| 1 | /**************************************************************************/ |
| 2 | /* basis.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef BASIS_H |
| 32 | #define BASIS_H |
| 33 | |
| 34 | #include "core/math/quaternion.h" |
| 35 | #include "core/math/vector3.h" |
| 36 | |
| 37 | struct _NO_DISCARD_ Basis { |
| 38 | Vector3 rows[3] = { |
| 39 | Vector3(1, 0, 0), |
| 40 | Vector3(0, 1, 0), |
| 41 | Vector3(0, 0, 1) |
| 42 | }; |
| 43 | |
| 44 | _FORCE_INLINE_ const Vector3 &operator[](int axis) const { |
| 45 | return rows[axis]; |
| 46 | } |
| 47 | _FORCE_INLINE_ Vector3 &operator[](int axis) { |
| 48 | return rows[axis]; |
| 49 | } |
| 50 | |
| 51 | void invert(); |
| 52 | void transpose(); |
| 53 | |
| 54 | Basis inverse() const; |
| 55 | Basis transposed() const; |
| 56 | |
| 57 | _FORCE_INLINE_ real_t determinant() const; |
| 58 | |
| 59 | void rotate(const Vector3 &p_axis, real_t p_angle); |
| 60 | Basis rotated(const Vector3 &p_axis, real_t p_angle) const; |
| 61 | |
| 62 | void rotate_local(const Vector3 &p_axis, real_t p_angle); |
| 63 | Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const; |
| 64 | |
| 65 | void rotate(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ); |
| 66 | Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) const; |
| 67 | |
| 68 | void rotate(const Quaternion &p_quaternion); |
| 69 | Basis rotated(const Quaternion &p_quaternion) const; |
| 70 | |
| 71 | Vector3 get_euler_normalized(EulerOrder p_order = EulerOrder::YXZ) const; |
| 72 | void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; |
| 73 | void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; |
| 74 | Quaternion get_rotation_quaternion() const; |
| 75 | |
| 76 | void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction); |
| 77 | |
| 78 | Vector3 rotref_posscale_decomposition(Basis &rotref) const; |
| 79 | |
| 80 | Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const; |
| 81 | void set_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ); |
| 82 | static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) { |
| 83 | Basis b; |
| 84 | b.set_euler(p_euler, p_order); |
| 85 | return b; |
| 86 | } |
| 87 | |
| 88 | Quaternion get_quaternion() const; |
| 89 | void set_quaternion(const Quaternion &p_quaternion); |
| 90 | |
| 91 | void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; |
| 92 | void set_axis_angle(const Vector3 &p_axis, real_t p_angle); |
| 93 | |
| 94 | void scale(const Vector3 &p_scale); |
| 95 | Basis scaled(const Vector3 &p_scale) const; |
| 96 | |
| 97 | void scale_local(const Vector3 &p_scale); |
| 98 | Basis scaled_local(const Vector3 &p_scale) const; |
| 99 | |
| 100 | void scale_orthogonal(const Vector3 &p_scale); |
| 101 | Basis scaled_orthogonal(const Vector3 &p_scale) const; |
| 102 | float get_uniform_scale() const; |
| 103 | |
| 104 | Vector3 get_scale() const; |
| 105 | Vector3 get_scale_abs() const; |
| 106 | Vector3 get_scale_local() const; |
| 107 | |
| 108 | void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale); |
| 109 | void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EulerOrder::YXZ); |
| 110 | void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale); |
| 111 | |
| 112 | // transposed dot products |
| 113 | _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const { |
| 114 | return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2]; |
| 115 | } |
| 116 | _FORCE_INLINE_ real_t tdoty(const Vector3 &v) const { |
| 117 | return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2]; |
| 118 | } |
| 119 | _FORCE_INLINE_ real_t tdotz(const Vector3 &v) const { |
| 120 | return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2]; |
| 121 | } |
| 122 | |
| 123 | bool is_equal_approx(const Basis &p_basis) const; |
| 124 | bool is_finite() const; |
| 125 | |
| 126 | bool operator==(const Basis &p_matrix) const; |
| 127 | bool operator!=(const Basis &p_matrix) const; |
| 128 | |
| 129 | _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const; |
| 130 | _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const; |
| 131 | _FORCE_INLINE_ void operator*=(const Basis &p_matrix); |
| 132 | _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const; |
| 133 | _FORCE_INLINE_ void operator+=(const Basis &p_matrix); |
| 134 | _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const; |
| 135 | _FORCE_INLINE_ void operator-=(const Basis &p_matrix); |
| 136 | _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const; |
| 137 | _FORCE_INLINE_ void operator*=(const real_t p_val); |
| 138 | _FORCE_INLINE_ Basis operator*(const real_t p_val) const; |
| 139 | |
| 140 | bool is_orthogonal() const; |
| 141 | bool is_diagonal() const; |
| 142 | bool is_rotation() const; |
| 143 | |
| 144 | Basis lerp(const Basis &p_to, const real_t &p_weight) const; |
| 145 | Basis slerp(const Basis &p_to, const real_t &p_weight) const; |
| 146 | void rotate_sh(real_t *p_values); |
| 147 | |
| 148 | operator String() const; |
| 149 | |
| 150 | /* create / set */ |
| 151 | |
| 152 | _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { |
| 153 | rows[0][0] = xx; |
| 154 | rows[0][1] = xy; |
| 155 | rows[0][2] = xz; |
| 156 | rows[1][0] = yx; |
| 157 | rows[1][1] = yy; |
| 158 | rows[1][2] = yz; |
| 159 | rows[2][0] = zx; |
| 160 | rows[2][1] = zy; |
| 161 | rows[2][2] = zz; |
| 162 | } |
| 163 | _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { |
| 164 | set_column(0, p_x); |
