| 1 | /**************************************************************************/ |
| 2 | /* quaternion.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef QUATERNION_H |
| 32 | #define QUATERNION_H |
| 33 | |
| 34 | #include "core/math/math_funcs.h" |
| 35 | #include "core/math/vector3.h" |
| 36 | |
| 37 | class String; |
| 38 | |
| 39 | struct _NO_DISCARD_ Quaternion { |
| 40 | union { |
| 41 | struct { |
| 42 | real_t x; |
| 43 | real_t y; |
| 44 | real_t z; |
| 45 | real_t w; |
| 46 | }; |
| 47 | real_t components[4] = { 0, 0, 0, 1.0 }; |
| 48 | }; |
| 49 | |
| 50 | _FORCE_INLINE_ real_t &operator[](int idx) { |
| 51 | return components[idx]; |
| 52 | } |
| 53 | _FORCE_INLINE_ const real_t &operator[](int idx) const { |
| 54 | return components[idx]; |
| 55 | } |
| 56 | _FORCE_INLINE_ real_t length_squared() const; |
| 57 | bool is_equal_approx(const Quaternion &p_quaternion) const; |
| 58 | bool is_finite() const; |
| 59 | real_t length() const; |
| 60 | void normalize(); |
| 61 | Quaternion normalized() const; |
| 62 | bool is_normalized() const; |
| 63 | Quaternion inverse() const; |
| 64 | Quaternion log() const; |
| 65 | Quaternion exp() const; |
| 66 | _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; |
| 67 | real_t angle_to(const Quaternion &p_to) const; |
| 68 | |
| 69 | Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const; |
| 70 | static Quaternion from_euler(const Vector3 &p_euler); |
| 71 | |
| 72 | Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; |
| 73 | Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; |
| 74 | Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; |
| 75 | Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; |
| 76 | |
| 77 | Vector3 get_axis() const; |
| 78 | real_t get_angle() const; |
| 79 | |
| 80 | _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { |
| 81 | r_angle = 2 * Math::acos(w); |
| 82 | real_t r = ((real_t)1) / Math::sqrt(1 - w * w); |
| 83 | r_axis.x = x * r; |
| 84 | r_axis.y = y * r; |
| 85 | r_axis.z = z * r; |
| 86 | } |
| 87 | |
| 88 | void operator*=(const Quaternion &p_q); |
| 89 | Quaternion operator*(const Quaternion &p_q) const; |
| 90 | |
| 91 | _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { |
| 92 | #ifdef MATH_CHECKS |
| 93 | ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized." ); |
| 94 | #endif |
| 95 | Vector3 u(x, y, z); |
| 96 | Vector3 uv = u.cross(v); |
| 97 | return v + ((uv * w) + u.cross(uv)) * ((real_t)2); |
| 98 | } |
| 99 | |
| 100 | _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const { |
| 101 | return inverse().xform(v); |
| 102 | } |
| 103 | |
| 104 | _FORCE_INLINE_ void operator+=(const Quaternion &p_q); |
| 105 | _FORCE_INLINE_ void operator-=(const Quaternion &p_q); |
| 106 | _FORCE_INLINE_ void operator*=(const real_t &s); |
| 107 | _FORCE_INLINE_ void operator/=(const real_t &s); |
| 108 | _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; |
| 109 | _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; |
| 110 | _FORCE_INLINE_ Quaternion operator-() const; |
| 111 | _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; |
| 112 | _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; |
| 113 | |
| 114 | _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; |
| 115 | _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; |
| 116 | |
| 117 | operator String() const; |
