1 | /**************************************************************************/ |
2 | /* quaternion.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef QUATERNION_H |
32 | #define QUATERNION_H |
33 | |
34 | #include "core/math/math_funcs.h" |
35 | #include "core/math/vector3.h" |
36 | |
37 | class String; |
38 | |
39 | struct _NO_DISCARD_ Quaternion { |
40 | union { |
41 | struct { |
42 | real_t x; |
43 | real_t y; |
44 | real_t z; |
45 | real_t w; |
46 | }; |
47 | real_t components[4] = { 0, 0, 0, 1.0 }; |
48 | }; |
49 | |
50 | _FORCE_INLINE_ real_t &operator[](int idx) { |
51 | return components[idx]; |
52 | } |
53 | _FORCE_INLINE_ const real_t &operator[](int idx) const { |
54 | return components[idx]; |
55 | } |
56 | _FORCE_INLINE_ real_t length_squared() const; |
57 | bool is_equal_approx(const Quaternion &p_quaternion) const; |
58 | bool is_finite() const; |
59 | real_t length() const; |
60 | void normalize(); |
61 | Quaternion normalized() const; |
62 | bool is_normalized() const; |
63 | Quaternion inverse() const; |
64 | Quaternion log() const; |
65 | Quaternion exp() const; |
66 | _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; |
67 | real_t angle_to(const Quaternion &p_to) const; |
68 | |
69 | Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const; |
70 | static Quaternion from_euler(const Vector3 &p_euler); |
71 | |
72 | Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; |
73 | Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; |
74 | Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; |
75 | Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; |
76 | |
77 | Vector3 get_axis() const; |
78 | real_t get_angle() const; |
79 | |
80 | _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { |
81 | r_angle = 2 * Math::acos(w); |
82 | real_t r = ((real_t)1) / Math::sqrt(1 - w * w); |
83 | r_axis.x = x * r; |
84 | r_axis.y = y * r; |
85 | r_axis.z = z * r; |
86 | } |
87 | |
88 | void operator*=(const Quaternion &p_q); |
89 | Quaternion operator*(const Quaternion &p_q) const; |
90 | |
91 | _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { |
92 | #ifdef MATH_CHECKS |
93 | ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized." ); |
94 | #endif |
95 | Vector3 u(x, y, z); |
96 | Vector3 uv = u.cross(v); |
97 | return v + ((uv * w) + u.cross(uv)) * ((real_t)2); |
98 | } |
99 | |
100 | _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const { |
101 | return inverse().xform(v); |
102 | } |
103 | |
104 | _FORCE_INLINE_ void operator+=(const Quaternion &p_q); |
105 | _FORCE_INLINE_ void operator-=(const Quaternion &p_q); |
106 | _FORCE_INLINE_ void operator*=(const real_t &s); |
107 | _FORCE_INLINE_ void operator/=(const real_t &s); |
108 | _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; |
109 | _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; |
110 | _FORCE_INLINE_ Quaternion operator-() const; |
111 | _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; |
112 | _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; |
113 | |
114 | _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; |
115 | _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; |
116 | |
117 | operator String() const; |
118 | |
119 | _FORCE_INLINE_ Quaternion() {} |
120 | |
121 | _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : |
122 | x(p_x), |
123 | y(p_y), |
124 | z(p_z), |
125 | w(p_w) { |
126 | } |
127 | |
128 | Quaternion(const Vector3 &p_axis, real_t p_angle); |
129 | |
130 | Quaternion(const Quaternion &p_q) : |
131 | x(p_q.x), |
132 | y(p_q.y), |
133 | z(p_q.z), |
134 | w(p_q.w) { |
135 | } |
136 | |
137 | void operator=(const Quaternion &p_q) { |
138 | x = p_q.x; |
139 | y = p_q.y; |
140 | z = p_q.z; |
141 | w = p_q.w; |
142 | } |
143 | |
144 | Quaternion(const Vector3 &v0, const Vector3 &v1) { // Shortest arc. |
145 | Vector3 c = v0.cross(v1); |
146 | real_t d = v0.dot(v1); |
147 | |
148 | if (d < -1.0f + (real_t)CMP_EPSILON) { |
149 | x = 0; |
150 | y = 1; |
151 | z = 0; |
152 | w = 0; |
153 | } else { |
154 | real_t s = Math::sqrt((1.0f + d) * 2.0f); |
155 | real_t rs = 1.0f / s; |
156 | |
157 | x = c.x * rs; |
158 | y = c.y * rs; |
159 | z = c.z * rs; |
160 | w = s * 0.5f; |
161 | } |
162 | } |
163 | }; |
164 | |
165 | real_t Quaternion::dot(const Quaternion &p_q) const { |
166 | return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w; |
167 | } |
168 | |
169 | real_t Quaternion::length_squared() const { |
170 | return dot(*this); |
171 | } |
172 | |
173 | void Quaternion::operator+=(const Quaternion &p_q) { |
174 | x += p_q.x; |
175 | y += p_q.y; |
176 | z += p_q.z; |
177 | w += p_q.w; |
178 | } |
179 | |
180 | void Quaternion::operator-=(const Quaternion &p_q) { |
181 | x -= p_q.x; |
182 | y -= p_q.y; |
183 | z -= p_q.z; |
184 | w -= p_q.w; |
185 | } |
186 | |
187 | void Quaternion::operator*=(const real_t &s) { |
188 | x *= s; |
189 | y *= s; |
190 | z *= s; |
191 | w *= s; |
192 | } |
193 | |
194 | void Quaternion::operator/=(const real_t &s) { |
195 | *this *= 1.0f / s; |
196 | } |
197 | |
198 | Quaternion Quaternion::operator+(const Quaternion &q2) const { |
199 | const Quaternion &q1 = *this; |
200 | return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); |
201 | } |
202 | |
203 | Quaternion Quaternion::operator-(const Quaternion &q2) const { |
204 | const Quaternion &q1 = *this; |
205 | return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); |
206 | } |
207 | |
208 | Quaternion Quaternion::operator-() const { |
209 | const Quaternion &q2 = *this; |
210 | return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); |
211 | } |
212 | |
213 | Quaternion Quaternion::operator*(const real_t &s) const { |
214 | return Quaternion(x * s, y * s, z * s, w * s); |
215 | } |
216 | |
217 | Quaternion Quaternion::operator/(const real_t &s) const { |
218 | return *this * (1.0f / s); |
219 | } |
220 | |
221 | bool Quaternion::operator==(const Quaternion &p_quaternion) const { |
222 | return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w; |
223 | } |
224 | |
225 | bool Quaternion::operator!=(const Quaternion &p_quaternion) const { |
226 | return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; |
227 | } |
228 | |
229 | _FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) { |
230 | return p_quaternion * p_real; |
231 | } |
232 | |
233 | #endif // QUATERNION_H |
234 | |