| 1 | public: |
| 2 | // cull parameters is a convenient way of passing a bunch |
| 3 | // of arguments through the culling functions without |
| 4 | // writing loads of code. Not all members are used for some cull checks |
| 5 | struct CullParams { |
| 6 | int result_count_overall; // both trees |
| 7 | int result_count; // this tree only |
| 8 | int result_max; |
| 9 | T **result_array; |
| 10 | int *subindex_array; |
| 11 | |
| 12 | // We now process masks etc in a user template function, |
| 13 | // and these for simplicity assume even for cull tests there is a |
| 14 | // testing object (which has masks etc) for the user cull checks. |
| 15 | // This means for cull tests on their own, the client will usually |
| 16 | // want to create a dummy object, just in order to specify masks etc. |
| 17 | const T *tester; |
| 18 | |
| 19 | // optional components for different tests |
| 20 | POINT point; |
| 21 | BVHABB_CLASS abb; |
| 22 | typename BVHABB_CLASS::ConvexHull hull; |
| 23 | typename BVHABB_CLASS::Segment segment; |
| 24 | |
| 25 | // When collision testing, we can specify which tree ids |
| 26 | // to collide test against with the tree_collision_mask. |
| 27 | uint32_t tree_collision_mask; |
| 28 | }; |
| 29 | |
| 30 | private: |
| 31 | void _cull_translate_hits(CullParams &p) { |
| 32 | int num_hits = _cull_hits.size(); |
| 33 | int left = p.result_max - p.result_count_overall; |
| 34 | |
| 35 | if (num_hits > left) { |
| 36 | num_hits = left; |
| 37 | } |
| 38 | |
| 39 | int out_n = p.result_count_overall; |
| 40 | |
| 41 | for (int n = 0; n < num_hits; n++) { |
| 42 | uint32_t ref_id = _cull_hits[n]; |
| 43 | |
| 44 | const ItemExtra &ex = _extra[ref_id]; |
| 45 | p.result_array[out_n] = ex.userdata; |
| 46 | |
| 47 | if (p.subindex_array) { |
| 48 | p.subindex_array[out_n] = ex.subindex; |
| 49 | } |
| 50 | |
| 51 | out_n++; |
| 52 | } |
| 53 | |
| 54 | p.result_count = num_hits; |
| 55 | p.result_count_overall += num_hits; |
| 56 | } |
| 57 | |
| 58 | public: |
| 59 | int cull_convex(CullParams &r_params, bool p_translate_hits = true) { |
| 60 | _cull_hits.clear(); |
| 61 | r_params.result_count = 0; |
| 62 | |
| 63 | uint32_t tree_test_mask = 0; |
| 64 | |
| 65 | for (int n = 0; n < NUM_TREES; n++) { |
| 66 | tree_test_mask <<= 1; |
| 67 | if (!tree_test_mask) { |
| 68 | tree_test_mask = 1; |
| 69 | } |
| 70 | |
| 71 | if (_root_node_id[n] == BVHCommon::INVALID) { |
| 72 | continue; |
| 73 | } |
| 74 | |
| 75 | if (!(r_params.tree_collision_mask & tree_test_mask)) { |
| 76 | continue; |
| 77 | } |
| 78 | |
| 79 | _cull_convex_iterative(_root_node_id[n], r_params); |
| 80 | } |
| 81 | |
| 82 | if (p_translate_hits) { |
| 83 | _cull_translate_hits(r_params); |
| 84 | } |
| 85 | |
| 86 | return r_params.result_count; |
| 87 | } |
| 88 | |
| 89 | int cull_segment(CullParams &r_params, bool p_translate_hits = true) { |
| 90 | _cull_hits.clear(); |
| 91 | r_params.result_count = 0; |
| 92 | |
| 93 | uint32_t tree_test_mask = 0; |
| 94 | |
| 95 | for (int n = 0; n < NUM_TREES; n++) { |
| 96 | tree_test_mask <<= 1; |
| 97 | if (!tree_test_mask) { |
| 98 | tree_test_mask = 1; |
| 99 | } |
| 100 | |
| 101 | if (_root_node_id[n] == BVHCommon::INVALID) { |
| 102 | continue; |
| 103 | } |
| 104 | |
| 105 | if (!(r_params.tree_collision_mask & tree_test_mask)) { |
| 106 | continue; |
| 107 | } |
| 108 | |
| 109 | _cull_segment_iterative(_root_node_id[n], r_params); |
| 110 | } |
| 111 | |
| 112 | if (p_translate_hits) { |
| 113 | _cull_translate_hits(r_params); |
| 114 | } |
| 115 | |
| 116 | return r_params.result_count; |
| 117 | } |
| 118 | |
| 119 | int cull_point(CullParams &r_params, bool p_translate_hits = true) { |
| 120 | _cull_hits.clear(); |
| 121 | r_params.result_count = 0; |
| 122 | |
| 123 | uint32_t tree_test_mask = 0; |
| 124 | |
| 125 | for (int n = 0; n < NUM_TREES; n++) { |
| 126 | tree_test_mask <<= 1; |
