1 | |
2 | public: |
3 | struct ItemRef { |
4 | uint32_t tnode_id; // -1 is invalid |
5 | uint32_t item_id; // in the leaf |
6 | |
7 | bool is_active() const { return tnode_id != BVHCommon::INACTIVE; } |
8 | void set_inactive() { |
9 | tnode_id = BVHCommon::INACTIVE; |
10 | item_id = BVHCommon::INACTIVE; |
11 | } |
12 | }; |
13 | |
14 | // extra info kept in separate parallel list to the references, |
15 | // as this is less used as keeps cache better |
16 | struct { |
17 | // Before doing user defined pairing checks (especially in the find_leavers function), |
18 | // we may want to check that two items have compatible tree ids and tree masks, |
19 | // as if they are incompatible they should not pair / collide. |
20 | bool (const ItemExtra &p_other) const { |
21 | uint32_t other_type = 1 << p_other.tree_id; |
22 | if (tree_collision_mask & other_type) { |
23 | return true; |
24 | } |
25 | uint32_t our_type = 1 << tree_id; |
26 | if (p_other.tree_collision_mask & our_type) { |
27 | return true; |
28 | } |
29 | return false; |
30 | } |
31 | |
32 | // There can be multiple user defined trees |
33 | uint32_t ; |
34 | |
35 | // Defines which trees this item should collision check against. |
36 | // 1 << tree_id, and normally items would collide against there own |
37 | // tree (but not always). |
38 | uint32_t ; |
39 | |
40 | uint32_t ; |
41 | int32_t ; |
42 | |
43 | T *; |
44 | |
45 | // the active reference is a separate list of which references |
46 | // are active so that we can slowly iterate through it over many frames for |
47 | // slow optimize. |
48 | uint32_t ; |
49 | }; |
50 | |
51 | // tree leaf |
52 | struct TLeaf { |
53 | uint16_t num_items; |
54 | |
55 | private: |
56 | uint16_t dirty; |
57 | // separate data orientated lists for faster SIMD traversal |
58 | uint32_t item_ref_ids[MAX_ITEMS]; |
59 | BVHABB_CLASS aabbs[MAX_ITEMS]; |
60 | |
61 | public: |
62 | // accessors |
63 | BVHABB_CLASS &get_aabb(uint32_t p_id) { |
64 | BVH_ASSERT(p_id < MAX_ITEMS); |
65 | return aabbs[p_id]; |
66 | } |
67 | const BVHABB_CLASS &get_aabb(uint32_t p_id) const { |
68 | BVH_ASSERT(p_id < MAX_ITEMS); |
69 | return aabbs[p_id]; |
70 | } |
71 | |
72 | uint32_t &get_item_ref_id(uint32_t p_id) { |
73 | BVH_ASSERT(p_id < MAX_ITEMS); |
74 | return item_ref_ids[p_id]; |
75 | } |
76 | const uint32_t &get_item_ref_id(uint32_t p_id) const { |
77 | BVH_ASSERT(p_id < MAX_ITEMS); |
78 | return item_ref_ids[p_id]; |
79 | } |
80 | |
81 | bool is_dirty() const { return dirty; } |
82 | void set_dirty(bool p) { dirty = p; } |
83 | |
84 | void clear() { |
85 | num_items = 0; |
86 | set_dirty(true); |
87 | } |
88 | bool is_full() const { return num_items >= MAX_ITEMS; } |
89 | |
90 | void remove_item_unordered(uint32_t p_id) { |
91 | BVH_ASSERT(p_id < num_items); |
92 | num_items--; |
93 | aabbs[p_id] = aabbs[num_items]; |
94 | item_ref_ids[p_id] = item_ref_ids[num_items]; |
95 | } |
96 | |
97 | uint32_t request_item() { |
98 | if (num_items < MAX_ITEMS) { |
99 | uint32_t id = num_items; |
100 | num_items++; |
101 | return id; |
102 | } |
103 | #ifdef DEV_ENABLED |
104 | return -1; |
105 | #else |
106 | ERR_FAIL_V_MSG(0, "BVH request_item error." ); |
107 | #endif |
108 | } |
109 | }; |
110 | |
111 | // tree node |
112 | struct TNode { |
113 | BVHABB_CLASS aabb; |
114 | // either number of children if positive |
115 | // or leaf id if negative (leaf id 0 is disallowed) |
116 | union { |
117 | int32_t num_children; |
118 | int32_t neg_leaf_id; |
119 | }; |
120 | uint32_t parent_id; // or -1 |
121 | uint16_t children[MAX_CHILDREN]; |
122 | |
123 | // height in the tree, where leaves are 0, and all above are 1+ |
124 | // (or the highest where there is a tie off) |
125 | int32_t height; |
126 | |
127 | bool is_leaf() const { return num_children < 0; } |
128 | void set_leaf_id(int id) { neg_leaf_id = -id; } |