| 118 | |
| 119 | _FORCE_INLINE_ Quaternion() {} |
| 120 | |
| 121 | _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : |
| 122 | x(p_x), |
| 123 | y(p_y), |
| 124 | z(p_z), |
| 125 | w(p_w) { |
| 126 | } |
| 127 | |
| 128 | Quaternion(const Vector3 &p_axis, real_t p_angle); |
| 129 | |
| 130 | Quaternion(const Quaternion &p_q) : |
| 131 | x(p_q.x), |
| 132 | y(p_q.y), |
| 133 | z(p_q.z), |
| 134 | w(p_q.w) { |
| 135 | } |
| 136 | |
| 137 | void operator=(const Quaternion &p_q) { |
| 138 | x = p_q.x; |
| 139 | y = p_q.y; |
| 140 | z = p_q.z; |
| 141 | w = p_q.w; |
| 142 | } |
| 143 | |
| 144 | Quaternion(const Vector3 &v0, const Vector3 &v1) { // Shortest arc. |
| 145 | Vector3 c = v0.cross(v1); |
| 146 | real_t d = v0.dot(v1); |
| 147 | |
| 148 | if (d < -1.0f + (real_t)CMP_EPSILON) { |
| 149 | x = 0; |
| 150 | y = 1; |
| 151 | z = 0; |
| 152 | w = 0; |
| 153 | } else { |
| 154 | real_t s = Math::sqrt((1.0f + d) * 2.0f); |
| 155 | real_t rs = 1.0f / s; |
| 156 | |
| 157 | x = c.x * rs; |
| 158 | y = c.y * rs; |
| 159 | z = c.z * rs; |
| 160 | w = s * 0.5f; |
| 161 | } |
| 162 | } |
| 163 | }; |
| 164 | |
| 165 | real_t Quaternion::dot(const Quaternion &p_q) const { |
| 166 | return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w; |
| 167 | } |
| 168 | |
| 169 | real_t Quaternion::length_squared() const { |
| 170 | return dot(*this); |
| 171 | } |
| 172 | |
| 173 | void Quaternion::operator+=(const Quaternion &p_q) { |
| 174 | x += p_q.x; |
| 175 | y += p_q.y; |
| 176 | z += p_q.z; |
| 177 | w += p_q.w; |
| 178 | } |
| 179 | |
| 180 | void Quaternion::operator-=(const Quaternion &p_q) { |
| 181 | x -= p_q.x; |
| 182 | y -= p_q.y; |
| 183 | z -= p_q.z; |
| 184 | w -= p_q.w; |
| 185 | } |
| 186 | |
| 187 | void Quaternion::operator*=(const real_t &s) { |
| 188 | x *= s; |
| 189 | y *= s; |
| 190 | z *= s; |
| 191 | w *= s; |
| 192 | } |
| 193 | |
| 194 | void Quaternion::operator/=(const real_t &s) { |
| 195 | *this *= 1.0f / s; |
| 196 | } |
| 197 | |
| 198 | Quaternion Quaternion::operator+(const Quaternion &q2) const { |
| 199 | const Quaternion &q1 = *this; |
| 200 | return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); |
| 201 | } |
| 202 | |
| 203 | Quaternion Quaternion::operator-(const Quaternion &q2) const { |
| 204 | const Quaternion &q1 = *this; |
| 205 | return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); |
| 206 | } |
| 207 | |
| 208 | Quaternion Quaternion::operator-() const { |
| 209 | const Quaternion &q2 = *this; |
| 210 | return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); |
| 211 | } |
| 212 | |
| 213 | Quaternion Quaternion::operator*(const real_t &s) const { |
| 214 | return Quaternion(x * s, y * s, z * s, w * s); |
| 215 | } |
| 216 | |
| 217 | Quaternion Quaternion::operator/(const real_t &s) const { |
| 218 | return *this * (1.0f / s); |
| 219 | } |
| 220 | |
| 221 | bool Quaternion::operator==(const Quaternion &p_quaternion) const { |
| 222 | return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w; |
| 223 | } |
| 224 | |
| 225 | bool Quaternion::operator!=(const Quaternion &p_quaternion) const { |
| 226 | return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; |
| 227 | } |
| 228 | |
| 229 | _FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) { |
| 230 | return p_quaternion * p_real; |
| 231 | } |
| 232 | |
| 233 | #endif // QUATERNION_H |
| 234 | |