| 127 | if (!tree_test_mask) { |
| 128 | tree_test_mask = 1; |
| 129 | } |
| 130 | |
| 131 | if (_root_node_id[n] == BVHCommon::INVALID) { |
| 132 | continue; |
| 133 | } |
| 134 | |
| 135 | if (!(r_params.tree_collision_mask & tree_test_mask)) { |
| 136 | continue; |
| 137 | } |
| 138 | |
| 139 | _cull_point_iterative(_root_node_id[n], r_params); |
| 140 | } |
| 141 | |
| 142 | if (p_translate_hits) { |
| 143 | _cull_translate_hits(r_params); |
| 144 | } |
| 145 | |
| 146 | return r_params.result_count; |
| 147 | } |
| 148 | |
| 149 | int cull_aabb(CullParams &r_params, bool p_translate_hits = true) { |
| 150 | _cull_hits.clear(); |
| 151 | r_params.result_count = 0; |
| 152 | |
| 153 | uint32_t tree_test_mask = 0; |
| 154 | |
| 155 | for (int n = 0; n < NUM_TREES; n++) { |
| 156 | tree_test_mask <<= 1; |
| 157 | if (!tree_test_mask) { |
| 158 | tree_test_mask = 1; |
| 159 | } |
| 160 | |
| 161 | if (_root_node_id[n] == BVHCommon::INVALID) { |
| 162 | continue; |
| 163 | } |
| 164 | |
| 165 | // the tree collision mask determines which trees to collide test against |
| 166 | if (!(r_params.tree_collision_mask & tree_test_mask)) { |
| 167 | continue; |
| 168 | } |
| 169 | |
| 170 | _cull_aabb_iterative(_root_node_id[n], r_params); |
| 171 | } |
| 172 | |
| 173 | if (p_translate_hits) { |
| 174 | _cull_translate_hits(r_params); |
| 175 | } |
| 176 | |
| 177 | return r_params.result_count; |
| 178 | } |
| 179 | |
| 180 | bool _cull_hits_full(const CullParams &p) { |
| 181 | // instead of checking every hit, we can do a lazy check for this condition. |
| 182 | // it isn't a problem if we write too much _cull_hits because they only the |
| 183 | // result_max amount will be translated and outputted. But we might as |
| 184 | // well stop our cull checks after the maximum has been reached. |
| 185 | return (int)_cull_hits.size() >= p.result_max; |
| 186 | } |
| 187 | |
| 188 | void _cull_hit(uint32_t p_ref_id, CullParams &p) { |
| 189 | // take into account masks etc |
| 190 | // this would be more efficient to do before plane checks, |
| 191 | // but done here for ease to get started |
| 192 | if (USE_PAIRS) { |
| 193 | const ItemExtra &ex = _extra[p_ref_id]; |
| 194 | |
| 195 | // user supplied function (for e.g. pairable types and pairable masks in the render tree) |
| 196 | if (!USER_CULL_TEST_FUNCTION::user_cull_check(p.tester, ex.userdata)) { |
| 197 | return; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | _cull_hits.push_back(p_ref_id); |
| 202 | } |
| 203 | |
| 204 | bool _cull_segment_iterative(uint32_t p_node_id, CullParams &r_params) { |
| 205 | // our function parameters to keep on a stack |
| 206 | struct CullSegParams { |
| 207 | uint32_t node_id; |
| 208 | }; |
| 209 | |
| 210 | // most of the iterative functionality is contained in this helper class |
| 211 | BVH_IterativeInfo<CullSegParams> ii; |
| 212 | |
| 213 | // alloca must allocate the stack from this function, it cannot be allocated in the |
| 214 | // helper class |
| 215 | ii.stack = (CullSegParams *)alloca(ii.get_alloca_stacksize()); |
| 216 | |
| 217 | // seed the stack |
| 218 | ii.get_first()->node_id = p_node_id; |
| 219 | |
| 220 | CullSegParams csp; |
| 221 | |
| 222 | // while there are still more nodes on the stack |
| 223 | while (ii.pop(csp)) { |
| 224 | TNode &tnode = _nodes[csp.node_id]; |
| 225 | |
| 226 | if (tnode.is_leaf()) { |
| 227 | // lazy check for hits full up condition |
| 228 | if (_cull_hits_full(r_params)) { |
| 229 | return false; |
| 230 | } |
| 231 | |
| 232 | TLeaf &leaf = _node_get_leaf(tnode); |
| 233 | |
| 234 | // test children individually |
| 235 | for (int n = 0; n < leaf.num_items; n++) { |
| 236 | const BVHABB_CLASS &aabb = leaf.get_aabb(n); |
| 237 | |
| 238 | if (aabb.intersects_segment(r_params.segment)) { |
| 239 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 240 | |
| 241 | // register hit |