129 | int get_leaf_id() const { return -neg_leaf_id; } |
130 | |
131 | void clear() { |
132 | num_children = 0; |
133 | parent_id = BVHCommon::INVALID; |
134 | height = 0; // or -1 for testing |
135 | |
136 | // for safety set to improbable value |
137 | aabb.set_to_max_opposite_extents(); |
138 | |
139 | // other members are not blanked for speed .. they may be uninitialized |
140 | } |
141 | |
142 | bool is_full_of_children() const { return num_children >= MAX_CHILDREN; } |
143 | |
144 | void remove_child_internal(uint32_t child_num) { |
145 | children[child_num] = children[num_children - 1]; |
146 | num_children--; |
147 | } |
148 | |
149 | int find_child(uint32_t p_child_node_id) { |
150 | BVH_ASSERT(!is_leaf()); |
151 | |
152 | for (int n = 0; n < num_children; n++) { |
153 | if (children[n] == p_child_node_id) { |
154 | return n; |
155 | } |
156 | } |
157 | |
158 | // not found |
159 | return -1; |
160 | } |
161 | }; |
162 | |
163 | // instead of using linked list we maintain |
164 | // item references (for quick lookup) |
165 | PooledList<ItemRef, uint32_t, true> _refs; |
166 | PooledList<ItemExtra, uint32_t, true> ; |
167 | PooledList<ItemPairs> _pairs; |
168 | |
169 | // these 2 are not in sync .. nodes != leaves! |
170 | PooledList<TNode, uint32_t, true> _nodes; |
171 | PooledList<TLeaf, uint32_t, true> _leaves; |
172 | |
173 | // we can maintain an un-ordered list of which references are active, |
174 | // in order to do a slow incremental optimize of the tree over each frame. |
175 | // This will work best if dynamic objects and static objects are in a different tree. |
176 | LocalVector<uint32_t, uint32_t, true> _active_refs; |
177 | uint32_t _current_active_ref = 0; |
178 | |
179 | // instead of translating directly to the userdata output, |
180 | // we keep an intermediate list of hits as reference IDs, which can be used |
181 | // for pairing collision detection |
182 | LocalVector<uint32_t, uint32_t, true> _cull_hits; |
183 | |
184 | // We can now have a user definable number of trees. |
185 | // This allows using e.g. a non-pairable and pairable tree, |
186 | // which can be more efficient for example, if we only need check non pairable against the pairable tree. |
187 | // It also may be more efficient in terms of separating static from dynamic objects, by reducing housekeeping. |
188 | // However this is a trade off, as there is a cost of traversing two trees. |
189 | uint32_t _root_node_id[NUM_TREES]; |
190 | |
191 | // these values may need tweaking according to the project |
192 | // the bound of the world, and the average velocities of the objects |
193 | |
194 | // node expansion is important in the rendering tree |
195 | // larger values give less re-insertion as items move... |
196 | // but on the other hand over estimates the bounding box of nodes. |
197 | // we can either use auto mode, where the expansion is based on the root node size, or specify manually |
198 | real_t _node_expansion = 0.5; |
199 | bool _auto_node_expansion = true; |
200 | |
201 | // pairing expansion important for physics pairing |
202 | // larger values gives more 'sticky' pairing, and is less likely to exhibit tunneling |
203 | // we can either use auto mode, where the expansion is based on the root node size, or specify manually |
204 | real_t _pairing_expansion = 0.1; |
205 | |
206 | #ifdef BVH_ALLOW_AUTO_EXPANSION |
207 | bool _auto_pairing_expansion = true; |
208 | #endif |
209 | |
210 | // when using an expanded bound, we must detect the condition where a new AABB |
211 | // is significantly smaller than the expanded bound, as this is a special case where we |
212 | // should override the optimization and create a new expanded bound. |
213 | // This threshold is derived from the _pairing_expansion, and should be recalculated |
214 | // if _pairing_expansion is changed. |
215 | real_t _aabb_shrinkage_threshold = 0.0; |
216 | |