (size.y < max_size) { |
| 394 | max_size = size.y; |
| 395 | } |
| 396 | |
| 397 | if (size.z < max_size) { |
| 398 | max_size = size.z; |
| 399 | } |
| 400 | |
| 401 | return max_size; |
| 402 | } |
| 403 | |
| 404 | bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const { |
| 405 | #ifdef MATH_CHECKS |
| 406 | if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { |
| 407 | ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size." ); |
| 408 | } |
| 409 | #endif |
| 410 | real_t divx = 1.0f / p_dir.x; |
| 411 | real_t divy = 1.0f / p_dir.y; |
| 412 | real_t divz = 1.0f / p_dir.z; |
| 413 | |
| 414 | Vector3 upbound = position + size; |
| 415 | real_t tmin, tmax, tymin, tymax, tzmin, tzmax; |
| 416 | if (p_dir.x >= 0) { |
| 417 | tmin = (position.x - p_from.x) * divx; |
| 418 | tmax = (upbound.x - p_from.x) * divx; |
| 419 | } else { |
| 420 | tmin = (upbound.x - p_from.x) * divx; |
| 421 | tmax = (position.x - p_from.x) * divx; |
| 422 | } |
| 423 | if (p_dir.y >= 0) { |
| 424 | tymin = (position.y - p_from.y) * divy; |
| 425 | tymax = (upbound.y - p_from.y) * divy; |
| 426 | } else { |
| 427 | tymin = (upbound.y - p_from.y) * divy; |
| 428 | tymax = (position.y - p_from.y) * divy; |
| 429 | } |
| 430 | if ((tmin > tymax) || (tymin > tmax)) { |
| 431 | return false; |
| 432 | } |
| 433 | if (tymin > tmin) { |
| 434 | tmin = tymin; |
| 435 | } |
| 436 | if (tymax < tmax) { |
| 437 | tmax = tymax; |
| 438 | } |
| 439 | if (p_dir.z >= 0) { |
| 440 | tzmin = (position.z - p_from.z) * divz; |
| 441 | tzmax = (upbound.z - p_from.z) * divz; |
| 442 | } else { |
| 443 | tzmin = (upbound.z - p_from.z) * divz; |
| 444 | tzmax = (position.z - p_from.z) * divz; |
| 445 | } |
| 446 | if ((tmin > tzmax) || (tzmin > tmax)) { |
| 447 | return false; |
| 448 | } |
| 449 | if (tzmin > tmin) { |
| 450 | tmin = tzmin; |
| 451 | } |
| 452 | if (tzmax < tmax) { |
| 453 | tmax = tzmax; |
| 454 | } |
| 455 | return ((tmin < t1) && (tmax > t0)); |
| 456 | } |
| 457 | |
| 458 | void AABB::grow_by(real_t p_amount) { |
| 459 | position.x -= p_amount; |
| 460 | position.y -= p_amount; |
| 461 | position.z -= p_amount; |
| 462 | size.x += 2.0f * p_amount; |
| 463 | size.y += 2.0f * p_amount; |
| 464 | size.z += 2.0f * p_amount; |
| 465 | } |
| 466 | |
| 467 | void AABB::quantize(real_t p_unit) { |
| 468 | size += position; |
| 469 | |
| 470 | position.x -= Math::fposmodp(position.x, p_unit); |
| 471 | position.y -= Math::fposmodp(position.y, p_unit); |
| 472 | position.z -= Math::fposmodp(position.z, p_unit); |
| 473 | |
| 474 | size.x -= Math::fposmodp(size.x, p_unit); |
| 475 | size.y -= Math::fposmodp(size.y, p_unit); |
| 476 | size.z -= Math::fposmodp(size.z, p_unit); |
| 477 | |
| 478 | size.x += p_unit; |
| 479 | size.y += p_unit; |
| 480 | size.z += p_unit; |
| 481 | |
| 482 | size -= position; |
| 483 | } |
| 484 | |
| 485 | AABB AABB::quantized(real_t p_unit) const { |
| 486 | AABB ret = *this; |
| 487 | ret.quantize(p_unit); |
| 488 | return ret; |
| 489 | } |
| 490 | |
| 491 | #endif // AABB_H |
| 492 | |