| 242 | _cull_hit(child_id, r_params); |
| 243 | } |
| 244 | } |
| 245 | } else { |
| 246 | // test children individually |
| 247 | for (int n = 0; n < tnode.num_children; n++) { |
| 248 | uint32_t child_id = tnode.children[n]; |
| 249 | const BVHABB_CLASS &child_abb = _nodes[child_id].aabb; |
| 250 | |
| 251 | if (child_abb.intersects_segment(r_params.segment)) { |
| 252 | // add to the stack |
| 253 | CullSegParams *child = ii.request(); |
| 254 | child->node_id = child_id; |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | } // while more nodes to pop |
| 260 | |
| 261 | // true indicates results are not full |
| 262 | return true; |
| 263 | } |
| 264 | |
| 265 | bool _cull_point_iterative(uint32_t p_node_id, CullParams &r_params) { |
| 266 | // our function parameters to keep on a stack |
| 267 | struct CullPointParams { |
| 268 | uint32_t node_id; |
| 269 | }; |
| 270 | |
| 271 | // most of the iterative functionality is contained in this helper class |
| 272 | BVH_IterativeInfo<CullPointParams> ii; |
| 273 | |
| 274 | // alloca must allocate the stack from this function, it cannot be allocated in the |
| 275 | // helper class |
| 276 | ii.stack = (CullPointParams *)alloca(ii.get_alloca_stacksize()); |
| 277 | |
| 278 | // seed the stack |
| 279 | ii.get_first()->node_id = p_node_id; |
| 280 | |
| 281 | CullPointParams cpp; |
| 282 | |
| 283 | // while there are still more nodes on the stack |
| 284 | while (ii.pop(cpp)) { |
| 285 | TNode &tnode = _nodes[cpp.node_id]; |
| 286 | // no hit with this node? |
| 287 | if (!tnode.aabb.intersects_point(r_params.point)) { |
| 288 | continue; |
| 289 | } |
| 290 | |
| 291 | if (tnode.is_leaf()) { |
| 292 | // lazy check for hits full up condition |
| 293 | if (_cull_hits_full(r_params)) { |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | TLeaf &leaf = _node_get_leaf(tnode); |
| 298 | |
| 299 | // test children individually |
| 300 | for (int n = 0; n < leaf.num_items; n++) { |
| 301 | if (leaf.get_aabb(n).intersects_point(r_params.point)) { |
| 302 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 303 | |
| 304 | // register hit |
| 305 | _cull_hit(child_id, r_params); |
| 306 | } |
| 307 | } |
| 308 | } else { |
| 309 | // test children individually |
| 310 | for (int n = 0; n < tnode.num_children; n++) { |
| 311 | uint32_t child_id = tnode.children[n]; |
| 312 | |
| 313 | // add to the stack |
| 314 | CullPointParams *child = ii.request(); |
| 315 | child->node_id = child_id; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | } // while more nodes to pop |
| 320 | |
| 321 | // true indicates results are not full |
| 322 | return true; |
| 323 | } |
| 324 | |
| 325 | // Note: This is a very hot loop profiling wise. Take care when changing this and profile. |
| 326 | bool _cull_aabb_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) { |
| 327 | // our function parameters to keep on a stack |
| 328 | struct CullAABBParams { |
| 329 | uint32_t node_id; |
| 330 | bool fully_within; |
| 331 | }; |
| 332 | |
| 333 | // most of the iterative functionality is contained in this helper class |
| 334 | BVH_IterativeInfo<CullAABBParams> ii; |
| 335 | |
| 336 | // alloca must allocate the stack from this function, it cannot be allocated in the |
| 337 | // helper class |
| 338 | ii.stack = (CullAABBParams *)alloca(ii.get_alloca_stacksize()); |
| 339 | |
| 340 | // seed the stack |
| 341 | ii.get_first()->node_id = p_node_id; |
| 342 | ii.get_first()->fully_within = p_fully_within; |
| 343 | |
| 344 | CullAABBParams cap; |
| 345 | |
| 346 | // while there are still more nodes on the stack |
| 347 | while (ii.pop(cap)) { |
| 348 | TNode &tnode = _nodes[cap.node_id]; |
| 349 | |
| 350 | if (tnode.is_leaf()) { |
| 351 | // lazy check for hits full up condition |
| 352 | if (_cull_hits_full(r_params)) { |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | TLeaf &leaf = _node_get_leaf(tnode); |