| 165 | set_column(1, p_y); |
| 166 | set_column(2, p_z); |
| 167 | } |
| 168 | |
| 169 | _FORCE_INLINE_ Vector3 get_column(int p_index) const { |
| 170 | // Get actual basis axis column (we store transposed as rows for performance). |
| 171 | return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]); |
| 172 | } |
| 173 | |
| 174 | _FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) { |
| 175 | // Set actual basis axis column (we store transposed as rows for performance). |
| 176 | rows[0][p_index] = p_value.x; |
| 177 | rows[1][p_index] = p_value.y; |
| 178 | rows[2][p_index] = p_value.z; |
| 179 | } |
| 180 | |
| 181 | _FORCE_INLINE_ Vector3 get_main_diagonal() const { |
| 182 | return Vector3(rows[0][0], rows[1][1], rows[2][2]); |
| 183 | } |
| 184 | |
| 185 | _FORCE_INLINE_ void set_zero() { |
| 186 | rows[0].zero(); |
| 187 | rows[1].zero(); |
| 188 | rows[2].zero(); |
| 189 | } |
| 190 | |
| 191 | _FORCE_INLINE_ Basis transpose_xform(const Basis &m) const { |
| 192 | return Basis( |
| 193 | rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x, |
| 194 | rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y, |
| 195 | rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z, |
| 196 | rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x, |
| 197 | rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y, |
| 198 | rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z, |
| 199 | rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x, |
| 200 | rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y, |
| 201 | rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z); |
| 202 | } |
| 203 | Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { |
| 204 | set(xx, xy, xz, yx, yy, yz, zx, zy, zz); |
| 205 | } |
| 206 | |
| 207 | void orthonormalize(); |
| 208 | Basis orthonormalized() const; |
| 209 | |
| 210 | void orthogonalize(); |
| 211 | Basis orthogonalized() const; |
| 212 | |
| 213 | #ifdef MATH_CHECKS |
| 214 | bool is_symmetric() const; |
| 215 | #endif |
| 216 | Basis diagonalize(); |
| 217 | |
| 218 | operator Quaternion() const { return get_quaternion(); } |
| 219 | |
| 220 | static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false); |
| 221 | |
| 222 | Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }; |
| 223 | Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); } |
| 224 | |
| 225 | Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); } |
| 226 | Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); } |
| 227 | static Basis from_scale(const Vector3 &p_scale); |
| 228 | |
| 229 | _FORCE_INLINE_ Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) { |
| 230 | set_columns(p_x_axis, p_y_axis, p_z_axis); |
| 231 | } |
| 232 | |
| 233 | _FORCE_INLINE_ Basis() {} |
| 234 | |
| 235 | private: |
| 236 | // Helper method. |
| 237 | void _set_diagonal(const Vector3 &p_diag); |
| 238 | }; |
| 239 | |
| 240 | _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) { |
| 241 | set( |
| 242 | p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]), |
| 243 | p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]), |
| 244 | p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2])); |
| 245 | } |
| 246 | |
| 247 | _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const { |
| 248 | return Basis( |
| 249 | p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]), |
| 250 | p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]), |
| 251 | p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2])); |
| 252 | } |
| 253 | |
| 254 | _FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) { |
| 255 | rows[0] += p_matrix.rows[0]; |
| 256 | rows[1] += p_matrix.rows[1]; |
| 257 | rows[2] += p_matrix.rows[2]; |
| 258 | } |
| 259 | |
| 260 | _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const { |
| 261 | Basis ret(*this); |
| 262 | ret += p_matrix; |
| 263 | return ret; |
| 264 | } |
| 265 | |
| 266 | _FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) { |
| 267 | rows[0] -= p_matrix.rows[0]; |
| 268 | rows[1] -= p_matrix.rows[1]; |
| 269 | rows[2] -= p_matrix.rows[2]; |
| 270 | } |
| 271 | |
| 272 | _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const { |
| 273 | Basis ret(*this); |
| 274 | ret -= p_matrix; |
| 275 | return ret; |
| 276 | } |
| 277 | |
| 278 | _FORCE_INLINE_ void Basis::operator*=(const real_t p_val) { |
| 279 | rows[0] *= p_val; |
| 280 | rows[1] *= p_val; |
| 281 | rows[2] *= p_val; |
| 282 | } |
| 283 | |
| 284 | _FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const { |
| 285 | Basis ret(*this); |
| 286 | ret *= p_val; |
| 287 | return ret; |
| 288 | } |
| 289 | |
| 290 | Vector3 Basis::xform(const Vector3 &p_vector) const { |
| 291 | return Vector3( |
| 292 | rows[0].dot(p_vector), |
| 293 | rows[1].dot(p_vector), |
| 294 | rows[2].dot(p_vector)); |
| 295 | } |
| 296 | |
| 297 | Vector3 Basis::xform_inv(const Vector3 &p_vector) const { |
| 298 | return Vector3( |
| 299 | (rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z), |
| 300 | (rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z), |
| 301 | (rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z)); |
| 302 | } |
| 303 | |
| 304 | real_t Basis::determinant() const { |
| 305 | return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) - |
| 306 | rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) + |
| 307 | rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]); |
| 308 | } |
| 309 | |
| 310 | #endif // BASIS_H |
| 311 | |