| 357 | |
| 358 | // if fully within we can just add all items |
| 359 | // as long as they pass mask checks |
| 360 | if (cap.fully_within) { |
| 361 | for (int n = 0; n < leaf.num_items; n++) { |
| 362 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 363 | |
| 364 | // register hit |
| 365 | _cull_hit(child_id, r_params); |
| 366 | } |
| 367 | } else { |
| 368 | // This section is the hottest area in profiling, so |
| 369 | // is optimized highly |
| 370 | // get this into a local register and preconverted to correct type |
| 371 | int leaf_num_items = leaf.num_items; |
| 372 | |
| 373 | BVHABB_CLASS swizzled_tester; |
| 374 | swizzled_tester.min = -r_params.abb.neg_max; |
| 375 | swizzled_tester.neg_max = -r_params.abb.min; |
| 376 | |
| 377 | for (int n = 0; n < leaf_num_items; n++) { |
| 378 | const BVHABB_CLASS &aabb = leaf.get_aabb(n); |
| 379 | |
| 380 | if (swizzled_tester.intersects_swizzled(aabb)) { |
| 381 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 382 | |
| 383 | // register hit |
| 384 | _cull_hit(child_id, r_params); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | } // not fully within |
| 389 | } else { |
| 390 | if (!cap.fully_within) { |
| 391 | // test children individually |
| 392 | for (int n = 0; n < tnode.num_children; n++) { |
| 393 | uint32_t child_id = tnode.children[n]; |
| 394 | const BVHABB_CLASS &child_abb = _nodes[child_id].aabb; |
| 395 | |
| 396 | if (child_abb.intersects(r_params.abb)) { |
| 397 | // is the node totally within the aabb? |
| 398 | bool fully_within = r_params.abb.is_other_within(child_abb); |
| 399 | |
| 400 | // add to the stack |
| 401 | CullAABBParams *child = ii.request(); |
| 402 | |
| 403 | // should always return valid child |
| 404 | child->node_id = child_id; |
| 405 | child->fully_within = fully_within; |
| 406 | } |
| 407 | } |
| 408 | } else { |
| 409 | for (int n = 0; n < tnode.num_children; n++) { |
| 410 | uint32_t child_id = tnode.children[n]; |
| 411 | |
| 412 | // add to the stack |
| 413 | CullAABBParams *child = ii.request(); |
| 414 | |
| 415 | // should always return valid child |
| 416 | child->node_id = child_id; |
| 417 | child->fully_within = true; |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | } // while more nodes to pop |
| 423 | |
| 424 | // true indicates results are not full |
| 425 | return true; |
| 426 | } |
| 427 | |
| 428 | // returns full up with results |
| 429 | bool _cull_convex_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) { |
| 430 | // our function parameters to keep on a stack |
| 431 | struct CullConvexParams { |
| 432 | uint32_t node_id; |
| 433 | bool fully_within; |
| 434 | }; |
| 435 | |
| 436 | // most of the iterative functionality is contained in this helper class |
| 437 | BVH_IterativeInfo<CullConvexParams> ii; |
| 438 | |
| 439 | // alloca must allocate the stack from this function, it cannot be allocated in the |
| 440 | // helper class |
| 441 | ii.stack = (CullConvexParams *)alloca(ii.get_alloca_stacksize()); |
| 442 | |
| 443 | // seed the stack |
| 444 | ii.get_first()->node_id = p_node_id; |
| 445 | ii.get_first()->fully_within = p_fully_within; |
| 446 | |
| 447 | // preallocate these as a once off to be reused |
| 448 | uint32_t max_planes = r_params.hull.num_planes; |
| 449 | uint32_t *plane_ids = (uint32_t *)alloca(sizeof(uint32_t) * max_planes); |
| 450 | |
| 451 | CullConvexParams ccp; |
| 452 | |
| 453 | // while there are still more nodes on the stack |
| 454 | while (ii.pop(ccp)) { |
| 455 | const TNode &tnode = _nodes[ccp.node_id]; |
| 456 | |
| 457 | if (!ccp.fully_within) { |
| 458 | typename BVHABB_CLASS::IntersectResult res = tnode.aabb.intersects_convex(r_params.hull); |
| 459 | |
| 460 | switch (res) { |
| 461 | default: { |
| 462 | continue; // miss, just move on to the next node in the stack |
| 463 | } break; |
| 464 | case BVHABB_CLASS::IR_PARTIAL: { |
| 465 | } break; |
| 466 | case BVHABB_CLASS::IR_FULL: { |
| 467 | ccp.fully_within = true; |
| 468 | } break; |
| 469 | } |
| 470 | |
| 471 | } // if not fully within already |
| 472 | |
| 473 | if (tnode.is_leaf()) { |
| 474 | // lazy check for hits full up condition |
| 475 | if (_cull_hits_full(r_params)) { |
| 476 | return false; |
| 477 | } |
| 478 | |
| 479 | const TLeaf &leaf = _node_get_leaf(tnode); |
| 480 | |
| 481 | // if fully within, simply add all items to the result |
| 482 | // (taking into account masks) |
| 483 | if (ccp.fully_within) { |
| 484 | for (int n = 0; n < leaf.num_items; n++) { |
| 485 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 486 | |
| 487 | // register hit |
| 488 | _cull_hit(child_id, r_params); |
| 489 | } |
| 490 | |
| 491 | } else { |
| 492 | // we can either use a naive check of all the planes against the AABB, |
| 493 | // or an optimized check, which finds in advance which of the planes can possibly |
| 494 | // cut the AABB, and only tests those. This can be much faster. |
| 495 | #define BVH_CONVEX_CULL_OPTIMIZED |
| 496 | #ifdef BVH_CONVEX_CULL_OPTIMIZED |
| 497 | // first find which planes cut the aabb |
| 498 | uint32_t num_planes = tnode.aabb.find_cutting_planes(r_params.hull, plane_ids); |
| 499 | BVH_ASSERT(num_planes <= max_planes); |
| 500 | |
| 501 | //#define BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK |
| 502 | #ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK |
| 503 | // rigorous check |
| 504 | uint32_t results[MAX_ITEMS]; |
| 505 | uint32_t num_results = 0; |
| 506 | #endif |
| 507 | |
| 508 | // test children individually |
| 509 | for (int n = 0; n < leaf.num_items; n++) { |
| 510 | //const Item &item = leaf.get_item(n); |
| 511 | const BVHABB_CLASS &aabb = leaf.get_aabb(n); |
| 512 | |
| 513 | if (aabb.intersects_convex_optimized(r_params.hull, plane_ids, num_planes)) { |
| 514 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 515 | |
| 516 | #ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK |
| 517 | results[num_results++] = child_id; |
| 518 | #endif |
| 519 | |
| 520 | // register hit |
| 521 | _cull_hit(child_id, r_params); |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | #ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK |
| 526 | uint32_t test_count = 0; |
| 527 | |
| 528 | for (int n = 0; n < leaf.num_items; n++) { |
| 529 | const BVHABB_CLASS &aabb = leaf.get_aabb(n); |
| 530 | |
| 531 | if (aabb.intersects_convex_partial(r_params.hull)) { |
| 532 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 533 | |
| 534 | CRASH_COND(child_id != results[test_count++]); |
| 535 | CRASH_COND(test_count > num_results); |
| 536 | } |
| 537 | } |
| 538 | #endif |
| 539 | |
| 540 | #else |
| 541 | // not BVH_CONVEX_CULL_OPTIMIZED |
| 542 | // test children individually |
| 543 | for (int n = 0; n < leaf.num_items; n++) { |
| 544 | const BVHABB_CLASS &aabb = leaf.get_aabb(n); |
| 545 | |
| 546 | if (aabb.intersects_convex_partial(r_params.hull)) { |
| 547 | uint32_t child_id = leaf.get_item_ref_id(n); |
| 548 | |
| 549 | // full up with results? exit early, no point in further testing |
| 550 | if (!_cull_hit(child_id, r_params)) { |
| 551 | return false; |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | #endif // BVH_CONVEX_CULL_OPTIMIZED |
| 556 | } // if not fully within |
| 557 | } else { |
| 558 | for (int n = 0; n < tnode.num_children; n++) { |
| 559 | uint32_t child_id = tnode.children[n]; |
| 560 | |
| 561 | // add to the stack |
| 562 | CullConvexParams *child = ii.request(); |
| 563 | |
| 564 | // should always return valid child |
| 565 | child->node_id = child_id; |
| 566 | child->fully_within = ccp.fully_within; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | } // while more nodes to pop |
| 571 | |
| 572 | // true indicates results are not full |
| 573 | return true; |
| 574 | } |
| 575 | |